JP5589666B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP5589666B2
JP5589666B2 JP2010183371A JP2010183371A JP5589666B2 JP 5589666 B2 JP5589666 B2 JP 5589666B2 JP 2010183371 A JP2010183371 A JP 2010183371A JP 2010183371 A JP2010183371 A JP 2010183371A JP 5589666 B2 JP5589666 B2 JP 5589666B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat
semiconductor device
porous film
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010183371A
Other languages
Japanese (ja)
Other versions
JP2012043954A (en
Inventor
晋 尾形
健司 塩賀
信幸 林
浩基 内田
重徳 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2010183371A priority Critical patent/JP5589666B2/en
Publication of JP2012043954A publication Critical patent/JP2012043954A/en
Application granted granted Critical
Publication of JP5589666B2 publication Critical patent/JP5589666B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item

Description

本発明は、搭載された半導体素子を冷却する機能を具備した半導体装置に関するものである。   The present invention relates to a semiconductor device having a function of cooling a mounted semiconductor element.

半導体集積回路(LSI)など半導体素子の更なる高性能化に伴い、発熱量が増大するため、素子の冷却技術の重要性が高まっている。半導体装置に適用される代表的な冷却方式としては、空冷方式と冷媒循環方式とがある。   As the semiconductor device such as a semiconductor integrated circuit (LSI) further increases in performance, the amount of heat generation increases, and therefore the importance of element cooling technology is increasing. Typical cooling methods applied to semiconductor devices include an air cooling method and a refrigerant circulation method.

空冷方式では、半導体素子の接合部近傍、具体的には素子パッケージの一方の面ないし両面にヒートシンクを具備させ、このヒートシンクに冷却風を当てて熱を奪う方法である。   The air cooling method is a method in which a heat sink is provided in the vicinity of a junction portion of a semiconductor element, specifically, one surface or both surfaces of the element package, and heat is taken away by applying cooling air to the heat sink.

図4に空冷方式の例を示す。本図は、空冷方式を用いた半導体装置101の断面模式図であり、回路基板102上に、半導体素子103を含み、その電極104と接続するはんだ105を外部出力端子とする半導体パッケージ107を、回路基板102の電極パッド106と接続する。半導体パッケージ107上に熱伝導性を考慮した接着剤などの材料である、TIM(熱界面材料、Thermal Interface Material)108を介して、ヒートシンク109を装着する。このヒートシンク109や回路基板102に冷却風を当てて冷却する。   FIG. 4 shows an example of the air cooling method. This figure is a schematic cross-sectional view of a semiconductor device 101 using an air cooling system. A semiconductor package 107 including a semiconductor element 103 on a circuit board 102 and having a solder 105 connected to the electrode 104 as an external output terminal is shown in FIG. It connects with the electrode pad 106 of the circuit board 102. A heat sink 109 is mounted on the semiconductor package 107 via a TIM (Thermal Interface Material) 108, which is a material such as an adhesive considering thermal conductivity. The heat sink 109 and the circuit board 102 are cooled by applying cooling air.

空冷方式で冷却するためには、相当の放熱面積を必要とする。発熱量の増大に対応するためにはヒートシンクの大型化か、あるいは冷却風の風量の増大が必要である。半導体素子の周辺には様々な電子部品が設置されるため、スペースが少なく、半導体素子直上に設けられるヒートシンクの大型化は容易ではない。また、冷却風の増大は送風ファンの電力増加だけでなく、ファンの風切り音が増すことによる騒音増大にもつながるので、風量の増大は極力避けたい。   In order to cool by the air cooling method, a considerable heat radiation area is required. In order to cope with an increase in the amount of heat generation, it is necessary to increase the size of the heat sink or increase the amount of cooling air. Since various electronic components are installed around the semiconductor element, the space is small, and it is not easy to increase the size of the heat sink provided immediately above the semiconductor element. Further, the increase in cooling air not only increases the power of the blower fan, but also increases the noise due to the increase in the wind noise of the fan, so an increase in the air volume should be avoided as much as possible.

冷媒循環方式は、基本的に、液状の冷媒をポンプにより強制的に循環し、冷媒への熱伝達により半導体素子の熱を奪う方法である。通常、二つの熱交換器がパイプにより連結された構造をもち、流路の途中に冷媒を循環させるためのポンプがある。半導体素子の熱は、パッケージ直上に設置された第一の熱交換器に伝わり、内部の冷媒の温度を上昇させることにより、顕熱として冷媒に吸収される。第二の熱交換器において冷却された冷媒は再び第一の熱交換器に還流する。   The refrigerant circulation method is basically a method in which a liquid refrigerant is forcibly circulated by a pump, and heat of the semiconductor element is taken away by heat transfer to the refrigerant. Usually, there is a pump for circulating a refrigerant in the middle of a flow path having a structure in which two heat exchangers are connected by a pipe. The heat of the semiconductor element is transferred to the first heat exchanger installed immediately above the package, and is absorbed by the refrigerant as sensible heat by increasing the temperature of the internal refrigerant. The refrigerant cooled in the second heat exchanger returns to the first heat exchanger again.

この冷媒循環方式の利点は、放熱器となる第二の熱交換器を半導体素子から離れたところへ設置できることにある。この利点により電子部品が少なく、スペース上の制限が少ない領域に大きな放熱器を設置して、少ない風量で効率的に冷却することが可能となる。しかし、冷媒の顕熱を利用した熱輸送を伴うため、冷媒の循環にポンプを必要とし、冷却に余分な電力を必要とする。   The advantage of this refrigerant circulation system is that the second heat exchanger that serves as a radiator can be installed at a location away from the semiconductor element. Due to this advantage, it is possible to efficiently cool with a small air volume by installing a large radiator in a region where there are few electronic components and space is limited. However, since it involves heat transport using the sensible heat of the refrigerant, a pump is required to circulate the refrigerant, and extra power is required for cooling.

上記冷媒循環方式において、熱輸送を効率的に行うために、冷媒の蒸発潜熱を利用する方法が提案されている。図5はその方法の一例を説明するための模式図である。図において、発熱体110は、例えば、電子基板111上にLSIなどの電子部品112が実装されたもので、その表面に防水層113と含水層114とが形成されたものである。含水層114は毛細管現象で水を吸い上げる効果を有するもので形成され、発熱体110の凹凸面でも均等に覆うように形成されている。缶体115は密閉空間116を構成し、その底部の水溜部117には水118が貯液されている。発熱体110は含水層114の端部を水118に浸漬するようにして缶体115内に収容されている。缶体115と減湿装置119が空気循環路としての管路120により連結され閉ループを構成している。そして、空気循環手段としての空気循環器121が管路120に配設され、循環空気Aが閉ループ内を循環するように構成されている。さらに、減湿装置119の底部と缶体115の底部とが返水手段としての返水管122で連結され、減湿装置119の底部の底部に溜まった水が返水管122を介して缶体115の水溜部117に返水されるように構成されている。減湿装置119は、例えば、冷媒圧縮式空気冷却機で構成する。   In the above refrigerant circulation system, a method using latent heat of vaporization of the refrigerant has been proposed in order to efficiently carry out heat transport. FIG. 5 is a schematic diagram for explaining an example of the method. In the figure, the heating element 110 is, for example, one in which an electronic component 112 such as LSI is mounted on an electronic substrate 111, and a waterproof layer 113 and a water-containing layer 114 are formed on the surface thereof. The water-containing layer 114 is formed to have an effect of sucking water by capillary action, and is formed so as to evenly cover the uneven surface of the heating element 110. The can body 115 constitutes a sealed space 116, and water 118 is stored in the water reservoir 117 at the bottom thereof. The heating element 110 is accommodated in the can body 115 so that the end of the water-containing layer 114 is immersed in the water 118. The can body 115 and the dehumidifying device 119 are connected by a pipe line 120 as an air circulation path to form a closed loop. And the air circulator 121 as an air circulation means is arrange | positioned by the pipe line 120, and it is comprised so that the circulating air A may circulate through the inside of a closed loop. Further, the bottom of the dehumidifying device 119 and the bottom of the can body 115 are connected by a water return pipe 122 serving as a water return means, and water accumulated at the bottom of the bottom of the dehumidifying device 119 passes through the water return pipe 122. The water reservoir 117 is configured to return water. The dehumidifying device 119 is composed of, for example, a refrigerant compression air cooler.

この方法は冷媒(空気)の循環に空気循環機を用いており、このため、これを作動するには電力を必要とする。また、水の蒸発潜熱を用いていることから、電子部品の絶縁のために防水層を設ける必要があることから、これが、熱伝導効率の低下を招き、発熱体表面から直接熱を奪う場合に比べ、冷却効果が劣る。   This method uses an air circulator to circulate the refrigerant (air), and thus requires electric power to operate it. In addition, because it uses the latent heat of vaporization of water, it is necessary to provide a waterproof layer to insulate electronic components.This leads to a decrease in heat conduction efficiency, and when heat is taken directly from the surface of the heating element. In comparison, the cooling effect is inferior.

上記の冷却方式においては、冷却装置と素子表面の発熱部位との間にはパッケージ材(防水層)やTIMなどの介在物が存在し、冷却効果を低下させている。冷却効果の向上に限らず、省スペースの観点からも、素子表面からの直接放熱をすることが望ましい。   In the cooling method described above, inclusions such as a package material (waterproof layer) and TIM are present between the cooling device and the heat generating portion on the element surface, thereby reducing the cooling effect. It is desirable to directly radiate heat from the element surface not only from the improvement of the cooling effect but also from the viewpoint of space saving.

半導体素子表面から直接放熱させる技術として、低沸点で絶縁性の冷媒中に、LSIやLSIモジュールを浸漬する技術が提案されている。図6は、その例を説明するための断面模式図である。図において、半導体装置123は、ヒートパイプ124と、その内部に半導体チップ125を備え、半導体チップ125は配線126を介してヒートパイプ124の外部と電気的に接続されている。半導体チップ125は実装基板127上に形成され、実装基板127はヒートパイプ124の壁面の一部としてよい。半導体チップ125は配線126とボンディングワイヤ128により接続されている。ヒートパイプ124は、内部にウィック129および作動液130(水、アルコール、または代替フロンなど)を有している。半導体チップ125は作動液130に直接(または薄い保護膜を介して)接触している。このように、冷媒(作動液)の蒸発・凝縮の相変化に伴う潜熱を利用して冷却するため、効率よく冷却できる。   As a technique for directly radiating heat from the surface of a semiconductor element, a technique for immersing an LSI or an LSI module in an insulating refrigerant having a low boiling point has been proposed. FIG. 6 is a schematic cross-sectional view for explaining the example. In the figure, a semiconductor device 123 includes a heat pipe 124 and a semiconductor chip 125 therein, and the semiconductor chip 125 is electrically connected to the outside of the heat pipe 124 via a wiring 126. The semiconductor chip 125 may be formed on the mounting substrate 127, and the mounting substrate 127 may be part of the wall surface of the heat pipe 124. The semiconductor chip 125 is connected to the wiring 126 and the bonding wire 128. The heat pipe 124 has a wick 129 and a hydraulic fluid 130 (water, alcohol, or alternative chlorofluorocarbon) inside. The semiconductor chip 125 is in direct contact with the hydraulic fluid 130 (or through a thin protective film). Thus, since it cools using the latent heat accompanying the phase change of evaporation (condensation fluid) and condensation, it can cool efficiently.

半導体素子表面から直接放熱させる技術においては、冷媒の蒸発潜熱を利用した冷却方法を用いたものも提案されている。図7は、その例を説明するための断面模式図である。熱制御装置131は、無底ヒート筐体132が取付台133上に一体載着しており、冷媒液を含むウィック134は発熱物135を被包して無底ヒート筐体132および無底ヒート筐体132内取付台133上面全域に亙り内張りされており、取付リム136で無底ヒート筐体132を取付台133上に取付る。   As a technique for directly radiating heat from the surface of a semiconductor element, a technique using a cooling method using latent heat of vaporization of a refrigerant has been proposed. FIG. 7 is a schematic cross-sectional view for explaining the example. In the heat control device 131, a bottomless heat casing 132 is integrally mounted on the mounting base 133, and a wick 134 containing a refrigerant liquid encloses a heating element 135 so that the bottomless heat casing 132 and bottomless heat are included. The inner surface of the mounting base 133 in the casing 132 is lined over the entire upper surface, and the bottomless heat casing 132 is mounted on the mounting base 133 with the mounting rim 136.

発熱物135からの発熱は発熱物135に接するウィック134の吸熱部137に含まれる冷媒液が蒸発するとき、蒸発潜熱として蒸気に取り込まれ、取付台133に伝えられ、取付台133から外部へ放熱される。取付台133は発熱物135の温度より低いために蒸気はそこで液体に相変化し、輸送してきた熱量を凝縮熱として無底ヒート筐体132に伝熱するので再び液体となってウィック134内を毛細管作用により連続的に吸熱部137へと循環する。   When the refrigerant liquid contained in the heat absorbing portion 137 of the wick 134 in contact with the heat generating material 135 evaporates, the heat generated from the heat generating material 135 is taken into the vapor as latent heat of vaporization and transmitted to the mounting base 133, and is radiated from the mounting base 133 to the outside. Is done. Since the mounting base 133 is lower than the temperature of the heat generating material 135, the vapor changes into a liquid there, and the amount of heat transported is transferred to the bottomless heat casing 132 as condensed heat, so that it becomes liquid again and passes through the wick 134. It continuously circulates to the heat absorption part 137 by capillary action.

このように、ウィック(即ち、多孔質体)が流路に設けられており、多孔質体に冷媒が浸透する際の毛細管力を、冷媒を加熱面まで還流させる駆動力として用いるので、重力による還流に比べて、半導体装置の姿勢や冷却部の配置の影響を受けにくいといった特徴を持っている。   Thus, the wick (ie, the porous body) is provided in the flow path, and the capillary force when the refrigerant permeates the porous body is used as a driving force for refluxing the refrigerant to the heating surface. Compared to reflux, it has a feature that it is less affected by the posture of the semiconductor device and the arrangement of the cooling unit.

特許第3068209号Japanese Patent No. 3068209 特開2009−206369号公報JP 2009-206369 A 特開平04−83395号公報Japanese Patent Laid-Open No. 04-83395

しかし、図6で示したような、低沸点で絶縁性の冷媒中に、LSIやLSIモジュールを浸漬する冷却方法は、蒸気と液の流路が分離していないため、熱を輸送中の蒸気と、放熱後の液とが干渉して放熱部に十分に熱が運ばれず、冷却効率が低下する。また、冷媒の還流手段として、主に重力を利用するので、冷却性能を維持するためには、凝縮した液が重力により落下して、LSIに常に液が供給されるような配置・姿勢にする必要がある。したがって、使用状況に応じて上下方向が変わるモバイル機器などでは、安定的な冷却性能が期待できない。   However, the cooling method in which the LSI or LSI module is immersed in an insulating refrigerant having a low boiling point as shown in FIG. 6 does not separate the flow path of the vapor and the liquid. And the liquid after heat dissipation interferes and heat is not carried enough to a heat radiating part, and cooling efficiency falls. In addition, since gravity is mainly used as the refrigerant recirculation means, in order to maintain the cooling performance, an arrangement / attitude in which the condensed liquid falls due to gravity and the liquid is always supplied to the LSI is adopted. There is a need. Therefore, a stable cooling performance cannot be expected in a mobile device whose vertical direction changes depending on the usage situation.

一方、図7で示したような、冷媒の蒸発潜熱を利用した冷却方法においては、冷媒が多孔質体の連通した微細な気孔内を流動するので、流動抵抗が大きく、熱輸送距離が制限される。また、冷媒が還流する輸送管は、蒸気が移動する径路の役割も果たしており、蒸気と液の干渉による冷却効果の低下が避けられない。   On the other hand, in the cooling method using the latent heat of vaporization of the refrigerant as shown in FIG. 7, since the refrigerant flows in fine pores communicating with the porous body, the flow resistance is large and the heat transport distance is limited. The In addition, the transport pipe through which the refrigerant recirculates also plays a role of a path through which the steam moves, and the cooling effect is inevitably lowered due to the interference between the steam and the liquid.

そこで、本発明の課題は、高効率である冷媒直接冷却方式で、パッケージ部材やTIMを介在させることなく、半導体素子表面から直接、高効率に放熱可能で、かつ蒸気流路と液流路を分離し、多孔質体内の流動距離を短縮化した、低背の冷却構造を有する半導体装置を提供することにある。   Therefore, an object of the present invention is a highly efficient refrigerant direct cooling system that can dissipate heat efficiently and directly from the surface of a semiconductor element without interposing a package member or a TIM, and a vapor channel and a liquid channel. An object of the present invention is to provide a semiconductor device having a low-profile cooling structure that is separated and has a reduced flow distance in a porous body.

本発明の半導体装置は、
回路基板と、
一の面で前記回路基板上に接続された半導体素子と、
前記半導体素子の他の面上に直接形成された多孔質膜と、
前記回路基板上で前記半導体素子と前記多孔質膜を覆う密閉構造と、
前記多孔質膜に浸透した冷媒と、
前記密閉構造の前記多孔質膜と対向する二ヶ所に設けられた第1の壁面開口部及び第2の壁面開口部と、
前記第1の壁面開口部と前記第2の壁面開口部とを接続し、気化状態又は液化状態の前記冷媒が通過する密閉流路と
を、有することを特徴とする。
The semiconductor device of the present invention is
A circuit board;
A semiconductor element connected on one side to the circuit board;
A porous film directly formed on the other surface of the semiconductor element;
A sealed structure covering the semiconductor element and the porous film on the circuit board;
A refrigerant permeating the porous membrane;
A first wall surface opening and a second wall surface opening provided at two locations facing the porous membrane of the sealed structure;
It has the closed flow path which connects the said 1st wall surface opening part and the said 2nd wall surface opening part, and the said refrigerant | coolant of a vaporization state or a liquefaction state passes through.

本発明の半導体装置により、半導体素子背面に直接形成した多孔質膜を用いること、冷媒の流路を一貫して一方通行化したこと、かつ多孔質膜内の流動距離も最小化したことで、高効率で、低背である冷媒直接冷却構成を有する半導体装置を実現し得た。   By using the porous film formed directly on the back surface of the semiconductor element by the semiconductor device of the present invention, consistently making the refrigerant flow path one-way, and minimizing the flow distance in the porous film, A semiconductor device having a refrigerant direct cooling configuration with high efficiency and low profile can be realized.

本発明の半導体装置を説明する図(その1)FIG. 1 illustrates a semiconductor device of the present invention (part 1). 本発明の半導体装置を説明する図(その2)2A and 2B illustrate a semiconductor device of the present invention (No. 2). 本発明の半導体装置を説明する図(その3)FIG. 3 illustrates a semiconductor device of the present invention (No. 3) 従来の冷却方法を説明する図(その1)The figure explaining the conventional cooling method (the 1) 従来の冷却方法を説明する図(その2)Diagram for explaining a conventional cooling method (No. 2) 従来の冷却方法を説明する図(その3)FIG. 3 illustrates a conventional cooling method (No. 3) 従来の冷却方法を説明する図(その4)FIG. 4 illustrates a conventional cooling method (No. 4)

以下に、本発明の実施の形態を、添付図を参照しつつ説明する。
(実施構成例)
図1に本発明の半導体装置の構成を説明するための断面模式図を、図2にその半導体装置の上面の模式図、そして、図3にその半導体装置の多孔質膜上面の模式図を示す。図1は、図3における、B−C間の断面に相当する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
(Example configuration)
FIG. 1 is a schematic cross-sectional view for explaining the structure of the semiconductor device of the present invention, FIG. 2 is a schematic view of the upper surface of the semiconductor device, and FIG. 3 is a schematic view of the upper surface of the porous film of the semiconductor device. . FIG. 1 corresponds to a cross section between B and C in FIG.

図1において、半導体装置1は、回路基板2の一面側に、半導体素子3が、その電極4に形成された、例えばボール状のはんだ5と、回路基板2の電極パッド6との接続を介して、搭載されている。半導体素子3の基板接続面の反対側背面上には、多孔質膜7が直接形成されている。回路基板2の半導体素子接続面を一つの面として、その上の、多孔質膜7形成の半導体素子3をその内部空間に包含する密閉空間を有するパッケージ8が搭載される。図1、2を参照し、パッケージ8の一方端の開口部9と他方端の開口部10は、例えば、金属製あるいは合成樹脂製のフレキシブルチューブなどの管11で接続される。管11の、例えば中間位置に、ヒートシンク12を具備する。また、他方端の開口部10近傍のパッケージ8内の空間には、液溜部13の空間を形成する。   In FIG. 1, a semiconductor device 1 has a semiconductor element 3 formed on an electrode 4 on one surface side of a circuit board 2, for example, via a connection between a ball-shaped solder 5 and an electrode pad 6 of the circuit board 2. It is installed. A porous film 7 is directly formed on the back surface of the semiconductor element 3 opposite to the substrate connection surface. A package 8 having a sealed space including the semiconductor element 3 on which the porous film 7 is formed on the semiconductor element connection surface of the circuit board 2 is mounted. 1 and 2, the opening 9 at one end and the opening 10 at the other end of the package 8 are connected by a tube 11 such as a flexible tube made of metal or synthetic resin, for example. A heat sink 12 is provided in the tube 11 at an intermediate position, for example. Further, a space for the liquid reservoir 13 is formed in the space in the package 8 near the opening 10 at the other end.

