JP2005331506A - Microchip and fluorescent particle counting apparatus equipped with the same - Google Patents

Microchip and fluorescent particle counting apparatus equipped with the same Download PDF

Info

Publication number
JP2005331506A
JP2005331506A JP2005116641A JP2005116641A JP2005331506A JP 2005331506 A JP2005331506 A JP 2005331506A JP 2005116641 A JP2005116641 A JP 2005116641A JP 2005116641 A JP2005116641 A JP 2005116641A JP 2005331506 A JP2005331506 A JP 2005331506A
Authority
JP
Japan
Prior art keywords
fluorescent
liquid
fluorescent particle
counting
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005116641A
Other languages
Japanese (ja)
Other versions
JP4528664B2 (en
Inventor
Tairyo Hirono
泰亮 廣野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kowa Co Ltd
Original Assignee
Kowa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kowa Co Ltd filed Critical Kowa Co Ltd
Priority to JP2005116641A priority Critical patent/JP4528664B2/en
Publication of JP2005331506A publication Critical patent/JP2005331506A/en
Application granted granted Critical
Publication of JP4528664B2 publication Critical patent/JP4528664B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0636Focussing flows, e.g. to laminate flows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0867Multiple inlets and one sample wells, e.g. mixing, dilution

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately measure the number of leucocytes, while being simple operations. <P>SOLUTION: A blood-collecting device etc. not shown in Fig. are connected to an adaptor 4 to make blood L1 flow in a first inflow path B1 and a liquid L2 containing a surfactant and fluorescent pigments flow in a second inflow path B2. The blood L1 and the liquid L2 are mixed at a mixing part C, and blood platelets, erythrocytes, and leucocyte cell membranes in the blood are dissolved by the surfactant to fluorescent-stain leucocyte cell nuclei with the fluorescent pigments. The fluorescent-stained leucocyte cell nuclei are counted by a fluorescent particle counting part E, when they move through an outflow path D. Using the present invention, it is possible to accurately count the number of leucocytes by simple operations, such as connection of the blood collecting device etc. to the adaptor 4. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、2種以上の液体を混和させるためのマイクロチップ、及び該マイクロチップを備えた蛍光粒子計数装置に関する。     The present invention relates to a microchip for mixing two or more kinds of liquids, and a fluorescent particle counter equipped with the microchip.

従来、粒子を蛍光染色した上で計数することが、様々な技術分野で行われている。例えば、医療の分野では、血液から血小板及び赤血球を抽出した血小板製剤および赤血球製剤が使用されているが、これらの血小板製剤や赤血球製剤には白血球が残存していない方が好ましいため、製造過程において白血球の除去が行われる。そして、血小板製剤や赤血球製剤から白血球が除去されたかどうかの確認のための白血球の計数が行われている(例えば、特許文献1参照)。     Conventionally, counting after fluorescent staining of particles is performed in various technical fields. For example, in the medical field, platelet preparations and erythrocyte preparations obtained by extracting platelets and erythrocytes from blood are used. However, it is preferable that these platelet preparations and erythrocyte preparations have no remaining white blood cells. Leukocyte removal is performed. And the white blood cell count for confirming whether the white blood cell was removed from the platelet preparation and the red blood cell preparation is performed (for example, refer patent document 1).

図4は、白血球計数装置の従来構造の一例を示すブロック図であり、図中の符号100は、蛍光染色した血小板製剤等を入れるための撮像用容器を示し、符号101は、該撮像用容器100にレーザビームを照射するレーザ光源を示し、符号102はミラーを示し、符号103はCCDカメラを示す。このような装置において、レーザ光源101にてレーザビーム(励起光)を撮像用容器100に照射すると、白血球の像がCCDカメラ103にて撮影される。その画像は、不図示のコンピュータに取り込まれ、画像処理が施されて白血球の数が計数される。     FIG. 4 is a block diagram showing an example of a conventional structure of the white blood cell counter. In FIG. 4, reference numeral 100 denotes an imaging container for containing a fluorescently-stained platelet preparation, and 101 denotes the imaging container. Reference numeral 100 denotes a laser light source that emits a laser beam, reference numeral 102 denotes a mirror, and reference numeral 103 denotes a CCD camera. In such an apparatus, when a laser beam (excitation light) is irradiated to the imaging container 100 by the laser light source 101, an image of white blood cells is taken by the CCD camera 103. The image is captured by a computer (not shown), subjected to image processing, and the number of white blood cells is counted.

ところで、計数対象である粒子を蛍光染色するには、粒子を含む溶液に蛍光色素を混和させる必要がある。例えば、血小板製剤中の白血球を蛍光染色するためには、プロピディウム・イオダイド等の蛍光色素と血小板製剤(正確には、トライトンXなどの界面活性剤などにより血小板や赤血球を除去し、白血球を裸核化した状態のもの)とを混和させる必要がある。     By the way, in order to fluorescently stain the particles to be counted, it is necessary to mix a fluorescent dye into the solution containing the particles. For example, in order to fluorescently stain white blood cells in platelet preparations, platelets and red blood cells are removed with fluorescent dyes such as propidium iodide and platelet preparations (more precisely, surfactants such as Triton X, etc.) It is necessary to mix with the one in a state of being converted into a solid state).

なお、蛍光粒子の計数を目的としたものではないが、2種以上の液体を混和させる装置(マイクロチップ)としては、図5に示す構造のものが提案されている(例えば、特許文献2及び特許文献3参照)。図中の符号200は液状の検体を供給するための検体供給口を示し、符号201はその流路を示し、符号202は液状の試薬を供給する試薬供給口を示し、符号203はその流路を示す。これらの供給口200,202から供給された検体及び試薬は合流部204にて合流して混合され、流出路205を経由して排出口206から排出されるようになっている。     Although not intended for counting fluorescent particles, as a device (microchip) for mixing two or more kinds of liquids, a device having a structure shown in FIG. (See Patent Document 3). Reference numeral 200 in the figure indicates a sample supply port for supplying a liquid sample, reference numeral 201 indicates the flow path, reference numeral 202 indicates a reagent supply port for supplying a liquid reagent, and reference numeral 203 indicates the flow path. Indicates. The specimens and reagents supplied from these supply ports 200 and 202 are merged and mixed in the merge unit 204, and are discharged from the discharge port 206 via the outflow path 205.

特開2001−83092号公報JP 2001-83092 A 特開2002−221485号公報JP 2002-221485 A 特開2003−181255号公報JP 2003-181255 A

しかしながら、粒子を蛍光染色するには、粒子を含む溶液に、蛍光色素を十分に混和させておく必要がある。例えば、ヨウ化プロピジウム、エチジウムブロマイドなどの蛍光色素により白血球を蛍光染色する場合、該蛍光色素を白血球細胞核のDNAの塩基と塩基の間に滑り込ませる必要があり、十分に混和させる必要がある。しかし、図5に示す構造のもので蛍光色素を混和させて、図4に示す計数装置で計数しようとしても、蛍光染色が不十分で、粒子の計数の精度も悪くなってしまうという問題があった。また、上述のように血小板や赤血球を除去し、白血球を裸核化する場合には、界面活性剤を十分に混和させ、反応させる必要があるが、図5に示す構造のものでは、混和が不十分で血小板や白血球細胞膜等が残存してしまい、白血球の計数の精度も悪くなってしまうという問題があった。     However, in order to fluorescently stain the particles, it is necessary to sufficiently mix the fluorescent dye in the solution containing the particles. For example, when white blood cells are fluorescently stained with a fluorescent dye such as propidium iodide or ethidium bromide, the fluorescent dye needs to be slid between the bases of the DNA of the white blood cell nucleus and must be mixed sufficiently. However, even if a fluorescent dye is mixed with the structure shown in FIG. 5 and counting is performed with the counting device shown in FIG. 4, there is a problem that the fluorescent staining is insufficient and the accuracy of particle counting is deteriorated. It was. Moreover, when removing platelets and red blood cells and making white blood cells naked nuclei as described above, it is necessary to sufficiently mix and react the surfactant, but in the structure shown in FIG. Insufficient platelets, leukocyte cell membranes and the like remain, and there is a problem in that the accuracy of leukocyte count deteriorates.

また、図4に示す計数装置を用いる場合、
・ 蛍光染色した血小板製剤等を撮像用容器100に入れる作業
・ 蛍光粒子を容器の底部に落着させるために撮像用容器100を回転させる処理(遠心処理)
・ 撮像用容器100に入っている試料をトレース(特定)する作業
が必要となり、計数作業が煩雑になるという問題があった。
When using the counting device shown in FIG.
・ Work to put fluorescently stained platelet preparations etc. into imaging container 100 ・ Process to rotate imaging container 100 to settle fluorescent particles on the bottom of the container (centrifugal processing)
There is a problem that the operation of tracing (specifying) the sample contained in the imaging container 100 is required, and the counting operation becomes complicated.

さらに、図4に示す計数装置の場合、測定用試料の濃度に応じて光路を切り換える必要があり、その分、計数作業が繁雑になったり、装置の構造が複雑になったりしていた。     Furthermore, in the case of the counting device shown in FIG. 4, it is necessary to switch the optical path in accordance with the concentration of the measurement sample, and accordingly, the counting operation becomes complicated and the structure of the device becomes complicated.

本発明は、複数種類の溶液を十分に混和させることのできるマイクロチップを提供することを目的とするものである。     An object of the present invention is to provide a microchip in which a plurality of types of solutions can be sufficiently mixed.

また、本発明は、計数作業が簡単な蛍光粒子計数装置を提供することを目的とするものである。     Another object of the present invention is to provide a fluorescent particle counting apparatus that can easily perform counting.

請求項1に係る発明は、図1に例示するものであって、第1液(L1)が流入される第1流入路(B1)と、
第2液(L2)が流入される第2流入路(B2)と、
これらの流入路(B1,B2)に連通されると共に屈曲するように構成されていて前記第1液(L1)及び前記第2液(L2)が流入されて混和される混和部(C)と、
該混和部(C)に連通するように配置されて前記混和された液が流出される流出路(D)と、
を設けて構成したマイクロチップ(A)についてのものである。
The invention according to claim 1 is illustrated in FIG. 1 and includes a first inflow path (B1) into which the first liquid (L1) is introduced,
A second inflow channel (B2) into which the second liquid (L2) is introduced;
A mixing section (C) which is configured to bend and communicate with these inflow paths (B1, B2) and into which the first liquid (L1) and the second liquid (L2) are introduced and mixed; ,
An outflow passage (D) arranged to communicate with the mixing section (C) and through which the mixed liquid flows out;
This is for a microchip (A) constructed by providing

請求項2に係る発明は、請求項1に係る発明において、前記混和部(C)は、略ジグザグ状に湾曲されている、ことを特徴とする。     The invention according to claim 2 is characterized in that, in the invention according to claim 1, the mixing portion (C) is curved in a substantially zigzag shape.

請求項3に係る発明は、図1に例示するものであって、計数対象である粒子を含む前記第1液(L1)と蛍光色素を含む前記第2液(L2)とを前記混和部(C)にて混和させて蛍光粒子(図2及び図3の符号3参照)を前記流出路(D)に送り出す請求項1又は2に記載のマイクロチップ(A)と、
前記送り出された蛍光粒子(3)を計数する蛍光粒子計数部(図1の符号E参照)と、
を設けて構成した蛍光粒子計数装置についてのものである。
The invention according to claim 3 is illustrated in FIG. 1, wherein the first liquid (L1) containing particles to be counted and the second liquid (L2) containing a fluorescent dye are mixed in the mixing unit ( The microchip (A) according to claim 1 or 2, wherein the fluorescent particles (see reference numeral 3 in Fig. 2 and Fig. 3) are mixed in C) and sent out to the outflow passage (D),
A fluorescent particle counter (see symbol E in FIG. 1) for counting the fluorescent particles (3) sent out,
It is about the fluorescent particle counting device comprised by providing.

請求項4に係る発明は、請求項3に係る発明において、前記第1液(L1)及び前記第2液(L2)を希釈するための希釈液(L4)を前記混和部(C)の上流側に供給するための第3流入路(B3)、を設けて構成したことを特徴とする。     The invention according to claim 4 is the invention according to claim 3, wherein a diluting liquid (L4) for diluting the first liquid (L1) and the second liquid (L2) is provided upstream of the mixing section (C). The third inflow path (B3) for supplying to the side is provided and configured.

請求項5に係る発明は、図1及び図2に例示するように、請求項3又は4に係る発明において、前記混和部(C)の下流側であって前記流出路(D)の上流側に第4液(L4)を供給するための第4流入路(B4)、を設け、
前記第4液(L4)を供給することにより前記蛍光粒子(3)を整列させる、ことを特徴とする。
As illustrated in FIGS. 1 and 2, the invention according to claim 5 is the invention according to claim 3 or 4, which is downstream of the mixing portion (C) and upstream of the outflow passage (D). A fourth inflow passage (B4) for supplying the fourth liquid (L4) to
The fluorescent particles (3) are aligned by supplying the fourth liquid (L4).

請求項6に係る発明は、図1に例示するように、請求項3乃至5のいずれか1項に記
載の発明において、前記蛍光粒子計数部(E)は、前記流出路(D)の蛍光粒子(3)に励起光を照射する光源(10)と、該励起光の前記蛍光粒子(3)への照射により発生した蛍光を捕捉する蛍光測定手段(11)と、により構成された、ことを特徴とする。
The invention according to claim 6 is the invention according to any one of claims 3 to 5, as illustrated in FIG. 1, wherein the fluorescent particle counting unit (E) is configured to emit fluorescence in the outflow channel (D). A light source (10) for irradiating the particles (3) with excitation light, and a fluorescence measuring means (11) for capturing the fluorescence generated by irradiating the fluorescent particles (3) with the excitation light. It is characterized by.

請求項7に係る発明は、請求項3乃至6のいずれか1項に記載の発明において、前記
第1流入路(B1)は、白血球を含む第1液(L1)が流入される流入路であり、
前記第2流入路(B2)は、前記白血球の細胞膜を溶解するための界面活性剤及び前記白血球を蛍光染色するための蛍光色素を含む第2液(L2)が流入される流入路である、ことを特徴とする。
The invention according to claim 7 is the invention according to any one of claims 3 to 6, wherein the first inflow channel (B1) is an inflow channel into which the first liquid (L1) containing leukocytes is introduced. Yes,
The second inflow path (B2) is an inflow path through which a second liquid (L2) containing a surfactant for lysing the leukocyte cell membrane and a fluorescent dye for fluorescently staining the leukocytes is introduced. It is characterized by that.

請求項8に係る発明は、請求項7に係る発明において、前記第1流入路(B1)は、採血装置や血液バッグが装着可能な接続部(4)を有する、ことを特徴とする。     The invention according to claim 8 is characterized in that, in the invention according to claim 7, the first inflow passage (B1) has a connection portion (4) to which a blood collection device and a blood bag can be attached.

請求項9に係る発明は、請求項6乃至8のいずれか1項に記載の発明において、前記
蛍光測定手段(11)の出力を一定時間毎に取得するサンプリング手段(14)と、
前記サンプリング手段(14)の出力に基づき蛍光粒子(3)を計数するカウント手段(15)と、を設けて構成したことを特徴とする。
The invention according to claim 9 is the invention according to any one of claims 6 to 8, wherein sampling means (14) for acquiring the output of the fluorescence measuring means (11) at regular intervals;
Counting means (15) for counting fluorescent particles (3) based on the output of the sampling means (14) is provided.

請求項10に係る発明は、請求項6乃至9のいずれか1項に記載の発明において、前記蛍光測定手段(11)が、静止画像を所定時間毎に順次取得するカメラである、ことを特徴とする。     The invention according to claim 10 is the camera according to any one of claims 6 to 9, wherein the fluorescence measuring means (11) is a camera that sequentially acquires still images every predetermined time. And

請求項11に係る発明は、請求項10に記載の発明において、前記カウント手段(15)による蛍光粒子の計数は、前記蛍光測定手段(11)が取得した各静止画像における所定の蛍光分布測定領域(図6及び図7の符号K,K,K参照)に対して行い、
蛍光粒子が移動する方向における、前記所定の蛍光分布測定領域の幅wは、次式を満たす、ことを特徴とする。

Figure 2005331506
According to an eleventh aspect of the present invention, in the invention according to the tenth aspect, the counting of the fluorescent particles by the counting means (15) is performed in a predetermined fluorescence distribution measuring region in each still image acquired by the fluorescent measuring means (11). (Refer to symbols K 1 , K 2 , K 3 in FIGS. 6 and 7)
The width w of the predetermined fluorescence distribution measurement region in the moving direction of the fluorescent particles satisfies the following formula.
Figure 2005331506

請求項12に係る発明は、請求項11に係る発明において、図7(a)(b)に例示するように、前記流出路(D)を流れる液体の流速が、該流出路(D)の壁面近傍部から中央部にかけて変化する場合は、該壁面からxだけ離れたところにおける前記蛍光分布測定領域(K,K)の幅wは、次式を満たす、ことを特徴とする。

Figure 2005331506
In the invention according to claim 12, in the invention according to claim 11, as illustrated in FIGS. 7 (a) and 7 (b), the flow velocity of the liquid flowing through the outflow path (D) is When changing from the vicinity of the wall surface to the central portion, the width w x of the fluorescence distribution measurement region (K 2 , K 3 ) at a distance x from the wall surface satisfies the following expression.
Figure 2005331506

請求項13に係る発明は、請求項12に記載の発明において、前記蛍光分布測定領域(K,K)における上流側の縁(23,25)が前記流出路(D)を横切る直線で、該領域における下流側の縁(24,26)が該下流側に突出した曲線であって、該領域(K,K)は、弾丸のような形状である、ことを特徴とする。 The invention according to claim 13 is the invention according to claim 12, wherein the upstream edge (23, 25) in the fluorescence distribution measurement region (K 2 , K 3 ) is a straight line crossing the outflow path (D). The downstream edge (24, 26) in the region is a curved line protruding to the downstream side, and the region (K 2 , K 3 ) is shaped like a bullet.

請求項14に係る発明は、請求項11乃至13のいずれか1項に記載の発明において、前記カウント手段(15)が、前記静止画像において、前記蛍光分布測定領域(K,K,K)における上流側の縁(21,23,25)を通過している瞬間の蛍光粒子(3)、及び該蛍光分布測定領域における下流側の縁(22,24,26)を通過している瞬間の蛍光粒子(3)のいずれか一方のみをカウントし、他方をカウントしないように構成された、ことを特徴とする。 The invention according to a fourteenth aspect is the invention according to any one of the eleventh to thirteenth aspects, wherein the counting means (15) includes the fluorescence distribution measurement region (K 1 , K 2 , K) in the still image. 3 ) passing through the upstream fluorescent particles (3 1 ) passing through the upstream edges (21, 23, 25) and the downstream edges (22, 24, 26) in the fluorescence distribution measurement region Only one of the fluorescent particles (3 2 ) at a certain moment is counted, and the other is not counted.

なお、括弧内の番号などは、図面における対応する要素を示す便宜的なものであり、従って、本記述は図面上の記載に限定拘束されるものではない。     Note that the numbers in parentheses are for the sake of convenience indicating the corresponding elements in the drawings, and therefore the present description is not limited to the descriptions on the drawings.

請求項1に係る発明によれば、混和部は屈曲するように構成されているので、第1液と第2液とを十分に混和させることができる。     According to the first aspect of the present invention, since the mixing portion is configured to bend, the first liquid and the second liquid can be sufficiently mixed.

請求項2に係る発明によれば、前記混和部は、略ジグザグ状に湾曲されて形成されているので、第1液と第2液とを十分に混和させることができる。また、混和部を通り抜けるのに時間がかかるため、その間に、第1液と第2液とを十分に反応させることができる。     According to the second aspect of the present invention, since the mixing portion is formed to be curved in a substantially zigzag shape, the first liquid and the second liquid can be sufficiently mixed. Moreover, since it takes time to pass through the mixing portion, the first liquid and the second liquid can be sufficiently reacted during that time.

請求項3,6及び9に係る発明によれば、第1液と第2液とを十分に混和させて粒子を蛍光染色することができ、蛍光粒子計数部による蛍光粒子の計数を正確に行うことができる。また、マイクロチップの流入路や流出路を細くして第1液及び第2液の量を少なくすることができる。例えば、第1液が血小板製剤や血液であったとしても、無駄な血小板製剤等の損失を抑制できる。     According to the inventions according to claims 3, 6 and 9, the first liquid and the second liquid can be sufficiently mixed so that the particles can be fluorescently stained, and the fluorescent particle counting unit accurately counts the fluorescent particles. be able to. Moreover, the inflow path and the outflow path of the microchip can be narrowed to reduce the amounts of the first liquid and the second liquid. For example, even if the first liquid is a platelet preparation or blood, loss of a useless platelet preparation or the like can be suppressed.

請求項4に係る発明によれば、希釈液により第1液及び第2液を希釈化できるので、第1液及び第2液が粘度の高いものであっても蛍光粒子を薄く整列させることができ、蛍光粒子の計数を正確に行うことができる。     According to the invention of claim 4, since the first liquid and the second liquid can be diluted with the diluent, the fluorescent particles can be thinly aligned even if the first liquid and the second liquid are high in viscosity. And counting of fluorescent particles can be performed accurately.

請求項5に係る発明によれば、第4液の供給により蛍光粒子を薄く整列させることができるので、第1液及び第2液の濃度にかかわらず蛍光粒子を前記蛍光粒子計数部により正確に測定できる。したがって、特許文献1のように、測定対象である液体の濃度に応じて光路を切り換えたりする必要が無く、計数作業や装置の構造を簡素化することができる。また、上記従来装置のように、遠心処理を行って蛍光粒子を整列させたりする必要も無いため、計数作業を簡素化でき、計数精度も向上できる。ヒューマン・エラーによる情報誤認識を排除でき、検査員の精神的・肉体的苦痛を低減できる。     According to the fifth aspect of the present invention, since the fluorescent particles can be thinly aligned by the supply of the fourth liquid, the fluorescent particles are accurately detected by the fluorescent particle counter regardless of the concentrations of the first liquid and the second liquid. It can be measured. Therefore, unlike Patent Document 1, there is no need to switch the optical path according to the concentration of the liquid to be measured, and the counting operation and the structure of the apparatus can be simplified. Further, unlike the above-described conventional apparatus, it is not necessary to perform the centrifugal process to align the fluorescent particles, so that the counting operation can be simplified and the counting accuracy can be improved. Information error recognition due to human error can be eliminated, and the mental and physical distress of the inspector can be reduced.

請求項7に係る発明によれば、第1液中の血小板や赤血球を除去でき、白血球細胞膜を溶解して白血球細胞核を蛍光染色できるので、白血球を正確に計数することができる。     According to the seventh aspect of the invention, the platelets and red blood cells in the first liquid can be removed, and the white blood cell nuclei can be dissolved and the white blood cell nuclei can be fluorescently stained, so that the white blood cells can be accurately counted.

請求項8に係る発明によれば、採血装置や血液バッグを前記接続部に接続するだけで白血球の計数ができ、上記従来装置のように別容器(例えば、図4に示す撮像用容器100)に測定用試料を移し換えたりする必要が無いため、計数作業を簡素化することができる。また、採血装置や血液バッグに直接つながっている装置で計数できるので、情報をトレースする必要ないので、ヒューマン・エラーによる情報誤認識を排除でき、検査員の精神的・肉体的苦痛を低減できる。     According to the eighth aspect of the present invention, white blood cells can be counted simply by connecting a blood collection device or a blood bag to the connection portion, and a separate container (for example, the imaging container 100 shown in FIG. 4) as in the conventional device. Since there is no need to transfer the measurement sample to, the counting operation can be simplified. Moreover, since it is possible to count with a blood collection device or a device directly connected to a blood bag, it is not necessary to trace information, so that erroneous information recognition due to human error can be eliminated, and the mental and physical pain of the inspector can be reduced.

請求項10に係る発明によれば、市販のカメラを使用することができ、専用の蛍光測定手段を作成する必要が無い分だけコストを低減することができる。     According to the invention which concerns on Claim 10, a commercially available camera can be used and cost can be reduced by the part which does not need to produce a fluorescence measurement means for exclusive use.

請求項11に係る発明によれば、一定の仮想領域を利用して蛍光粒子を計数するため、領域を利用しない場合に比べて計数精度を高めることができる。     According to the invention of claim 11, since the fluorescent particles are counted using a certain virtual region, the counting accuracy can be increased as compared with the case where the region is not used.

請求項12及び13に係る発明によれば、流出路の壁面近傍部から中央部にかけて流速が変化するような場合においても蛍光粒子の計数精度を高めることができる。     According to the invention which concerns on Claim 12 and 13, even when the flow rate changes from the wall surface vicinity part of an outflow channel to the center part, the counting precision of fluorescent particles can be improved.

請求項14に係る発明によれば、重複カウントを低減して、計数精度を高めることができる。     According to the invention which concerns on Claim 14, duplication count can be reduced and counting precision can be improved.

以下、図1乃至図3、並びに図6及び図7に沿って、本発明を実施するための最良の形態について説明する。     Hereinafter, the best mode for carrying out the present invention will be described with reference to FIGS. 1 to 3 and FIGS. 6 and 7.

図1は、本発明に係るマイクロチップ及び蛍光粒子計数装置の構造の一例を示す模式図であり、図2は、第4液の流入により蛍光粒子を整列させる様子を示す模式図であり、図3(a)は、蛍光粒子を計数する方法を説明するための模式図であり、図3(b)は、同図(a)のゲート20に沿った蛍光強度分布を示す波形図である。また、図6は、蛍光粒子を計数する別の方法を説明するための模式図であり、図7は、蛍光粒子を計数するさらに別の方法を説明するための模式図である。     FIG. 1 is a schematic diagram showing an example of the structure of a microchip and a fluorescent particle counter according to the present invention, and FIG. 2 is a schematic diagram showing how fluorescent particles are aligned by the inflow of a fourth liquid. 3 (a) is a schematic diagram for explaining a method of counting fluorescent particles, and FIG. 3 (b) is a waveform diagram showing a fluorescence intensity distribution along the gate 20 in FIG. 3 (a). FIG. 6 is a schematic diagram for explaining another method for counting fluorescent particles, and FIG. 7 is a schematic diagram for explaining still another method for counting fluorescent particles.

本発明に係るマイクロチップは、図1に符号Aで示すように、第1液L1が流入(送液)される第1流入路B1と、第2液L2が流入される第2流入路B2と、これらの流入路B1,B2に連通されると共に屈曲するように構成されていて前記第1液L1及び前記第2液L2が流入されて混和される混和部Cと、該混和部Cに連通するように配置されて前記混和された液が流出される流出路Dと、を備えている。本発明によれば、混和部Cは屈曲するように構成されているので、第1液L1と第2液L2とを十分に混和させることができる。     The microchip according to the present invention includes a first inflow path B1 into which the first liquid L1 flows (liquid feeding) and a second inflow path B2 into which the second liquid L2 flows in, as indicated by reference numeral A in FIG. A mixing portion C that is configured to bend and communicate with the inflow paths B1 and B2, and into which the first liquid L1 and the second liquid L2 are introduced and mixed, and the mixing portion C. And an outflow path D through which the mixed liquid flows out. According to the present invention, since the mixing part C is configured to bend, the first liquid L1 and the second liquid L2 can be sufficiently mixed.

上述した混和部Cは、前記第1液L1と前記第2液L2とが十分に混和されるように、略ジグザグ状に湾曲させておくと良い。そのようにした場合には、第1液L1と第2液L2とを十分に混和させることができる。また、混和部Cを通り抜けるのに時間がかかるため、その間に、第1液L1と第2液L2とを十分に反応させることができる。例えば、後述の界面活性剤により、白血球細胞膜や赤血球や血小板を十分に溶解することができる。     The mixing portion C described above is preferably curved in a substantially zigzag shape so that the first liquid L1 and the second liquid L2 are sufficiently mixed. In such a case, the first liquid L1 and the second liquid L2 can be sufficiently mixed. Moreover, since it takes time to pass through the mixing part C, the first liquid L1 and the second liquid L2 can be sufficiently reacted during that time. For example, leukocyte cell membranes, erythrocytes and platelets can be sufficiently dissolved by the surfactant described later.

なお、上述した流入路B1,B2や混和部Cや流出路Dは、基板1の表面に溝状に形成すると共に、該表面にカバー部材2を貼着することにより形成すると良い。     The inflow paths B1 and B2, the mixing section C, and the outflow path D described above are preferably formed by forming a groove shape on the surface of the substrate 1 and attaching the cover member 2 to the surface.

一方、本発明に係る蛍光粒子計数装置は、上述した構成のマイクロチップAを備えている。このマイクロチップAの第1流入路B1には、第1液L1として、計数対象である粒子(例えば、白血球)を含む測定用試料(例えば、血液や血小板製剤や赤血球製剤等)を流入させ、第2流入路B2には、第2液L2として、蛍光色素を含む溶液を流入させると良い。そのようにした場合には、第1液L1と第2液L2とが混和部Cにて混和されて蛍光粒子(図2の符号3参照)が生成され、該蛍光粒子3が前記流出路Dに送り出されることとなる。そして、この送り出される蛍光粒子3を蛍光粒子計数部(図1の符号E参照)により計数するようにすると良い。この蛍光粒子計数装置によれば、前記第1液L1と前記第2液L2とを十分に混和させて粒子を蛍光染色することができ、蛍光粒子計数部Eによる蛍光粒子3の計数を正確に行うことができる。また、マイクロチップAの流入路B1,B2や流出路Dを細くして第1液L1及び第2液L2の量を少なくすることができる。例えば、第1液L1が血小板製剤や血液であったとしても、無駄な血小板製剤等の損失を抑制できる。     On the other hand, the fluorescent particle counting apparatus according to the present invention includes the microchip A configured as described above. Into the first inflow channel B1 of the microchip A, a measurement sample (for example, blood, platelet preparation, erythrocyte preparation, etc.) containing particles (for example, white blood cells) to be counted is flowed as the first liquid L1. A solution containing a fluorescent dye may be allowed to flow into the second inflow path B2 as the second liquid L2. In such a case, the first liquid L1 and the second liquid L2 are mixed in the mixing section C to generate fluorescent particles (see reference numeral 3 in FIG. 2), and the fluorescent particles 3 pass through the outflow path D. Will be sent out. And it is good to count this sent-out fluorescent particle 3 by the fluorescent particle counter (refer the code | symbol E of FIG. 1). According to this fluorescent particle counting device, the first liquid L1 and the second liquid L2 can be sufficiently mixed to fluorescently stain the particles, and the fluorescent particle counting unit E can accurately count the fluorescent particles 3 It can be carried out. In addition, the inflow paths B1 and B2 and the outflow path D of the microchip A can be narrowed to reduce the amounts of the first liquid L1 and the second liquid L2. For example, even if the first liquid L1 is a platelet preparation or blood, loss of a useless platelet preparation or the like can be suppressed.

なお、血小板製剤や赤血球製剤中の白血球を計数する場合には、血小板や赤血球を除去すると共に、白血球を裸核化(白血球の細胞膜を除去すること)しておく必要がある。そのためには、白血球細胞膜、血小板及び赤血球を溶解するための界面活性剤を、前記第1液L1(上述した製剤)又は前記第2液L2(蛍光色素を含む溶液)に混入しておくと良い。例えば、前記第1流入路B1を、白血球を含む第1液L1が流入される流入路とし、前記第2流入路B2を、前記白血球の細胞膜を溶解するための界面活性剤及び前記白血球を蛍光染色するための蛍光色素を含む第2液L2が流入される流入路にすると良い。そのようにした場合には、血小板や赤血球を除去でき、白血球細胞膜を溶解して白血球細胞核を蛍光染色できるので、白血球を正確に計数することができる。ここで、界面活性剤としてはTritonX−100などを挙げることができ、蛍光色素としては、例えば、ヨウ化プロピジウム、エチジウムブロマイドなど挙げることができる。     In addition, when counting white blood cells in a platelet preparation or a red blood cell preparation, it is necessary to remove the platelets and red blood cells and to make the white blood cells naked (to remove the white blood cell membrane). For this purpose, a surfactant for dissolving leukocyte cell membranes, platelets and red blood cells may be mixed in the first liquid L1 (preparation described above) or the second liquid L2 (solution containing a fluorescent dye). . For example, the first inflow channel B1 is an inflow channel into which the first liquid L1 containing leukocytes is introduced, and the second inflow channel B2 is fluorescent with a surfactant for dissolving the leukocyte cell membrane and the leukocytes. An inflow path into which the second liquid L2 containing a fluorescent dye for staining is introduced is preferable. In such a case, platelets and red blood cells can be removed, and white blood cell nuclei can be lysed and white blood cell nuclei can be fluorescently stained, so that white blood cells can be accurately counted. Here, examples of the surfactant include Triton X-100, and examples of the fluorescent dye include propidium iodide and ethidium bromide.

なお、図1では、第2流入路B2は1本であるが、2本以上として、界面活性剤及び蛍光色素を異なる流入路B2から供給するようにしても良い。     In FIG. 1, there is one second inflow path B2, but two or more second inflow paths B2 may be provided so that the surfactant and the fluorescent dye are supplied from different inflow paths B2.

ところで、前記混和部Cよりも上流側に第3流入路B3を設けておいて、前記第1液L1及び前記第2液L2を希釈するための希釈液(第3液)L3を前記混和部Cの上流側に供給できるようにしておくと良い。そのようにした場合には、前記第1液L1及び前記第2液L2を希釈化できるので、前記第1液L1及び前記第2液L2が粘度の高いもの(例えば、高脂血症傾向のある粘性の高い血液や乳び血液)であっても蛍光粒子を薄く整列させることができ、蛍光粒子の計数を正確に行うことができる。希釈液としては、細胞が安定に存在でき、かつ、無色透明なバッファーを用いると良く、具体的にはPBSバッファーを用いると良い。なお、前記第1液L1を前記第1流入路B1に流入させる前、或いは前記第2液L2を前記第2流入路B2に流入させる前に前記第1液L1又は前記第2液L2を希釈液にて適当な粘度(少なくともこれらの液L1,L2が各流入路B1,B2をスムーズに流れる程度の粘度)となるように予め希釈しておき、その後、前記第3流入路B3からも希釈液を流入させることにより最適粘度(例えば、蛍光粒子3が1個1個離間した状態で流れるような最適粘度)にするようにすると良い。例えば、粘度の高い血液に希釈液を混ぜて適当な粘度の第1液L1を調整し、該調整した第1液L1を前記第1流入路B1に流入させ、その後、前記第2流入路B2から蛍光色素を混入させることにより白血球の蛍光染色を行い、さらにその後、前記第3流入路B3から希釈液を混入させて粘度の最終調整を行うようにしても良い。ところで、図1では、前記第3流入路B3は、前記第1流入路B1及び前記第2流入路B2の合流部(符号H1参照)よりも下流側(符号H2参照)にて合流されるように構成されているが(つまり、前記第1液L1及び前記第2液L2を混合させた後に前記希釈液L3が混入されるように構成されているが)、もちろんこれに限られるものではない。例えば、前記第1流入路B1及び前記第3流入路B3の合流部を前記第2流入路B2の合流部よりも上流側にして、前記第1液L1及び希釈液L3を混合させた後に前記第2液L2を混入させるようにしても、前記第2流入路B2及び前記第3流入路B3の合流部を前記第1流入路B1の合流部よりも上流側にして、前記第2液L2及び希釈液L3を混合させた後に前記第1液L1を混入させるようにしても良い。     By the way, the 3rd inflow path B3 is provided in the upstream from the said mixing part C, The dilution liquid (3rd liquid) L3 for diluting the said 1st liquid L1 and the said 2nd liquid L2 is provided in the said mixing part. It is good to be able to supply to the upstream side of C. In such a case, since the first liquid L1 and the second liquid L2 can be diluted, the first liquid L1 and the second liquid L2 have high viscosity (for example, hyperlipidemic tendency) Even with highly viscous blood or chyle blood), the fluorescent particles can be thinly aligned, and the fluorescent particles can be accurately counted. As the diluent, it is preferable to use a colorless and transparent buffer in which cells can stably exist, and specifically, a PBS buffer is preferably used. The first liquid L1 or the second liquid L2 is diluted before the first liquid L1 flows into the first inflow path B1 or before the second liquid L2 flows into the second inflow path B2. The liquid is diluted in advance so as to have an appropriate viscosity (at least the viscosity of the liquids L1 and L2 flows smoothly through the inflow channels B1 and B2), and then diluted from the third inflow channel B3. It is preferable that the liquid is allowed to flow so as to have an optimum viscosity (for example, an optimum viscosity that allows the fluorescent particles 3 to flow in a state of being separated one by one). For example, a diluted liquid is mixed with high-viscosity blood to adjust the first liquid L1 having an appropriate viscosity, the adjusted first liquid L1 is allowed to flow into the first inflow path B1, and then the second inflow path B2 Alternatively, fluorescent staining of white blood cells may be performed by mixing a fluorescent dye, and then a final adjustment of the viscosity may be performed by mixing a diluent from the third inflow path B3. By the way, in FIG. 1, the third inflow path B3 is joined on the downstream side (see reference numeral H2) from the joining section (see reference sign H1) of the first inflow path B1 and the second inflow path B2. (That is, the diluting liquid L3 is mixed after the first liquid L1 and the second liquid L2 are mixed). However, the present invention is not limited to this. . For example, after the first liquid L1 and the diluting liquid L3 are mixed with the merging part of the first inflow path B1 and the third inflow path B3 being upstream of the merging part of the second inflow path B2, Even when the second liquid L2 is mixed, the second liquid L2 is formed such that the joining portion of the second inflow passage B2 and the third inflow passage B3 is located upstream of the joining portion of the first inflow passage B1. In addition, the first liquid L1 may be mixed after the diluent L3 is mixed.

ところで、幾つかの蛍光粒子3がくっついた状態で(塊になった状態で)前記蛍光粒子計数部Eが配置された箇所を通過すると、複数個の蛍光粒子3が1つとしてカウントされてしまって計数精度が悪くなってしまうので、蛍光粒子3はくっつかない状態(互いに離間する状態)で前記蛍光粒子計数部Eが配置された箇所を通過するようにしなければならない。そこで、蛍光粒子3がくっついた状態か否かを前記蛍光粒子計数部Eか他の手段にて検知するようにしておき、そこで検知した情報を前記第3流入路B3に希釈液を入れる手段(希釈液流入手段)や第4液L4(詳細は後述)を入れる手段(第4液流入手段)にフィードバックするようにしておき、蛍光粒子3の状態に応じて希釈液や第4液L4の流入量を調整し、それにより、蛍光粒子3が1個1個分離された状態で給送されるようにすると良い。     By the way, when a plurality of fluorescent particles 3 are attached (in a lump) and pass through the place where the fluorescent particle counting unit E is arranged, a plurality of fluorescent particles 3 are counted as one. As a result, the counting accuracy is deteriorated, so that the fluorescent particles 3 must pass through the place where the fluorescent particle counting section E is disposed in a state where they do not stick (separate each other). Therefore, the fluorescent particle counting unit E or other means detects whether or not the fluorescent particles 3 are stuck, and the information detected there is a means for putting a diluent into the third inflow path B3 ( It is made to feed back to the means (4th liquid inflow means) which puts in the 4th liquid L4 (detailed later) and the inflow of the dilution liquid and the 4th liquid L4 according to the state of the fluorescent particles 3 It is preferable to adjust the amount so that the fluorescent particles 3 are fed one by one in a separated state.

また、前記混和部Cの下流側であって前記流出路Dの上流側に第4液L4を供給するための第4流入路B4を設けておいて、前記混和部Cからの流れ(層流状態の流れ)を乱さないようにして前記第4液L4を供給することにより前記蛍光粒子3を整列させるようにすると良い(図2参照)。この第4液L4としては、上述のバッファーを用いると良い。この場合、第4液L4の流入方向や流入速度等を調整することにより、前記混和部Cからの層流を薄くし(符号d1,d2参照)、蛍光粒子3が、前記流出路Dの壁面に沿って1層だけ配列された状態で流されるようにすると良い。そのようにした場合には、前記第1液L1及び前記第2液L2の濃度にかかわらず蛍光粒子3を前記蛍光粒子計数部Eにより正確に測定できる。したがって、特許文献1のように、測定対象である液体の光吸収特性や光学的特性に応じて光路を切り換えたりする必要が無く、計数作業や装置の構造を簡素化することができる。即ち、流出路Dの、光源10の光照射方向の厚さ(蛍光粒子3の層厚)が、カメラで撮影できるほどに薄く形成されることになるため、血小板製剤と全血/赤血球製剤の透過率の差が、液体中に残存する蛍光色素から励起されるバックグランド光としての蛍光の量の多寡に影響を与えることが極力防止されるので、そうしたバックグランド光の影響を防止するために、光源から流出路Dまでの光路を切り替える必要が無くなるものである。また、上記従来装置のように、遠心処理を行って蛍光粒子を整列させたりする必要も無いため、計数作業を簡素化でき(検査員の精神的・肉体的苦痛を低減でき)、計数精度も向上できる。ヒューマン・エラーによる情報誤認識を排除でき、検査員の精神的・肉体的苦痛を低減できる。もちろん、焦点深度の深い光学系を用いた場合には、この白血球核の整列処理を行う必要が無いので、図1に示したよりももっと単純な流路パターンを採用することができる。     Further, a fourth inflow path B4 for supplying the fourth liquid L4 is provided downstream of the mixing section C and upstream of the outflow path D, and a flow (laminar flow) from the mixing section C is provided. The fluorescent particles 3 may be aligned by supplying the fourth liquid L4 without disturbing the state flow) (see FIG. 2). As the fourth liquid L4, the above-described buffer may be used. In this case, the laminar flow from the mixing part C is made thin by adjusting the inflow direction and the inflow speed of the fourth liquid L4 (see reference signs d1 and d2), and the fluorescent particles 3 are formed on the wall surface of the outflow path D. It is preferable to flow in a state where only one layer is arranged along the line. In such a case, the fluorescent particles 3 can be accurately measured by the fluorescent particle counter E regardless of the concentrations of the first liquid L1 and the second liquid L2. Therefore, unlike Patent Document 1, there is no need to switch the optical path according to the light absorption characteristics and optical characteristics of the liquid to be measured, and the counting operation and the structure of the apparatus can be simplified. That is, since the thickness of the outflow channel D in the light irradiation direction of the light source 10 (layer thickness of the fluorescent particles 3) is formed so thin as to be photographed with a camera, the platelet preparation and the whole blood / erythrocyte preparation In order to prevent the influence of background light, the difference in transmittance is prevented as much as possible from affecting the amount of fluorescence as background light excited from the fluorescent dye remaining in the liquid. It is not necessary to switch the optical path from the light source to the outflow path D. In addition, unlike the conventional apparatus, it is not necessary to align the fluorescent particles by performing a centrifugal process, so that the counting operation can be simplified (the mental and physical pain of the inspector can be reduced) and the counting accuracy is also improved. It can be improved. Information error recognition due to human error can be eliminated, and the mental and physical distress of the inspector can be reduced. Of course, when an optical system with a deep focal depth is used, it is not necessary to perform this white blood cell nucleus alignment process, so a simpler flow path pattern than that shown in FIG. 1 can be employed.

一方、前記第1流入路B1には、採血装置や血液バッグが装着可能な接続部(アダプタ)4を設けておくと良い。その場合、採血装置や血液バッグを前記接続部4に接続するだけで白血球の計数ができ、上記従来装置のように別容器(例えば、図4に示す撮像用容器100)に測定用試料を移し換えたりする必要が無いため、計数作業を簡素化することができる(検査員の精神的・肉体的苦痛を低減できる)。なお、白血球数が基準を上回っているものについては、白血球除去フィルタ等により白血球除去を行えば良い。上述のように計数作業が簡素化されるため、採取した血液の全数検査を行ったり抜き取り検査の回数を増やしたりすることも簡単となり、全数検査を行ったり抜き取り検査の回数を増やしたりした場合には、少ない回数の抜き取り検査をする場合に比べて不良品の発生をより確実に防止できる。さらに、採血装置や血液バッグに直接つながっている装置で計数できるので、情報をトレースする必要ないので(つまり、図4に示す撮像用容器100を用いた場合には、各容器100にどの試料が入っているかを特定する必要があるが、計数装置に採血装置等を直結した場合にはそのような特定を行う必要が無いので)、ヒューマン・エラーによる情報誤認識を排除でき、検査員の精神的・肉体的苦痛を低減できる。     On the other hand, the first inlet B1 may be provided with a connection part (adapter) 4 to which a blood collection device or a blood bag can be attached. In that case, white blood cells can be counted simply by connecting a blood collection device or a blood bag to the connecting portion 4, and the measurement sample is transferred to another container (for example, the imaging container 100 shown in FIG. 4) as in the conventional device. Since there is no need to change, counting work can be simplified (the mental and physical pain of the inspector can be reduced). For those whose leukocyte count exceeds the standard, leukocyte removal may be performed using a leukocyte removal filter or the like. Since the counting work is simplified as described above, it is also easy to perform a total inspection of the collected blood or increase the number of sampling tests, and when the total number of sampling tests are performed or the number of sampling tests is increased. Can more reliably prevent the occurrence of defective products as compared to the case where a small number of sampling inspections are performed. Furthermore, since it is possible to count with a blood collection device or a device directly connected to a blood bag, there is no need to trace information (that is, when the imaging container 100 shown in FIG. 4 is used, which sample is stored in each container 100). It is necessary to specify whether or not it is contained, but it is not necessary to perform such identification when a blood collection device or the like is directly connected to the counting device). Can reduce mental and physical distress.

また、前記流出路Dに開口部(出力口)5を設けておいて、該開口部5より吸引し、前記第1液L1や前記第2液L2が各流入路で層流状態で流れるようにすると良い。     Further, an opening (output port) 5 is provided in the outflow passage D, and the first liquid L1 and the second liquid L2 flow in a laminar flow state in each inflow passage by being sucked from the opening 5. It is good to make it.

ところで、上述した蛍光粒子計数部Eは、前記流出路Dの蛍光粒子3に励起光を照射する光源10と、該励起光の前記蛍光粒子3への照射により発生した蛍光を捕捉(測定)する蛍光測定手段11と、により構成すると良い。     By the way, the fluorescent particle counting unit E described above captures (measures) the light source 10 that irradiates the fluorescent particles 3 in the outflow path D with the excitation light and the fluorescence generated by irradiating the fluorescent particles 3 with the excitation light. It is good to comprise by the fluorescence measurement means 11.

この光源10は、蛍光色素(白血球等の粒子を蛍光染色するための色素)の吸光特性に対応させて選択する必要がある。例えば蛍光色素としてヨウ化プロピジウム(PI)を用いた場合は、緑色光(500〜550nmぐらいの波長域の励起光)を発生させる光源が良く、蛍光色素としてエチジウムブロマイド(EtBr)を用いた場合は、紫外光を発生させる光源が良い。     The light source 10 needs to be selected in accordance with the light absorption characteristics of a fluorescent dye (a dye for fluorescently staining particles such as leukocytes). For example, when propidium iodide (PI) is used as a fluorescent dye, a light source that generates green light (excitation light in a wavelength range of about 500 to 550 nm) is good, and when ethidium bromide (EtBr) is used as a fluorescent dye. A light source that generates ultraviolet light is preferable.

また、蛍光測定手段11としては、静止画像を所定時間毎に順次取得するカメラを用いることができ、具体的には、ビデオカメラ、CCDカメラ、或いはUSBカメラ等のカメラを用いることができる。そのようにした場合には、市販のカメラを使用することができ、専用の蛍光測定手段を作成する必要が無い分だけコストを低減することができる。     Further, as the fluorescence measuring means 11, a camera that sequentially acquires still images every predetermined time can be used, and specifically, a camera such as a video camera, a CCD camera, or a USB camera can be used. In such a case, a commercially available camera can be used, and the cost can be reduced to the extent that it is not necessary to create a dedicated fluorescence measuring means.

なお、蛍光測定手段11と前記流出路Dとの間に、蛍光により生じた光のみを通過させる(他の波長域の光は通過させない)ための光学フィルタ12や、光を集光させるためのレンズ13を配置しておくと良い。     In addition, between the fluorescence measurement means 11 and the said outflow path D, the optical filter 12 for allowing only the light produced by the fluorescence to pass (not allowing the light in other wavelength ranges to pass), or for condensing the light It is preferable to arrange the lens 13 in advance.

一方、前記蛍光測定手段11にはサンプリング手段14を接続しておいて、該蛍光測定手段11の出力を一定時間毎に取得するようにしておくと良い。また、このサンプリング手段14にはカウント手段15を接続しておいて、該サンプリング手段14の出力に基づき蛍光粒子3を計数できるようにすると良い。すなわち、図3(a)に矢印L5で示すように、蛍光粒子3が流出路Dを移動して行くが、その流出路Dを横切るようなゲート20を仮想的に設けておいて、該ゲート20に沿った1次元的な蛍光強度分布を前記蛍光測定手段11及び前記サンプリング手段14により取得する。その結果、同図(b)に示すように1次元的な蛍光強度分布G1,G2,G3,…が一定時間毎に得られるが、このような蛍光強度分布をカウント手段15が解析して、ゲート20を通過する蛍光粒子3を計数して行けば良い。例えば、前記蛍光測定手段11及び前記サンプリング手段14を備えたカメラで、30fpsのビデオレートで動画像を撮影したような場合は、1/30秒毎に静止画像を得ることができ、各静止画像より図3(b)に示すような蛍光強度分布を得ることができる。得られた蛍光強度分布を解析することにより、蛍光粒子3の数を求めると良い。また、動画像圧縮/解析技術で用いられている動き検出技術を利用して、動画像中に現れる物体をとらえ、その数を数えるようにしても良い。     On the other hand, it is preferable that a sampling means 14 is connected to the fluorescence measuring means 11 so that the output of the fluorescence measuring means 11 is acquired at regular intervals. Further, it is preferable that a counting unit 15 is connected to the sampling unit 14 so that the fluorescent particles 3 can be counted based on the output of the sampling unit 14. That is, as shown by an arrow L5 in FIG. 3A, the fluorescent particles 3 move along the outflow path D, but a gate 20 is provided virtually across the outflow path D. A one-dimensional fluorescence intensity distribution along 20 is acquired by the fluorescence measuring means 11 and the sampling means 14. As a result, a one-dimensional fluorescence intensity distribution G1, G2, G3,... Is obtained at regular intervals as shown in FIG. The fluorescent particles 3 that pass through the gate 20 may be counted. For example, when a camera equipped with the fluorescence measuring unit 11 and the sampling unit 14 is used to capture a moving image at a video rate of 30 fps, a still image can be obtained every 1/30 seconds. As a result, a fluorescence intensity distribution as shown in FIG. 3B can be obtained. The number of fluorescent particles 3 may be obtained by analyzing the obtained fluorescence intensity distribution. Alternatively, the motion detection technology used in the moving image compression / analysis technology may be used to capture and count the number of objects that appear in the moving image.

なお、上述のような1次元的な蛍光強度分布測定に基づいた蛍光粒子3の計数は、ゲート20を通過する蛍光粒子3の全てが、ゲート20を通過する瞬間をカメラで1回だけ撮影される必要がある。その理由は、もし、ゲート20を通過する瞬間を撮影されずに流されていく蛍光粒子があれば、その蛍光粒子はカウントされないこととなり、その分、計数精度が悪くなるからである。また、反対に、カメラの撮影間隔(後にも記載しているように、カメラが一の静止画像を取得してから次の静止画像を取得するまでの時間)が短すぎて ゲート20を通過する瞬間を複数回撮影されてしまった蛍光粒子があれば、その蛍光粒子は重複カウントされてしまって、やはり計数精度が悪くなるからである。全ての蛍光粒子について、ゲート20を通過する瞬間を1回だけ撮影するようにするには、ビデオカメラのビデオレートと流速(図3(a)の符号Lに示すものであって、流出路Dを流れる液体の流速)の関係を最適に調整してやる必要がある。 Note that the counting of the fluorescent particles 3 based on the one-dimensional fluorescence intensity distribution measurement as described above is such that all the fluorescent particles 3 passing through the gate 20 are photographed only once by the camera at the moment of passing through the gate 20. It is necessary to The reason is that if there are fluorescent particles flowing without being photographed at the moment of passing through the gate 20, the fluorescent particles will not be counted, and the counting accuracy will deteriorate accordingly. On the contrary, the shooting interval of the camera (the time from when the camera acquires one still image until the next still image is acquired as described later) is too short and passes through the gate 20. This is because if there are fluorescent particles that have been photographed a plurality of times, the fluorescent particles will be counted repeatedly, and the counting accuracy will deteriorate. For all fluorescent particles, the moment of passing through the gate 20 To shoot only once, video rate and velocity of the video camera (there is shown by reference numeral L 5 in FIG. 3 (a), outlet channel It is necessary to optimally adjust the relationship of the flow velocity of the liquid flowing through D.

しかしながら、上述のような1次元的な蛍光強度分布測定において蛍光粒子のカウントミスを回避することが困難な場合には、前記カウント手段15による蛍光粒子の計数を、前記蛍光測定手段11が取得した各静止画像における所定の蛍光分布測定領域に対して行うようにすると良い。そして、前記所定の蛍光分布測定領域の幅(蛍光粒子が移動する方向の長さ)wは、次式を満たすようにすると良い。そのようにした場合には、一定の仮想領域を利用して蛍光粒子を計数するため、領域を利用しない場合に比べてカウントミスを低減でき、計数精度を高めることができる。

Figure 2005331506
However, in the case where it is difficult to avoid miscounting of the fluorescent particles in the one-dimensional fluorescence intensity distribution measurement as described above, the fluorescence measuring unit 11 acquires the count of the fluorescent particles by the counting unit 15. It may be performed for a predetermined fluorescence distribution measurement region in each still image. The width (the length in the direction in which the fluorescent particles move) w of the predetermined fluorescence distribution measurement region should satisfy the following formula. In such a case, since a certain virtual region is used to count fluorescent particles, counting errors can be reduced and counting accuracy can be increased as compared to a case where no region is used.
Figure 2005331506

かかる蛍光分布測定領域としては、図6に斜線で示すような2次元的な矩形領域Kを挙げることができ、該領域の幅wは、次式のようにすると良い。

Figure 2005331506
Such fluorescence distribution measurement region, there may be mentioned two-dimensional rectangular region K 1 as indicated by hatching in FIG. 6, the width w 1 of the region, it is preferable to the following expression.
Figure 2005331506

矩形領域Kの幅wをそのように設定した場合、流出路中を流れる全ての蛍光粒子は、いずれかの静止画像の該領域Kに理論的には1回だけ撮影されていることとなり、蛍光粒子の計数ミス(上述したようなカウント漏れや重複カウント)を少なくし、蛍光粒子の計数精度を上げることができる。ただし、図6に示すように、矩形領域Kの上流側の辺(縁)21を通過する瞬間であって、右半分だけが矩形領域Kに侵入した状態で撮影された蛍光粒子3は、次の撮影タイミングではwだけ移動して符号3に示す位置を取り、結局、2回撮影されてしまうこととなり、両方をカウントすると計数精度が悪くなってしまう。そこで、撮影した全て静止画像においては、矩形領域(蛍光分布測定領域)Kの上流側の辺21を通過する瞬間の蛍光粒子(例えば、符号3に示す蛍光粒子)、及び矩形領域Kの下流側の辺(縁)22を通過する瞬間の蛍光粒子(例えば、符号3に示す蛍光粒子)の両方を前記カウント手段15がカウントするのではなく、いずれか一方のみをカウントし、他方をカウントしないようにすると良い。そのようにした場合には、重複カウントを低減して、計数精度を高めることができる。 If you set the width w 1 of the rectangular region K 1 as such, all fluorescent particles flowing in the outflow path, it has been taken once theoretically in the region K 1 in one of the still images Thus, counting errors of the fluorescent particles (count omission and overlapping count as described above) can be reduced, and the counting accuracy of the fluorescent particles can be increased. However, as shown in FIG. 6, a moment that passes through the rectangular region K 1 on the upstream side of the edge (edge) 21, fluorescent particles 3 1 only right half is photographed in a state that has entered the rectangular region K 1 It is the next imaging timing takes the position indicated by reference numeral 3 2 moved by w 1, after all, there, it would be shot twice, counting accuracy when it counts both deteriorates. Therefore, in all photographed still image, a rectangular region (fluorescence distribution measurement region) moments of the fluorescent particles passing through the upstream side of the edge 21 of the K 1 (for example, fluorescent particles indicated by reference numeral 3 1), and the rectangular region K 1 downstream side moment of the fluorescent particles passing through (rim) 22 (e.g., reference numeral 3 2 fluorescent particles shown) instead of the counting means 15 both counts, counts only one, the other It is better not to count. In such a case, duplication count can be reduced and counting accuracy can be increased.

ところで、図6に示す方法は、流出路Dの中央部における流速(図6の符号L51参照)と、壁面近傍部における流速(図6の符号L50参照)とがほぼ等しい場合に有効であるが、実際には、それらの流速に差がある場合の方が多い。すなわち、少し速い流速で流出路Dに液体を流そうとすると、壁面27に近接する部分では該壁面27の影響を受けて流速が遅くなり、結局、流出路Dの中央部における流速L51が壁面近傍部における流速L50よりも速くなって、それらの流速に大きな差が生じてしまう。そのような場合(つまり、前記流出路Dを流れる液体の流速が、該流出路Dの壁面近傍部から中央部にかけて変化する場合)には、蛍光分布測定領域を図6のように一定幅wの矩形状にするのではなく、図7(a)に例示するように、流出路Dの中央部における領域幅(符号w21参照)を、壁面近傍部における領域幅(符号w20参照)よりも広く設定すると良い。そして、流出路Dの壁面27からxだけ離れたところにおける前記蛍光分布測定領域の幅wが、次式を満たすようにすると良い。そのようにした場合には、流出路Dの壁面近傍部から中央部にかけて流速が変化するような場合においても蛍光粒子の計数精度を高めることができる。

Figure 2005331506
By the way, the method shown in FIG. 6 is effective when the flow velocity in the central portion of the outflow passage D (see symbol L 51 in FIG. 6) and the flow velocity in the vicinity of the wall surface (see symbol L 50 in FIG. 6) are substantially equal. In reality, there are more cases where there is a difference between the flow rates. That is, when trying to flow a liquid in the outflow passage D at a slightly higher flow velocity, the flow velocity becomes slow due to the influence of the wall surface 27 in the portion close to the wall surface 27, and eventually the flow velocity L 51 in the central portion of the outflow passage D is It becomes faster than the flow velocity L 50 in the vicinity of the wall surface, and a large difference occurs between these flow velocity. In such a case (that is, when the flow velocity of the liquid flowing through the outflow path D changes from the vicinity of the wall surface to the center of the outflow path D), the fluorescence distribution measurement region is set to a constant width w as shown in FIG. 1 , instead of making it a rectangular shape, the region width (see symbol w 21 ) at the center of the outflow channel D is changed to the region width (see symbol w 20 ) in the vicinity of the wall surface, as illustrated in FIG. It is better to set it wider. Then, the width w x of the fluorescence distribution measurement region at a location x away from the wall surface 27 of the outflow channel D should satisfy the following equation. In such a case, the counting accuracy of the fluorescent particles can be increased even when the flow velocity changes from the vicinity of the wall surface of the outflow passage D to the central portion.
Figure 2005331506

具体的には、次式のようにすると良い。

Figure 2005331506
Figure 2005331506
Specifically, the following equation should be used.
Figure 2005331506
Figure 2005331506

なお、流出路Dの中央部における流速L51と壁面近傍部における流速L50との差が大きくなれば、図7(b)に示すように、流出路Dの中央部における領域幅(符号w31参照)を、壁面近傍部における領域幅(符号w30参照)よりもかなり広く設定すると良い。 If the difference between the flow velocity L 51 at the central portion of the outflow passage D and the flow velocity L 50 at the vicinity of the wall surface is increased, the region width (reference symbol w) at the central portion of the outflow passage D is shown in FIG. 31 reference), it may rather broadly set than the area width (reference numeral w 30) in the near-wall portion.

ところで、図7(a)に示す領域Kにおいても、該領域Kの上流側の辺(縁)23を通過する瞬間であって、右半分だけが領域Kに侵入した状態で撮影された蛍光粒子3は、次の撮影タイミングでは符号3に示す位置を取り、結局、2回撮影されてしまうこととなり、両方をカウントすると計数精度が悪くなってしまう。そこで、撮影した全ての静止画像においては、領域Kの上流側の辺23を通過する瞬間の蛍光粒子(例えば、符号3に示す蛍光粒子)、及び領域Kの下流側の縁(境界線)24を通過する瞬間の蛍光粒子(例えば、符号3に示す蛍光粒子)の両方をカウントするのではなく、いずれか一方のみをカウントするようにすると良い。そのようにした場合には、重複カウントを低減して、計数精度を高めることができる。 Incidentally, even in a region K 2 shown in FIG. 7 (a), a moment of passing through the upstream side (edge) 23 of the region K 2, is photographed with only the right half has entered the region K 2 fluorescent particles 3 1, the next photographing timing takes the position indicated by reference numeral 3 2, after all, there, it would be shot twice, when counting both counting accuracy deteriorates. Therefore, in all of the still image shooting, the moment of fluorescent particles passing through the upstream side edge 23 in the region K 2 (for example, fluorescent particles indicated by reference numeral 3 1) and downstream edge regions K 2 (boundary moment of fluorescent particles passing through a line) 24 (e.g., reference numeral 3 2 instead of counting both fluorescent particles) showing, may be adapted to count only one. In such a case, duplication count can be reduced and counting accuracy can be increased.

ところで、図7(a)(b)に示す領域K,Kにおいては、上流側の辺23,25が前記流出路Dを横切る直線で、下流側の縁24,26が該下流側に突出した曲線であって、該領域K,Kは、弾丸のような形状(別の表現をすれば、野球のホームベースのような形状)である。上流側の縁23,25を直線にした場合には、該縁23,25を通過する瞬間の蛍光粒子のカウントが容易であって好ましい。ただし、領域幅w20,w21についての上記式を満足するならば、該上流側の縁を直線ではなく曲線にしても良い。 By the way, in the areas K 2 and K 3 shown in FIGS. 7A and 7B, the upstream sides 23 and 25 are straight lines crossing the outflow path D, and the downstream edges 24 and 26 are on the downstream side. It is a protruding curve, and the regions K 2 and K 3 have a bullet-like shape (in other words, a shape like a baseball home base). When the upstream edges 23 and 25 are straight, it is easy to count the fluorescent particles at the moment of passing through the edges 23 and 25, which is preferable. However, if the above formulas for the region widths w 20 and w 21 are satisfied, the upstream edge may be a curved line instead of a straight line.

図1は、本発明に係るマイクロチップ及び蛍光粒子計数装置の構造の一例を 示す模式図である。FIG. 1 is a schematic diagram showing an example of the structure of a microchip and a fluorescent particle counter according to the present invention. 図2は、第4液の流入により蛍光粒子を整列させる様子を示す模式図である 。FIG. 2 is a schematic diagram showing how fluorescent particles are aligned by the inflow of the fourth liquid. 図3(a)は、蛍光粒子を計数する方法を説明するための模式図であり、図3 (b)は、同図(a)のゲート20に沿った蛍光強度分布を示す波形図である。FIG. 3 (a) is a schematic diagram for explaining a method of counting fluorescent particles, and FIG. 3 (b) is a waveform diagram showing a fluorescence intensity distribution along the gate 20 in FIG. 3 (a). . 図4は、白血球計数装置の従来構造の一例を示すブロック図である。FIG. 4 is a block diagram showing an example of a conventional structure of the white blood cell counter. 図5は、2種以上の液体を混和させる装置の従来構造の一例を示す模式図で ある。FIG. 5 is a schematic diagram showing an example of a conventional structure of an apparatus for mixing two or more kinds of liquids. 図6は、蛍光粒子を計数する別の方法を説明するための模式図である。FIG. 6 is a schematic diagram for explaining another method of counting fluorescent particles. 図7は、蛍光粒子を計数するさらに別の方法を説明するための模式図である 。FIG. 7 is a schematic diagram for explaining still another method of counting fluorescent particles.

符号の説明Explanation of symbols

4 接続部(アダプタ)
10 光源
11 蛍光測定手段
14 サンプリング手段
15 カウント手段
A マイクロチップ
B1 第1流入路
B2 第2流入路
B3 第3流入路
B4 第4流入路
C 混和部
D 流出路
E 蛍光粒子計数部
L1 第1液
L2 第2液
L4 第4液
4 connections (adapter)
DESCRIPTION OF SYMBOLS 10 Light source 11 Fluorescence measuring means 14 Sampling means 15 Count means A Microchip B1 1st inflow path B2 2nd inflow path B3 3rd inflow path B4 4th inflow path C Mixing part D Outflow path E Fluorescent particle counting part L1 1st liquid L2 2nd liquid L4 4th liquid

Claims (14)

第1液が流入される第1流入路と、
第2液が流入される第2流入路と、
これらの流入路に連通されると共に屈曲するように構成されていて前記第1液及び前記第2液が流入されて混和される混和部と、
該混和部に連通するように配置されて前記混和された液が流出される流出路と、
を設けて構成したマイクロチップ。
A first inflow path through which the first liquid flows,
A second inflow path through which the second liquid is introduced;
A mixing portion that is configured to bend and communicate with these inflow paths, and into which the first and second liquids are introduced and mixed;
An outflow passage arranged so as to communicate with the mixing section and through which the mixed liquid flows out;
A microchip constructed by providing
前記混和部は、略ジグザグ状に湾曲されている、
ことを特徴とする請求項1に記載のマイクロチップ。
The mixing portion is curved in a substantially zigzag shape,
The microchip according to claim 1.
計数対象である粒子を含む前記第1液と蛍光色素を含む前記第2液とを前記混和部にて混和させて蛍光粒子を前記流出路に送り出す請求項1又は2に記載のマイクロチップと、
前記送り出された蛍光粒子を計数する蛍光粒子計数部と、
を設けて構成した蛍光粒子計数装置。
The microchip according to claim 1 or 2, wherein the first liquid containing particles to be counted and the second liquid containing a fluorescent dye are mixed in the mixing unit and the fluorescent particles are sent out to the outflow path,
A fluorescent particle counter for counting the fluorescent particles sent out;
A fluorescent particle counting apparatus configured by providing
前記第1液及び前記第2液を希釈するための希釈液を前記混和部の上流側に供給するための第3流入路、
を設けて構成した請求項3に記載の蛍光粒子計数装置。
A third inflow path for supplying a dilution liquid for diluting the first liquid and the second liquid to the upstream side of the mixing unit;
The fluorescent particle counting device according to claim 3, comprising:
前記混和部の下流側であって前記流出路の上流側に第4液を供給するための第4流入路、を設け、
前記第4液を供給することにより前記蛍光粒子を整列させる、
ことを特徴とする請求項3又は4に記載の蛍光粒子計数装置。
A fourth inflow path for supplying a fourth liquid downstream of the mixing section and upstream of the outflow path;
Aligning the fluorescent particles by supplying the fourth liquid;
The fluorescent particle counting apparatus according to claim 3 or 4, wherein
前記蛍光粒子計数部は、前記流出路の蛍光粒子に励起光を照射する光源と、該励起光の前記蛍光粒子への照射により発生した蛍光を捕捉する蛍光測定手段と、により構成された、
ことを特徴とする請求項3乃至5のいずれか1項に記載の蛍光粒子計数装置。
The fluorescent particle counting unit is composed of a light source for irradiating the fluorescent particles in the outflow path with excitation light, and a fluorescence measuring means for capturing the fluorescence generated by irradiating the fluorescent particles with the excitation light.
The fluorescent particle counter according to any one of claims 3 to 5, wherein
前記第1流入路は、白血球を含む第1液が流入される流入路であり、
前記第2流入路は、前記白血球の細胞膜を溶解するための界面活性剤及び前記白血球を蛍光染色するための蛍光色素を含む第2液が流入される流入路である、
ことを特徴とする請求項3乃至6のいずれか1項に記載の蛍光粒子計数装置。
The first inflow path is an inflow path through which a first liquid containing white blood cells is introduced,
The second inflow path is an inflow path into which a second liquid containing a surfactant for lysing the leukocyte cell membrane and a fluorescent dye for fluorescently staining the leukocytes is flowed.
The fluorescent particle counting device according to claim 3, wherein the fluorescent particle counting device is a fluorescent particle counter.
前記第1流入路は、採血装置や血液バッグが装着可能な接続部を有する、
ことを特徴とする請求項7に記載の蛍光粒子計数装置。
The first inflow path has a connection part to which a blood collection device and a blood bag can be attached,
The fluorescent particle counter according to claim 7.
前記蛍光測定手段の出力を一定時間毎に取得するサンプリング手段と、
前記サンプリング手段の出力に基づき蛍光粒子を計数するカウント手段と、
を設けて構成した請求項6乃至8のいずれか1項に記載の蛍光粒子計数装置。
Sampling means for obtaining the output of the fluorescence measuring means at regular intervals;
Counting means for counting fluorescent particles based on the output of the sampling means;
The fluorescent particle counting device according to claim 6, wherein the fluorescent particle counting device is provided.
前記蛍光測定手段は、静止画像を所定時間毎に順次取得するカメラである、
ことを特徴とする請求項6乃至9のいずれか1項に記載の蛍光粒子計数装置。
The fluorescence measuring means is a camera that sequentially acquires still images every predetermined time.
The fluorescent particle counter according to any one of claims 6 to 9, wherein
前記カウント手段による蛍光粒子の計数は、前記蛍光測定手段が取得した各静止画像における所定の蛍光分布測定領域に対して行い、
蛍光粒子が移動する方向における、前記所定の蛍光分布測定領域の幅wは、次式を満たす、
Figure 2005331506
ことを特徴とする請求項10に記載の蛍光粒子計数装置。
The counting of the fluorescent particles by the counting unit is performed on a predetermined fluorescence distribution measurement region in each still image acquired by the fluorescence measuring unit,
The width w of the predetermined fluorescence distribution measurement region in the direction in which the fluorescent particles move satisfies the following formula:
Figure 2005331506
The fluorescent particle counter according to claim 10.
前記流出路を流れる液体の流速が、該流出路の壁面近傍部から中央部にかけて変化する場合は、該壁面からxだけ離れたところにおける前記蛍光分布測定領域の幅wは、次式を満たす、
Figure 2005331506
ことを特徴とする請求項11に記載の蛍光粒子計数装置。
When the flow velocity of the liquid flowing through the outflow path varies from the vicinity of the wall surface to the center of the outflow path, the width w x of the fluorescence distribution measurement region at a distance x from the wall surface satisfies the following equation: ,
Figure 2005331506
The fluorescent particle counter according to claim 11.
前記蛍光分布測定領域における上流側の縁が前記流出路を横切る直線で、該領域における下流側の縁が該下流側に突出した曲線であって、該領域は、弾丸のような形状である、
ことを特徴とする請求項12に記載の蛍光粒子計数装置。
The upstream edge in the fluorescence distribution measurement region is a straight line that crosses the outflow path, and the downstream edge in the region is a curve protruding to the downstream side, and the region is shaped like a bullet,
The fluorescent particle counting apparatus according to claim 12, wherein
前記カウント手段は、前記静止画像において、前記蛍光分布測定領域における上流側の縁を通過している瞬間の蛍光粒子、及び該蛍光分布測定領域における下流側の縁を通過している瞬間の蛍光粒子のいずれか一方のみをカウントし、他方をカウントしないように構成された、
ことを特徴とする請求項11乃至13のいずれか1項に記載の蛍光粒子計数装置。




In the still image, the counting means is a fluorescent particle at an instant passing through an upstream edge in the fluorescence distribution measurement region, and a fluorescent particle at an instant passing through a downstream edge in the fluorescence distribution measurement region Configured to count only one of the other and not the other,
The fluorescent particle counting device according to claim 11, wherein the fluorescent particle counting device is a fluorescent particle counter.




JP2005116641A 2004-04-22 2005-04-14 Fluorescent particle counter Expired - Fee Related JP4528664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005116641A JP4528664B2 (en) 2004-04-22 2005-04-14 Fluorescent particle counter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004126516 2004-04-22
JP2005116641A JP4528664B2 (en) 2004-04-22 2005-04-14 Fluorescent particle counter

Publications (2)

Publication Number Publication Date
JP2005331506A true JP2005331506A (en) 2005-12-02
JP4528664B2 JP4528664B2 (en) 2010-08-18

Family

ID=35486245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005116641A Expired - Fee Related JP4528664B2 (en) 2004-04-22 2005-04-14 Fluorescent particle counter

Country Status (1)

Country Link
JP (1) JP4528664B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032472A (en) * 2008-07-31 2010-02-12 Kowa Co Microchemical chip device
JP2010181253A (en) * 2009-02-05 2010-08-19 Kowa Co Microchemical chip device
JP2010204086A (en) * 2009-02-09 2010-09-16 Nippon Koden Corp Method of producing cellularization treatment liquid, method of measuring amount of dna in cell nucleus, and kit used for the same
JP2011505009A (en) * 2007-11-27 2011-02-17 イーアイ・スペクトラ・エルエルシー Fluorescence based pipette instrument
JP2013217946A (en) * 2007-06-07 2013-10-24 Technion Research & Development Foundation Ltd Method and device for converging particle
KR101600869B1 (en) * 2015-08-17 2016-03-08 (주) 비비비 Apparatus, method and system for collecting blood and measuring red blood cell in blood at the same time
JP2019100988A (en) * 2017-12-08 2019-06-24 株式会社島津製作所 Particle image analysis device, and particle image analysis method
WO2019151150A1 (en) * 2018-01-30 2019-08-08 京セラ株式会社 Inspection flow channel device and inspection apparatus
KR20190103888A (en) * 2018-02-28 2019-09-05 한국과학기술원 Method of observing dynamics using rapid freezing of a nanofluidic chip
CN113557423A (en) * 2019-03-20 2021-10-26 京瓷株式会社 Particle measuring device, particle separation measuring device, and particle separation measuring apparatus
EP4130753A4 (en) * 2020-03-24 2024-04-24 Kyocera Corp Flow path device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06194364A (en) * 1986-11-27 1994-07-15 Toa Medical Electronics Co Ltd White blood cell classification reagent in flow cytometry
WO1999024831A1 (en) * 1997-11-11 1999-05-20 Kowa Company, Ltd. Method of counting leukocytes and leukocyte counter
JP2001083092A (en) * 1999-09-17 2001-03-30 Kowa Co Fluorescent particle image pickup device
JP2001088098A (en) * 1999-09-14 2001-04-03 Kawamura Inst Of Chem Res Micro chemical device with depressurized liquid feeding mechanism
JP2002221485A (en) * 2000-11-22 2002-08-09 Minolta Co Ltd Micro chip
JP2003181255A (en) * 2001-12-21 2003-07-02 Minolta Co Ltd Microchip, inspection device using microchip and mixing method
JP2004113967A (en) * 2002-09-27 2004-04-15 Fuji Electric Systems Co Ltd Micromixer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06194364A (en) * 1986-11-27 1994-07-15 Toa Medical Electronics Co Ltd White blood cell classification reagent in flow cytometry
WO1999024831A1 (en) * 1997-11-11 1999-05-20 Kowa Company, Ltd. Method of counting leukocytes and leukocyte counter
JP2001088098A (en) * 1999-09-14 2001-04-03 Kawamura Inst Of Chem Res Micro chemical device with depressurized liquid feeding mechanism
JP2001083092A (en) * 1999-09-17 2001-03-30 Kowa Co Fluorescent particle image pickup device
JP2002221485A (en) * 2000-11-22 2002-08-09 Minolta Co Ltd Micro chip
JP2003181255A (en) * 2001-12-21 2003-07-02 Minolta Co Ltd Microchip, inspection device using microchip and mixing method
JP2004113967A (en) * 2002-09-27 2004-04-15 Fuji Electric Systems Co Ltd Micromixer

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217946A (en) * 2007-06-07 2013-10-24 Technion Research & Development Foundation Ltd Method and device for converging particle
JP2011505009A (en) * 2007-11-27 2011-02-17 イーアイ・スペクトラ・エルエルシー Fluorescence based pipette instrument
JP2010032472A (en) * 2008-07-31 2010-02-12 Kowa Co Microchemical chip device
JP2010181253A (en) * 2009-02-05 2010-08-19 Kowa Co Microchemical chip device
JP2010204086A (en) * 2009-02-09 2010-09-16 Nippon Koden Corp Method of producing cellularization treatment liquid, method of measuring amount of dna in cell nucleus, and kit used for the same
KR101600869B1 (en) * 2015-08-17 2016-03-08 (주) 비비비 Apparatus, method and system for collecting blood and measuring red blood cell in blood at the same time
JP2019100988A (en) * 2017-12-08 2019-06-24 株式会社島津製作所 Particle image analysis device, and particle image analysis method
WO2019151150A1 (en) * 2018-01-30 2019-08-08 京セラ株式会社 Inspection flow channel device and inspection apparatus
JPWO2019151150A1 (en) * 2018-01-30 2021-02-04 京セラ株式会社 Inspection channel device and inspection equipment
US11351542B2 (en) 2018-01-30 2022-06-07 Kyocera Corporation Inspection flow path device and inspection apparatus
KR20190103888A (en) * 2018-02-28 2019-09-05 한국과학기술원 Method of observing dynamics using rapid freezing of a nanofluidic chip
KR102080838B1 (en) * 2018-02-28 2020-02-24 한국과학기술원 Method of observing dynamics using rapid freezing of a nanofluidic chip
CN113557423A (en) * 2019-03-20 2021-10-26 京瓷株式会社 Particle measuring device, particle separation measuring device, and particle separation measuring apparatus
CN113557423B (en) * 2019-03-20 2024-03-08 京瓷株式会社 Particle flow path plate, particle separation device, and particle separation measurement device
EP4130753A4 (en) * 2020-03-24 2024-04-24 Kyocera Corp Flow path device

Also Published As

Publication number Publication date
JP4528664B2 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
JP4528664B2 (en) Fluorescent particle counter
US20230185070A1 (en) Automated microscopic cell analysis
US20200256785A1 (en) Disposable chip-type flow cell and flow cytometer using the same
US20230055601A1 (en) Urine analysis system, image capturing apparatus, urine analysis method
Spencer et al. A sheath-less combined optical and impedance micro-cytometer
KR20060090596A (en) Cell sorter chip
US20220276250A1 (en) Cell analyzer system and cell analysis method
CN106018771A (en) Blood analyzer and blood analysis method
US7295306B2 (en) Microchip and fluorescent particle counter with microchip
JP4980477B2 (en) Particle measuring apparatus and particle measuring method
US20160109372A1 (en) Systems and methods for imaging fluid samples
JP2004085323A (en) Cell analysis/separation apparatus
CN110186836A (en) The optofluidic flow cytometer of circulating tumor cell separation analysis and Classification Count
CN102998259A (en) Optical measuring apparatus, flow cytometer, and optical measuring method
CN107655865B (en) Blood analysis device and blood analysis method
JP2009162660A (en) Detection method and detector
JP4301590B2 (en) Particle measuring device
JP4580976B2 (en) Biological sample analyzer with quality control function and method for displaying quality control measurement results
JP3587651B2 (en) Particle measuring device
CN112255206A (en) Spectroscopic detection unit, particle detection device and method
KR101151790B1 (en) Cofocal microscopic m-piv using blood cell imaging
JP4503370B2 (en) Formed component analysis apparatus and method
JP2020082047A (en) Separation success/failure determination method, particle detection method and particle separation device
Moradi et al. Comprehensive quantitative analysis of erythrocytes and leukocytes using trace volume of human blood using microfluidic-image cytometry and machine learning
JP2013217673A (en) Counting chip, counting method, and counting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees