JP2001088098A - Micro chemical device with depressurized liquid feeding mechanism - Google Patents

Micro chemical device with depressurized liquid feeding mechanism

Info

Publication number
JP2001088098A
JP2001088098A JP25962999A JP25962999A JP2001088098A JP 2001088098 A JP2001088098 A JP 2001088098A JP 25962999 A JP25962999 A JP 25962999A JP 25962999 A JP25962999 A JP 25962999A JP 2001088098 A JP2001088098 A JP 2001088098A
Authority
JP
Japan
Prior art keywords
flow path
polymer
microchemical device
decompression chamber
microchemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25962999A
Other languages
Japanese (ja)
Inventor
Takanori Anazawa
孝典 穴澤
Atsushi Teramae
敦司 寺前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
Original Assignee
Kawamura Institute of Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research filed Critical Kawamura Institute of Chemical Research
Priority to JP25962999A priority Critical patent/JP2001088098A/en
Publication of JP2001088098A publication Critical patent/JP2001088098A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a micro chemical device eliminating the need of a number of liquid feeding means when a number of micro chemical devices are disposed in parallel with each other for reaction, analysis, and inspection and operated simultaneously. SOLUTION: A capillary flow path is formed between two members connected to each other, and a depressurization chamber is provided in connection with the flow path. The depressurization chamber is formed in a member different from the member having the capillary flow path, and these members are fixedly connected to each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、微小なケミカルデ
バイス、即ち、部材に微小な流路、反応槽、電気泳動カ
ラム、膜分離機構などの構造が形成された、化学、生化
学、物理化学用などの微小反応デバイス(マイクロ・リ
アクター)や、集積型DNA分析デバイス、微小電気泳
動デバイス、微小クロマトグラフィーデバイスなどの微
小な分析(診断、検査を含む)デバイス、質量スペクト
ルや液体クロマトグラフィーなどの分析試料調製用微小
デバイスに関し、更に詳しくは、表面に溝状の流路を有
する部材と他の部材を接着することにより形成されたキ
ャピラリー状の流路を有する微小ケミカルデバイスに関
し、液体の送液機構を有する微小ケミカルデバイスに関
する。
BACKGROUND OF THE INVENTION The present invention relates to a chemical, biochemical or physical chemistry in which a fine chemical device, that is, a structure in which members such as a fine flow path, a reaction tank, an electrophoresis column, and a membrane separation mechanism are formed. Microreaction devices (microreactors), microanalysis (including diagnosis and testing) devices such as integrated DNA analysis devices, microelectrophoresis devices, microchromatography devices, mass spectra and liquid chromatography More specifically, the present invention relates to a microchemical device for preparing an analytical sample, and more particularly, to a microchemical device having a capillary-shaped flow path formed by bonding a member having a groove-shaped flow path on its surface to another member, and sending liquid. The present invention relates to a microchemical device having a mechanism.

【0002】[0002]

【従来の技術】「サイエンス」(1998年、第282
巻、第484頁)には、シリコン、石英、ガラス、ポリ
マーなどの基材に、エッチング法により細い溝を形成し
て、液体流路や分離用ゲルチャンネルとし、必要に応じ
て、ガラス板などのカバーをその表面に接着して使用す
る微小ケミカルデバイスが開示されている。このような
デバイスに液体を流す場合には、マイクロシリンジや微
量送液ポンプなどにより圧送する方法が採られていた。
2. Description of the Related Art "Science" (1998, No. 282)
Volume, p. 484), a thin groove is formed in a base material such as silicon, quartz, glass, or a polymer by an etching method to form a liquid flow path or a separation gel channel. A microchemical device in which a cover is used by adhering to a surface of the cover is disclosed. When a liquid is allowed to flow through such a device, a method has been adopted in which the liquid is pumped by a micro syringe, a microfluidic pump, or the like.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな微小ケミカルデバイスを多数並列に設置し、同時に
稼働させる場合、例えば、微小ケミカルデバイスを臨床
診断薬として使用する場合には、マイクロシリンジや微
量送液ポンプなどの送液手段が多数必要となる、という
不都合があった。
However, when a large number of such microchemical devices are installed in parallel and operated at the same time, for example, when the microchemical device is used as a clinical diagnostic agent, a microsyringe or a small amount of microchemical devices can be used. There is a disadvantage that many liquid feeding means such as a liquid pump are required.

【0004】本発明が解決しようとする課題は、微小ケ
ミカルデバイスを多数並列に設置し、同時に稼働させる
場合に、多数の送液手段を必要としない微小ケミカルデ
バイスを提供することにある。
[0004] The problem to be solved by the present invention is to provide a microchemical device which does not require a large number of liquid sending means when a large number of microchemical devices are installed in parallel and operated simultaneously.

【0005】[0005]

【課題を解決するための手段】本発明者等は、上記課題
を解決する方法について鋭意検討した結果、直径1〜1
000μm 程度の流路に液体を流す微少ケミカルデバイ
スにおいて、該微小ケミカルデバイスに設けられた減圧
室への液体の吸引力を液体移送の駆動力として用いるこ
とが好適なことを見出し、本発明を完成するに至った。
Means for Solving the Problems The present inventors have conducted intensive studies on a method for solving the above-mentioned problems, and as a result, have found that the diameter is 1 to 1.
In a microchemical device for flowing a liquid through a flow path of about 000 μm, it has been found that it is preferable to use a suction force of a liquid to a decompression chamber provided in the microchemical device as a driving force for liquid transfer, and completed the present invention. I came to.

【0006】即ち、本発明は上記課題を解決するため
に、(1)(イ)部材(A)と部材(B)の間に、流路
となる部分を除いて固体状物質を充填することにより、
もしくは(ロ)表面に溝を有する部材(A)の溝が形成
された面に他の部材(B)を接着することにより、互い
に接着された部材(A)と部材(B)との間に、部材
(A)と部材(B)との接着面に垂直な方向から見て幅
1〜1000μm 、奥行き1〜1000μm の毛細管状
の流路が形成された微小ケミカルデバイスであって、流
路に連絡して、該微小ケミカルデバイス内に減圧可能な
減圧室を有する微小ケミカルデバイス(以下、本発明の
第1の微小ケミカルデバイスという。)を提供する。
That is, in order to solve the above-mentioned problems, the present invention provides (1) (a) filling a solid substance between a member (A) and a member (B) except for a portion serving as a flow path. By
Alternatively, (b) by bonding another member (B) to the grooved surface of the member (A) having the groove on the surface, the member (A) and the member (B) bonded to each other A microchemical device having a capillary channel having a width of 1 to 1000 μm and a depth of 1 to 1000 μm as viewed from a direction perpendicular to the bonding surface between the member (A) and the member (B), In contact therewith, a microchemical device having a decompression chamber capable of decompression within the microchemical device (hereinafter referred to as the first microchemical device of the present invention) is provided.

【0007】また、本発明は上記課題を解決するため
に、(2)減圧室が部材(A)と部材(B)の両部材と
の間に設けられている上記(1)に記載の微小ケミカル
デバイスを提供する。
In order to solve the above-mentioned problems, the present invention provides (2) a micro-decompression device according to (1), wherein a decompression chamber is provided between the members (A) and (B). Provide chemical devices.

【0008】また、本発明は上記課題を解決するため
に、(3)減圧室に、逆止弁を有する排気口が設けられ
ている上記(1)又は(2)に記載の微小ケミカルデバ
イスを提供する。
According to another aspect of the present invention, there is provided a microchemical device according to the above (1) or (2), wherein (3) an exhaust port having a check valve is provided in the decompression chamber. provide.

【0009】また、本発明は上記課題を解決するため
に、(4)部材(A)及び部材(B)が有機高分子重合
体で形成されている上記(1)、(2)又は(3)に記
載の微小ケミカルデバイスを提供する。
In order to solve the above problems, the present invention provides (4) the above (1), (2) or (3) wherein the member (A) and the member (B) are formed of an organic high molecular polymer. The present invention provides a microchemical device according to the item (1).

【0010】また、本発明は上記課題を解決するため
に、(5)部材(A)及び部材(B)がそれぞれ、スチ
レン系重合体、(メタ)アクリル系重合体、ポリカーボ
ネート系重合体、ポリスルホン系重合体、ポリエステル
系重合体、塩化ビニル系重合体なる群から選ばれた重合
体で形成されている上記(4)に記載の微小ケミカルデ
バイスを提供する。
In order to solve the above problems, the present invention provides (5) a member (A) and a member (B) each of which is composed of a styrene polymer, a (meth) acrylic polymer, a polycarbonate polymer, and a polysulfone. The present invention provides the microchemical device according to the above (4), which is formed from a polymer selected from the group consisting of a system polymer, a polyester polymer, and a vinyl chloride polymer.

【0011】さらに、本発明は上記課題を解決するため
に、(6)互いに接着された部材(A)と部材(B)と
の間に、部材(A)と部材(B)との接着面に垂直な方
向から見て幅1〜1000μm 、奥行き1〜1000μ
m の毛細管状の流路が形成された部材(I)と、減圧室
が設けられた部材(II)から成る微小ケミカルデバイス
であって、部材(I)の流路に部材(II)の減圧室が連
絡すべく部材(II)が部材(I)に固定されている微小
ケミカルデバイス(以下、本発明の第2の微小ケミカル
デバイスという。)を提供する。
In order to solve the above-mentioned problems, the present invention provides (6) a bonding surface between the members (A) and (B) between the members (A) and (B) bonded to each other. 1 to 1000 µm wide and 1 to 1000 µ deep when viewed from the direction perpendicular to
m is a microchemical device comprising a member (I) in which a capillary flow path is formed and a member (II) in which a decompression chamber is provided, wherein the pressure of the member (II) is reduced in the flow path of the member (I). Provided is a microchemical device in which the member (II) is fixed to the member (I) so that the chambers communicate with each other (hereinafter, referred to as a second microchemical device of the present invention).