半導体素子3に接触する多孔質膜7中の、常温状態で液体である冷媒は、電流印加によって高温化した半導体素子のため、多孔質膜7内で蒸気化する。図3を参照して、多孔質膜7が、膜中の冷媒蒸気が効率よくそれから分離蒸発するようにパターン化された櫛形状の蒸気流出溝14−1が複数形成された、蒸気流出溝形成領域14において、多孔質膜7中の冷媒蒸気が空中に蒸発し、蒸気は一方端の開口部9に流入する。この蒸気は、図1を参照して、一方端の開口部9に接続された管11における、蒸気流路11−1の領域を流れる。やがて蒸気はヒートシンク12が形成された管11の領域、すなわち冷却流路11−2中に入って冷却され、液化する。液化した冷媒は、管11中を移動して液流路11−3の領域を通過し、やがて液は、他方端の開口部10からパッケージ8内に還流する。他方端の開口部10からパッケージ8内に流入した液は、図1、3を参照して、液溜部13の、多孔質膜7の(櫛形状が形成されていない)液溜空間領域15上に滴下し、その部分の多孔質膜7は液状の冷媒に満たされる。多孔質膜7の毛細管力により、液溜空間領域15の冷媒液は蒸気流出溝形成領域14へ移動しつつ温度上昇を受けて蒸気化し、これにより、高温化した半導体素子3の熱は、冷媒の蒸発潜熱により冷媒に奪われ、半導体素子3は冷却化される。   The refrigerant that is liquid at room temperature in the porous film 7 that is in contact with the semiconductor element 3 is vaporized in the porous film 7 because it is a semiconductor element that has been heated to a high temperature by applying current. With reference to FIG. 3, the porous membrane 7 is formed with a vapor outflow groove formed by a plurality of comb-shaped vapor outflow grooves 14-1 patterned so that the refrigerant vapor in the film is efficiently separated and evaporated therefrom. In the region 14, the refrigerant vapor in the porous film 7 evaporates into the air, and the vapor flows into the opening 9 at one end. With reference to FIG. 1, this steam flows through the region of the steam channel 11-1 in the pipe 11 connected to the opening 9 at one end. Eventually, the steam enters the region of the tube 11 where the heat sink 12 is formed, that is, enters the cooling channel 11-2, is cooled, and is liquefied. The liquefied refrigerant moves through the pipe 11 and passes through the region of the liquid flow path 11-3, and the liquid eventually returns into the package 8 from the opening 10 at the other end. The liquid that has flowed into the package 8 from the opening 10 at the other end, referring to FIGS. The portion of the porous film 7 is dropped and filled with a liquid refrigerant. Due to the capillary force of the porous film 7, the refrigerant liquid in the liquid storage space region 15 is moved to the vapor outflow groove forming region 14 and is vaporized as a result of the temperature rise. Due to the latent heat of vaporization, the semiconductor element 3 is cooled by the refrigerant.

この様に、本発明の構成では、冷媒は多孔質膜7中を液体から蒸気へと変化する一方向の経路、そして、管11中を蒸気(蒸気流路11−1中)の状態から(冷却流路11−2を経て)液体(液流路11−3中)の状態へと変化する一方向の経路を確保して、液体と蒸気の流路を完全に分離しており、多孔質中、管中いずれも、液体・蒸気の両状態の干渉による冷却効果の低下を防いでいる。また、多孔質膜内の液体−蒸気の流動距離を半導体素子の背面長とほぼ同等の最短距離化を実現しており、余計な流動を抑制していることも冷却効率の向上に寄与する。   As described above, in the configuration of the present invention, the refrigerant is changed from the state of the vapor (in the vapor channel 11-1) through the one-way path in the porous film 7 that changes from the liquid to the vapor, and in the pipe 11 ( The liquid and vapor flow paths are completely separated by securing a one-way path that changes to a liquid state (in the liquid flow path 11-3) via the cooling flow path 11-2. Both the inside and the inside of the pipe prevent the cooling effect from being lowered due to the interference between the liquid and vapor states. Further, the flow distance of the liquid-vapor in the porous film is made the shortest distance substantially equal to the back length of the semiconductor element, and the suppression of unnecessary flow also contributes to the improvement of the cooling efficiency.

さらに、本実施例では多孔質膜の接続に関し、TIMなどを介さず、半導体素子3のパッケージの背面表面に直接形成しているため、半導体素子の熱を効果的に多孔質膜中の冷媒に伝導することができる。   Furthermore, in the present embodiment, the porous film is connected directly to the back surface of the package of the semiconductor element 3 without using a TIM or the like, so that the heat of the semiconductor element is effectively transferred to the refrigerant in the porous film. Can conduct.

こうして、従来の冷却機能搭載の半導体装置に比べ、冷却効果が高く、かつ低背構造の半導体装置を形成することが可能となる。
(実施例)
図1〜3で示した装置構成において、図1の一部拡大模式図に示すよう様に、幅20mmの背面面積を有するLSI(半導体素子3)の背面上に、ニッケル(Ni)のナノサイズの微粒子を、微粒子噴射法、つまりガスデポジション法によって、直接、厚さ30μmの多孔質膜7を形成した。図3に示す蒸気流出溝形成領域14における多孔質膜7と蒸気流出溝14−1の幅は、それぞれ1.8mmとして櫛形パターンとした。勿論、パターン形状はこれに限る必要は無い。冷媒還流による上記のような冷却効果を得るためには、多孔質膜の厚さについては、20μm程度以上で、100μm程度以下であることが望ましい。
In this way, it is possible to form a semiconductor device having a high cooling effect and a low profile as compared with a conventional semiconductor device with a cooling function.
(Example)
In the apparatus configuration shown in FIGS. 1 to 3, as shown in the partially enlarged schematic diagram of FIG. 1, a nickel (Ni) nanosize is formed on the back surface of an LSI (semiconductor element 3) having a back surface area of 20 mm in width. A porous film 7 having a thickness of 30 μm was directly formed from the fine particles by a fine particle injection method, that is, a gas deposition method. The widths of the porous film 7 and the steam outflow groove 14-1 in the steam outflow groove forming region 14 shown in FIG. Of course, the pattern shape need not be limited to this. In order to obtain the above cooling effect due to the refrigerant reflux, the thickness of the porous membrane is desirably about 20 μm or more and about 100 μm or less.

使用するナノ粒子材料としては、ニッケル(Ni)以外にSUSなどの金属材料、セラミック、シリカ(SiO)、アルミナ(Al)などが適用可能である。また、使用粒子の平均粒径は、0.3〜2μm程度が望ましい。 As a nanoparticle material to be used, a metal material such as SUS, ceramic, silica (SiO 2 ), alumina (Al 2 O 3 ), and the like can be applied in addition to nickel (Ni). The average particle size of the particles used is preferably about 0.3 to 2 μm.

こうして、ガスデポジション法で製作した多孔質膜は、気孔の平均直径が2μm程度の膜が形成可能で、また気孔率も40%程度のものが得られた。冷媒が毛細管力による浸透に十分であり、かつ、LSI背面との接合強度においても、問題ないものが得られた。なお、毛細管力による十分な浸透を得るために、気孔の直径としては、0.5μm以上〜3μm以下が望ましく、気孔率は30%程度以上が望ましい。   Thus, a porous film manufactured by the gas deposition method was able to form a film having an average pore diameter of about 2 μm and a porosity of about 40%. The refrigerant was sufficient for permeation by capillary force, and the bonding strength with the backside of the LSI was satisfactory. In order to obtain sufficient penetration by capillary force, the pore diameter is preferably 0.5 μm to 3 μm, and the porosity is preferably about 30% or more.

この用途に用いる多孔質膜を直接LSIなど半導体素子背面に直接形成するには、微粒子噴射法、即ちガスデポジション法が適している。粒子流生成室の圧力と膜生成室の圧力の差を制御することで、多孔質性を有する所望の膜(多孔質膜すなわちウィック)を形成できる。   In order to directly form a porous film used for this purpose directly on the back surface of a semiconductor element such as an LSI, a fine particle injection method, that is, a gas deposition method is suitable. By controlling the difference between the pressure in the particle flow generation chamber and the pressure in the membrane generation chamber, it is possible to form a desired film (porous film or wick) having porosity.

回路基板2上に、多孔質膜7を形成して回路基板2に接続したLSI(半導体素子3)を包含密閉するように、パッケージ8を載置する。セラミック製のパッケージ8は2つの開口部9,10(開口径2mm)を有し、これら開口部に接合する、蒸気流路11−1、及び液流路11−3の管11部分は、金属製ないしフレキシブルな樹脂製のチューブを用いた。また管11の冷却流路11−2は、熱伝導率の良い銅を用い、これに多数のフィンを有するヒートシンク12を取り付け、前記二つのチューブと繋いだ。パッケージ8の材料としては、合成樹脂、セラミック、および金属を用いることができる。   A package 8 is mounted so as to enclose and seal an LSI (semiconductor element 3) connected to the circuit board 2 by forming a porous film 7 on the circuit board 2. The ceramic package 8 has two openings 9 and 10 (opening diameter 2 mm), and the pipe 11 part of the steam channel 11-1 and the liquid channel 11-3 joined to these openings is made of metal. A made or flexible resin tube was used. The cooling flow path 11-2 of the pipe 11 is made of copper having good thermal conductivity, and a heat sink 12 having a large number of fins is attached to the cooling flow path 11-2 and connected to the two tubes. As a material of the package 8, synthetic resin, ceramic, and metal can be used.

冷媒としては、フロロカーボンを用いたが、それ以外に、半導体素子などと接するため絶縁性で不活性であり、上記のような蒸発−凝固(液化)サイクルで還流する液体冷媒であれば、他の冷媒も使用でき、例えば、ハイドロフロロエーテルなども適用できる。   As the refrigerant, fluorocarbon is used, but other than that, any other liquid refrigerant that is insulative and inactive because it is in contact with a semiconductor element or the like and recirculates in the evaporation-solidification (liquefaction) cycle as described above can be used. A refrigerant can also be used. For example, hydrofluoroether can be applied.

こうして、本発明の半導体装置は、非常にコンパクトな冷却システムを有する構成となる。蒸気−液の循環用の管の部分にフレキシブルな細い管を使用する場合には、引き回しが容易であり、回路基板上に搭載された他の電子部品上部と干渉するのを避けて、非搭載領域の低い高さの領域を引き回すなどをすることで、電子部品搭載基板の高さ制限を回避することが可能となる。   Thus, the semiconductor device of the present invention has a very compact cooling system. When a flexible thin tube is used for the vapor-liquid circulation tube, it is easy to route and avoids interference with the upper part of other electronic components mounted on the circuit board. It is possible to avoid the restriction on the height of the electronic component mounting board by, for example, drawing a region having a low height.

この半導体装置の高さは、基本的に密閉構造のパッケージ8の高さ(プラス、管の立上がり部分)である。実施例においては、パッケージ8内の多孔質膜7の上部に液溜部13を設けているが、液溜部13をパッケージ8の外部に設置して、液流路11−3から入る液状冷媒がスムーズに多孔質膜7内に連続的に流れ込むようにすることも可能であり、この場合には、高さは、半導体素子の高さ+多孔質膜厚+パッケージ壁厚(プラス、管の立上がり部分)と非常に薄い構成が可能となる。   The height of this semiconductor device is basically the height of the sealed package 8 (plus, the rising portion of the tube). In the embodiment, the liquid reservoir 13 is provided above the porous film 7 in the package 8. However, the liquid refrigerant entering the liquid channel 11-3 by installing the liquid reservoir 13 outside the package 8. Can smoothly flow into the porous film 7, and in this case, the height is the height of the semiconductor element + the porous film thickness + the package wall thickness (plus, the tube A very thin structure is possible.

更に、管の立上がり部分に関し、実施例ではパッケージ8の上方に開口部9、10を設ける構成にしていることから、高さ方向制限に管の立上がり部分を含むことになるが、両開口部をパッケージ8の左右の両側面に形成してもよい。こうすることで、本発明の半導体装置の高さが、従来のものに比べ、非常に低いものが形成可能であることがわかる。   Furthermore, with respect to the rising portion of the tube, in the embodiment, since the openings 9 and 10 are provided above the package 8, the rising portion of the tube is included in the restriction in the height direction. It may be formed on both left and right side surfaces of the package 8. By doing so, it can be seen that the semiconductor device of the present invention can be formed with a very low height compared to the conventional one.

1、101、123 半導体装置
2、102 回路基板
3、103 半導体素子
4、104 電極
5、105 はんだ
6、106 電極パッド
7 多孔質膜
8 パッケージ
9 一方端の開口部
10 他方端の開口部
11 管
12、109 ヒートシンク
13 液溜部
14 蒸気流出溝形成領域
15 液溜空間領域
107 半導体パッケージ
108 TIM
110 発熱体
111 電子基板
112 電子部品
113 防水層
114 含水層
115 缶体
116 密閉空間
117 水溜部
118 水
119 減湿装置
120 管路
121 空気循環器
122 返水管
124 ヒートパイプ
125 半導体チップ
126 配線
127 実装基板
128 ボンディングワイヤ
129、134 ウィック
130 作動液
131 熱制御装置
132 無底ヒート筐体
133 取付台
135 発熱物
136 取付リム
137 吸熱部
DESCRIPTION OF SYMBOLS 1, 101, 123 Semiconductor device 2, 102 Circuit board 3, 103 Semiconductor element 4, 104 Electrode 5, 105 Solder 6, 106 Electrode pad 7 Porous film 8 Package 9 Opening at one end 10 Opening at the other end 11 Tube 12, 109 Heat sink 13 Liquid reservoir 14 Steam outflow groove forming area 15 Liquid reservoir space area 107 Semiconductor package 108 TIM
DESCRIPTION OF SYMBOLS 110 Heat generating body 111 Electronic substrate 112 Electronic component 113 Waterproof layer 114 Water-containing layer 115 Can body 116 Sealed space 117 Water reservoir 118 Water 119 Dehumidifier 120 Pipe line 121 Air circulator 122 Return pipe 124 Heat pipe 125 Semiconductor chip 126 Wiring 127 Mounting Substrate 128 Bonding wire 129, 134 Wick 130 Hydraulic fluid 131 Thermal control device 132 Bottomless heat casing 133 Mounting base 135 Heating material 136 Mounting rim 137 Heat absorbing portion

Claims (4)

回路基板と、
一の面で前記回路基板上に接続された半導体素子と、
前記半導体素子の他の面上に直接形成された多孔質膜と、
前記回路基板上で前記半導体素子と前記多孔質膜を覆う密閉構造と、
前記多孔質膜に浸透した冷媒と、を有し、
前記密閉構造内において、
前記多孔質膜の両端の二ヶ所に設けられた第1の壁面開口部及び第2の壁面開口部と、を有し、
前記第1の壁面開口部と前記第2の壁面開口部とを接続し、気化状態又は液化状態の前記冷媒が通過する密閉流路と
前記第1の壁面開口部に接続し、液化した冷媒が溜まる液留空間と、
前記第2の壁面開口部に接続し、気化した冷媒が溜まる蒸気形成空間とが、備えられ、
前記多孔質膜が、前記液留空間と、前記蒸気形成空間とを分離するように形成されていることを特徴とする半導体装置。
A circuit board;
A semiconductor element connected on one side to the circuit board;
A porous film directly formed on the other surface of the semiconductor element;
A sealed structure covering the semiconductor element and the porous film on the circuit board;
A refrigerant that has permeated the porous membrane ,
In the sealed structure,
A first wall surface opening and a second wall surface opening provided at two locations on both ends of the porous membrane ,
A closed flow path that connects the first wall surface opening and the second wall surface opening and through which the refrigerant in a vaporized state or a liquefied state passes ;
A liquid distillation space connected to the first wall surface opening and storing a liquefied refrigerant;
A vapor forming space connected to the second wall surface opening and storing the evaporated refrigerant,
The semiconductor device, wherein the porous film is formed so as to separate the liquid distillation space and the vapor formation space .
前記多孔質膜は、微粒子噴射法により形成されることを特徴とする請求項1記載の半導
体装置。
The semiconductor device according to claim 1, wherein the porous film is formed by a fine particle injection method.
前記第1又は第2の壁面開口部の一つの開口部近傍に附設された液溜部を有することを
特徴とする請求項1または2記載の半導体装置。
3. The semiconductor device according to claim 1, further comprising a liquid reservoir attached in the vicinity of one of the first and second wall surface openings.
前記密閉流路の途中に附設された凝縮部を有することを特徴とする請求項1ないし3の
いずれかに記載の半導体装置。
4. The semiconductor device according to claim 1, further comprising a condensing portion attached in the middle of the sealed flow path.
JP2010183371A 2010-08-18 2010-08-18 Semiconductor device Expired - Fee Related JP5589666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010183371A JP5589666B2 (en) 2010-08-18 2010-08-18 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010183371A JP5589666B2 (en) 2010-08-18 2010-08-18 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2012043954A JP2012043954A (en) 2012-03-01
JP5589666B2 true JP5589666B2 (en) 2014-09-17

Family

ID=45899929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010183371A Expired - Fee Related JP5589666B2 (en) 2010-08-18 2010-08-18 Semiconductor device

Country Status (1)

Country Link
JP (1) JP5589666B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5882292B2 (en) * 2013-03-18 2016-03-09 国立大学法人横浜国立大学 COOLER, COOLING DEVICE USING SAME, AND METHOD OF COOLING HEAT GENERATOR
JP2015170625A (en) * 2014-03-05 2015-09-28 株式会社東芝 semiconductor package
WO2015174423A1 (en) * 2014-05-12 2015-11-19 国立大学法人横浜国立大学 Cooler and cooling device using same, and cooling method for heating element
JP2016040505A (en) * 2014-08-12 2016-03-24 国立大学法人横浜国立大学 Cooler, cooling device using the same, and cooling method of heating element
EP3199897A4 (en) * 2014-09-26 2018-05-23 Nec Corporation Refrigerant relay device, cooling device using same, and cooling method
JP6485075B2 (en) * 2015-01-29 2019-03-20 富士通株式会社 Loop heat pipe and method of manufacturing loop heat pipe
WO2017037921A1 (en) 2015-09-03 2017-03-09 富士通株式会社 Loop heat pipe, manufacturing method for same, and electronic device
JP6740654B2 (en) * 2016-03-18 2020-08-19 日亜化学工業株式会社 Light source
JP6860086B2 (en) * 2017-11-29 2021-04-14 富士通株式会社 Loop heat pipes and electronics
KR102539336B1 (en) * 2021-06-07 2023-06-01 중앙대학교 산학협력단 Semiconductor device thermal management module and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015953A (en) * 1983-07-06 1985-01-26 Matsushita Electric Ind Co Ltd Cooling method for semiconductor device
JPH03209859A (en) * 1990-01-12 1991-09-12 Hitachi Ltd Semiconductor cooling device

Also Published As

Publication number Publication date
JP2012043954A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
JP5589666B2 (en) Semiconductor device
US7369410B2 (en) Apparatuses for dissipating heat from semiconductor devices
US8813834B2 (en) Quick temperature-equlizing heat-dissipating device
US6615912B2 (en) Porous vapor valve for improved loop thermosiphon performance
JP4978401B2 (en) Cooling system
JP5372472B2 (en) Conductive cooling circuit board structure
US20130020053A1 (en) Low-profile heat-spreading liquid chamber using boiling
US20140202665A1 (en) Integrated thin film evaporation thermal spreader and planar heat pipe heat sink
CN111863746B (en) Heat abstractor, circuit board and electronic equipment
CN106558563B (en) Power module and vehicle with same
JP2008227150A (en) Electronic apparatus
JP2007263427A (en) Loop type heat pipe
JP5786132B2 (en) Electric car
KR20020093897A (en) Cooling device for cooling components of the power electronics, said device comprising a micro heat exchanger
JP5874935B2 (en) Flat plate cooling device and method of using the same
JP2007115917A (en) Thermal dissipation plate
JP5304479B2 (en) Heat transport device, electronic equipment
CN210014478U (en) Radiator, air condensing units and air conditioner
JP2004020116A (en) Plate type heat pipe
CN210014475U (en) Radiator, air condensing units and air conditioner
JP2004060911A (en) Heat pipe
JP2008021697A (en) Heat dispersion radiator
JP5682409B2 (en) Loop heat pipe and electronic device
JP2013155925A (en) Boiling cooler
JP2012026721A (en) Cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140714

R150 Certificate of patent or registration of utility model

Ref document number: 5589666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees