JP2009274067A - Valve unit, fine flow apparatus equipped with the same, and manufacturing method of the valve unit - Google Patents

Valve unit, fine flow apparatus equipped with the same, and manufacturing method of the valve unit Download PDF

Info

Publication number
JP2009274067A
JP2009274067A JP2009116981A JP2009116981A JP2009274067A JP 2009274067 A JP2009274067 A JP 2009274067A JP 2009116981 A JP2009116981 A JP 2009116981A JP 2009116981 A JP2009116981 A JP 2009116981A JP 2009274067 A JP2009274067 A JP 2009274067A
Authority
JP
Japan
Prior art keywords
region
valve
valve unit
lower substrate
overlapping portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009116981A
Other languages
Japanese (ja)
Other versions
JP2009274067A5 (en
Inventor
Shoben Park
鍾 勉 朴
Shoseki Tei
鍾 石 鄭
Jeong-Gun Lee
廷 健 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2009274067A publication Critical patent/JP2009274067A/en
Publication of JP2009274067A5 publication Critical patent/JP2009274067A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0803Disc shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1861Means for temperature control using radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0409Moving fluids with specific forces or mechanical means specific forces centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0677Valves, specific forms thereof phase change valves; Meltable, freezing, dissolvable plugs; Destructible barriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49405Valve or choke making

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Micromachines (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a valve unit capable of avoiding an increase in cost and capable of preventing the erroneous operation of a valve, a fine flow apparatus equipped with the valve unit and a manufacturing method of the valve unit. <P>SOLUTION: The valve units 100 and 150 are equipped with the first region formed in a lower substrate 15, the second region formed in the lower substrate 15 so as to become more deeply than the first region and being in contact with one side of the first region, the valve substance chamber positioned so as to be superposed on the superposition part being a part of the first region formed in the upper substrate 20 adhering to the lower substrate 15 but so as not to be superposed on the non-superposition part being the remaining part of the first region and the valve substance arranged in the valve substance chamber and heated to flow to the non-superposition part from the valve substance chamber to thereby close the first region. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、微細流体工学に係り、より詳細には、流体の流れを制御する弁ユニットと、これを備えた微細流動装置と、該弁ユニットの製造方法に関する。   The present invention relates to microfluidics, and more particularly to a valve unit that controls the flow of fluid, a microfluidic device including the valve unit, and a method for manufacturing the valve unit.

一般的に、少量の流体を操作して生物学的または化学的な反応を行うのに使われる装置を微細流動装置という。微細流動装置は、チップ、ディスクなど多様な形状のプラットホーム内に配された微細流動構造物を備える。前記微細流動構造物は、流体を収容できるチャンバ、流体が流れるチャンネル、または流体のフローを調節できる弁を備える。前記チャンバ、チャンネル、または弁は、プラットホーム内で多様な組み合わせで配される。   In general, an apparatus used to perform a biological or chemical reaction by manipulating a small amount of fluid is called a microfluidic apparatus. The microfluidic device includes a microfluidic structure arranged in various shapes of platforms such as chips and disks. The microfluidic structure includes a chamber that can contain a fluid, a channel through which the fluid flows, or a valve that can regulate the flow of the fluid. The chambers, channels, or valves can be arranged in various combinations within the platform.

小型のチップ上で生化学的反応を含む試験を行えるように、チップ形態のプラットホームにこれらの微細流動構造物を配したものを称してバイオチップといい、特にいろいろな工程の処理及び操作を一つのチップで行えるように製作された装置をラボチップ(lab−on−a chip)という。   In order to perform tests including biochemical reactions on a small chip, a chip-type platform with these microfluidic structures is called a biochip. In particular, the processing and operation of various processes are integrated. An apparatus manufactured so that it can be performed with one chip is called a lab-on-a chip.

微細流動構造物内で流体を移送するためには駆動圧力が必要であるが、駆動圧力として毛細管圧が利用されることもあり、別途のポンプによる圧力が利用されることもある。最近では、コンパクトディスク形状のプラットホームに微細流動構造物を配して遠心力を利用する遠心力基盤の微細流動装置が提案されている。これを称してラボCD(Lab CDまたは、Lab−on a CD)とすることもある。   In order to transfer the fluid in the microfluidic structure, a driving pressure is required. However, a capillary pressure may be used as the driving pressure, or a pressure from a separate pump may be used. Recently, a centrifugal force-based microfluidic device that uses centrifugal force by arranging a microfluidic structure on a compact disk-shaped platform has been proposed. This may be referred to as a laboratory CD (Lab CD or Lab-on a CD).

微細流動装置に備えられた弁の一例として、本出願人により出願された特許文献1に開示された弁ユニットがある。ところが、この弁ユニットは微細流動装置の内部に相転移物質を注入するための注入口を備える。射出物である微細流動装置に注入口を形成するために、金型に前記注入口に対応する突起を形成せねばならないが、金型に注入された樹脂が前記突起に分離されてから再び合わさることで、射出物にいわゆる‘ウエルドライン(weld−line)’が形成される。前記ウエルドラインは、微細流動装置の剛性を弱化させて欠陥を引き起こしうる。また、金型に形成された前記突起によって金型をスムーズに研磨できずに射出物の表面が粗くなり、平坦度が悪化し、弁の形成後に前記注入口を閉鎖する工程がさらに要求されるのでコストアップになる。また、射出物を金型から容易に分離するために前記突起に形成された引き出し勾配によって、前記注入口の内周面にも傾斜が形成されて弁の作動が妨害される。   As an example of the valve provided in the microfluidic device, there is a valve unit disclosed in Patent Document 1 filed by the present applicant. However, this valve unit includes an inlet for injecting a phase change material into the microfluidic device. In order to form the injection port in the microfluidic device, which is an injection, a projection corresponding to the injection port must be formed on the mold, but the resin injected into the mold is separated from the projection and then recombined. As a result, a so-called 'weld line' is formed in the injection. The weld line can cause defects by weakening the rigidity of the microfluidic device. Further, the protrusion formed on the mold cannot smoothly polish the mold, the surface of the injection becomes rough, the flatness is deteriorated, and a step of closing the injection port after the valve is formed is further required. So the cost will increase. In addition, an inclination is also formed on the inner peripheral surface of the injection port due to the pull-out gradient formed on the projection to easily separate the injection from the mold, thereby hindering the operation of the valve.

米国特許出願第11/770,762号明細書US patent application Ser. No. 11 / 770,762

本発明の課題は、コストアップを回避でき、かつ弁の誤動作を防止できる、流体の流れを制御する弁ユニットと、これを備えた微細流動装置と、該弁ユニットの製造方法を提供するところにある。   An object of the present invention is to provide a valve unit for controlling the flow of fluid, which can avoid an increase in cost and prevent malfunction of the valve, a microfluidic device including the valve unit, and a method for manufacturing the valve unit. is there.

本発明の実施形態による弁ユニットは、下部基板に形成された第1領域と、前記下部基板に前記第1領域よりさらに深く形成され、前記第1領域の一側に接した第2領域と、前記下部基板に付着する上部基板に形成された、前記第1領域の一部分である重畳部とは重なり、前記第1領域の残りの部分である非重畳部とは重ならないように位置する弁物質チャンバと、前記弁物質チャンバに配され、加熱されることで、前記弁物質チャンバから前記非重畳部に流れて前記第1領域を閉鎖する弁物質と、を備える。   A valve unit according to an embodiment of the present invention includes a first region formed in a lower substrate, a second region formed deeper than the first region in the lower substrate and in contact with one side of the first region, The valve material positioned on the upper substrate attached to the lower substrate so as to overlap with the overlapping portion which is a part of the first region and does not overlap with the non-overlapping portion which is the remaining portion of the first region. And a valve substance disposed in the valve substance chamber and heated to flow from the valve substance chamber to the non-overlapping portion to close the first region.

本発明の実施形態による弁ユニットは、前記下部基板に前記第1領域よりさらに深く形成され、前記第1領域の他側に接した第3領域をさらに備える。   The valve unit according to the embodiment of the present invention further includes a third region that is formed deeper than the first region on the lower substrate and is in contact with the other side of the first region.

本発明の実施形態によれば、前記第1領域の非重畳部は前記第3領域に隣接し、前記第1領域の重複部は前記第2領域に隣接する。   According to an embodiment of the present invention, the non-overlapping portion of the first region is adjacent to the third region, and the overlapping portion of the first region is adjacent to the second region.

本発明の実施形態によれば、前記下部基板及び上部基板は、熱可塑性樹脂からなる。   According to an embodiment of the present invention, the lower substrate and the upper substrate are made of a thermoplastic resin.

本発明の実施形態によれば、前記弁物質は、常温で固体状態であり、加熱されることで溶融される相転移物質を含む。   According to an embodiment of the present invention, the valve material includes a phase change material that is in a solid state at room temperature and is melted by being heated.

本発明の実施形態によれば、前記弁物質は前記相転移物質内に分散された、電磁波エネルギーを吸収することで発熱する複数の微細発熱粒子を含む。   According to an embodiment of the present invention, the valve material includes a plurality of fine heating particles dispersed in the phase change material and generating heat by absorbing electromagnetic energy.

本発明の実施形態によれば、前記微細発熱粒子は金属酸化物粒子である。   According to an embodiment of the present invention, the fine heating particles are metal oxide particles.

本発明の実施形態によれば、前記相転移物質は、ワックス、ゲルまたは熱可塑性樹脂である。   According to an embodiment of the present invention, the phase change material is a wax, a gel or a thermoplastic resin.

本発明の実施形態による弁ユニットは、弁物質を内部に注入するための注入口を供えていない。したがって、注入口形成過程の追加によるコストアップを回避できる。また、注入口による弁の誤動作の可能性がなくなる。   The valve unit according to an embodiment of the present invention does not provide an inlet for injecting the valve substance into the interior. Therefore, an increase in cost due to the addition of the injection port forming process can be avoided. Further, there is no possibility of malfunction of the valve due to the inlet.

本発明の一実施形態による微細流動装置を示す斜視図である。It is a perspective view which shows the microfluidic device by one Embodiment of this invention. 本発明の第1実施形態による弁ユニットを示す斜視図である。It is a perspective view which shows the valve unit by 1st Embodiment of this invention. 本発明の第2実施形態による弁ユニットを示す斜視図である。It is a perspective view which shows the valve unit by 2nd Embodiment of this invention. 本発明の第1実施形態による弁ユニットの作動過程を順次に示す断面図である。It is sectional drawing which shows the operation | movement process of the valve unit by 1st Embodiment of this invention sequentially. 本発明の第1実施形態による弁ユニットの作動過程を順次に示す断面図である。It is sectional drawing which shows the operation | movement process of the valve unit by 1st Embodiment of this invention sequentially. 本発明の第1実施形態による弁ユニットの製造方法を順次に示す断面図である。It is sectional drawing which shows the manufacturing method of the valve unit by 1st Embodiment of this invention sequentially. 本発明の第1実施形態による弁ユニットの製造方法を順次に示す断面図である。It is sectional drawing which shows the manufacturing method of the valve unit by 1st Embodiment of this invention sequentially. 本発明の第1実施形態による弁ユニットの製造方法を順次に示す断面図である。It is sectional drawing which shows the manufacturing method of the valve unit by 1st Embodiment of this invention sequentially. 本発明の第1実施形態による弁ユニットの製造方法を順次に示す断面図である。It is sectional drawing which shows the manufacturing method of the valve unit by 1st Embodiment of this invention sequentially.

以下、添付した図面を参照して、本発明の実施形態による弁ユニットと、これを備えた微細流動装置と、該弁ユニットの製造方法を詳細に説明する。   Hereinafter, a valve unit according to an embodiment of the present invention, a microfluidic device including the valve unit, and a method of manufacturing the valve unit will be described in detail with reference to the accompanying drawings.

図1は、本発明の一実施形態による微細流動装置を示す斜視図である。図1を参照すれば、前記微細流動装置10は、回転自在のディスク型のプラットホーム11を備える。前記プラットホーム11は、下部基板15と、前記下部基板15に付着された上部基板20とで形成される。前記下部基板15及び上部基板20は熱可塑性樹脂からなる。   FIG. 1 is a perspective view showing a microfluidic device according to an embodiment of the present invention. Referring to FIG. 1, the microfluidic device 10 includes a rotatable disk type platform 11. The platform 11 is formed of a lower substrate 15 and an upper substrate 20 attached to the lower substrate 15. The lower substrate 15 and the upper substrate 20 are made of a thermoplastic resin.

前記微細流動装置10は、その内部に流体を収容するためのチャンバ35と、前記チャンバ35と連結されて流体が流れる通路を提供するチャンネル31と、前記チャンネル31を通じての流体の流れを制御するための弁ユニット100、150と、を備える。また、前記微細流動装置10は、スピンドルモータ(図示せず)に装着されて高速回転できる。前記微細流動装置10の中央部には、前記スピンドルモータに装着されるように、装着通孔39が形成されている。前記スピンドルモータの回転により、前記微細流動装置10のチャンバ35またはチャンネル31に残された流体は、プラットホーム11の外周部に向かう方向に加圧される。   The microfluidic device 10 includes a chamber 35 for containing a fluid therein, a channel 31 connected to the chamber 35 to provide a passage through which the fluid flows, and a flow of the fluid through the channel 31. Valve units 100 and 150. The microfluidic device 10 is mounted on a spindle motor (not shown) and can rotate at high speed. A mounting through hole 39 is formed at the center of the microfluidic device 10 so as to be mounted on the spindle motor. Due to the rotation of the spindle motor, the fluid left in the chamber 35 or the channel 31 of the microfluidic device 10 is pressurized in a direction toward the outer periphery of the platform 11.

前記微細流動装置10は、例えば、流体試料の遠心分離、免疫血清反応、遺伝子分析など生化学分野の特定用途に適するように、前記チャンバ35、チャンネル31及び弁ユニット100、150の配置が決定される。すなわち、本発明の微細流動装置10は、図1に示したチャンバ35、チャンネル31及び弁ユニット100、150の配置形態に限定されず、その用途によって多様な形態で設計されうる。   In the microfluidic device 10, the arrangement of the chamber 35, the channel 31, and the valve units 100 and 150 is determined so as to be suitable for specific applications in the biochemical field such as centrifugation of fluid samples, immune serum reaction, gene analysis, and the like. The That is, the microfluidic device 10 of the present invention is not limited to the arrangement form of the chamber 35, the channel 31, and the valve units 100 and 150 shown in FIG.

図2は、本発明の第1実施形態による弁ユニットを示す斜視図であり、図3は、本発明の第2実施形態による弁ユニットを示す斜視図である。前記第1実施形態による弁ユニットは、前記微細流動装置10のチャンネル31の中間に設けられた弁ユニット100であり、前記第2実施形態による弁ユニットは、前記微細流動装置10のチャンバ35に隣接した弁ユニット150でありうる。   FIG. 2 is a perspective view showing the valve unit according to the first embodiment of the present invention, and FIG. 3 is a perspective view showing the valve unit according to the second embodiment of the present invention. The valve unit according to the first embodiment is a valve unit 100 provided in the middle of the channel 31 of the microfluidic device 10, and the valve unit according to the second embodiment is adjacent to the chamber 35 of the microfluidic device 10. Valve unit 150 may be used.

図2を参照すれば、前記第1実施形態による弁ユニット100は、下部基板15の上側面から下方に陰刻形成された第1領域101と、前記第1領域101よりさらに深く陰刻形成されて、前記第1領域101の一側に段差があるように接した第3領域105と、前記第1領域101よりさらに深く陰刻形成されて、前記第1領域101の他側に段差があるように接した第2領域107とを備える。図4Aを参照すれば、前記第3領域105及び第2領域107の深さD2は相等しく、第1領域101の深さD1はそれより浅い。前記第1領域101、第3領域105及び第2領域107はチャンネル31に設けられる。   Referring to FIG. 2, the valve unit 100 according to the first embodiment includes a first region 101 that is indented downward from the upper side surface of the lower substrate 15, and an indentation that is deeper than the first region 101. A third region 105 that is in contact with a step on one side of the first region 101 and an intaglio formed deeper than the first region 101 so that there is a step on the other side of the first region 101. The second region 107 is provided. Referring to FIG. 4A, the depth D2 of the third region 105 and the second region 107 are equal, and the depth D1 of the first region 101 is shallower. The first region 101, the third region 105, and the second region 107 are provided in the channel 31.

また、前記弁ユニット100は、前記上部基板20の下側面から上方に陰刻形成された弁物質チャンバ109を備える。前記弁物質チャンバ109は、前記第1領域101の一部分と重なる。前記弁物質チャンバ109と重なる第1領域101の一部分は重複部102と称し、前記弁物質チャンバ109と重ならない第1領域101の残りの部分は非重畳部103と称する。前記弁物質チャンバ109には、弁物質Vが硬化された状態で収容される。前記弁物質Vは、前記弁物質チャンバ109に収容された後に溶融されて、前記第1領域101の非重畳部103に流れ込んで再硬化されることによって、前記第1領域101を閉鎖する。前記非重畳部103は、前記重複部102より第3領域105の近くに位置する。   In addition, the valve unit 100 includes a valve material chamber 109 formed indented upward from the lower surface of the upper substrate 20. The valve material chamber 109 overlaps a part of the first region 101. A part of the first region 101 that overlaps with the valve substance chamber 109 is referred to as an overlapping part 102, and the remaining part of the first region 101 that does not overlap with the valve substance chamber 109 is referred to as a non-overlapping part 103. The valve material chamber 109 contains the valve material V in a cured state. The valve material V is melted after being accommodated in the valve material chamber 109, flows into the non-overlapping portion 103 of the first region 101 and is re-cured, thereby closing the first region 101. The non-overlapping portion 103 is located closer to the third region 105 than the overlapping portion 102.

前記弁物質Vは、電磁波エネルギーにより溶融される相転移物質と、前記相転移物質内に分散され、電磁波エネルギーを吸収して発熱する複数の微細発熱粒子P(図4A参照)とを含む。前記相転移物質はワックスでありうる。前記ワックスは、加熱されれば溶融して液体状態に変わり、体積膨脹する。前記ワックスには、例えば、パラフィンワックス、マイクロクリスタリンワックス、合成ワックス、または天然ワックスなどが採用される。   The valve material V includes a phase change material that is melted by electromagnetic energy and a plurality of fine heating particles P (see FIG. 4A) that are dispersed in the phase change material and generate heat by absorbing the electromagnetic energy. The phase change material may be a wax. When heated, the wax melts into a liquid state and expands in volume. Examples of the wax include paraffin wax, microcrystalline wax, synthetic wax, and natural wax.

一方、前記相転移物質は、ゲルまたは熱可塑性樹脂でもありうる。前記ゲルには、ポリアクリルアミド、ポリアクリレート、ポリメタクリレートまたはポリビニルアミドなどが採用される。また、前記熱可塑性樹脂には、COC(cyclic olefin copolymer)、PMMA(polymethylmethacrylate)、PC(polycarbonate)、PS(polystyrene)、POM(polyoxymethylene)、PFA(perfluoralkoxy)、PVC(polyvinylchloride)、PP(polypropylene)、PET(polyethylene terephthalate)、PEEK(polyetheretherketone)、PA(polyamide)、PSU(polysulfone)、及びPVDF(polyvinylidenefluoride)などが採用される。   Meanwhile, the phase change material may be a gel or a thermoplastic resin. For the gel, polyacrylamide, polyacrylate, polymethacrylate, polyvinylamide or the like is employed. In addition, the thermoplastic resin includes COC (cyclic olefin copolymer), PMMA (polymethyl methacrylate), PC (poly carbonate), PS (polystyrene), POM (polypropylene), PFA (polypropylene), PFA (polypropylene), PFA (polypropylene), PFA (polypropylene) , PET (polyethylene terephthalate), PEEK (polyetherethertone), PA (polyamide), PSU (polysulfone), PVDF (polyvinylidenefluoride), and the like are employed.

前記微細発熱粒子Pは、微細なチャンネル31を自由に通過できるように1nmないし100μmの直径を持つ。前記微細発熱粒子Pは、例えば、レーザーLの照射のような方法で電磁波エネルギーが供給されれば、温度が急激に上昇して発熱する性質を持ち、ワックスに均一に分散される性質を持つ。このような性質を持つように前記微細発熱粒子Pは、金属成分を含むコアと、疎水性の表面構造とを持つことができる。例えば、前記微細発熱粒子PはFeからなるコアと、前記Feに結合されてFeを包む複数の界面活性成分とを含む分子構造を持つことができる。   The fine exothermic particles P have a diameter of 1 nm to 100 μm so that they can freely pass through the fine channels 31. For example, when the electromagnetic energy is supplied by a method such as irradiation with a laser L, the fine heat-generating particles P have a property that the temperature rapidly rises to generate heat and are uniformly dispersed in wax. The fine exothermic particles P may have a core containing a metal component and a hydrophobic surface structure so as to have such properties. For example, the fine exothermic particles P may have a molecular structure including a core made of Fe and a plurality of surface active components that are bound to the Fe and enclose the Fe.

通例的に、前記微細発熱粒子Pは、キャリアオイルに分散された状態で保管される。疎水性表面構造を持つ前記微細発熱粒子Pが均一に分散されるように、キャリアオイルも疎水性であることが望ましい。溶融された相転移物質に前記微細発熱粒子Pが分散されたキャリアオイルを注いで混合することによって、弁物質Vを製造できる。   Usually, the fine exothermic particles P are stored in a dispersed state in a carrier oil. It is desirable that the carrier oil is also hydrophobic so that the fine exothermic particles P having a hydrophobic surface structure are uniformly dispersed. The valve material V can be manufactured by pouring and mixing the carrier oil in which the fine exothermic particles P are dispersed in the melted phase change material.

前記微細発熱粒子Pは、前記例として挙げた重合体粒子に限定されるものではなく、クァンタムドットまたは磁性ビードの形態も可能である。また、前記微細発熱粒子Pは、例えば、Al、TiO、Ta、Fe、FeまたはHfOのような金属酸化物粒子でありうる。一方、弁物質Vは微細発熱粒子を必ずしも含むものではなく、微細発熱粒子Pなしに相転移物質のみからなることもある。 The fine exothermic particles P are not limited to the polymer particles mentioned as the example, and may be in the form of quantum dots or magnetic beads. The fine heat-generating particles P may be metal oxide particles such as Al 2 O 3 , TiO 2 , Ta 2 O 3 , Fe 2 O 3 , Fe 3 O 4 or HfO 2 . On the other hand, the valve material V does not necessarily contain fine exothermic particles, and may be composed of only a phase change material without the fine exothermic particles P.

前記弁ユニット100は、通常はチャンネル31を閉鎖していて、前記弁物質Vに電磁波エネルギーを照射することによりチャンネル31が開放される、ノーマルクローズ弁(normally closed vale)である。レーザー光源5は、弁物質Vに電磁波を照射するためのエネルギー源の一例であって、電磁波の一種であるレーザーLを前記弁物質Vに向けて照射することによって、前記弁物質Vにエネルギーを供給する。前記レーザー光源5はレーザーダイオード(LD:laser diode)を含むことができる。   The valve unit 100 is a normally closed valve that normally closes the channel 31 and opens the channel 31 by irradiating the valve material V with electromagnetic wave energy. The laser light source 5 is an example of an energy source for irradiating the valve material V with electromagnetic waves, and irradiates the valve material V with energy by irradiating the valve material V with a laser L which is a kind of electromagnetic waves. Supply. The laser light source 5 may include a laser diode (LD).

図4A及び図4Bは、本発明の第1実施形態による弁ユニット100(図2参照)の作動過程を順次に示す断面図である。図4Aを参照すれば、前記チャンネル31を通じて流体Fが第3領域105から第2領域107に向かって流れるようになっているが、前記非重畳部103で硬化された弁物質Vが第1領域101を閉鎖して流体Fが流れることができない。この時、レーザー光源5を利用して暫くレーザーLを前記弁物質Vに照射すれば、前記弁物質Vに含まれた微細発熱粒子Pが急速に発熱して相転移物質が急速に加熱される。したがって、弁物質Vが急速に溶融されて第1領域101が開放され、図4Bに示したように、流体Fが第3領域105から第2領域107に流れることができる。   4A and 4B are cross-sectional views sequentially illustrating an operation process of the valve unit 100 (see FIG. 2) according to the first embodiment of the present invention. Referring to FIG. 4A, the fluid F flows from the third region 105 toward the second region 107 through the channel 31, but the valve material V hardened in the non-overlapping portion 103 is in the first region. 101 is closed and the fluid F cannot flow. At this time, if the laser light source 5 is used to irradiate the valve material V with the laser L for a while, the fine exothermic particles P contained in the valve material V rapidly generate heat and the phase change material is rapidly heated. . Accordingly, the valve material V is rapidly melted to open the first region 101, and the fluid F can flow from the third region 105 to the second region 107 as shown in FIG. 4B.

一方、図3を参照すれば、前記第2実施形態による弁ユニット150は、下部基板15の上側面から下方に陰刻形成された第1領域151と、前記第1領域151より深く陰刻形成されて、前記第1領域151の一側に段差があるように接した第3領域155と、前記第1領域151より深く陰刻形成されて、前記第1領域151の他側に段差があるように接した第2領域157と、を備える。前記第1領域151と第2領域157とはチャンネル31に設けられるが、前記第3領域155はチャンバ35に設けられる。   Meanwhile, referring to FIG. 3, the valve unit 150 according to the second embodiment is formed with a first region 151 indented downward from the upper surface of the lower substrate 15 and an indentation deeper than the first region 151. The third region 155 is in contact with a step on one side of the first region 151, and is indented deeper than the first region 151, so that there is a step on the other side of the first region 151. Second region 157. The first region 151 and the second region 157 are provided in the channel 31, while the third region 155 is provided in the chamber 35.

また、前記弁ユニット150は、前記上部基板20の下側面から上方に陰刻形成された弁物質チャンバ159を備える。前記弁物質チャンバ159も、第1実施形態による弁ユニット100(図2参照)の弁物質チャンバ109(図2参照)と同じく、第1領域151の重複部152とは重なって非重畳部153とは重ならないように位置し、前記非重畳部153が前記重複部152より第3領域155の近くに位置する。弁物質Vは、前記弁物質チャンバ159に収容された後に溶融されて、前記第1領域151の非重畳部153に流れ込んで再硬化されることによって、前記第1領域151を閉鎖する。   In addition, the valve unit 150 includes a valve material chamber 159 formed indented upward from the lower surface of the upper substrate 20. Similarly to the valve substance chamber 109 (see FIG. 2) of the valve unit 100 (see FIG. 2) according to the first embodiment, the valve substance chamber 159 overlaps with the overlapping part 152 of the first region 151 and the non-overlapping part 153. Are located so as not to overlap, and the non-overlapping portion 153 is located closer to the third region 155 than the overlapping portion 152. The valve material V is melted after being accommodated in the valve material chamber 159, flows into the non-overlapping portion 153 of the first region 151, and is hardened again, thereby closing the first region 151.

前記弁ユニット150も、第1実施形態による弁ユニット100(図2参照)と同様に、通常はチャンネル31を閉鎖していて、前記弁物質Vにレーザー光源5を利用してレーザーLを照射することによりチャンネル31が開放される、ノーマルクローズ弁である。前記弁物質Vは、第1実施形態による弁ユニット100(図2参照)に適用される弁物質Vと同一であるので、重複説明は省略する。   Similarly to the valve unit 100 according to the first embodiment (see FIG. 2), the valve unit 150 normally closes the channel 31 and irradiates the valve material V with the laser L using the laser light source 5. This is a normal close valve in which the channel 31 is opened. Since the valve material V is the same as the valve material V applied to the valve unit 100 (see FIG. 2) according to the first embodiment, a duplicate description is omitted.

図5Aないし図5Dは、本発明の第1実施形態による弁ユニット100(図2参照)の製造方法を順次に示す断面図である。   5A to 5D are cross-sectional views sequentially illustrating a method of manufacturing the valve unit 100 (see FIG. 2) according to the first embodiment of the present invention.

図5Aを参照すれば、前記弁ユニット100(図2参照)の製造のために、まず、下部基板15を準備する。前記下部基板15は、第1深さD1に陰刻形成された第1領域101と、前記第1深さD1よりさらに深い第2深さD2に陰刻形成されて、前記第1領域101の一側に段差があるように接した第3領域105と、前記第2深さD2に陰刻形成されて前記第1領域101の他側に段差があるように接した第2領域107と、を備える。前記下部基板15は、熱可塑性樹脂を射出成形して製造できる。   Referring to FIG. 5A, a lower substrate 15 is first prepared for manufacturing the valve unit 100 (see FIG. 2). The lower substrate 15 is inscribed in a first region 101 indented to a first depth D1 and inscribed in a second depth D2 that is deeper than the first depth D1, and is located on one side of the first region 101. And a second region 107 in contact with the second depth D2 so as to have a step on the other side of the first region 101. The lower substrate 15 can be manufactured by injection molding a thermoplastic resin.

また図5Bを参照すれば、前記弁ユニット100の製造のために、上部基板20を準備する。前記上部基板20は下部基板15より薄く、陰刻形成された弁物質チャンバ109を備える。前記上部基板20も熱可塑性樹脂を射出成形して製造できる。前記上部基板20は、弁物質を微細流動装置10の内部に注入するための注入口を備えないため、射出成形過程でいわゆるウエルドラインが形成されない。したがって、上部基板20の剛性不良可能性が低下する。また、前記注入口を閉鎖する工程が不要になってコストダウンもできる。   Referring to FIG. 5B, an upper substrate 20 is prepared for manufacturing the valve unit 100. The upper substrate 20 is thinner than the lower substrate 15 and includes a valve material chamber 109 formed indented. The upper substrate 20 can also be manufactured by injection molding a thermoplastic resin. Since the upper substrate 20 does not include an injection port for injecting the valve material into the microfluidic device 10, a so-called weld line is not formed in the injection molding process. Therefore, the possibility of poor rigidity of the upper substrate 20 is reduced. Further, the process of closing the inlet is not necessary, and the cost can be reduced.

前記弁物質チャンバ109には、例えば、ディスペンサー3のようなツールを利用して溶融された弁物質Vを注入し、これを硬化させる。前述したように、前記弁物質Vは相転移物質に複数の微細発熱粒子Pを混合して製造され、硬化されれば、前記弁物質チャンバ109に付着する。   The valve material chamber 109 is injected with the melted valve material V using a tool such as a dispenser 3 and hardened. As described above, the valve material V is manufactured by mixing a plurality of fine exothermic particles P with a phase change material, and adheres to the valve material chamber 109 when cured.

図5Cを参照すれば、前記第1ないし第3領域101、105、107が形成された下部基板15の一面上に、前記弁物質チャンバ109が形成された上部基板20の一面を付着する。上部基板20と下部基板15との付着方法は、例えば、UV接着剤を使用する方法または超音波融着方法などが可能である。上部基板20と下部基板15とを付着する時、弁物質チャンバ109が第1領域101の一部分と重なるように配置される。また、前記第1領域101のうち、弁物質チャンバ109と重なる重複部102より、前記弁物質チャンバ109と重ならない非重畳部103を前記第3領域105の近くに位置するように配置して、上部基板20と下部基板15とを付着する。   Referring to FIG. 5C, a surface of the upper substrate 20 in which the valve material chamber 109 is formed is attached to a surface of the lower substrate 15 in which the first to third regions 101, 105, and 107 are formed. As a method of attaching the upper substrate 20 and the lower substrate 15, for example, a method using a UV adhesive or an ultrasonic fusion method can be used. When the upper substrate 20 and the lower substrate 15 are attached, the valve material chamber 109 is disposed so as to overlap a part of the first region 101. Further, in the first region 101, a non-overlapping portion 103 that does not overlap the valve material chamber 109 is disposed closer to the third region 105 than the overlapping portion 102 that overlaps the valve material chamber 109, The upper substrate 20 and the lower substrate 15 are attached.

次いで、前記下部基板15及び上部基板20を加熱するか、レーザーを照射する方法で前記弁物質VにエネルギーEを供給して前記弁物質Vを溶融させる。図5Dを参照すれば、溶融された弁物質Vの一部は、毛細管現象により第1領域101の非重畳部103に流れ込んで残存する。前記非重畳部103に残された弁物質Vが常温で再硬化されて第1領域101を閉鎖することによって、弁ユニット100(図2参照)が完成される。   Then, the lower substrate 15 and the upper substrate 20 are heated or energy E is supplied to the valve material V by a method of irradiating a laser to melt the valve material V. Referring to FIG. 5D, a part of the melted valve material V flows into the non-overlapping portion 103 of the first region 101 and remains due to capillary action. The valve substance V left in the non-overlapping portion 103 is re-cured at room temperature to close the first region 101, thereby completing the valve unit 100 (see FIG. 2).

弁物質Vの正確な定量が難しいため、弁物質Vを弁物質チャンバ109に注入する時に少量の弁物質Vが弁物質チャンバ109の境界を超える可能性がある。このような場合には、下部基板15に上部基板20を付着する際に、弁物質チャンバ109の周辺部では上部基板20と下部基板15とが堅く付着されない可能性がある。しかし、弁物質Vにより閉鎖される非重畳部103が流体Fのフロー方向に沿って前記弁物質チャンバ109より上流地点に形成されているため、流体Fの漏れが防止される。実際にプラットホームに複数の第1実施形態による弁ユニット100(図2参照)を形成し、4000rpmで5分間プラットホームを回転させる実験を通じて、あらゆる弁ユニットで流体の漏れが見つからなかった。   Since it is difficult to accurately determine the valve material V, a small amount of the valve material V may exceed the boundary of the valve material chamber 109 when the valve material V is injected into the valve material chamber 109. In such a case, when the upper substrate 20 is attached to the lower substrate 15, there is a possibility that the upper substrate 20 and the lower substrate 15 are not firmly attached around the valve material chamber 109. However, since the non-overlapping portion 103 that is closed by the valve material V is formed at a point upstream of the valve material chamber 109 along the flow direction of the fluid F, leakage of the fluid F is prevented. Through actual experiments in which a plurality of valve units 100 according to the first embodiment (see FIG. 2) were formed on the platform and the platform was rotated at 4000 rpm for 5 minutes, no fluid leakage was found in any valve unit.

本発明は図面に示した実施形態を参考に説明されたが、これは例示的なものに過ぎず、当業者ならば、これより多様な変形及び均等な他の実施形態が可能であるということを理解できるであろう。したがって、本発明の真の保護範囲は、特許請求の範囲のみにより定められねばならない。   Although the present invention has been described with reference to the embodiments shown in the drawings, this is merely an example, and it is understood that various modifications and equivalent other embodiments can be made by those skilled in the art. Will understand. Accordingly, the true protection scope of the present invention should be determined solely by the appended claims.

本発明は、例えば、生化学分野での分析関連の技術分野に好適に用いられる。   The present invention is suitably used, for example, in analysis-related technical fields in the biochemical field.

5 レーザー光源、
10 微細流動装置、
11 プラットホーム、
15 下部基板、
20 上部基板、
31 チャンネル、
35 チャンバ、
39 装着通孔、
100、150 弁ユニット、
101、151 第1領域、
102、152 重複部、
103、153 非重畳部、
105、155 第3領域、
107、157 第2領域、
109 弁物質チャンバ、
L レーザー、
P 微細発熱粒子、
V 弁物質。
5 Laser light source,
10 Microfluidic device,
11 platform,
15 Lower substrate,
20 Upper substrate,
31 channels,
35 chambers,
39 mounting through holes,
100, 150 valve unit,
101, 151 first region,
102, 152 overlapping part,
103, 153 non-overlapping part,
105, 155 third region,
107, 157 second region,
109 valve material chamber,
L laser,
P fine exothermic particles,
V Valve material.

Claims (27)

下部基板に形成された第1領域と、
前記下部基板に前記第1領域よりさらに深く形成され、前記第1領域の一側に接した第2領域と、
前記下部基板に付着する上部基板に形成された、前記第1領域の一部分である重畳部とは重なり、前記第1領域の残りの部分である非重畳部とは重ならないように位置する弁物質チャンバと、
前記弁物質チャンバに配され、加熱されることで、前記弁物質チャンバから前記非重畳部に流れて前記第1領域を閉鎖する弁物質と、を備える弁ユニット。
A first region formed in the lower substrate;
A second region formed deeper than the first region on the lower substrate and in contact with one side of the first region;
The valve material positioned on the upper substrate attached to the lower substrate so as to overlap with the overlapping portion which is a part of the first region and does not overlap with the non-overlapping portion which is the remaining portion of the first region. A chamber;
A valve unit comprising: a valve substance that is disposed in the valve substance chamber and heated to flow from the valve substance chamber to the non-overlapping portion and close the first region.
前記下部基板に前記第1領域よりさらに深く形成され、前記第1領域の他側に接した第3領域をさらに備えた請求項1に記載の請求弁ユニット。   2. The valve unit according to claim 1, further comprising a third region formed deeper than the first region on the lower substrate and in contact with the other side of the first region. 前記第1領域の非重畳部は前記第3領域に隣接し、前記第1領域の重複部は前記第2領域に隣接する請求項2に記載の弁ユニット。   The valve unit according to claim 2, wherein the non-overlapping portion of the first region is adjacent to the third region, and the overlapping portion of the first region is adjacent to the second region. 前記下部基板及び上部基板は、熱可塑性樹脂からなることを特徴とする請求項1〜3のいずれか1項に記載の弁ユニット。   The valve unit according to claim 1, wherein the lower substrate and the upper substrate are made of a thermoplastic resin. 前記弁物質は、常温で固体状態であり、加熱されることで溶融される相転移物質を含むことを特徴とする請求項1〜4のいずれか1項に記載の弁ユニット。   The valve unit according to any one of claims 1 to 4, wherein the valve substance includes a phase change substance that is in a solid state at room temperature and is melted by being heated. 前記弁物質は、前記相転移物質内に分散された、電磁波エネルギーを吸収することで発熱する複数の微細発熱粒子を含むことを特徴とする請求項5に記載の弁ユニット。   6. The valve unit according to claim 5, wherein the valve substance includes a plurality of fine heating particles dispersed in the phase change material and generating heat by absorbing electromagnetic energy. 前記微細発熱粒子は、金属酸化物粒子であることを特徴とする請求項6に記載の弁ユニット。   The valve unit according to claim 6, wherein the fine heating particles are metal oxide particles. 前記相転移物質は、ワックス、ゲルまたは熱可塑性樹脂であることを特徴とする請求項5〜7のいずれか1項に記載の弁ユニット。   The valve unit according to any one of claims 5 to 7, wherein the phase change material is wax, gel, or a thermoplastic resin. 下部基板と前記下部基板の上側面に付着された上部基板とを備えるプラットホームと、前記プラットホームの内部に形成された、流体が流れる通路を提供するチャンネルと、前記チャンネルを通じての流体の流れを制御するための弁ユニットと、を備え、
前記弁ユニットは、前記下部基板に形成され、前記チャンネルに設けられた第1領域と、前記下部基板に前記第1領域よりさらに深く形成されて前記第1領域の一側に接した第2領域と、前記下部基板に前記第1領域よりさらに深く形成され、かつ前記第1領域の他側に接した第3領域と、前記上部基板に形成された、前記第1領域の一部分の重畳部とは重なって、前記第1領域の残りの部分である非重畳部とは重ならないように位置する弁物質チャンバと、前記弁物質チャンバに配され、加熱されることで前記弁物質チャンバから前記非重畳部に流れて前記第1領域を閉鎖する弁物質と、を備える微細流動装置。
A platform including a lower substrate and an upper substrate attached to an upper surface of the lower substrate; a channel formed in the platform for providing a passage through which fluid flows; and controlling a fluid flow through the channel. A valve unit for
The valve unit is formed in the lower substrate and provided in the channel, and a second region formed in the lower substrate deeper than the first region and in contact with one side of the first region. And a third region formed deeper than the first region on the lower substrate and in contact with the other side of the first region, and a part of the first region overlapped on the upper substrate. Are overlapped and positioned so as not to overlap with the non-overlapping portion which is the remaining portion of the first region, and is disposed in the valve material chamber and heated to remove the non-overlapping from the valve material chamber. A microfluidic device comprising: a valve substance that flows into the overlapping portion and closes the first region.
前記弁ユニットは、前記下部基板に前記第1領域よりさらに深く形成され、前記第1領域の他側に接した第3領域をさらに備えることを特徴とする請求項9に記載の微細流動装置。   10. The microfluidic device according to claim 9, wherein the valve unit further includes a third region formed deeper than the first region on the lower substrate and in contact with the other side of the first region. 前記第1領域の非重畳部は前記第3領域に隣接し、前記第1領域の重複部は、前記第2領域に隣接することを特徴とする請求項10に記載の微細流動装置。   The microfluidic device according to claim 10, wherein the non-overlapping portion of the first region is adjacent to the third region, and the overlapping portion of the first region is adjacent to the second region. 前記第2領域及び第3領域は、前記チャンネルに設けられたことを特徴とする請求項10または11に記載の微細流動装置。   The microfluidic device according to claim 10 or 11, wherein the second region and the third region are provided in the channel. 前記下部基板及び上部基板は、熱可塑性樹脂からなることを特徴とする請求項9〜12のいずれか1項に記載の微細流動装置。   The microfluidic device according to any one of claims 9 to 12, wherein the lower substrate and the upper substrate are made of a thermoplastic resin. 前記弁物質は、常温で固体状態であり、エネルギーを吸収することで溶融される相転移物質を含むことを特徴とする請求項9〜13のいずれか1項に記載の微細流動装置。   The microfluidic device according to any one of claims 9 to 13, wherein the valve material includes a phase change material that is in a solid state at room temperature and is melted by absorbing energy. 前記弁物質は前記相転移物質内に分散された、電磁波エネルギーを吸収することで発熱する複数の微細発熱粒子を含むことを特徴とする請求項14に記載の微細流動装置。   15. The microfluidic device according to claim 14, wherein the valve material includes a plurality of fine heating particles dispersed in the phase change material and generating heat by absorbing electromagnetic energy. 前記微細発熱粒子は、金属酸化物粒子であることを特徴とする請求項15に記載の微細流動装置。   The microfluidic device according to claim 15, wherein the fine heat generating particles are metal oxide particles. 前記相転移物質は、ワックス、ゲル、または熱可塑性樹脂であることを特徴とする請求項14〜16のいずれか1項に記載の微細流動装置。   The microfluidic device according to any one of claims 14 to 16, wherein the phase change material is a wax, a gel, or a thermoplastic resin. 前記チャンネルの一側に連結された、流体を収容するためのチャンバをさらに備え、前記第2領域または第3領域が前記チャンバに設けられたことを特徴とする請求項10または11に記載の微細流動装置。   The fine structure according to claim 10 or 11, further comprising a chamber connected to one side of the channel for containing a fluid, wherein the second region or the third region is provided in the chamber. Fluid device. 前記プラットホームは、モータにより回転自在に構成されたことを特徴とする請求項9〜18のいずれか1項に記載の微細流動装置。   The microfluidic device according to any one of claims 9 to 18, wherein the platform is configured to be rotatable by a motor. 第1領域と、前記第1領域よりさらに深く形成され、前記第1領域の一側に接した第2領域とを備えた下部基板を形成する工程と、
弁物質チャンバを備えた上部基板を形成する工程と、
前記弁物質チャンバに弁物質を注入して硬化させる工程と、
前記第1及び第2領域が形成された下部基板の一面上に、前記弁物質チャンバが形成された上部基板の一面を付着するものの、前記弁物質チャンバが前記第1領域の一部分の重畳部とは重なり、前記第1領域の残りの部分である非重畳部とは重ならないように前記2枚の基板を付着する工程と、
前記弁物質チャンバに収容された弁物質を溶融させて、前記第1領域の非重畳部に流入させる工程と、
前記非重畳部に流入された弁物質を硬化させて、前記第1領域を閉鎖する工程と、を含むことを特徴とする弁ユニットの製造方法。
Forming a lower substrate including a first region and a second region formed deeper than the first region and in contact with one side of the first region;
Forming an upper substrate with a valve material chamber;
Injecting and curing the valve material into the valve material chamber;
A surface of the upper substrate on which the valve material chamber is formed is attached to a surface of the lower substrate on which the first and second regions are formed, but the valve material chamber is overlapped with a part of the first region. Attaching the two substrates so as not to overlap with a non-overlapping portion that is the remaining portion of the first region;
Melting the valve material accommodated in the valve material chamber and allowing the valve material to flow into the non-overlapping portion of the first region;
Curing the valve substance that has flowed into the non-overlapping portion, and closing the first region.
前記下部基板は、前記第1領域よりさらに深く形成され、前記第1領域の他側に接した第3領域をさらに備える請求項20に記載の弁ユニットの製造方法。   21. The method of manufacturing a valve unit according to claim 20, wherein the lower substrate further includes a third region formed deeper than the first region and in contact with the other side of the first region. 前記2枚の基板を付着する工程は、前記第1領域の非重畳部が前記第3領域に隣接し、前記第1領域の重複部が前記第2領域に隣接するように前記下部基板と上部基板とを付着する工程を含むことを特徴とする請求項20または21に記載の弁ユニットの製造方法。   The step of attaching the two substrates includes an upper portion of the lower substrate and an upper portion of the first region so that a non-overlapping portion of the first region is adjacent to the third region and an overlapping portion of the first region is adjacent to the second region. The method for manufacturing a valve unit according to claim 20 or 21, further comprising a step of attaching the substrate. 前記下部基板または上部基板は、熱可塑性樹脂の成形により形成することを特徴とする請求項20〜22のいずれか1項に記載の弁ユニットの製造方法。   The method for manufacturing a valve unit according to any one of claims 20 to 22, wherein the lower substrate or the upper substrate is formed by molding a thermoplastic resin. 前記弁物質は常温で固体状態であり、エネルギーを吸収することで溶融される相転移物質を含むことを特徴とする請求項20〜23のいずれか1項に記載の弁ユニットの製造方法。   The method for manufacturing a valve unit according to any one of claims 20 to 23, wherein the valve substance is in a solid state at room temperature and includes a phase change substance that is melted by absorbing energy. 前記弁物質は前記相転移物質内に分散された、電磁波エネルギーを吸収することで発熱する複数の微細発熱粒子を含むことを特徴とする請求項24に記載の弁ユニットの製造方法。   25. The method of manufacturing a valve unit according to claim 24, wherein the valve material includes a plurality of fine heat generation particles dispersed in the phase change material and generating heat by absorbing electromagnetic energy. 前記微細発熱粒子は、金属酸化物粒子であることを特徴とする請求項25に記載の弁ユニットの製造方法。   26. The method of manufacturing a valve unit according to claim 25, wherein the fine heating particles are metal oxide particles. 前記相転移物質は、ワックス、ゲルまたは熱可塑性樹脂であることを特徴とする請求項24〜26のいずれか1項に記載の弁ユニットの製造方法。   The method of manufacturing a valve unit according to any one of claims 24 to 26, wherein the phase change material is wax, gel, or a thermoplastic resin.
JP2009116981A 2008-05-14 2009-05-13 Valve unit, fine flow apparatus equipped with the same, and manufacturing method of the valve unit Pending JP2009274067A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080044728A KR100955481B1 (en) 2008-05-14 2008-05-14 Valve unit, microfluidic device with the same, and method for fabricating the valve unit

Publications (2)

Publication Number Publication Date
JP2009274067A true JP2009274067A (en) 2009-11-26
JP2009274067A5 JP2009274067A5 (en) 2012-12-06

Family

ID=40874736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009116981A Pending JP2009274067A (en) 2008-05-14 2009-05-13 Valve unit, fine flow apparatus equipped with the same, and manufacturing method of the valve unit

Country Status (5)

Country Link
US (1) US8429821B2 (en)
EP (1) EP2119505B1 (en)
JP (1) JP2009274067A (en)
KR (1) KR100955481B1 (en)
AT (1) ATE537900T1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8779533B2 (en) * 2011-07-12 2014-07-15 Robert Bosch Gmbh MEMS with single use valve and method of operation
KR102176587B1 (en) 2013-10-15 2020-11-10 삼성전자주식회사 Sample analysis method, and dynamic valve operating method
USD841186S1 (en) * 2015-12-23 2019-02-19 Tunghai University Biochip

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045745A (en) * 2006-08-16 2008-02-28 Samsung Electronics Co Ltd Valve unit, reaction device with the same, and method of forming valve in channel

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6063589A (en) 1997-05-23 2000-05-16 Gamera Bioscience Corporation Devices and methods for using centripetal acceleration to drive fluid movement on a microfluidics system
KR100738113B1 (en) 2006-05-10 2007-07-12 삼성전자주식회사 Phase transition type valve and the manufacturing method thereof
EP1884284A1 (en) 2006-08-04 2008-02-06 Samsung Electronics Co., Ltd. Closing valve unit and reaction apparatus having closing valve
KR100763924B1 (en) 2006-08-16 2007-10-05 삼성전자주식회사 Valve unit, reaction apparatus with the same, and valve forming method in channel
KR101258434B1 (en) * 2007-05-03 2013-05-02 삼성전자주식회사 Microfluidic system and fabricating method of the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045745A (en) * 2006-08-16 2008-02-28 Samsung Electronics Co Ltd Valve unit, reaction device with the same, and method of forming valve in channel

Also Published As

Publication number Publication date
KR20090118753A (en) 2009-11-18
US8429821B2 (en) 2013-04-30
ATE537900T1 (en) 2012-01-15
EP2119505B1 (en) 2011-12-21
EP2119505A1 (en) 2009-11-18
US20090282681A1 (en) 2009-11-19
KR100955481B1 (en) 2010-04-30

Similar Documents

Publication Publication Date Title
KR101258434B1 (en) Microfluidic system and fabricating method of the same
JP5600180B2 (en) Valve unit, microfluidic device provided with the same, and driving method of valve unit
US8119079B2 (en) Microfluidic apparatus having fluid container
JP5208480B2 (en) Valve unit, microfluidic device equipped with valve unit, and microfluidic substrate
JP5171153B2 (en) Valve unit, reaction apparatus equipped with the same, and method for forming a valve in a channel
US8235073B2 (en) Microfluidic valve unit for controlling flow of fluid and method of fabricating the same
JP5539615B2 (en) Valve closing unit and reaction apparatus provided with the same
US8105551B2 (en) Microfluidic device and method of fabricating the same
KR100763924B1 (en) Valve unit, reaction apparatus with the same, and valve forming method in channel
JP2009274067A (en) Valve unit, fine flow apparatus equipped with the same, and manufacturing method of the valve unit
KR101391736B1 (en) Microfluidic valve, manufacturing process of the microfluidic valve and microfluidic device comprising the microfluidic valve
KR101473871B1 (en) Fabricating method of valve unit for controlling microfluid, valve unit for controlling microfluid, and microfluidic device with the valve unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130711

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140422