【0012】さらにまた、本発明は上記課題を解決する
ために、(7)部材(I)と部材(II)が脱着可能であ
る上記(6)に記載の微小ケミカルデバイスを提供す
る。
The present invention further provides (7) the microchemical device according to (6), wherein the member (I) and the member (II) are detachable.

【0013】さらにまた、本発明は上記課題を解決する
ために、(8)減圧室に逆止弁を有する排気口が設けら
れている上記(6)又は(7)に記載の微小ケミカルデ
バイスを提供する。
In order to solve the above-mentioned problems, the present invention provides (8) a microchemical device as described in (6) or (7), wherein an exhaust port having a check valve is provided in the decompression chamber. provide.

【0014】さらにまた、本発明は上記課題を解決する
ために、(9)部材(A)及び部材(B)が有機高分子
重合体で形成されている上記(6)、(7)又は(8)
に記載の微小ケミカルデバイスを提供する。
Furthermore, in order to solve the above-mentioned problems, the present invention provides (9) the above (6), (7) or (7) wherein the member (A) and the member (B) are formed of an organic high molecular polymer. 8)
And a microchemical device according to (1).

【0015】さらにまた、本発明は上記課題を解決する
ために、(10)部材(A)及び部材(B)がそれぞ
れ、スチレン系重合体、(メタ)アクリル系重合体、ポ
リカーボネート系重合体、ポリスルホン系重合体、ポリ
エステル系重合体、塩化ビニル系重合体なる群から選ば
れた高分子で形成されている上記(6)、(7)又は
(8)に記載の微小ケミカルデバイスを提供する。
Further, in order to solve the above-mentioned problems, according to the present invention, (10) the member (A) and the member (B) are each composed of a styrene polymer, a (meth) acrylic polymer, a polycarbonate polymer, The microchemical device according to the above (6), (7) or (8), comprising a polymer selected from the group consisting of a polysulfone-based polymer, a polyester-based polymer, and a vinyl chloride-based polymer.

【0016】[0016]

【発明の実施の形態】本発明の第1の微小ケミカルデバ
イスにおいては、互いに接着された部材(A)と部材
(B)との間に毛細管状の流路(以下、単に「流路」と
称する)が形成されている。流路は、例えば、(イ)部
材(A)と部材(B)との間の流路以外の部分に固体状
物質が充填されて形成されていても良いし、また、例え
ば、(ロ)表面に溝を有する部材(A)の溝を有する面
に、他の部材(B)が接着されて形成されていても良
い。上記(イ)における流路は、部材(B)を上にした
時の底面が部材(A)、側面が充填された固体状物質、
上面が部材(B)で構成されており、上記(ロ)におけ
る流路は、底面と側面が部材(A)、上面が部材(B)
もしくは部材(B)に塗布された接着剤で構成されてい
る。なお、上記(イ)において、部材(A)と部材
(B)との間に充填された固体状物質によって、部材
(A)と部材(B)とが接着されているので、部材
(A)と部材(B)とは、流路状の空間を有する接着剤
で接着されているともいえる。
BEST MODE FOR CARRYING OUT THE INVENTION In the first microchemical device of the present invention, a capillary channel (hereinafter simply referred to as a "channel") is provided between a member (A) and a member (B) bonded to each other. ) Is formed. The flow path may be formed by filling a portion other than the flow path between (a) the member (A) and the member (B) with a solid substance, for example, or (b) Another member (B) may be bonded to the grooved surface of the member (A) having the groove on the surface. The flow path in the above (A) has a member (A) on the bottom surface when the member (B) is up, a solid substance filled on the side surface,
The upper surface is composed of the member (B), and the flow path in the above (b) has a member (A) on the bottom and side surfaces and a member (B) on the upper surface.
Alternatively, it is composed of an adhesive applied to the member (B). In the above (a), since the member (A) and the member (B) are bonded by the solid substance filled between the member (A) and the member (B), the member (A) It can also be said that the member (B) and the member (B) are bonded with an adhesive having a space in a flow path shape.

【0017】部材(A)と部材(B)との接着面に垂直
な方向から見た流路の幅は1μm 以上であり、好ましく
は10μm 以上であり、また1000μm 以下であり、
好ましくは500μm 以下である。部材(A)と部材
(B)の接着面に垂直な方向から見た流路の奥行きは1
μm 以上であり、好ましくは10μm 以上であり、また
1000μm 以下であり、好ましくは500μm 以下で
ある。流路がこれらの寸法より小さい場合には、流速が
過小となる上、製造が困難となる。また、流路ががこれ
らの寸法より大きい場合には、本発明の効果が小さくな
る傾向にあるので好ましくない。流路の幅/奥行き比
は、用途、目的に応じて任意に設定できるが、一般には
0.5〜10が好ましく、0.7〜5がさらに好まし
い。流路の断面形状は、矩形(角が丸められた矩形を含
む。以下同じ)、台形、円、半円形など任意である。な
お、本発明においては、流路の幅とは、流路断面の最大
幅をいう。流路の幅は一定である必要はない。
The width of the flow path viewed from a direction perpendicular to the bonding surface between the member (A) and the member (B) is 1 μm or more, preferably 10 μm or more, and 1000 μm or less;
Preferably it is 500 μm or less. The depth of the flow path viewed from a direction perpendicular to the bonding surface between the member (A) and the member (B) is 1
μm or more, preferably 10 μm or more, and 1000 μm or less, and preferably 500 μm or less. If the flow path is smaller than these dimensions, the flow rate will be too low and the production will be difficult. Further, when the flow path is larger than these dimensions, the effect of the present invention tends to decrease, which is not preferable. The width / depth ratio of the flow channel can be arbitrarily set according to the use and purpose, but is generally preferably 0.5 to 10, and more preferably 0.7 to 5. The cross-sectional shape of the channel is arbitrary, such as a rectangle (including a rectangle with rounded corners; the same applies hereinafter), a trapezoid, a circle, a semicircle. In the present invention, the width of the flow channel refers to the maximum width of the cross section of the flow channel. The width of the channel need not be constant.

【0018】部材(A)と部材(B)の接着面に垂直な
方向から見た流路の形状は、用途目的に応じて直線、分
岐、櫛型、曲線、渦巻き、ジグザグ、その他任意の形状
であってよい。流路は、流路の他、反応場、混合場、抽
出場、分離場、流量測定部、検出部などとしても使用で
きるし、流路に接続して流路以外の構造、例えば、貯液
槽、反応槽、膜分離機構、デバイス外へ接続口などが形
成されていても良い。
The shape of the flow path viewed from the direction perpendicular to the bonding surface of the member (A) and the member (B) may be a straight line, a branch, a comb, a curve, a spiral, a zigzag, or any other shape depending on the purpose of use. It may be. In addition to the flow path, the flow path can be used as a reaction field, a mixing field, an extraction field, a separation field, a flow rate measurement unit, a detection unit, and the like. A tank, a reaction tank, a membrane separation mechanism, a connection port outside the device, and the like may be formed.

【0019】流路が部材(A)と部材(B)の間の流路
以外の部分に固体状物質が充填されて形成されている構
造の場合、固体状物質の厚みは必ずしも均一である必要
はないが、均一であることが好ましい。
In the case where the flow path has a structure in which a portion other than the flow path between the member (A) and the member (B) is formed by filling the solid material, the thickness of the solid material is not necessarily uniform. Although it is not, it is preferable that it is uniform.

【0020】流路が、表面に溝を有する部材(A)の溝
を有する面に他の部材(B)を接着して形成される場合
には、溝はその周辺部より低い、いわゆる溝として形成
されていても良いし、部材(A)表面に立つ壁の間とし
て形成されていても良い。部材(A)の表面に溝を設け
る方法は任意であり、例えば、射出成型、溶剤キャスト
法、溶融レプリカ法、切削、エッチング、フォトリソグ
ラフィー(エネルギー線リソグラフィーを含む)、エッ
チング法、蒸着法、気相重合法、溝となるべき部分を切
り抜いたシート状部材と板状部材との接着などの方法を
利用できる。部材(A)は複数の素材で構成されていて
もよく、例えば、溝の底と側面が異なる素材で形成され
ていても良い。部材(A)には、溝以外の構造部分、例
えば、貯液槽、反応槽、分析機構などとなる構造を設け
ることができる。
When the flow path is formed by bonding another member (B) to the grooved surface of the member (A) having a groove on the surface, the groove is lower than its peripheral portion, that is, as a so-called groove. It may be formed, or may be formed between walls standing on the surface of the member (A). The method of providing a groove on the surface of the member (A) is arbitrary. For example, injection molding, solvent casting, melt replica method, cutting, etching, photolithography (including energy beam lithography), etching, vapor deposition, vapor deposition, A method such as a phase polymerization method and a method of bonding a sheet-like member and a plate-like member cut out from a portion to be a groove can be used. The member (A) may be made of a plurality of materials, and for example, may be made of a material whose bottom and side surfaces are different from each other. The member (A) may be provided with a structural portion other than the groove, for example, a structure serving as a liquid storage tank, a reaction tank, an analysis mechanism, or the like.

【0021】部材(A)の形状は特に限定する必要はな
く、用途目的に応じた形状を採りうる。例えば、シート
状(フィルム、リボンなどを含む。以下同じ)、板状、
塗膜状、棒状、管状、その他複雑な形状の成型物などで
あり得るが、部材(B)と接着し易い点から接着面が平
面状の形状であることが好ましく、シート状、板状、又
は棒状であることが特に好ましい。部材(A)が表面に
溝を有するものである場合には、溝が形成された面が平
面状の形状であることが好ましい。部材(A)は、更に
別の部材、例えば、支持体、と一体化された形態であっ
てもよい。部材(A)が塗膜状である場合には、支持体
と一体化された状態で使用される。支持体の素材、形状
も任意であり、例えば、部材(A)の場合に示した素材
や形状であって良い。複数の微小ケミカルデバイスを1
つの部材(A)上に形成することも可能であるし、製造
後、これらを切断して複数の微小ケミカルデバイスとす
ることも可能である。
The shape of the member (A) does not need to be particularly limited, and may take a shape according to the purpose of use. For example, sheet-like (including film, ribbon, etc .; the same applies hereinafter), plate-like,
Although it may be a coating film, a rod, a tube, or a molded product having a complicated shape, the bonding surface is preferably a flat shape from the viewpoint of easy adhesion to the member (B), and a sheet, a plate, Or it is especially preferable that it is rod-shaped. When the member (A) has a groove on the surface, the surface on which the groove is formed preferably has a planar shape. The member (A) may be in a form integrated with another member, for example, a support. When the member (A) is in the form of a coating film, it is used in a state of being integrated with the support. The material and shape of the support are also arbitrary, and for example, the material and shape shown in the case of the member (A) may be used. Multiple microchemical devices in one
It is also possible to form them on one member (A), or to cut them after production to form a plurality of microchemical devices.

【0022】部材(B)は、部材(A)と部材(B)の
間に、流路となる部分を除いて固体状物質を充填するこ
とにより部材(A)と部材(B)と固体状物質でもって
毛細管状の流路を形成することが可能なもの、あるい
は、表面に溝を有する部材(A)の溝が形成された面に
接着し、部材(A)の溝と部材(B)でもって毛細管状
の流路を形成することが可能なものであれば、その形
状、構造、表面状態などは任意である。これらについて
は、部材(A)の場合と同様である。部材(B)は表面
に溝が形成されている必要は無いが、溝や溝以外の構造
が形成されていても良い。例えば、部材(B)は、表面
に溝が形成された部材(A)の鏡像体であってもよい。
エネルギー線硬化性化合物を接着剤として使用し、溝が
形成された部材(A)上に部材(B)を接着する場合で
あって、部材(A)が使用するエネルギー線を透過させ
ない場合には、部材(B)は使用するエネルギー線を透
過させるものである必要がある。
The member (B) is filled with a solid substance between the member (A) and the member (B) except for a portion serving as a flow path, so that the member (A) and the member (B) are solid-state. A substance capable of forming a capillary channel with a substance, or a substance having a groove on its surface (A) is adhered to the grooved surface of the member (A), and the groove of the member (A) and the member (B) are adhered. The shape, structure, surface condition, and the like are arbitrary as long as a capillary flow path can be formed. These are the same as in the case of the member (A). The member (B) does not need to have a groove formed on the surface, but may have a groove or a structure other than the groove. For example, the member (B) may be a mirror image of the member (A) having a groove formed on the surface.
When the member (B) is bonded on the member (A) having the groove formed thereon using the energy ray-curable compound as an adhesive, and the energy beam used by the member (A) is not transmitted. The member (B) needs to transmit the energy beam to be used.

【0023】流路が部材(A)と部材(B)の間の流路
以外の部分に固体状物質が充填されて形成されている構
造の形成方法は、例えば、部材(A)と部材(B)の間
にエネルギー線硬化性組成物を挟持し、部材(A)及び
/又は部材(B)の外部から、流路となる部分を除いて
エネルギー線を照射し、未硬化のエネルギー線硬化性組
成物を除去する方法、流路となるべき部分を切り抜いた
接着性のシート状部材を部材(A)と部材(B)間に挟
んで互いに接着する方法、流路となるべき部分に保護物
質、例えば、四フッ化エチレン製の棒状物を置き、接着
剤や溶融樹脂を充填・固化した後、保護物質を除去する
方法などを採ることができる。本法は、工程数は少ない
が、流路径が小さくなると未硬化のエネルギー線硬化性
組成物や保護物質の除去が困難となるため、比較的寸法
の大きな流路を形成する方法として好適である。
A method of forming a structure in which a flow path is formed by filling a portion other than the flow path between the member (A) and the member (B) with a solid substance is described in, for example, the member (A) and the member ( An energy-ray-curable composition is sandwiched between B), and energy rays are irradiated from the outside of the member (A) and / or the member (B) except for a portion serving as a flow path, and uncured energy-ray curing is performed. Method of removing the conductive composition, method of sandwiching an adhesive sheet-like member cut out of a part to be a flow path between members (A) and (B) and bonding them together, protection of a part to be a flow path A method of removing a protective substance after filling and solidifying a substance, for example, a rod-like substance made of tetrafluoroethylene, filling and solidifying an adhesive or a molten resin, or the like can be adopted. Although this method has a small number of steps, it is difficult to remove the uncured energy-ray-curable composition and the protective substance when the flow path diameter is small, and thus it is suitable as a method for forming a flow path having relatively large dimensions. .

【0024】部材(A)が表面に溝を有するものである
場合の、部材(A)と部材(B)の接着方法は、部材
(A)表面の溝が流路として形成される方法であれば任
意であり、溶剤型接着剤の使用、無溶剤型接着剤の使
用、溶融型接着剤の使用、部材(A)及び/又は部材
(B)表面への溶剤塗布による接着、熱や超音波による
融着などを使用しうるが、無溶剤型の接着剤の使用が好
ましく、無溶剤型接着剤としてエネルギー線硬化性樹脂
を用い、エネルギー線照射により硬化させて接着する方
法が、微小なデバイスの精密な接着が可能であり、生産
性も高いことから、好ましい。また、溝に液体状、ゲル
状、固体状などの保護材を充填した状態で接着し、その
後、保護材を除去する方法を採ることも可能である。部
材(B)は接着剤の硬化物そのものであってもよい。
When the member (A) has a groove on the surface, the method of bonding the member (A) and the member (B) is such that the groove on the surface of the member (A) is formed as a flow path. It is optional, use of a solvent type adhesive, use of a solventless type adhesive, use of a melt type adhesive, adhesion by applying a solvent to the surface of the member (A) and / or member (B), heat or ultrasonic waves Can be used, but the use of a solventless adhesive is preferable, and a method of using an energy ray-curable resin as the solventless adhesive, curing by energy beam irradiation, and bonding is a small device. This is preferable because it enables precise bonding of the particles and has high productivity. Further, it is also possible to adopt a method in which the groove is filled with a protective material such as a liquid, a gel, or a solid and adhered, and then the protective material is removed. The member (B) may be a cured product of the adhesive itself.

【0025】部材(A)の素材は任意であり、有機高分
子重合体(以下、単に「重合体」と称する)、ガラス、
石英などの結晶、セラミック、金属、シリコンなどの半
導体などであってよいが、成形しやすさの面から、重合
体であることが好ましい。
The material of the member (A) is arbitrary, and may be an organic high molecular polymer (hereinafter, simply referred to as “polymer”), glass,
Crystals such as quartz, ceramics, metals, and semiconductors such as silicon may be used, but polymers are preferable from the viewpoint of ease of molding.

【0026】部材(A)に用いられる重合体は熱可塑性
重合体であっても、熱硬化性重合体であっても良いが、
成形性の良い点で熱可塑性重合体が好ましく、また、表
面に溝を形成する場合に溝の形成が容易、硬化速度が高
い、表面親水化が容易などの点でエネルギー線硬化性の
架橋重合体が好ましい。部材(A)は、ポリマーブレン
ドやポリマーアロイで構成されていても良いし、複合体
や積層体であっても良い。
The polymer used for the member (A) may be a thermoplastic polymer or a thermosetting polymer.
Thermoplastic polymers are preferred in terms of good moldability.In addition, when grooves are formed on the surface, an energy beam-curable cross-linking layer is formed in terms of easy formation of grooves, high curing speed, and easy surface hydrophilicity. Coalescence is preferred. The member (A) may be composed of a polymer blend or a polymer alloy, or may be a composite or a laminate.

【0027】部材(A)に好ましく使用できる重合体と
しては、例えば、ポリスチレン、ハイインパクトポリス
チレン、ポリ−α−メチルスチレン、ポリスチレン/マ
レイン酸共重合体、ポリスチレン/アクリロニトリル共
重合体の如きスチレン系重合体;ポルスルホン、ポリエ
ーテルスルホンの如きポリスルホン系重合体;ポリメチ
ルメタクリレート、ポリアクリロニトリルの如きポリ
(メタ)アクリル系重合体;ポリマレイミド系重合体;
ポリカーボネート系重合体;酢酸セルロース、メチルセ
ルロースの如きセルロース系重合体;ポリウレタン系重
合体;塩化ビニル、塩化ビニリデンの如き塩素系重合
体;ポリアミド系重合体;ポリイミド系重合体;ポリエ
チレン、ポリプロピレンの如きポリオレフィン系重合
体;ポリフェニレンオキサイド、ポリフェニレンスルフ
ィドの如きポリエーテル系又はポリチオエーテル系重合
体;ポリエチレンテレフタレート、ポリアリレートの如
きポリエステル系重合体、ポリ四フッ化エチレン、パー
フロロアルコキシトリフロロエチレン−四フッ化エチレ
ン共重合体(PFA)などのフッ素系重合体などが挙げ
られる。
Examples of the polymer which can be preferably used for the member (A) include styrene-based polymers such as polystyrene, high-impact polystyrene, poly-α-methylstyrene, polystyrene / maleic acid copolymer, and polystyrene / acrylonitrile copolymer. Polysulfone polymers such as porsulfone and polyethersulfone; poly (meth) acrylic polymers such as polymethyl methacrylate and polyacrylonitrile; polymaleimide polymers;
Polycarbonate polymers; Cellulose polymers such as cellulose acetate and methyl cellulose; Polyurethane polymers; Chlorine polymers such as vinyl chloride and vinylidene chloride; Polyamide polymers; Polyimide polymers; Polyolefins such as polyethylene and polypropylene Polymer; polyether-based or polythioether-based polymer such as polyphenylene oxide or polyphenylene sulfide; polyester-based polymer such as polyethylene terephthalate or polyarylate, polytetrafluoroethylene, perfluoroalkoxytrifluoroethylene-tetrafluoroethylene Fluorine-based polymers such as polymers (PFA) are exemplified.

【0028】また、エネルギー線硬化性の架橋重合体と
しては、(メタ)アクリロイル基を有するエネルギー線
硬化性化合物の硬化物や、マレイミド基を有するエネル
ギー線硬化性化合物の硬化物が好ましい。勿論、重合体
は単独重合体の他、共重合体であっても良い。
As the energy ray-curable crosslinked polymer, a cured product of an energy ray-curable compound having a (meth) acryloyl group and a cured product of an energy ray-curable compound having a maleimide group are preferable. Of course, the polymer may be a homopolymer or a copolymer.

【0029】これらの中でも、スチレン系重合体、(メ
タ)アクリル系重合体、ポリカーボネート系重合体、ポ
リスルホン系重合体、塩化ビニル系重合体は、安価で成
形性がよく、耐水性や寸法安定性などの物性に優れるた
め、部材(A)の素材として特に好適である。
Of these, styrene-based polymers, (meth) acrylic-based polymers, polycarbonate-based polymers, polysulfone-based polymers, and vinyl chloride-based polymers are inexpensive, have good moldability, and have good water resistance and dimensional stability. It is particularly suitable as a material for the member (A) because of its excellent physical properties such as.

【0030】本発明における部材(B)の材質は任意で
あり、本発明の部材(A)に使用できる素材として示し
たものが使用できる。部材(B)の素材は部材(A)と
同じであっても良いし、異なっていても良い。
The material of the member (B) in the present invention is arbitrary, and those shown as materials usable for the member (A) of the present invention can be used. The material of the member (B) may be the same as or different from that of the member (A).

【0031】本発明の第1の微小ケミカルデバイスは、
部材(A)と部材(B)との間に形成された流路に接続
して、減圧室が該微小ケミカルデバイス内に設けられて
いる。減圧室と流路とは、直接接続されていても良い
し、連絡流路を介して接続されていても良い。
The first microchemical device according to the present invention comprises:
A decompression chamber is provided in the microchemical device so as to be connected to a flow path formed between the member (A) and the member (B). The decompression chamber and the flow path may be directly connected, or may be connected via a communication flow path.

【0032】減圧室の容積は、その下限が、流路の液体
流入部から液体流出部に至る総容積の3倍以上であるこ
とが好ましく、10倍以上であることがされに好まし
い。その上限は、本発明の微小ケミカルデバイス内の流
路の総容積の10000倍以下であることが好ましく、
1000倍以下であることがさらに好ましい。但し、こ
こで言う流路の液体流入部から液体流出部に至る総容積
とは、流路の総容積であって、流路に接続させる貯液槽
その他の構造が設けられている場合には、その容積を含
まない。減圧室の容積がこの値未満であると流路に流し
うる液体の量が少なくなるため用途が限定されたものと
なるうえ、逆止弁などからの空気の漏洩による減圧度の
低下が生じがちとなる。減圧室の容積がこの値より大で
あっても機能上は何ら問題はないが、微小ケミカルデバ
イスが不要に大形となるため好ましくない。
The lower limit of the volume of the decompression chamber is preferably at least 3 times, more preferably at least 10 times, the total volume from the liquid inflow section to the liquid outflow section of the flow path. The upper limit is preferably 10,000 times or less the total volume of the flow path in the microchemical device of the present invention,
More preferably, it is 1000 times or less. However, the total volume from the liquid inflow portion to the liquid outflow portion of the flow channel here is the total volume of the flow channel, and when a liquid storage tank or other structure connected to the flow channel is provided. , Not including its volume. If the volume of the decompression chamber is less than this value, the amount of liquid that can flow through the flow path is reduced, so that the use is limited.In addition, the degree of decompression tends to decrease due to leakage of air from a check valve or the like. Becomes If the volume of the decompression chamber is larger than this value, there is no problem in function, but it is not preferable because a microchemical device becomes unnecessary and large.

【0033】減圧室の設置位置は任意である。減圧室
は、例えば、部材(A)や部材(B)の内部に設けられ
ていても良いし、部材(A)と部材(B)との間に設け
られていてもよいが、部材(A)と部材(B)との間に
設けることが、製造が容易であるので、好ましい。部材
(A)と部材(B)との間に設ける場合には、本微小ケ
ミカルデバイスの流路と同様の方法で、該流路と同時に
成形することができる。
The installation position of the decompression chamber is arbitrary. The decompression chamber may be provided, for example, inside the member (A) or the member (B), or may be provided between the member (A) and the member (B). ) And the member (B) are preferable because the production is easy. When it is provided between the member (A) and the member (B), it can be formed simultaneously with the channel by the same method as the channel of the present microchemical device.

【0034】減圧室には、減圧室を減圧するための排気
口と減圧を保持するための機構が設けられている。減圧
室の減圧を保持するための機構としては、例えば、開閉
バルブ、クランプなどによる排気口の閉塞機構、溶融封
止又は接着封止される部分、逆止弁、栓、又はシリンジ
による空気抜き用ゴム部などが挙げられる。減圧室には
減圧を解除するためのリークバルブ機構が設けられてい
ても良い。減圧室をサンプル貯液槽として使用する場合
には、マイクロシリンジによるサンプル抜き出し用ゴム
部など、サンプル液体の利用を容易にする構造を設置し
ても良い。また、減圧室がサンプル貯液槽部とそれ以外
の部分に分かれていても良い。減圧室の形状やその内部
構造は任意であり、例えば、減圧室内に減圧室の変形防
止のためのリブや柱を有していても良いし、減圧室が多
孔質であっても良い。
The decompression chamber is provided with an exhaust port for decompressing the decompression chamber and a mechanism for maintaining the decompression. As a mechanism for maintaining the reduced pressure in the decompression chamber, for example, an opening / closing valve, a mechanism for closing an exhaust port with a clamp, a portion to be melt-sealed or adhesively sealed, a check valve, a stopper, or a rubber for air release by a syringe And the like. The pressure reducing chamber may be provided with a leak valve mechanism for releasing the pressure reduction. When the decompression chamber is used as a sample storage tank, a structure that facilitates the use of the sample liquid, such as a rubber part for extracting a sample by a microsyringe, may be provided. Further, the decompression chamber may be divided into a sample storage tank portion and other portions. The shape and internal structure of the decompression chamber are arbitrary. For example, the decompression chamber may have ribs or columns for preventing deformation of the decompression chamber, or the decompression chamber may be porous.

【0035】本発明の微小ケミカルデバイスは、流路が
分岐していても良く、また、流路の任意の位置に接続し
て他の機能部位、例えば、貯液槽、反応槽、電気泳動カ
ラム、電極、クロマトグラフ用カラムなどが形成されて
いても良い。これらは、部材(A)上に設けられていて
も良いし、部材(B)に設けられていても良いし、部材
(B)あるいは部材(A)に結合される他の部材に設け
られていても良い。また、分岐した流路のそれぞれに減
圧室が設けられていても良い。
In the microchemical device of the present invention, the flow path may be branched, and other functional parts such as a liquid storage tank, a reaction tank, and an electrophoresis column may be connected to an arbitrary position of the flow path. , An electrode, a chromatographic column, and the like. These may be provided on the member (A), may be provided on the member (B), or may be provided on the member (B) or another member coupled to the member (A). May be. A decompression chamber may be provided in each of the branched flow paths.

【0036】本発明の第2の微小ケミカルデバイスは、
互いに接着された部材(A)と部材(B)との間に、部
材(A)と部材(B)との接着面に垂直な方向から見て
幅1〜1000μm 、奥行き1〜1000μm の毛細管
状の流路が形成された部材(I)と、減圧室が設けられ
た部材(II)から成る。
The second microchemical device according to the present invention comprises:
A capillary having a width of 1 to 1000 μm and a depth of 1 to 1000 μm between the member (A) and the member (B) bonded to each other when viewed from a direction perpendicular to the bonding surface of the member (A) and the member (B). And a member (II) provided with a decompression chamber.

【0037】部材(I)を構成する部材(A)及び部材
(B)に関すること、これらを接着して部材(A)と部
材(B)との間に流路を形成すること、部材(I)の構
造に関することについては、部材(I)が減圧室を有す
る必要がないこと以外は、本発明になる第1の微小ケミ
カルデバイスに関する記述と同様である。
The members (A) and (B) constituting the member (I), forming a flow path between the members (A) and (B) by bonding them, Regarding the structure of (1), the description is the same as that of the first microchemical device according to the present invention, except that the member (I) does not need to have a decompression chamber.

【0038】本発明の第2の微小ケミカルデバイスは、
部材(I)の流路に部材(II)の減圧室が連絡すべく
部材(II)が部材(I)に固定されていること、及び、
減圧室の容積が部材(I)の流路の容積の10〜10
00000倍の範囲にあること、の点において本発明の
第1の微小ケミカルデバイスと異なる。即ち、本発明の
第2の微小ケミカルデバイスにおいては、液体吸収部
は、部材(I)とは別の部材(II)に形成され、部材
(I)の流路に接続されている。この接続は、直接接続
であっても、連絡流路を介した接続であっても良い。部
材(II)は減圧室を有していて、該減圧室が部材(I)
の流路と接続できる形状であれば、その構造、形状、部
材(I)との位置関係は任意である。例えば、部材(I
I)は、部材(I)と同じ平面内に、流路の延長線上に
設けられていても良いし、部材(I)の部材(A)及び
/又は部材(B)の、流路が形成された面の反対側の面
に設けられていて、部材(A)及び/又は部材(B)を
貫通する連絡流路でもって部材(I)の流路と接続され
ていても良い。
[0038] The second microchemical device of the present invention comprises:
The member (II) is fixed to the member (I) so that the decompression chamber of the member (II) communicates with the flow path of the member (I); and
The volume of the decompression chamber is 10 to 10 times the volume of the flow path of the member (I).
It differs from the first microchemical device of the present invention in that it is in the range of 00000 times. That is, in the second microchemical device of the present invention, the liquid absorbing portion is formed on a member (II) different from the member (I) and is connected to the flow path of the member (I). This connection may be a direct connection or a connection via a communication channel. The member (II) has a decompression chamber, and the decompression chamber is the member (I)
The structure, the shape, and the positional relationship with the member (I) are arbitrary as long as the shape can be connected to the channel. For example, the member (I
I) may be provided on an extension of the flow path in the same plane as the member (I), or the flow path of the member (A) and / or the member (B) of the member (I) may be formed. It may be provided on a surface opposite to the surface provided, and may be connected to the flow path of the member (I) by a communication flow path penetrating the member (A) and / or the member (B).

【0039】本発明の第2の微小ケミカルデバイスにお
いて、減圧室の容積は、その下限が、部材(I)の流路
の液体流入部から液体流出部に至る総容積の10倍以上
であることが好ましく、さらに好ましくは100倍以上
である。その上限は、本発明の微小ケミカルデバイス内
の流路の総容積の1000000倍以下であることが好
ましく、さらに好ましくは10000倍以下であり、最
も好ましくは1000倍以下である。減圧室の容積がこ
の値未満であると、流路に流しうる液体の量が少なくな
るため用途が限定されたものとなるうえ、逆止弁などか
らの空気の漏洩による減圧度の低下が生じがちとなる。
減圧室の容積がこの値より大であっても機能上は何ら問
題はないが、部材(II)が不要に大形となるため好まし
くない。本発明に成る第2の微小ケミカルデバイスは化
学や生化学の合成デバイスなど、比較的多量の液体を流
す用途に好適である。
In the second microchemical device of the present invention, the lower limit of the volume of the decompression chamber is at least 10 times the total volume from the liquid inflow portion to the liquid outflow portion of the flow path of the member (I). And more preferably 100 times or more. The upper limit is preferably 1,000,000 times or less, more preferably 10,000 times or less, and most preferably 1,000 times or less, of the total volume of the flow path in the microchemical device of the present invention. If the volume of the decompression chamber is less than this value, the amount of liquid that can flow through the flow path is reduced, so the use is limited, and the degree of decompression is reduced due to air leakage from a check valve or the like. Tends to be.
If the volume of the decompression chamber is larger than this value, there is no problem in function, but it is not preferable because the member (II) becomes unnecessarily large. The second microchemical device according to the present invention is suitable for use in flowing a relatively large amount of liquid, such as a chemical or biochemical synthesis device.

【0040】さらに多量の液体を流す用途に使用する場
合、微小ケミカルデバイスの部材(I)を繰り返し使用
する場合、液体をサンプリングする場合などには、これ
らを容易にするために、部材(II)と部材(I)を脱着
可能とすることが好ましい。脱着機構は任意であり、例
えば、鈎爪式、バヨネット式、ねじ込み式、ネジ止め、
粘着式、マジックテープ、ゴム留め、その他の留め具な
どにより固定することができるが、鈎爪式が好適であ
る。流路と減圧部をその他の部分に対して気密に接続す
るために、接続部にはオーリングやパッキンを用いるこ
とが好ましい。
In the case of using the device for flowing a larger amount of liquid, when the member (I) of the microchemical device is repeatedly used, or when sampling the liquid, the member (II) is used to facilitate these. And the member (I) are preferably detachable. Detachable mechanism is optional, for example, claw type, bayonet type, screw-in type, screwing,
It can be fixed with an adhesive type, a magic tape, rubber fastening, other fasteners, etc., but a claw type is preferable. In order to hermetically connect the flow path and the decompression section to other portions, it is preferable to use an O-ring or packing for the connection section.

【0041】減圧室のその他に関すること、例えば、形
状、内部構造、排気口、逆止弁、その他の付帯構造など
については、本発明の第1の微小ケミカルデバイスの場
合と同様である。分岐した流路のそれぞれに部材(II)
が接続されていても良い。
Other aspects of the decompression chamber, such as the shape, internal structure, exhaust port, check valve, and other auxiliary structures, are the same as in the case of the first microchemical device of the present invention. A member for each of the branched channels (II)
May be connected.

【0042】部材(II)を構成する素材についても任意
であり、部材(A)や部材(B)に使用できる素材が使
用できる。
The material constituting the member (II) is also arbitrary, and any material that can be used for the member (A) or the member (B) can be used.

【0043】[0043]

【実施例】以下、実施例を用いて、本発明を更に詳細に
説明するが、本発明はこれらの実施例の範囲に限定され
るものではない。なお、以下の実施例において、「部」
は特に断りがない限り「重量部」を表わす。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the scope of these examples. In the following examples, "part"
Represents "parts by weight" unless otherwise specified.

【0044】<エネルギー線硬化性組成物の調製>実施
例で使用するエネルギー線硬化性組成物の調製方法を示
す。
<Preparation of energy ray-curable composition> A method for preparing an energy ray-curable composition used in Examples will be described.

【0045】[エネルギー線硬化性組成物[e1]の調
製]1分子中に平均3個のアクリル基を有するウレタン
アクリレートオリゴマー(大日本インキ化学工業(株)製
の「ユニディックV−4263」)40部、ノニルフェ
ノキシポリエチレングリコール(n=8)アクリレート
(東亜合成化学社製の「M−114」)60部及び紫外
線重合開始剤として1−ヒドロキシシクロヘキシルフェ
ニルケトン(チバガイギー社製の「イルガキュアー18
4」)2部を混合してエネルギー線硬化性組成物[e
1]を調製した。
[Preparation of energy ray-curable composition [e1]] Urethane acrylate oligomer having an average of three acrylic groups per molecule ("Unidick V-4263" manufactured by Dainippon Ink and Chemicals, Inc.) 40 parts, 60 parts of nonylphenoxy polyethylene glycol (n = 8) acrylate (“M-114” manufactured by Toa Gosei Chemical Co., Ltd.) and 1-hydroxycyclohexyl phenyl ketone (“Irgacure 18” manufactured by Ciba Geigy) as an ultraviolet polymerization initiator
4 ") 2 parts were mixed to form an energy ray-curable composition [e
1] was prepared.

【0046】[エネルギー線硬化性組成物[e2]の調
製]上記したエネルギー線硬化性組成物[e1]の調製
において、紫外線重合開始剤「イルガキュアー184」
の添加量を5部とし、かつ、重合禁止剤2,4−ジフェ
ニル−4−メチル−1−ペンテン(関東化学社製)0.
1部を添加した以外は、エネルギー線硬化性組成物[e
1]と同様にして、エネルギー線硬化性組成物[e2]
を調製した。
[Preparation of energy ray-curable composition [e2]] In the above-mentioned preparation of the energy ray-curable composition [e1], the ultraviolet ray polymerization initiator "Irgacure 184" was used.
And the polymerization inhibitor 2,4-diphenyl-4-methyl-1-pentene (manufactured by Kanto Chemical Co., Ltd.).
Except for adding 1 part, the energy ray-curable composition [e
Energy ray-curable composition [e2] in the same manner as in [1].
Was prepared.

【0047】[実施例1] 〔部材(A)の作製〕ポリスチレン(大日本インキ化学
工業(株)製の「ディックスチレン XC−520」)か
らなる2.5cm×5cm×3mmの板状の基材(1)に、エ
ネルギー線硬化性組成物[e1]を127μm のバーコ
ーターを用いて塗布した後、図1に示した減圧室(5)
となる部分をフォトマスクで被い、ウシオ電機製のマル
チライト200型露光装置用光源ユニットを用いて、窒
素雰囲気中で50mW/cm2 の紫外線を30秒間照射し
てエネルギー線硬化性組成物[e1]硬化物層(2)を
形成し、未硬化部分を水流にて除去した。次いで、その
上に、エネルギー線硬化性組成物[e2]を50μm の
バーコーターを用いて塗布した後、図1に示した形状の
流路(4)及び減圧室(5)となる部分をフォトマスク
で被い、窒素雰囲気中で上と同じ紫外線を30秒間照射
した。紫外線を照射した後、界面活性剤水溶液にて未硬
化物を洗浄除去することにより、エネルギー線硬化性組
成物[e2]からなる硬化物層(3)の欠損部として幅
33μm 、深さ38μm 、長さ6cmの流路(4)となる
べき溝、及び、エネルギー線硬化性組成物[e1]から
なる硬化物層(2)とエネルギー線硬化性組成物[e
2]からなる硬化物層(3)の両層の欠損部として幅1
0mm、長さ10mm、深さ140μm の正方形の減圧室
(5)となるべき凹部を形成した。その後、ドリルにて
流路(4)となるべき溝の端部に直径3mmのキリ穴を穿
って流入口(6)とし、減圧室(5)となるべき凹部の
一部に穿った直径0.5mmのキリ穴に逆止弁(7)及び
排気口(8)を設け、部材[A−1]を得た。
[Example 1] [Preparation of member (A)] A 2.5 cm x 5 cm x 3 mm plate-like base made of polystyrene ("Dick Styrene XC-520" manufactured by Dainippon Ink and Chemicals, Inc.) After applying the energy ray-curable composition [e1] to the material (1) using a 127 μm bar coater, the pressure-reducing chamber (5) shown in FIG.
Is covered with a photomask, and irradiated with 50 mW / cm 2 ultraviolet rays for 30 seconds in a nitrogen atmosphere using a light source unit for a Multilight 200 type exposure apparatus manufactured by Ushio Inc. e1] A cured product layer (2) was formed, and uncured portions were removed with a stream of water. Next, the energy ray-curable composition [e2] is applied thereon using a 50 μm bar coater, and the flow path (4) and the decompression chamber (5) having the shape shown in FIG. It was covered with a mask and irradiated with the same ultraviolet rays as above in a nitrogen atmosphere for 30 seconds. After irradiating with ultraviolet rays, the uncured material is washed and removed with a surfactant aqueous solution, so that the cured material layer (3) made of the energy ray-curable composition [e2] has a width of 33 μm, a depth of 38 μm, A groove to be a flow path (4) having a length of 6 cm, a cured product layer (2) composed of the energy ray-curable composition [e1] and an energy ray-curable composition [e
2] as a defect in both layers of the cured product layer (3)
A square recess having a square shape of 0 mm, a length of 10 mm, and a depth of 140 μm was formed. Then, a drill hole having a diameter of 3 mm was drilled at the end of the groove to become the flow path (4) with a drill to make the inlet (6), and the diameter of 0 was drilled in a part of the concave part to become the decompression chamber (5). A check valve (7) and an exhaust port (8) were provided in a 0.5 mm drill hole to obtain a member [A-1].

【0048】〔部材(B)の接着〕ポリスチレン板
(1)と同じポリスチレン板(9)[B−1]に、12
7μmのバーコーターを用いてエネルギー線硬化性組成
物[e1]を塗布し、次いで、窒素雰囲気中で、上記と
同じ紫外線を1秒間照射して、塗膜を流動性は喪失した
ものの不完全硬化の状態とし、この塗膜面を部材[A−
1]の溝が形成された面に貼り合わせた後、ポリスチレ
ン板(9)を通して同じ紫外線をさらに30秒間照射し
て塗膜を完全硬化させて、ポリスチレン板(9)とエネ
ルギー線硬化性組成物[e1]硬化物(10)の接着剤
で構成された板状の部材[B−1]を部材[A−1]の
表面に接着し、それらの間に毛細管状の流路(4)と減
圧室(5)を形成し、図1に示した形状の微小ケミカル
デバイス[D−1]を作製した。
[Adhesion of member (B)] The same polystyrene plate (1) as polystyrene plate (9) [B-1]
The energy ray-curable composition [e1] was applied using a 7 μm bar coater, and then irradiated with the same ultraviolet ray for 1 second in a nitrogen atmosphere, and the coating film lost fluidity but was incompletely cured. And the surface of the coating film is referred to as a member [A-
1), the same ultraviolet ray is further irradiated for 30 seconds through a polystyrene plate (9) to completely cure the coating film, and the polystyrene plate (9) and the energy ray-curable composition are adhered to each other. [E1] A plate-like member [B-1] made of an adhesive of the cured product (10) is adhered to the surface of the member [A-1], and a capillary channel (4) is formed between them. The decompression chamber (5) was formed, and the microchemical device [D-1] having the shape shown in FIG. 1 was manufactured.

【0049】〔送液試験〕微小ケミカルデバイス[D−
1]を部材(A)側を上、即ち、流入口(6)側を上に
して置き、流入口(6)にピペットを用いて、メチレン
ブルー(関東化学社製)で着色された蒸留水を1滴注入
し、排気口(8)の空気をアスピレータにて除去する
と、水は流路(4)を伝いほぼ一定流速で継続的に流れ
て、全量が減圧室(5)に流入した。
[Liquid sending test] Microchemical device [D-
1] is placed with the member (A) side up, that is, the inlet (6) side up, and distilled water colored with methylene blue (manufactured by Kanto Chemical Co., Ltd.) is poured into the inlet (6) using a pipette. When one drop was injected and the air at the exhaust port (8) was removed by an aspirator, the water continued to flow along the flow path (4) at a substantially constant flow rate, and the whole amount flowed into the decompression chamber (5).

【0050】[実施例2] 〔微小マイクロデバイスの作製〕実施例1において、図
1に示した減圧室(5)を有しないこと、逆止弁(7)
を有しない以外は、実施例1と同様にして、実施例1の
微小ケミカルデバイス[D−1]と同様の部材(I)を
作製し、部材(I)の排気口(8)に接続して、外径3
mm、内径2mmの軟質塩化ビニルチューブ(図示せず)
[部材(II)]を減圧室及び溶融封止部として設けたこ
と以外は、実施例1と同様にして部材(I)と部材(I
I)とから成る微小ケミカルデバイス[D−2]を作製
した。
[Example 2] [Preparation of micro-micro device] In Example 1, the pressure reducing chamber (5) shown in FIG.
Except for having no, a member (I) similar to the microchemical device [D-1] of Example 1 was prepared in the same manner as in Example 1, and connected to the exhaust port (8) of the member (I). Outside diameter 3
mm, soft vinyl chloride tube of 2 mm inside diameter (not shown)
Except that [Member (II)] was provided as a decompression chamber and a fusion sealing portion, the members (I) and (I) were formed in the same manner as in Example 1.
A microchemical device [D-2] consisting of (I) was prepared.

【0051】〔送液試験〕微小ケミカルデバイス[D−
2]を部材(A)側を上に、即ち、流入口(6)側を上
にして置き、流入口(6)にピペットを用いて、メチレ
ンブルー(関東化学社製)で着色された蒸留水を1滴注
入し、排気口(8)に接続された塩化ビニルチューブ
(図示せず)を通してアスピレータで減圧しつつ、塩化
ビニルチューブを5cm残して熱で融着・切断することに
より塩化ビニルチューブ内を減圧に保ったところ、水は
流路(4)を伝い、ほぼ一定流速で継続的に流れて、全
量が封じられた塩化ビニルチューブ内の減圧室(図示せ
ず)に流入した。
[Liquid sending test] Microchemical device [D-
2] is placed on the member (A) side, that is, with the inlet (6) side up, and distilled water colored with methylene blue (manufactured by Kanto Chemical Co., Ltd.) using an inlet (6) with a pipette. Is dropped, and while the pressure is reduced by an aspirator through a vinyl chloride tube (not shown) connected to the exhaust port (8), the vinyl chloride tube is fused and cut by heat leaving 5 cm of the vinyl chloride tube. When the inside was kept at a reduced pressure, the water passed through the flow path (4), continuously flowed at a substantially constant flow rate, and flowed into a reduced-pressure chamber (not shown) in the vinyl chloride tube in which the entire amount was sealed.

【0052】[実施例3] 〔部材(A)の作製〕実施例1において、微小ケミカ
ルデバイスが、流路(4)を有する部材[I−3](1
3)と減圧室(5)を有する部材[II−3](14)
の、互いに鈎爪(11,11’)で固定可能な2つの部
材に分かれていること、部材[I−3](13)の流
路はオーリング(12)にて外部に対して気密の状態で
部材[II−3](14)の減圧室(5)に連絡している
こと、減圧室(5)が幅20mm、長さ15mm、深さ1
40μm の矩形であること、及び、流入口(6)に、
内径7mm、高さ10mmのポリスチレン製の筒(15)が
接着されていること、以外は実施例1と同様にして、図
2に示した形状の微小ケミカルデバイス[D−3]を作
製した。
[Example 3] [Production of member (A)] In Example 1, the microchemical device was changed to a member [I-3] (1) having a flow path (4).
3) A member having a decompression chamber (5) [II-3] (14)
Is divided into two members which can be fixed to each other with claws (11, 11 '). The flow path of the member [I-3] (13) is airtight to the outside by the O-ring (12). In the state, the member is connected to the decompression chamber (5) of the member [II-3] (14), and the decompression chamber (5) is 20 mm in width, 15 mm in length, and 1 in depth.
A rectangular shape of 40 μm, and at the inlet (6):
A microchemical device [D-3] having the shape shown in FIG. 2 was produced in the same manner as in Example 1 except that a polystyrene cylinder (15) having an inner diameter of 7 mm and a height of 10 mm was adhered.

【0053】〔送液試験〕微小ケミカルデバイス[D−
3]を部材(A)側を上に、即ち、流入口(6)側を上
にして置き、流入口(6)の筒(15)内にピペットを
用いて、メチレンブルー(関東化学)で着色された蒸留
水を注入し、排気口(8)から減圧室(5)の空気をア
スピレータにて除去すると、水は継続的流路(4)を流
れて、減圧室(5)に流入した。
[Liquid sending test] Microchemical device [D-
3] is placed with the member (A) side up, that is, with the inlet (6) side up, and colored with methylene blue (Kanto Chemical) using a pipette in the tube (15) of the inlet (6). The distilled water was injected, and the air in the decompression chamber (5) was removed from the exhaust port (8) by an aspirator. The water flowed through the continuous flow path (4) and flowed into the decompression chamber (5).

【0054】<実施例4>〔微小ケミカルデバイスの作
製〕実施例1において、部材(A)及び部材(B)の素
材として、ポリスチレンに代えて、アクリル樹脂(旭
化成工業社製の「デルペット670N」)、ポリカー
ボネート(三菱エンジニアリングプラスチックス社製の
「ユーピロン S−2000」、ポリスルホン(アモ
コ社製の「ユーデル P−1700」)、ポリアリレ
ート樹脂(ユニチカ社製の「Uポリマー U−70)、
透明硬質塩化ビニル樹脂をそれぞれ使用した以外は、
実施例1と同様にして、微小ケミカルデバイス[D4−
1〜5]を作製した。
<Example 4> [Preparation of microchemical device] In Example 1, instead of polystyrene, acrylic resin ("Delpet 670N" manufactured by Asahi Kasei Kogyo Co., Ltd.) was used as the material of the member (A) and the member (B). )), Polycarbonate ("Iupilon S-2000" manufactured by Mitsubishi Engineering-Plastics Corporation), polysulfone ("Udel P-1700" manufactured by Amoco), polyarylate resin ("U-Polymer U-70" manufactured by Unitika Ltd.),
Except for using each transparent hard vinyl chloride resin,
In the same manner as in Example 1, the fine chemical device [D4-
1 to 5].

【0055】〔送液試験〕微小ケミカルデバイス[D4
−1〜5]について実施例1と同様の試験を行ない、実
施例1と同様の結果を得た。
[Liquid sending test] Microchemical device [D4
-1 to 5], the same test as in Example 1 was performed, and the same result as in Example 1 was obtained.

【0056】<実施例5>〔微小ケミカルデバイスの作
製〕実施例3において、部材(A)及び部材(B)の素
材として、ポリスチレンに代えて、アクリル樹脂(旭
化成工業社製の「デルペット670N」)、ポリカー
ボネート(三菱エンジニアリングプラスチックス株式会
社製「ユーピロンS−2000」、ポリスルホン(ア
モコ社製「ユーデル P−1700」)、ポリアリレ
ート樹脂(ユニチカ株式会社製「Uポリマー U−7
0)、透明硬質塩化ビニル樹脂をそれぞれ使用した以
外は、実施例3と同様にして、微小ケミカルデバイス
[D5−1〜5]を作製した。
<Example 5> [Production of microchemical device] In Example 3, instead of polystyrene, acrylic resin ("Delpet 670N" manufactured by Asahi Kasei Kogyo Co., Ltd.) was used as the material of the members (A) and (B). )), Polycarbonate ("Iupilon S-2000" manufactured by Mitsubishi Engineering-Plastics Co., Ltd., polysulfone ("Udel P-1700" manufactured by Amoco)), polyarylate resin ("U-Polymer U-7 manufactured by Unitika Ltd.")
0) and microchemical devices [D5-1-5] were prepared in the same manner as in Example 3 except that a transparent hard vinyl chloride resin was used.

【0057】〔送液試験〕微小ケミカルデバイス[D5
−1〜5]について実施例3と同様の試験を行い、実施
例3と同様の結果を得た。
[Liquid sending test] Microchemical device [D5
-1 to 5], the same test as in Example 3 was performed, and the same result as in Example 3 was obtained.

【0058】[0058]

【発明の効果】本発明の微小ケミカルデバイスは、反
応、分析、検査などの用途に使用するに当たり、送液ポ
ンプを必要としないため、多数を同時・並列的に処理す
ることが容易であり、各用途における効率の向上を計る
ことができる。
The microchemical device of the present invention does not require a liquid feed pump when used for applications such as reaction, analysis, and inspection, so that it is easy to process many devices simultaneously and in parallel. It is possible to improve the efficiency in each application.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で作製した微小ケミカルデバイスを部
材(B)の表面に垂直な方向から見た部分断面平面図及
び正面図である。
FIGS. 1A and 1B are a partial cross-sectional plan view and a front view of a microchemical device manufactured in Example 1 as viewed from a direction perpendicular to the surface of a member (B).

【符号の説明】[Explanation of symbols]

1 ポリスチレン板 2 エネルギー線硬化性組成物[e1]硬化物層 3 エネルギー線硬化性組成物[e2]硬化物層 4 毛細管状の流路 5 減圧室 6 流入口 7 逆止弁 8 排気口 9 ポリスチレン板 10 接着剤、エネルギー線硬化性組成物[e1]硬化
DESCRIPTION OF SYMBOLS 1 Polystyrene board 2 Energy beam curable composition [e1] Cured material layer 3 Energy beam curable composition [e2] Cured material layer 4 Capillary channel 5 Decompression chamber 6 Inlet 7 Check valve 8 Exhaust port 9 Polystyrene Plate 10 Adhesive, energy ray-curable composition [e1] cured product

【図2】実施例3で作製した微小ケミカルデバイスを部
材(B)の表面に垂直な方向から見た平面図及び正面図
である。
FIGS. 2A and 2B are a plan view and a front view of the microchemical device manufactured in Example 3 as viewed from a direction perpendicular to the surface of a member (B).

【符号の説明】[Explanation of symbols]

1 ポリスチレン板 2 エネルギー線硬化性組成物[e1]硬化物層 3 エネルギー線硬化性組成物[e2]硬化物層 4 毛細管状の流路 5 減圧室 6 流入口 7 逆止弁 8 排気口 9 ポリスチレン板 10 エネルギー線硬化性組成物[e1]硬化物、接
着剤 11 鈎爪 11’ 鈎爪 12 オーリング 13 部材(I) 14 部材(II) 15 筒
DESCRIPTION OF SYMBOLS 1 Polystyrene board 2 Energy beam curable composition [e1] Cured material layer 3 Energy beam curable composition [e2] Cured material layer 4 Capillary channel 5 Decompression chamber 6 Inlet 7 Check valve 8 Exhaust port 9 Polystyrene Plate 10 Energy ray-curable composition [e1] Cured product, adhesive 11 Hook 11 'Hook 12 O-ring 13 Member (I) 14 Member (II) 15 tube

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 27/62 G01N 30/60 D 4G075 30/60 31/20 31/20 35/08 A 35/08 C12M 1/00 A // C12M 1/00 G01N 27/26 331E C12N 15/09 C12N 15/00 A Fターム(参考) 2G042 AA01 CA02 CB03 EA08 HA01 HA03 HA07 2G058 EA03 EA14 EB19 3F060 AA10 GA14 HA00 4B024 AA11 AA19 HA11 4B029 AA07 AA23 AA27 BB15 BB20 CC01 FA15 4G075 AA13 AA62 CA05 EB21 FB12──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G01N 27/62 G01N 30/60 D 4G075 30/60 31/20 31/20 35/08 A 35/08 C12M 1/00 A // C12M 1/00 G01N 27/26 331E C12N 15/09 C12N 15/00 A F term (reference) 2G042 AA01 CA02 CB03 EA08 HA01 HA03 HA07 2G058 EA03 EA14 EB19 3F060 AA10 GA14 HA00 4B024 AA11 AA29 HA11 4B AA07 AA23 AA27 BB15 BB20 CC01 FA15 4G075 AA13 AA62 CA05 EB21 FB12

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 (イ)部材(A)と部材(B)の間に、
流路となる部分を除いて固体状物質を充填することによ
り、もしくは(ロ)表面に溝を有する部材(A)の溝が
形成された面に他の部材(B)を接着することにより、
互いに接着された部材(A)と部材(B)との間に、部
材(A)と部材(B)との接着面に垂直な方向から見て
幅1〜1000μm 、奥行き1〜1000μm の毛細管
状の流路が形成された微小ケミカルデバイスであって、
流路に連絡して、該微小ケミカルデバイス内に減圧可能
な減圧室を有することを特徴とする微小ケミカルデバイ
ス。
(A) between a member (A) and a member (B),
By filling the solid material except for the portion that becomes the flow path, or (b) by bonding another member (B) to the grooved surface of the member (A) having a groove on the surface,
A capillary having a width of 1 to 1000 μm and a depth of 1 to 1000 μm between the member (A) and the member (B) bonded to each other when viewed from a direction perpendicular to the bonding surface of the member (A) and the member (B). A microchemical device in which a flow path of
A microchemical device, characterized by having a decompression chamber in communication with the flow path and capable of decompression inside the microchemical device.
【請求項2】 減圧室が部材(A)と部材(B)の両部
材との間に設けられている請求項1記載の微小ケミカル
デバイス。
2. The microchemical device according to claim 1, wherein the decompression chamber is provided between the members (A) and (B).
【請求項3】 減圧室に、逆止弁を有する排気口が設け
られている請求項1又は2記載の微小ケミカルデバイ
ス。
3. The microchemical device according to claim 1, wherein an exhaust port having a check valve is provided in the decompression chamber.
【請求項4】 部材(A)及び部材(B)が有機高分子
重合体で形成されている、請求項1、2又は3記載の微
小ケミカルデバイス。
4. The microchemical device according to claim 1, wherein the member (A) and the member (B) are formed of an organic polymer.
【請求項5】 部材(A)及び部材(B)がそれぞれ、
スチレン系重合体、(メタ)アクリル系重合体、ポリカ
ーボネート系重合体、ポリスルホン系重合体、ポリエス
テル系重合体、塩化ビニル系重合体なる群から選ばれた
重合体で形成されている請求項4記載の微小ケミカルデ
バイス。
5. The member (A) and the member (B) are:
The styrene-based polymer, the (meth) acryl-based polymer, the polycarbonate-based polymer, the polysulfone-based polymer, the polyester-based polymer, and the vinyl chloride-based polymer. Micro chemical device.
【請求項6】 互いに接着された部材(A)と部材
(B)との間に、部材(A)と部材(B)との接着面に
垂直な方向から見て幅1〜1000μm 、奥行き1〜1
000μm の毛細管状の流路が形成された部材(I)
と、減圧室が設けられた部材(II)から成る微小ケミカ
ルデバイスであって、部材(I)の流路に部材(II)の
減圧室が連絡すべく部材(II)が部材(I)に固定され
ていることを特徴とする微小ケミカルデバイス。
6. A member having a width of 1 to 1000 μm and a depth of 1 between a member (A) and a member (B) bonded to each other when viewed from a direction perpendicular to a bonding surface between the member (A) and the member (B). ~ 1
Member having a 000 μm capillary flow path (I)
And a microchemical device comprising a member (II) provided with a decompression chamber, wherein the member (II) is connected to the member (I) so that the decompression chamber of the member (II) communicates with the flow path of the member (I). A microchemical device which is fixed.
【請求項7】 部材(I)と部材(II)が脱着可能であ
る請求項6記載の微小ケミカルデバイス。
7. The microchemical device according to claim 6, wherein the member (I) and the member (II) are detachable.
【請求項8】 減圧室に逆止弁を有する排気口が設けら
れている請求項6又は7記載の微小ケミカルデバイス。
8. The microchemical device according to claim 6, wherein an exhaust port having a check valve is provided in the decompression chamber.
【請求項9】 部材(A)及び部材(B)が有機高分子
重合体で形成されている、請求項6、7又は8記載の微
小ケミカルデバイス。
9. The microchemical device according to claim 6, wherein the member (A) and the member (B) are formed of an organic polymer.
【請求項10】 部材(A)及び部材(B)がそれぞ
れ、スチレン系重合体、(メタ)アクリル系重合体、ポ
リカーボネート系重合体、ポリスルホン系重合体、ポリ
エステル系重合体、塩化ビニル系重合体なる群から選ば
れた高分子で形成されている請求項6、7又は8記載の
微小ケミカルデバイス。
10. The member (A) and the member (B) are a styrene polymer, a (meth) acrylic polymer, a polycarbonate polymer, a polysulfone polymer, a polyester polymer, and a vinyl chloride polymer, respectively. 9. The microchemical device according to claim 6, which is formed of a polymer selected from the group consisting of:
JP25962999A 1999-09-14 1999-09-14 Micro chemical device with depressurized liquid feeding mechanism Pending JP2001088098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25962999A JP2001088098A (en) 1999-09-14 1999-09-14 Micro chemical device with depressurized liquid feeding mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25962999A JP2001088098A (en) 1999-09-14 1999-09-14 Micro chemical device with depressurized liquid feeding mechanism

Publications (1)

Publication Number Publication Date
JP2001088098A true JP2001088098A (en) 2001-04-03

Family

ID=17336740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25962999A Pending JP2001088098A (en) 1999-09-14 1999-09-14 Micro chemical device with depressurized liquid feeding mechanism

Country Status (1)

Country Link
JP (1) JP2001088098A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003004700A (en) * 2001-06-22 2003-01-08 Hitachi Chem Co Ltd Chip for cataphoresis
JP2003149252A (en) * 2001-11-16 2003-05-21 Starlite Co Ltd Chemical micro-device
JP2005331506A (en) * 2004-04-22 2005-12-02 Kowa Co Microchip and fluorescent particle counting apparatus equipped with the same
JP2006025661A (en) * 2004-07-14 2006-02-02 Canon Inc Biochemical reaction cartridge
JP2010025775A (en) * 2008-07-21 2010-02-04 Brother Ind Ltd Inspection object acceptor, and inspection device equipped with same
JP2011212679A (en) * 2002-05-09 2011-10-27 Univ Of Chicago Device and method for pressure-driven plug transport and reaction
WO2014110456A1 (en) * 2013-01-11 2014-07-17 Becton, Dickinson And Company Low-cost point-of-care assay device
US9523682B2 (en) 2011-11-16 2016-12-20 Becton, Dickinson And Company Methods and systems for detecting an analyte in a sample
US9649061B2 (en) 2015-03-10 2017-05-16 Becton, Dickinson And Company Biological fluid micro-sample management device
US9693723B2 (en) 2014-10-14 2017-07-04 Becton, Dickinson And Company Blood sample management using open cell foam
US9797899B2 (en) 2013-11-06 2017-10-24 Becton, Dickinson And Company Microfluidic devices, and methods of making and using the same
WO2018025705A1 (en) * 2016-08-03 2018-02-08 国立研究開発法人理化学研究所 Analysis cell, analysis device, analysis equipment, and analysis system
US10018640B2 (en) 2013-11-13 2018-07-10 Becton, Dickinson And Company Optical imaging system and methods for using the same
JP2019512694A (en) * 2016-03-14 2019-05-16 ディアスセス インコーポレイテッド Apparatus and method for altering optical properties
US10578606B2 (en) 2015-09-01 2020-03-03 Becton, Dickinson And Company Depth filtration device for separating specimen phases
US11298061B2 (en) 2014-10-14 2022-04-12 Becton, Dickinson And Company Blood sample management using open cell foam

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003004700A (en) * 2001-06-22 2003-01-08 Hitachi Chem Co Ltd Chip for cataphoresis
JP2003149252A (en) * 2001-11-16 2003-05-21 Starlite Co Ltd Chemical micro-device
JP2011212679A (en) * 2002-05-09 2011-10-27 Univ Of Chicago Device and method for pressure-driven plug transport and reaction
JP2005331506A (en) * 2004-04-22 2005-12-02 Kowa Co Microchip and fluorescent particle counting apparatus equipped with the same
JP4528664B2 (en) * 2004-04-22 2010-08-18 興和株式会社 Fluorescent particle counter
JP2006025661A (en) * 2004-07-14 2006-02-02 Canon Inc Biochemical reaction cartridge
JP2010025775A (en) * 2008-07-21 2010-02-04 Brother Ind Ltd Inspection object acceptor, and inspection device equipped with same
US9523682B2 (en) 2011-11-16 2016-12-20 Becton, Dickinson And Company Methods and systems for detecting an analyte in a sample
CN104755925B (en) * 2013-01-11 2017-06-23 贝克顿·迪金森公司 The point-of-care of low cost determines device
WO2014110456A1 (en) * 2013-01-11 2014-07-17 Becton, Dickinson And Company Low-cost point-of-care assay device
CN104755925A (en) * 2013-01-11 2015-07-01 贝克顿·迪金森公司 Low-cost point-of-care assay device
US9678065B2 (en) 2013-01-11 2017-06-13 Becton, Dickinson And Company Low-cost point-of-care assay device
US9797899B2 (en) 2013-11-06 2017-10-24 Becton, Dickinson And Company Microfluidic devices, and methods of making and using the same
US10073093B2 (en) 2013-11-06 2018-09-11 Becton, Dickinson And Company Microfluidic devices, and methods of making and using the same
US10018640B2 (en) 2013-11-13 2018-07-10 Becton, Dickinson And Company Optical imaging system and methods for using the same
US10663476B2 (en) 2013-11-13 2020-05-26 Becton, Dickinson And Company Optical imaging system and methods for using the same
US11134875B2 (en) 2014-10-14 2021-10-05 Becton, Dickinson And Company Blood sample management using open cell foam
US10219731B2 (en) 2014-10-14 2019-03-05 Becton, Dickinson And Company Blood sample management using open cell foam
US10595762B2 (en) 2014-10-14 2020-03-24 Becton, Dickinson And Company Blood sample management using open cell foam
US9693723B2 (en) 2014-10-14 2017-07-04 Becton, Dickinson And Company Blood sample management using open cell foam
US11298061B2 (en) 2014-10-14 2022-04-12 Becton, Dickinson And Company Blood sample management using open cell foam
US9873117B2 (en) 2015-03-10 2018-01-23 Becton, Dickinson And Company Biological fluid micro-sample management device
US9649061B2 (en) 2015-03-10 2017-05-16 Becton, Dickinson And Company Biological fluid micro-sample management device
US10578606B2 (en) 2015-09-01 2020-03-03 Becton, Dickinson And Company Depth filtration device for separating specimen phases
US11366095B2 (en) 2015-09-01 2022-06-21 Becton, Dickinson And Company Depth filtration device for separating specimen phases
US11808757B2 (en) 2015-09-01 2023-11-07 Becton, Dickinson And Company Depth filtration device for separating specimen phases
JP2019512694A (en) * 2016-03-14 2019-05-16 ディアスセス インコーポレイテッド Apparatus and method for altering optical properties
WO2018025705A1 (en) * 2016-08-03 2018-02-08 国立研究開発法人理化学研究所 Analysis cell, analysis device, analysis equipment, and analysis system
JPWO2018025705A1 (en) * 2016-08-03 2019-06-27 国立研究開発法人理化学研究所 Analysis cell, analysis device, analysis device and analysis system

Similar Documents

Publication Publication Date Title
JP2001088098A (en) Micro chemical device with depressurized liquid feeding mechanism
Prakash et al. Small volume PCR in PDMS biochips with integrated fluid control and vapour barrier
Nunes et al. Cyclic olefin polymers: emerging materials for lab-on-a-chip applications
EP2227329B1 (en) Microfluidic device, method of manufacturing the same and sensor incorporating the same
US7010964B2 (en) Pressurized microfluidic devices with optical detection regions
US9150907B2 (en) Microfluidic flow cell assemblies and method of use
JP2002018271A (en) Micro chemical device
WO2006092959A1 (en) Microchannel and microfluid chip
JP2007527784A (en) Functional materials and novel methods for making microfluidic devices
JP2001088096A (en) Micro chemical device with absorbing type liquid feeding mechanism
JP2002102681A (en) Minute chemical device having heating/deairing mechanism
KR20030038739A (en) Very small chemical device and flow rate adjusting method therefor
JP2000246092A (en) Production of microchemical device
JP2002066999A (en) Extremely small valve mechanism and manufacturing method of the same
JP2003139660A (en) Microfluid device and method of manufacturing the same
KR20150057551A (en) Micro Chamber Plate
CN113275046A (en) Detection chip, use method thereof and detection device
JP2000262871A (en) Microporous membrane separation device and its production
KR101444827B1 (en) Diagnostic element, and a diagnostic device comprising a diagnostic element
WO2007080850A1 (en) Passive one-way valve and micro fluid device
Li et al. Disposable polydimethylsiloxane/silicon hybrid chips for protein detection
Song et al. Polymers for microfluidic chips
JP2003084001A (en) Micro fluid device having micro valve mechanism, micro valve mechanism driving apparatus therefor, and flow control method
JP2001137613A (en) Fine chemical device having extraction structure
JP2001070784A (en) Extremely small chemical device with valve mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060823

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090625