WO2016136087A1 - ニッケル酸化鉱石の湿式製錬方法 - Google Patents

ニッケル酸化鉱石の湿式製錬方法 Download PDF

Info

Publication number
WO2016136087A1
WO2016136087A1 PCT/JP2015/084417 JP2015084417W WO2016136087A1 WO 2016136087 A1 WO2016136087 A1 WO 2016136087A1 JP 2015084417 W JP2015084417 W JP 2015084417W WO 2016136087 A1 WO2016136087 A1 WO 2016136087A1
Authority
WO
WIPO (PCT)
Prior art keywords
leaching
ore
pressure
nickel oxide
magnesium
Prior art date
Application number
PCT/JP2015/084417
Other languages
English (en)
French (fr)
Inventor
浩史 庄司
工藤 敬司
佳智 尾崎
小林 宙
浅野 聡
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to CN201580076721.3A priority Critical patent/CN107250394B/zh
Priority to EP15883377.2A priority patent/EP3252177B1/en
Priority to CA2977456A priority patent/CA2977456C/en
Priority to AU2015384689A priority patent/AU2015384689B2/en
Priority to US15/552,307 priority patent/US10227675B2/en
Publication of WO2016136087A1 publication Critical patent/WO2016136087A1/ja
Priority to PH12017501516A priority patent/PH12017501516A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/005Preliminary treatment of ores, e.g. by roasting or by the Krupp-Renn process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • C22B23/043Sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for hydrometallizing nickel oxide ore, and more specifically, valuable metals are recovered from hydrous smelting of saprolite-based ore containing a large amount of alkali metals such as magnesium and silica among nickel oxide ores by high efficiency. About how it can be.
  • Patent Document 1 As a method for recovering valuable metals such as nickel and cobalt from low-grade nickel oxide ore with low nickel grade by wet smelting, for example, as shown in Patent Document 1, sulfuric acid is added to ore slurry and leached under high temperature and high pressure. A high-pressure acid leaching method (HPAL method: High Pressure Acid Leach method) is performed.
  • HPAL method High Pressure Acid Leach method
  • Limonite ore with high iron grade and low alkali component grades such as magnesium and silica there are two types of low-grade nickel oxide ores: Limonite ore with high iron grade and low alkali component grades such as magnesium and silica, and Saprolite ore containing a lot of alkali components. Limonite ore is mainly used as the raw material of the method.
  • the sulfuric acid added in the leaching process reacts with the alkali component contained in the ore to form an alkali sulfate such as magnesium sulfate. Consumption tends to increase, which is economically disadvantageous. For this reason, when subjecting a saprolite-type ore to pressure leaching based on the HPAL method, the amount of valuable metals recovered and the amount of sulfuric acid consumed are limited to a certain amount, but in many cases Only a small part of the amount of saprolite ore produced.
  • an atmospheric pressure leaching method has been studied as an effective utilization method of saprolite-based ore.
  • it is a method of using saprolite-based ore as a neutralizing agent for free acid contained in a leachate obtained by the HPAL method, and is disclosed in, for example, Patent Document 2 and Patent Document 3.
  • these methods are mainly used as a neutralizer for free acid or as a source of magnesium.
  • these methods are valuable such as nickel and cobalt contained in saprolite ores.
  • the metal recovery rate is low, and it is difficult to say that it is effectively used as a raw material.
  • Patent Document 4 a method of leaching nickel or cobalt by atmospheric pressure leaching using saprolite-based ore as a raw material is disclosed, and it is said that a high recovery rate can be achieved.
  • the time required for atmospheric pressure leaching is as long as 9.5 hours or more, and the production efficiency remains low.
  • Patent Document 5 proposes a method in which a leaching residue obtained by atmospheric leaching is supplied to a pressure leaching process of the HPAL method, thereby recovering valuable metals. Specifically, the method disclosed in Patent Document 5 treats the entire amount of low-grade nickel oxide ore by atmospheric leaching and pressure leaching. However, at a reaction temperature of 95 ° C., which is a condition for atmospheric leaching, a residence time of 2 to 3 hours is still required in the reaction tank, which requires an increase in equipment scale, supply of a large amount of warming heat, and heat insulation. It is not efficient as actual operation.
  • the atmospheric leaching according to Patent Document 5 is mainly intended to neutralize the free acid of the leaching solution obtained by the pressure leaching, so the magnesium leaching rate in atmospheric leaching is only about 42% to 50%. The amount of sulfuric acid consumed by magnesium during pressure leaching is still high.
  • the process waste liquid containing sodium is used for multistage cleaning liquid of pressure leaching residue, diluting liquid of flocculant added at the time of solid-liquid separation such as thickener, slurrying of low grade nickel oxide ore, etc.
  • solid-liquid separation such as thickener, slurrying of low grade nickel oxide ore, etc.
  • iron which is an impurity component
  • aluminum is removed as soda-olivine, thereby reducing the amount of sulfuric acid consumed by these impurity components.
  • sulfate double salts such as natrojarosite and soda alunite may become scales in the autoclave.
  • the process waste water containing sodium is a magnesium sulfate solution after recovering valuable metals, and magnesium sulfate is concentrated by circulation in the process system. Therefore, there is a possibility that crystal precipitation may occur in the process exceeding the saturation concentration, and there is a concern that filtration failure, piping blockage, and the like occur.
  • JP-A-2005-350766 JP-A-60-75536 JP 2007-77459 A Special table 2008-530356 gazette JP-A-6-116660
  • the present invention has been proposed in view of the above-described circumstances, and in the method of hydrometallurgy of nickel oxide ore for recovering nickel, cobalt, etc. from nickel oxide ore, acid consumption such as sulfuric acid used in leaching treatment
  • An object of the present invention is to provide a method capable of reducing the amount and recovering valuable metals such as nickel and cobalt with high efficiency.
  • the present inventors have made extensive studies to solve the above-described problems.
  • As a result among the nickel oxide ores used as raw materials, only target saprolite ores containing a large amount of alkali components such as magnesium and silica are subjected to atmospheric pressure leaching under prescribed standardized leaching conditions, thereby achieving the target magnesium.
  • Magnesium is leached to grade, and then the leaching residue obtained by the atmospheric leaching and the limonite ore with less alkali components are subjected to pressure leaching, so that the amount of sulfuric acid consumed by the pressure leaching treatment is effective.
  • the present invention was completed by discovering that valuable metals such as nickel and cobalt can be recovered with high efficiency. That is, the present invention provides the following.
  • the present invention is a method of hydrometallizing nickel oxide ore for recovering valuable metals such as nickel and cobalt from nickel oxide ore, wherein the nickel oxide ore is low magnesium grade having a magnesium grade of 2% by weight or less.
  • the step (B) for obtaining a normal pressure leaching residue, the limonite-based ore obtained in the step (A) and the normal pressure leaching residue obtained in the step (B) are mixed, and the acidity is obtained under high temperature and high pressure.
  • This is a hydrometallurgical method of nickel oxide ore comprising a step (C) of leaching under pressure by reacting with sulfuric acid in an atmosphere to obtain a pressure leaching solution.
  • the acid consumption such as sulfuric acid used in the pressure leaching treatment is effectively reduced, Valuable metals such as nickel and cobalt can be recovered with high efficiency.
  • FIG. 6 is a graph showing the relationship of the free acid concentration to the reaction time in the atmospheric pressure leaching process of Examples 1 to 4.
  • FIG. 4 is a graph showing the relationship of iron concentration to free acid concentration in atmospheric leaching treatments of Examples 1 to 4.
  • FIG. 6 is a graph showing the relationship of iron concentration to solution pH in atmospheric pressure leaching treatment of Examples 1 to 4.
  • FIG. 3 is a graph showing the relationship of magnesium grade in the leaching residue relative to [Fe 2 (SO 4 ) 3 + sulfuric acid] / ore Mg equivalent in the atmospheric leaching treatment of Examples 5 to 10.
  • FIG. 6 is a graph showing the relationship of the free acid concentration in the final liquid after reaction with respect to [Fe 2 (SO 4 ) 3 + sulfuric acid] / ore Mg equivalent in the atmospheric pressure leaching treatment of Examples 5 to 10.
  • FIG. 6 is a graph showing the relationship between the free acid concentration and the nickel leaching rate in the pressure leaching treatment of Examples 11 to 13 and Comparative Examples 1 to 3.
  • the nickel oxide ore hydrometallurgy method is a method for recovering valuable metals such as nickel and cobalt by leaching a low-grade nickel oxide ore having a low nickel quality. Specifically, among the low-grade nickel oxide ores, the sulfuric acid consumed in pressure leaching is obtained by performing atmospheric pressure leaching on saprolite ore containing a large amount of magnesium, silica, etc., and then performing pressure leaching. In this method, valuable metals such as nickel and cobalt are recovered with high efficiency from low-grade nickel oxide ore.
  • the method for hydrometallizing nickel oxide ore includes the following steps (A) to (C).
  • nickel oxide ore used as a raw material is sorted into limonite ore and saprolite ore based on magnesium grade, and only the selected saprolite ore is usually used with a pressurized leachate.
  • Perform pressure leaching treatment In the atmospheric pressure leaching treatment, the amount of acid contained in the pressure leaching solution and the molar ratio of the amount of magnesium contained in the saprolite ore that is the subject of the atmospheric pressure leaching treatment are normalized, and the atmospheric pressure leaching treatment is performed. Reduce the leaching residue magnesium grade to the target magnesium grade. Subsequently, the limonite ore obtained by sorting and the atmospheric leaching residue obtained by the atmospheric leaching treatment are mixed, and sulfuric acid is added under high temperature and high pressure to perform pressure leaching.
  • the magnesium quality of the atmospheric leaching residue can be further reduced to the target magnesium quality in a shorter time. It can be reduced efficiently, and the equipment scale required for the atmospheric pressure leaching process can be reduced.
  • a wet smelting method for recovering valuable metals from low-grade nickel oxide ore will be described.
  • a wet smelting method for nickel oxide ore to which this method can be applied will be described.
  • the following nickel oxide ore wet smelting method shows a specific example of recovering nickel and cobalt by a high-temperature pressure acid leaching method (HPAL method) using a sulfuric acid solution.
  • HPAL method high-temperature pressure acid leaching method
  • FIG. 1 is a process diagram showing the flow of a hydrometallurgical method using a nickel oxide ore HPAL method.
  • the wet smelting method of nickel oxide ore includes a leaching process S1 in which a sulfuric acid solution is added to a slurry of nickel oxide ore and leaching (pressure leaching) at high temperature and high pressure, and leaching treatment
  • the solid-liquid separation step S2 for obtaining a leachate containing impurity elements together with nickel and cobalt by separating the leach residue while washing the leach slurry obtained by the multistage cleaning, and adjusting the pH of the leachate to neutralize excess acid in the leachate
  • the neutralization starch (neutralization residue) containing the impurity element is separated and removed to obtain a neutralization final solution containing nickel and cobalt, and a sulfidizing agent is added to the neutralization final solution to
  • sulfidizing step S4 for producing a mixed sulfide containing nickel and cobalt, and leaching residue slurry separated from the solid-liquid separation step S2 and the impurity metal contained in the poor liquid discharged from the sulfidizing step S4 And a final neutralization step S5 for discharging and removed by.
  • Leaching step S1 a sulfuric acid solution is added to a slurry of low-grade nickel oxide ore (ore slurry) using a pressure reaction vessel such as a high-temperature pressure vessel (autoclave), and 220 ° C. to 280 ° C.
  • the ore slurry is stirred while being pressurized under a high temperature condition of 0 ° C. to generate a leaching slurry composed of a leaching solution and a leaching residue.
  • Nickel oxide ores are mainly so-called laterite ores, such as limonite ore with high Fe grade and low alkaline component grade, and saprolite ore containing many alkali components such as magnesium and silica. Is mentioned.
  • the nickel content in the laterite ore is usually 0.8% to 2.5% by weight, and is contained as a hydroxide or a siliceous clay (magnesium silicate) mineral.
  • the iron content in laterite ore is 10 to 50% by weight and is mainly in the form of trivalent hydroxide (goethite). Contained.
  • an oxide ore containing valuable metals such as nickel, cobalt, manganese, and copper, for example, manganese nodules existing in the deep sea bottom may be treated. it can.
  • a leaching reaction represented by the following formulas (i) to (iii) and a high-temperature thermal hydrolysis reaction represented by the following formulas (iv) and (v) occur, and nickel or cobalt And the like, and leaching of the leached iron sulfate as hematite is performed.
  • Solid-liquid separation process (leaching residue washing process)
  • the leaching slurry formed by the pressure leaching process in the leaching step S1 is subjected to multistage cleaning, and solid-liquid separation is performed into a leaching solution containing nickel and cobalt and a leaching residue.
  • an anionic flocculant can be added to perform solid-liquid separation processing in order to promote sedimentation separation of the leach residue.
  • the solid-liquid separation process is performed by solid-liquid separation equipment such as a thickener. Specifically, the leaching slurry is first diluted with a cleaning liquid, and then the leaching residue in the slurry is concentrated as a thickener sediment. Thereby, the nickel content adhering to the leaching residue can be reduced according to the degree of dilution.
  • the solid-liquid separation step S2 is also referred to as a leaching residue cleaning step.
  • the solid-liquid separation step S2 it is preferable to perform solid-liquid separation while washing the leach slurry in multiple stages.
  • the multi-stage cleaning method for example, a continuous AC multi-stage cleaning method in which a cleaning liquid is brought into contact with the leaching slurry in an alternating current can be used. Thereby, the cleaning liquid newly introduced into the system can be reduced, and the recovery rate of nickel and cobalt can be improved to 95% or more.
  • the cleaning liquid (cleaning water) is not particularly limited, but it is preferable to use a liquid that does not include nickel and does not affect the process.
  • the cleaning liquid preferably, the poor liquid obtained in the subsequent sulfurization step S4 can be used repeatedly.
  • the pH of the resulting neutralized final solution is 4 or less, preferably 3.0 to 3.5, more preferably 3.1 to 3, while suppressing the oxidation of the separated leachate.
  • the neutralized starch produced as described above is settled and separated to produce a neutralized final solution that becomes a mother liquor for nickel recovery.
  • the slurry obtained by the neutralization treatment (neutralization slurry) is subjected to a solid-liquid separation treatment using a solid-liquid separation device such as a thickener to separate and remove the neutralized starch. .
  • a sulfidizing agent such as hydrogen sulfide gas is blown into the neutralized final solution which is the mother liquor for nickel recovery to cause a sulfidation reaction.
  • a mixed sulfide (nickel / cobalt mixed sulfide) and a poor liquid (post-sulfurized liquid) in which the nickel concentration is stabilized at a low level are obtained.
  • step S4 when zinc is contained in the mother liquor (neutralization final solution) for nickel and cobalt recovery, zinc is selectively used as sulfide prior to separation of nickel and cobalt as sulfide. Can be processed.
  • the nickel / cobalt mixed sulfide slurry is settled and separated using a solid-liquid separator such as thickener to separate and recover the nickel / cobalt sulfide from the bottom of the thickener, and the aqueous solution component overflows. Recovered as a solution after sulfidation.
  • Final neutralization step S5 the discharge standard is satisfied for the leaching residue slurry discharged from the solid-liquid separation step S2 and the poor liquid (post-sulfurization liquid) discharged from the sulfidation step S4.
  • a neutralization treatment (detoxification treatment) for adjusting to a predetermined pH range is performed.
  • the method of detoxification treatment in the final neutralization step S5, that is, the pH adjustment method is not particularly limited, but for example, by adding a neutralizing agent such as calcium carbonate (limestone) slurry or calcium hydroxide (slaked lime) slurry. It can be adjusted to a predetermined range.
  • a neutralizing agent such as calcium carbonate (limestone) slurry or calcium hydroxide (slaked lime) slurry.
  • the wet smelting method of nickel oxide ore according to the present embodiment is a method in which an atmospheric pressure leaching process is incorporated into the above-described wet smelting method. Specifically, the nickel oxide ore used as a raw material is sorted into limonite ore and saprolite ore based on the magnesium grade, and only the high-grade magnesium saprolite ore is subjected to atmospheric pressure leaching treatment using pressurized leachate. I do.
  • the atmospheric pressure leaching treatment it is carried out in an amount normalized by the molar ratio of the amount of acid contained in the pressurized leachate and the amount of magnesium contained in the saprolite ore that is the subject of the atmospheric pressure leaching treatment, Reduce the leaching residue magnesium grade to the target magnesium grade. Thereafter, the limonite ore obtained by sorting and the atmospheric leaching residue obtained by atmospheric leaching are mixed, and sulfuric acid is added under high temperature and high pressure to perform pressure leaching.
  • the amount of nickel oxide ore used for atmospheric leaching can be reduced, and magnesium leaching of saprolite ore can be promoted by atmospheric leaching.
  • pressure leaching is achieved.
  • the amount of sulfuric acid used in can be effectively reduced. This makes it possible to leach valuable metals such as nickel and cobalt contained in nickel oxide ore at a high leaching rate even at low acid concentrations, and recover valuable metals from nickel oxide ore as a raw material with high efficiency. can do.
  • FIG. 2 is a process diagram showing the flow of the nickel oxide ore hydrometallurgical method according to the present embodiment.
  • the nickel oxide ore hydrometallurgy method according to the present embodiment uses nickel oxide ore as a raw material as a low magnesium grade limonite ore and a high magnesium grade saprolite ore. It was calculated that the free acid concentration and the presence form contained in the pressure leachate obtained by the pressure leaching step S13 with respect to the ore sorting step S11 and the saprolite-type ore sorted in the ore sorting step S11 were trivalent.
  • An atmospheric pressure leaching process in which an atmospheric pressure leaching is performed by adding a pressure leachate whose sulfuric acid concentration is adjusted so that the value obtained by dividing the total value of the iron ion concentration by the magnesium grade contained in the saprolite ore is equal to or less than a predetermined equivalent. Pressurization for pressure leaching by mixing S12, the limonite ore selected in the ore sorting step S11 and the atmospheric leaching residue obtained in the atmospheric leaching step S12 And an output step S13.
  • nickel oxide ore used as a raw material is sorted into limonite ore and saprolite ore based on magnesium grade.
  • nickel oxide ores used as raw materials limonite ores have high iron quality, while magnesium, which is an alkaline component, has low quality.
  • saprolite ores are high magnesium grade ores containing a large amount of alkali components such as magnesium and silica.
  • “limonite ore ⁇ magnesium grade: 1.3 wt% ⁇ saprolite ore” is known.
  • a high-magnesium grade saprolite ore containing a large amount of alkali components, that is, magnesium grade exceeding 2% by weight is selected.
  • the nickel oxide ore used as a raw material is sorted based on the magnesium grade, which is an alkaline component, so that only the selected saprolite ore having a high magnesium grade is leached at the atmospheric pressure leaching step S12 described later. Make it available for processing. This makes it possible to carry out smelting using saprolite ore effectively, and to reduce the amount of ore used for atmospheric leaching and perform atmospheric leaching treatment in a short time.
  • Normal pressure leaching process (Regarding the normal pressure leaching process)
  • a normal pressure leaching process is performed on the saprolite ore selected in the ore selection step S11.
  • the atmospheric leaching in the atmospheric leaching step S12 is performed by adding a pressure leaching solution obtained in the pressure leaching step S13 described later.
  • the total value of the free acid concentration contained in the pressurized leachate and the iron ion concentration calculated assuming that the existence form is trivalent is contained in the saprolite ore.
  • Normal pressure leaching by adding a pressure leaching solution with the sulfuric acid concentration adjusted so that the value divided by the magnesium grade ([Fe 2 (SO 4 ) 3 + sulfuric acid] / ore Mg equivalent) is 1.5 mol / mol equivalent or less It is characterized by doing.
  • the blending ratio of the pressurized leachate used for the leaching process and the saprolite-based ore is normalized by the molar ratio of the acid amount contained in the pressurized leachate and the magnesium amount contained in the ore.
  • the leachate obtained in the pressure leaching step S13 described later contains iron ions derived from iron contained in the ore (for example, in the form of iron sulfate (Fe 2 (SO 4 ) 3 )).
  • the iron ions become hydroxide as the pH of the solution increases, and it acts as an acid, consuming Mg (OH) 2 contained in the slurry of saprolite ore.
  • this atmospheric pressure leaching step S12 by adding sulfuric acid as necessary, the leaching of magnesium from the saprolite ore can be further promoted, and the solid-liquid ratio in the atmospheric pressure leaching is increased. be able to.
  • a solid-liquid separation process After performing the normal pressure leaching process on the saprolite ore in the normal pressure leaching step S12, a solid-liquid separation process is performed in which the obtained normal pressure leaching slurry is solid-liquid separated into a normal pressure leaching solution and a normal pressure leaching residue (solid liquid Separation step S14).
  • solid-liquid separation processing method in solid-liquid separation process S14, For example, it can carry out using solid-liquid separation apparatuses, such as a thickener.
  • Pressure leaching process> (About pressure leaching process)
  • the slurry of limonite ore having a low magnesium quality selected in the ore sorting step S11 and the slurry of the atmospheric pressure leaching residue obtained by the atmospheric pressure leaching treatment in the atmospheric pressure leaching step S12 are mixed. Sulfuric acid is added to it and subjected to pressure leaching under high temperature and pressure.
  • This pressure leaching step S13 corresponds to the leaching step (pressure leaching step) S1 of the hydrometallurgical process whose process diagram is shown in FIG. 1, and the atmospheric pressure leaching residue obtained by the limonite ore and the atmospheric pressure leaching process. Is subjected to a pressure leaching treatment using sulfuric acid. In addition, since the specific description of the leaching process is the same as that of the leaching step S1, it is omitted here.
  • the pressure leachate separated by the solid-liquid separation process is transferred to the atmospheric pressure leaching process S12 for performing the atmospheric pressure leaching process on the saprolite ore having a high magnesium grade as described above, and is used for the atmospheric pressure leaching process.
  • the solid-liquid separation step S15 by directly solid-liquid separating the pressure leaching slurry obtained through the pressure leaching step S13, a leachate with a high free acid concentration can be obtained, and the atmospheric pressure leaching step
  • the solid-liquid ratio of atmospheric leaching in S12 can be increased.
  • the normal pressure leachate obtained by the normal pressure leaching (normal pressure leaching process using the pressure leachate) for the saprolite ore in the normal pressure leaching step S12 is transferred to the neutralization step S16.
  • the leaching residue obtained by the pressure leaching in the pressure leaching step S13 is subjected to, for example, AC multi-stage washing (residue washing step S17) and the recovered cleaning liquid is also treated. Can do.
  • This neutralization step S16 corresponds to the neutralization step S3 of the hydrometallurgical method shown in the process diagram of FIG. A neutralized starch containing an impurity element (neutralization residue) and a neutralized final solution that becomes a mother liquor for nickel recovery are generated.
  • neutralization residue an impurity element
  • neutralized final solution that becomes a mother liquor for nickel recovery
  • the final neutralization liquid (mother liquid) obtained by the neutralization process in the neutralization process S16 is transferred to the sulfurization process S18 and subjected to the sulfurization process.
  • This sulfidation step S18 corresponds to the sulfidation step S4 of the hydrometallurgical method shown in the flow chart of FIG. 1, and a sulfidizing agent such as hydrogen sulfide gas is blown into the neutralized final solution which is a mother liquor for nickel recovery.
  • a sulfurization reaction is caused to obtain a mixed sulfide containing nickel and cobalt with a small amount of impurity components (nickel / cobalt mixed sulfide) and a poor liquid (post-sulfurized liquid) in which the nickel concentration is stabilized at a low level.
  • the specific description of the sulfiding treatment is omitted here because it is the same as that of the sulfiding step S4.
  • This final neutralization step S19 corresponds to the final neutralization step S5 of the hydrometallurgical process whose process diagram is shown in FIG. Neutralizes heavy metal ions contained in liquid and pressure leaching residue.
  • the final neutralized starch slurry from which heavy metals have been removed from the aqueous solution is transferred to a tailing dam (tailing dam).
  • Examples 1 to 4 Place the sulfuric acid solution of sulfuric acid concentration shown in Table 1 below or the HPAL leachate of iron concentration and sulfuric acid concentration shown in Table 1 below (pressurized leachate generated by pressure leaching) in a separable flask with a baffle plate with a capacity of 1000 mL The mixture was heated to 90 ° C. using an oil bath.
  • a low-grade nickel oxide ore having a predetermined magnesium grade is added so as to have a predetermined [Fe 2 (SO 4 ) 3 + sulfuric acid] / ore Mg equivalent (mol / mol) shown in Table 1 below.
  • Table 1 shows a predetermined [Fe 2 (SO 4 ) 3 + sulfuric acid] / ore Mg equivalent (mol / mol) shown in Table 1 below.
  • atmospheric pressure leaching treatment was performed for 6 hours.
  • 15 mL each was sampled and subjected to filtration treatment.
  • the chemical analysis was conducted. Table 2 below summarizes the measurement results of the free acid concentration at each reaction time, and FIGS. 3 to 5 show graphs of the free acid concentration and various chemical analysis results.
  • Example 1 and Example 2 are examples in which the sulfuric acid / ore Mg equivalent ratio (mol / mol) (not considering Fe) is set to the same level.
  • Table 2 and FIG. 3 after the elapse of 6 hours (360 minutes) from the start of the reaction, in Example 1, the free acid concentration in the final solution of atmospheric leaching treatment was reduced to 2.1 g / L.
  • Example 2 using the pressure leaching solution the free acid concentration of the atmospheric leaching treatment final solution decreased only to 8.4 g / L.
  • FIG. 3 is a graph showing the relationship of the free acid concentration to the reaction time.
  • Example 3 and Example 4 are examples in which iron is calculated as an acid and (iron + acid) / ore Mg equivalent ratio (mol / mol) is set to the same level.
  • Table 2 and FIG. 3 after each reaction time, the free acid concentration of Example 1 and Example 2 was higher in Example 4 although the free acid concentration in the final solution of atmospheric leaching treatment was slightly higher. Compared with the difference in concentration, the difference in free acid concentration between Example 3 and Example 4 is as small as about 1 g / L, which can be said to be within the same range.
  • FIG. 4 is a graph showing the relationship of iron concentration to free acid concentration.
  • FIG. 4 shows that in Example 2, the iron concentration also decreased from the vicinity where the free acid concentration became 12 g / L or less.
  • FIG. 5 is a graph showing the relationship of the iron concentration to the pH of the solution subjected to the leaching treatment. From the results shown in the graph of FIG. 5, for example, the decrease in iron concentration in Example 2 is considered to be due to hydroxylation precipitation of trivalent iron ions (Fe 3+ ).
  • Example 5 to 10 An HPAL leachate (pressure leachate) having an iron concentration and a free sulfuric acid concentration shown in Table 3 below was placed in a 500 mL baffled separable flask, and heated to 90 ° C. using an oil bath.
  • a low-grade nickel oxide ore having a predetermined magnesium grade is added so as to have a predetermined [Fe 2 (SO 4 ) 3 + sulfuric acid] / ore Mg equivalent (mol / mol) shown in Table 3 below.
  • a normal pressure leaching process was performed with stirring at 700 rpm for 3 hours. After 1, 2, and 3 hours had elapsed from the start of the reaction, 15 mL each was sampled and filtered, and then the free acid concentration of the filtrate was measured. Further, chemical analysis was performed on the atmospheric leaching residue obtained by sampling, and the magnesium quality was confirmed. 6 and 7 show the measurement results.
  • FIG. 6 is a graph showing the relationship of the magnesium quality in the leaching residue produced by atmospheric leaching with respect to [Fe 2 (SO 4 ) 3 + sulfuric acid] / ore Mg equivalent. From FIG. 6, it is possible to confirm the amount of acid and the reaction time necessary to obtain a target magnesium-grade leaching residue of normal grade by high-pressure leaching from high magnesium grade ore.
  • FIG. 7 is a graph showing the relationship of the free acid concentration in the post-reaction final solution with respect to [Fe 2 (SO 4 ) 3 + sulfuric acid] / ore Mg equivalent. From FIG. 7, when the reaction time of the atmospheric leaching treatment is 3 hours or less, [Fe 2 (SO 4 ) 3 + sulfuric acid] / Ore Mg is used to keep the free acid concentration of the atmospheric leaching final solution low. It turns out that it is desirable to adjust an equivalent to 1.5 (mol / mol) or less.
  • Leaching slurry (35% by weight) comprising a normal-grade leaching residue having the metal grade shown in Table 4 below and a normal-pressure leaching solution (normal pressure leaching final solution) having the concentrations shown in Table 5 below, and a low-grade metal grade shown in Table 4
  • Magnesium grade nickel oxide ore (40 wt% slurry: dilution is tap water) is mixed in the quantity (g) and liquid quantity (L) shown in Table 4 and Table 5, and the amount shown in Table 6 below is mixed therewith. Sulfuric acid and water were added to adjust each to a slurry having a concentration of 28% by weight.
  • the prepared slurry was put into an autoclave having a capacity of 3 liters, and pressure leached by batch processing at a reaction temperature of 245 ° C. and a holding time of 1 hour.
  • the leaching residue slurry obtained by the pressure leaching treatment was filtered and solid-liquid separated, and the free acid concentration of the obtained leaching solution was measured. Further, the concentration of each component in the leachate and the component quality in the obtained leach residue were measured by chemical analysis, and the leach rate of each component was calculated.
  • the concentration of each component of the obtained leachate (pressurized leachate) is shown in Table 6 below, and the leach rate of each component is shown in Table 7 below.
  • Tables 6 and 7 show that valuable metals can be leached at a high leaching rate even when the free acid concentration is low, that is, without using an excessive amount of sulfuric acid. This can be understood more clearly when compared with the results of Comparative Examples 1 to 3 described later.
  • the leaching residue slurry obtained by the pressure leaching treatment was filtered and solid-liquid separated, and the free acid concentration of the obtained leaching solution was measured. Further, the concentration of each component in the leachate and the component quality in the obtained leach residue were measured by chemical analysis, and the leach rate of each component was calculated.
  • the concentration of each component of the obtained leachate (pressurized leachate) is shown in Table 9 below, and the leaching rate of each component is shown in Table 10 below.
  • FIG. 8 is a graph showing the relationship between the free acid concentration and the nickel leaching rate in Examples 11 to 13 and Comparative Examples 1 to 3. As shown in FIG. 8, it can be seen that according to the methods implemented in Examples 11 to 13, valuable metals can be recovered efficiently and at a high recovery rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

 ニッケル酸化鉱石からニッケルやコバルト等を回収するニッケル酸化鉱石の湿式製錬方法において、浸出処理で使用する硫酸等の酸消費量を低減させ、またニッケルやコバルト等の有価金属を高効率で回収することができる方法を提供する。 本発明は、原料とするニッケル酸化鉱石を、低マグネシウム品位のリモナイト系鉱石と高マグネシウム品位のサプロライト系鉱石とに選別する工程(A)と、サプロライト系鉱石に対して、工程(C)における加圧浸出により得られる加圧浸出液を用いて所定の規格化された浸出条件にて常圧浸出を施す工程(B)と、工程(A)で得られたリモナイト系鉱石と工程(B)で得られた常圧浸出残渣とを混合して高温高圧下の酸性雰囲気で硫酸と反応させることにより加圧浸出する工程(C)とを有する。

Description

ニッケル酸化鉱石の湿式製錬方法
 本発明は、ニッケル酸化鉱石の湿式製錬方法に関し、より詳しくは、ニッケル酸化鉱石のうち、マグネシウムやシリカ等のアルカリ金属を多く含むサプロライト系鉱石から有価金属を湿式製錬により高効率で回収することができる方法に関する。
 ニッケル品位の低い低品位ニッケル酸化鉱石からニッケルやコバルト等の有価金属を湿式製錬により回収する方法として、例えば特許文献1に示すような、鉱石スラリーに硫酸を添加して高温高圧下で浸出する高圧酸浸出法(HPAL法:High Pressure Acid Leach法)が行われている。
 ここで、低品位ニッケル酸化鉱石には、鉄品位が高くマグネシウムやシリカ等のアルカリ成分品位の低いリモナイト(Limonite)系鉱石と、アルカリ成分を多く含むサプロライト(Saprolite)系鉱石の2つがあり、HPAL法の原料としてはリモナイト系鉱石が主として用いられている。
 一方、サプロライト系鉱石を原料とした場合、浸出処理で添加した硫酸と、その鉱石に含まれるアルカリ成分とが反応して、硫酸マグネシウムのようなアルカリ硫酸塩を形成してしまい、その結果として酸消費量が増加する傾向があり経済的には不利となる。このため、サプロライト系鉱石をHPAL法に基づく加圧浸出に付す場合には、有価金属の回収量と硫酸消費量とがバランスする一部の量のみに制限されることになるが、多くの場合、産出するサプロライト系鉱石の鉱量のごく一部にとどまる。
 これまでも、サプロライト系鉱石の有効利用方法として、例えば常圧浸出方法が検討されてきた。具体的には、サプロライト系鉱石を、HPAL法により得られる浸出液に含まれる遊離(Free)酸の中和剤として利用する方法であり、例えば特許文献2や特許文献3等に開示されている。しかしながら、これらの方法は、あくまでも遊離酸の中和剤、又はマグネシウム源としての活用が主な目的であって、中和剤として使用した場合にはサプロライト系鉱石に含まれるニッケルやコバルト等の有価金属の回収率は低くなり、原料として有効活用しているとは言い難い。
 また、特許文献4に開示されている方法では、サプロライト系鉱石を原料として用いて常圧浸出によりニッケルやコバルトを浸出させる方法が開示されており、高回収率を達成できるとされているものの、常圧浸出に要する時間が9.5時間以上と非常に長く、生産効率の悪いものにとどまる。
 このようなことから、特許文献5には、常圧浸出で得られる浸出残渣を、HPAL法の加圧浸出処理に供給し、それにより有価金属を回収する方法が提案されている。具体的に、特許文献5に開示されている方法は、低品位ニッケル酸化鉱石の全量を、常圧浸出と加圧浸出とにより処理するものである。しかしながら、常圧浸出の条件である95℃の反応温度では、反応槽で2時間~3時間の滞留時間をなお必要とし、設備規模の拡大や膨大な加温熱量の供給と保温が必要となる等、実操業としては効率的ではない。
 さらに、その特許文献5による常圧浸出も、加圧浸出により得られる浸出液の遊離酸の中和が主目的であるため、常圧浸出におけるマグネシウム浸出率としては42%~50%程度にとどまり、加圧浸出にてマグネシウムに消費される硫酸使用量は依然として多い。
 また、加圧浸出液に含まれるマグネシウム濃度が上昇することにより、ニッケルやコバルト等の有価金属の浸出率が低下するという問題を有している。そのため、常圧浸出残渣の一部を系外に排出したり、一定以上の高いマグネシウム品位を持つサプロライト系鉱石は常圧浸出に使用することができない等、サプロライト系鉱石を原料として有効活用できないという問題を有している。
 上述した特許文献5では、その対策として、ナトリウムを含む工程排液の再利用を提案している。具体的には、ナトリウムを含む工程排液を加圧浸出残渣の多段洗浄液や、シックナー等の固液分離時に添加する凝集剤の希釈液、低品位ニッケル酸化鉱石のスラリー化等に使用して、加圧浸出時において不純物成分である鉄をナトロジャロサイト、アルミニウムをソーダ明礬石として除去し、これらの不純物成分に消費される硫酸量を低減させるとしている。しかしながら、ナトロジャロサイトやソーダ明礬石等の硫酸複塩は、オートクレーブ内でスケールとなる懸念がある。また、ナトリウムを含む工程排水は、有価金属を回収した後の硫酸マグネシウム溶液であり、プロセス系内での循環によって硫酸マグネシウムが濃縮してしまう。そのため、飽和濃度を超えて工程内で結晶析出が起こる可能性もあり、濾過不良や配管閉塞等が生じるという懸念も有している。
 以上のような理由から、HPAL法において。サプロライト系鉱石を原料として有効利用するには至っておらず、そのサプロライト系鉱石からニッケルやコバルト等の有価金属を効率よく回収できる方法が望まれている。
特開2005-350766号公報 特開昭60-75536号公報 特開2007-77459号公報 特表2008-530356号公報 特開平6-116660号公報
 本発明は、上述したような実情に鑑みて提案されたものであり、ニッケル酸化鉱石からニッケルやコバルト等を回収するニッケル酸化鉱石の湿式製錬方法において、浸出処理で使用する硫酸等の酸消費量を低減させ、またニッケルやコバルト等の有価金属を高効率で回収することができる方法を提供することを目的とする。
 本発明者らは、上述した課題を解決するために鋭意検討を重ねた。その結果、原料とするニッケル酸化鉱石のうち、マグネシウムやシリカ等のアルカリ成分を多く含むサプロライト系鉱石のみに対して所定の規格化された浸出条件にて常圧浸出を施すことで目標とするマグネシウム品位までマグネシウムを浸出させ、その後、その常圧浸出により得られた浸出残渣とアルカリ成分が少ないリモナイト鉱石とに対して加圧浸出を施すことで、その加圧浸出処理で消費する硫酸量を効果的に低減させ、ニッケルやコバルト等の有価金属を高効率で回収できることを見出し、本発明を完成させた。すなわち、本発明は、以下のものを提供する。
 すなわち、本発明は、ニッケル酸化鉱石からニッケルやコバルト等の有価金属を回収するニッケル酸化鉱石の湿式製錬方法であって、前記ニッケル酸化鉱石を、マグネシウム品位が2重量%以下である低マグネシウム品位のリモナイト系鉱石と、マグネシウム品位が2重量%を越える高マグネシウム品位のサプロライト系鉱石とに選別する工程(A)と、前記工程(A)で得られたサプロライト系鉱石に対して、下記工程(C)における加圧浸出により得られる加圧浸出液に含まれる遊離酸濃度と存在形態が3価であるとして算出した鉄イオン濃度との合計値を該サプロライト系鉱石に含まれるマグネシウム品位で除した値が1.5mol/mol当量以下となるように硫酸濃度を調整した該加圧浸出液を添加して常圧浸出し、常圧浸出液と常圧浸出残渣とを得る工程(B)と、前記工程(A)で得られたリモナイト系鉱石と、前記工程(B)で得られた常圧浸出残渣とを混合し、高温高圧下の酸性雰囲気で硫酸と反応させることにより加圧浸出し、加圧浸出液を得る工程(C)とを含むニッケル酸化鉱石の湿式製錬方法である。
 本発明によれば、ニッケル酸化鉱石からニッケルやコバルト等の有価金属を回収するニッケル酸化鉱石の湿式製錬方法において、加圧浸出処理で使用する硫酸等の酸消費量を効果的に低減させ、ニッケルやコバルト等の有価金属を高効率で回収することができる。
ニッケル酸化鉱石の湿式製錬方法の流れを示す工程図である。 サプロライト鉱石のみに対する常圧浸出処理を組み込んだニッケル酸化鉱石の湿式製錬方法の流れを示す工程図である。 実施例1~4の常圧浸出処理における反応時間に対する遊離酸濃度の関係を示すグラフ図である。 実施例1~4の常圧浸出処理における遊離酸濃度に対する鉄の濃度の関係を示すグラフ図である。 実施例1~4の常圧浸出処理における溶液のpHに対する鉄の濃度の関係を示すグラフ図である。 実施例5~10の常圧浸出処理における[Fe(SO+硫酸]/鉱石Mg当量に対する浸出残渣中のマグネシウム品位の関係を示すグラフ図である。 実施例5~10の常圧浸出処理における[Fe(SO+硫酸]/鉱石Mg当量に対する反応後終液の遊離酸濃度の関係を示すグラフ図である。 実施例11~13及び比較例1~3の加圧浸出処理における遊離酸濃度とニッケル浸出率の関係を示すグラフ図である。
 以下、本発明の具体的な実施形態(以下、「本実施の形態」という)について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。
 ≪1.概要≫
 本実施の形態に係るニッケル酸化鉱石の湿式製錬方法は、ニッケル品位の低い低品位ニッケル酸化鉱石に対して浸出処理を施してニッケルやコバルト等の有価金属を回収する方法である。具体的には、低品位ニッケル酸化鉱のうち、マグネシウムやシリカ等を多く含むサプロライト系鉱石に対して常圧浸出を行い、その後、加圧浸出を行うことによって、その加圧浸出において消費する硫酸の使用量を効果的に低減させ、低品位ニッケル酸化鉱石からニッケル及びコバルト等の有価金属を高効率で回収する方法である。
 より具体的に、本実施の形態に係るニッケル酸化鉱石の湿式製錬方法は、以下の工程(A)~工程(C)を含む。
工程(A):原料とするニッケル酸化鉱石を、マグネシウム品位が2重量%以下である低マグネシウム品位のリモナイト系鉱石と、マグネシウム品位が2重量%を越える高マグネシウム品位のサプロライト系鉱石とに選別する鉱石選別工程。
工程(B):工程(A)で得られたサプロライト系鉱石に対して、下記の工程(C)における加圧浸出により得られる加圧浸出液に含まれる遊離酸濃度と存在形態が3価であるとして算出した鉄イオン濃度との合計値をそのサプロライト系鉱石に含まれるマグネシウム品位で除した値が1.5mol/mol当量以下となるように硫酸濃度を調整した加圧浸出液を添加して常圧浸出し、常圧浸出液と常圧浸出残渣とを得る常圧浸出工程。
工程(C):工程(A)で得られたリモナイト系鉱石と、工程(B)で得られた常圧浸出残渣とを混合し、高温高圧下の酸性雰囲気で硫酸と反応させることにより加圧浸出し、加圧浸出液を得る加圧浸出工程。
 本実施の形態に係る湿式製錬方法では、原料とするニッケル酸化鉱石をマグネシウム品位に基づきリモナイト鉱石とサプロライト鉱石とに選別し、選別されたサプロライト鉱石のみに対して、加圧浸出液を用いた常圧浸出処理を行う。その常圧浸出処理においては、加圧浸出液に含まれる酸量と、常圧浸出処理の対象であるサプロライト鉱石に含まれるマグネシウム量のモル比とで規格化された分量にて実施し、常圧浸出残渣のマグネシウム品位を目標とするマグネシウム品位まで低減させる。そして、続いて、選別して得られたリモナイト系鉱石と、常圧浸出処理により得られた常圧浸出残渣とを混合して、高温高圧下にて硫酸を添加して加圧浸出を行う。
 このような方法によれば、常圧浸出に供する低品位ニッケル酸化鉱石量を低減させることができ、また常圧浸出によりサプロライト系鉱石のマグネシウム浸出を促進させることが可能となり、その結果として、加圧浸出において使用する硫酸量を効果的に低減させることができる。このことにより、低い酸濃度であっても、加圧浸出によりニッケル酸化鉱石に含まれるニッケルやコバルト等の有価金属を高い浸出率で浸出させることができ、低品位ニッケル酸化鉱石から有価金属を高効率で回収することができる。
 また、常圧浸出にて用いる加圧浸出液に含まれる酸量を、硫酸の追加添加等で適宜調整することによって、常圧浸出残渣のマグネシウム品位を目標とするマグネシウム品位までより一層に短時間で効率的に減少させることができ、その常圧浸出処理に必要となる設備規模を縮小させることができる。
 以下では、より具体的に、低品位ニッケル酸化鉱石から有価金属を回収する湿式製錬方法について説明するが、先ず、この方法を適用することができるニッケル酸化鉱石の湿式製錬方法について説明する。なお、以下のニッケル酸化鉱石の湿式製錬方法は、硫酸溶液を用いた高温加圧酸浸出法(HPAL法)によりニッケル及びコバルトを回収する形態を具体例として示す。
 ≪2.HPAL法に基づくニッケル酸化鉱石の湿式製錬方法≫
 図1は、ニッケル酸化鉱石のHPAL法を用いた湿式製錬方法の流れを示す工程図である。図1の工程図に示すように、ニッケル酸化鉱石の湿式製錬方法は、ニッケル酸化鉱石のスラリーに硫酸溶液を添加して高温高圧下で浸出(加圧浸出)する浸出工程S1と、浸出処理により得られた浸出スラリーを多段洗浄しながら浸出残渣を分離してニッケル及びコバルトと共に不純物元素を含む浸出液を得る固液分離工程S2と、浸出液のpHを調整して浸出液中の余剰酸を中和するとともに不純物元素を含む中和澱物(中和残渣)を分離除去してニッケル及びコバルトを含む中和終液を得る中和工程S3と、中和終液に硫化剤を添加して硫化処理を施しニッケル及びコバルトを含む混合硫化物を生成させる硫化工程S4と、固液分離工程S2から分離した浸出残渣スラリーと硫化工程S4から排出された貧液に含まれる不純物金属を中和除去して排出する最終中和工程S5とを有する。
 (1)浸出工程
 浸出工程S1では、高温加圧容器(オートクレーブ)等の加圧反応槽を用いて、低品位ニッケル酸化鉱石のスラリー(鉱石スラリー)に硫酸溶液を添加して、220℃~280℃の高い温度条件下で加圧しながら鉱石スラリーを攪拌することによって加圧浸出し、浸出液と浸出残渣とからなる浸出スラリーを生成させる。
 ニッケル酸化鉱石としては、主として、Fe品位が高く、またアルカリ成分品位の低いリモナイト(Limonite)鉱石や、マグネシウムやシリカ等のアルカリ成分を多く含むサプロライト(Saprolite)鉱石等の、いわゆるラテライト(Laterite)鉱石が挙げられる。ラテライト鉱石におけるニッケル含有量は、通常、0.8重量%~2.5重量%であり、水酸化物又はケイ苦土(ケイ酸マグネシウム)鉱物として含有される。また、ラテライト鉱石における鉄含有量は、10重量%~50重量%であり、主として3価の水酸化物(ゲーサイト)の形態であるが、一部2価の鉄がケイ酸苦土鉱物に含有される。
 また、この浸出工程S1では、上述したようなラテライト鉱石のほかに、ニッケル、コバルト、マンガン、銅等の有価金属を含有する酸化鉱石、例えば深海底に賦存するマンガンノジュール等を処理することもできる。
 浸出工程S1における加圧浸出処理では、下記式(i)~(iii)で表される浸出反応と下記式(iv)及び(v)で表される高温熱加水分解反応が生じ、ニッケルやコバルト等の硫酸塩としての浸出と、浸出された硫酸鉄のヘマタイトとしての固定化が行われる。
 ・浸出反応
MO+HSO⇒MSO+HO ・・(i)
(なお、式中Mは、Ni、Co、Fe、Zn、Cu、Mg、Cr、Mn等を表す)
2Fe(OH)+3HSO⇒Fe(SO+6HO ・・(ii)
FeO+HSO⇒FeSO+HO ・・(iii)
 ・高温熱加水分解反応
2FeSO+HSO+1/2O⇒Fe(SO+HO ・・(iv)
Fe(SO+3HO⇒Fe+3HSO ・・(v)
 (2)固液分離工程(浸出残渣洗浄工程)
 固液分離工程S2では、浸出工程S1における加圧浸出処理で形成された浸出スラリーを多段洗浄して、ニッケル及びコバルトを含む浸出液と浸出残渣とに固液分離する。この固液分離工程S2では、浸出残渣の沈降分離の促進のために、例えばアニオン系の凝集剤等を添加して固液分離処理を行うことができる。
 固液分離工程S2では、例えば、浸出スラリーを洗浄液と混合した後、シックナー等の固液分離設備により固液分離処理を施す。具体的には、先ず、浸出スラリーが洗浄液により希釈され、次に、スラリー中の浸出残渣がシックナーの沈降物として濃縮される。これにより、浸出残渣に付着するニッケル分をその希釈の度合いに応じて減少させることができる。なお、固液分離工程S2は、浸出残渣洗浄工程ともいう。
 固液分離工程S2では、浸出スラリーを多段で洗浄しながら固液分離をすることが好ましい。多段洗浄方法としては、例えば、浸出スラリーに対して洗浄液を交流に接触させる連続交流多段洗浄法を用いることができる。これにより、系内に新たに導入する洗浄液を削減できるとともに、ニッケル及びコバルトの回収率を95%以上に向上させることができる。また、洗浄液(洗浄水)としては、特に限定されないが、ニッケルを含まず、工程に影響を及ぼさないものを用いることが好ましい。例えば、洗浄液として、好ましくは、後工程の硫化工程S4で得られる貧液を繰り返して利用することができる。
 (3)中和工程
 中和工程S3では、固液分離工程S2にて分離された浸出液のpHを調整し、不純物元素を含む中和澱物を分離して、ニッケルやコバルトを含む中和終液を得る。
 具体的に、中和工程S3では、分離された浸出液の酸化を抑制しながら、得られる中和終液のpHが4以下、好ましくは3.0~3.5、より好ましくは3.1~3.2になるように、その浸出液に炭酸カルシウム等の中和剤を添加して、浸出液中の余剰酸を中和するとともに、浸出液中の3価の鉄やアルミニウム等の不純物成分を中和澱物とする。中和工程S3では、このようにして生成した中和澱物として沈降分離させ、ニッケル回収用の母液となる中和終液を生成させる。
 なお、中和工程S3では、中和処理して得られたスラリー(中和スラリー)に対してシックナー等の固液分離装置を用いた固液分離処理を施し、中和澱物を分離除去する。
 (4)硫化工程
 硫化工程S4では、ニッケル回収用の母液である中和終液に対して、硫化水素ガス等の硫化剤を吹き込んで硫化反応を生じさせ、不純物成分の少ないニッケル及びコバルトを含む混合硫化物(ニッケル・コバルト混合硫化物)と、ニッケル濃度を低い水準で安定させた貧液(硫化後液)とを得る。
 なお、この硫化工程S4では、ニッケル及びコバルト回収用の母液(中和終液)に亜鉛が含まれる場合には、ニッケル及びコバルトを硫化物として分離するに先立って、亜鉛を硫化物として選択的に分離する処理を行うことができる。
 硫化工程S4では、ニッケル・コバルト混合硫化物のスラリーをシックナー等の固液分離装置を用いて沈降分離処理し、ニッケル・コバルト硫化物をシックナーの底部から分離回収するとともに、水溶液成分はオーバーフローさせて硫化後液として回収する。
 (5)最終中和工程
 最終中和工程S5では、固液分離工程S2から排出された浸出残渣スラリーと、硫化工程S4から排出された貧液(硫化後液)に対して、排出基準を満たす所定のpH範囲に調整する中和処理(無害化処理)を施す。
 最終中和工程S5における無害化処理の方法、すなわちpHの調整方法としては、特に限定されないが、例えば炭酸カルシウム(石灰石)スラリーや水酸化カルシウム(消石灰)スラリー等の中和剤を添加することによって所定の範囲に調整することができる。このような中和処理により、浸出残渣スラリーや貧液に含まれる重金属イオンを中和処理する。なお、重金属が水溶液中から除去された最終中和澱物スラリーは、尾鉱ダム(テーリングダム)に移送される。
 ≪3.常圧浸出処理を含めたニッケル酸化鉱石の湿式製錬方法≫
 ここで、上述した従来のニッケル酸化鉱石の湿式製錬方法(図1)において、原料とするニッケル酸化鉱石として例えばサプロライト鉱石等のマグネシウム品位の高い高マグネシウム鉱石を使用した場合には、浸出工程S1における加圧浸出処理で使用する硫酸とアルカリ成分であるマグネシウムとが反応してアルカリ硫酸塩を形成するようになり、そのマグネシウムによる干渉作用によって添加した硫酸の効力が下がり、硫酸を過剰に消費する方向に進む(例えば下記反応式を参照)。
MgO+HSO ⇒ MgSO+H
MgSO+HSO ⇒ Mg(HSO
 すると、加圧浸出処理に必要な硫酸量が増加してしまい、また所定の硫酸量あたりのニッケルやコバルト等の有価金属の浸出率が低下してしまう。
 これに対して、本実施の形態に係るニッケル酸化鉱石の湿式製錬方法は、上述した湿式製錬方法に常圧浸出処理の工程を取り入れた方法である。具体的には、原料とするニッケル酸化鉱石をマグネシウム品位に基づきリモナイト鉱石とサプロライト鉱石とに選別し、選別されたマグネシウム品位の高いサプロライト鉱石のみに対して、加圧浸出液を用いた常圧浸出処理を行う。そして、その常圧浸出処理においては、加圧浸出液に含まれる酸量と常圧浸出処理の対象であるサプロライト鉱石に含まれるマグネシウム量のモル比とで規格化した分量にて実施し、常圧浸出残渣のマグネシウム品位を目標とするマグネシウム品位まで低減させる。その後、選別して得られたリモナイト系鉱石と、常圧浸出処理により得られた常圧浸出残渣とを混合して、高温高圧下にて硫酸を添加して加圧浸出を行う。
 このような方法によれば、常圧浸出に供するニッケル酸化鉱石量を低減させることができ、また常圧浸出によりサプロライト系鉱石のマグネシウム浸出を促進させることが可能となり、その結果として、加圧浸出において使用する硫酸量を効果的に低減させることができる。このことにより、低い酸濃度であっても、ニッケル酸化鉱石に含まれるニッケルやコバルト等の有価金属を高い浸出率で浸出させることができ、原料とするニッケル酸化鉱石から有価金属を高効率で回収することができる。
 図2は、本実施の形態に係るニッケル酸化鉱石の湿式製錬方法の流れを示す工程図である。図2の工程図に示すように、本実施の形態に係るニッケル酸化鉱石の湿式製錬方法は、原料とするニッケル酸化鉱石を、低マグネシウム品位のリモナイト系鉱石と高マグネシウム品位のサプロライト系鉱石とに選別する鉱石選別工程S11と、鉱石選別工程S11で選別したサプロライト系鉱石に対して加圧浸出工程S13により得られる加圧浸出液に含まれる遊離酸濃度と存在形態が3価であるとして算出した鉄イオン濃度との合計値をそのサプロライト系鉱石に含まれるマグネシウム品位で除した値が所定の当量以下となるように硫酸濃度を調整した加圧浸出液を添加して常圧浸出する常圧浸出工程S12と、鉱石選別工程S11で選別したリモナイト系鉱石と常圧浸出工程S12で得られた常圧浸出残渣とを混合して加圧浸出する加圧浸出工程S13とを有する。
  <3-1.鉱石選別工程>
 鉱石選別工程S11では、原料とするニッケル酸化鉱石を、マグネシウム品位に基づいて、リモナイト系鉱石と、サプロライト系鉱石とに選別する。原料とするニッケル酸化鉱石のうち、リモナイト系鉱石は、鉄品位が高く、一方でアルカリ成分であるマグネシウムの品位が低い。これに対して、サプロライト系鉱石は、マグネシウムやシリカ等のアルカリ成分を多く含む高マグネシウム品位の鉱石である。なお、区分として、「リモナイト系鉱石<マグネシウム品位:1.3重量%<サプロライト系鉱石」が知られている。
 具体的に、鉱石選別工程S11では、マグネシウム品位2重量%を境界とし、鉄品位が高くアルカリ成分であるマグネシウム品位が2重量%以下である低マグネシウム品位のリモナイト系鉱石と、マグネシウムやシリカ等のアルカリ成分を多く含む、すなわちマグネシウム品位が2重量%を越える高マグネシウム品位のサプロライト系鉱石とに選別する。
 このように、原料とするニッケル酸化鉱石をアルカリ成分であるマグネシウム品位に基づいて選別しておくことで、選別されたマグネシウム品位の高いサプロライト鉱石のみを、後述する常圧浸出工程S12における常圧浸出処理に供するようにする。これにより、サプロライト鉱石も有効に活用した製錬を実施できるとともに、常圧浸出に供される鉱石量が減少して短時間で常圧浸出処理を行うことができる。
  <3-2.常圧浸出工程>
 (常圧浸出工程について)
 常圧浸出工程S12では、鉱石選別工程S11で選別したサプロライト系鉱石に対して常圧浸出処理を施す。常圧浸出工程S12における常圧浸出では、後述する加圧浸出工程S13により得られる加圧浸出液を添加して行う。
 より具体的に、その常圧浸出処理においては、加圧浸出液に含まれる遊離酸濃度と、存在形態が3価であるとして算出した鉄イオン濃度との合計値を、そのサプロライト系鉱石に含まれるマグネシウム品位で除した値([Fe(SO+硫酸]/鉱石Mg当量)が1.5mol/mol当量以下となるように硫酸濃度を調整した加圧浸出液を添加して常圧浸出することを特徴としている。
 このように、常圧浸出工程S12では、浸出処理に用いる加圧浸出液とサプロライト系鉱石との配合比率を、その加圧浸出液に含まれる酸量と鉱石に含まれるマグネシウム量のモル比で規格化した分量にて決定する。また、後述する加圧浸出工程S13において得られる浸出液には、鉱石に含まれる鉄に由来する鉄イオンが含まれており(例えば硫酸鉄(Fe(SO)の形態として含まれている)、その鉄イオンが溶液のpH上昇に伴って水酸化物となり、それがあたかも酸として作用して、サプロライト鉱石のスラリーに含まれるMg(OH)を消費するようになる。なお、以下に、サプロライト鉱石に含まれるマグネシウムを浸出する反応式の例を示す。
MgO+HO ⇒ Mg(OH)
SO+Mg(OH) ⇒ MgSO+2H
Fe(SO+3MgO+3HO ⇒ 3MgSO+2Fe(OH)
 これにより、常圧浸出によるサプロライト鉱石からのマグネシウムの浸出が促進され、形成される常圧浸出残渣におけるマグネシウム品位を短時間で低減させることができる。つまり、所望とするマグネシウム品位の常圧浸出残渣を得ることができるようになる。
 さらに、この常圧浸出工程S12では、必要に応じて硫酸の追加添加を実施することにより、サプロライト鉱石からのマグネシウムの浸出をより一層に促進させることができ、常圧浸出における固液比率を高めることができる。
 (固液分離工程について)
 常圧浸出工程S12においてサプロライト鉱石に対する常圧浸出処理を行った後、得られた常圧浸出スラリーを、常圧浸出液と常圧浸出残渣とに固液分離する固液分離処理を行う(固液分離工程S14)。固液分離工程S14における固液分離処理方法としては、特に限定されないが、例えばシックナー等の固液分離装置を用いて行うことができる。
  <3-3.加圧浸出工程>
 (加圧浸出工程について)
 加圧浸出工程S13では、鉱石選別工程S11で選別したマグネシウム品位の低いリモナイト系鉱石のスラリーと、常圧浸出工程S12における常圧浸出処理で得られた常圧浸出残渣のスラリーとを混合し、それに硫酸を添加して高温高圧下で加圧浸出を施す。
 この加圧浸出工程S13は、図1に工程図を示す湿式製錬方法の浸出工程(加圧浸出工程)S1に相当し、リモナイト系鉱石と常圧浸出処理で得られた常圧浸出残渣とを処理対象としてオートクレーブ等の加圧反応槽に装入し、硫酸を用いた加圧浸出処理を施す。なお、浸出処理の具体的な説明は、浸出工程S1と同様であるためここでは省略する。
 ここで、本実施の形態においては、この加圧浸出工程S13における加圧浸出処理の対象として、マグネシウム品位の高いサプロライト鉱石を直接使用するのではなく、上述したように、サプロライト鉱石のみに対して常圧浸出処理(常圧浸出工程S12)を施して得られた、所望とするマグネシウム品位まで低減させた常圧浸出残渣を、マグネシウム品位の低いリモナイト鉱石と混合させて用いている。このことにより、この加圧浸出工程S13では、アルカリ成分であるマグネシウムによって、浸出のために添加した硫酸が消費されることがない。そのため、硫酸を過剰量としなくても(少ない遊離硫酸量で)、ニッケルやコバルト等の有価金属を効率的に浸出させることができる。
 (固液分離工程について)
 加圧浸出工程S13においてリモナイト鉱石と常圧浸出残渣との混合物に対する加圧浸出処理を行った後、得られた浸出スラリー(加圧浸出スラリー)を、浸出液(加圧浸出液)と浸出残渣(加圧浸出残渣)とに固液分離する固液分離処理を行う(固液分離工程S15)。固液分離工程S15における固液分離処理方法としては、特に限定されないが、例えばシックナー等の固液分離装置を用いて行うことができる。
 固液分離処理により分離された加圧浸出液は、上述したようにマグネシウム品位の高いサプロライト鉱石に対して常圧浸出処理を行う常圧浸出工程S12に移送され、その常圧浸出処理に用いられる。このように、固液分離工程S15において、加圧浸出工程S13を経て得られた加圧浸出スラリーを直接固液分離することで、遊離酸濃度の高い浸出液を得ることができ、常圧浸出工程S12での常圧浸出の固液比率を高くすることができる。
  <3-4.以降の工程について>
 (中和工程について)
 図2の工程図に示すように、常圧浸出工程S12におけるサプロライト鉱石に対する常圧浸出(加圧浸出液を用いた常圧浸出処理)により得られた常圧浸出液は、中和工程S16に移送されて中和処理が施される。なお、中和工程S16における中和処理では、加圧浸出工程S13における加圧浸出により得られた浸出残渣を例えば交流多段洗浄して(残渣洗浄工程S17)回収された洗浄液も併せて処理することができる。
 この中和工程S16は、図1に工程図を示す湿式製錬方法の中和工程S3に相当し、常圧浸出液(及び洗浄液)に炭酸カルシウム等の中和剤を添加してpH調整し、不純物元素を含む中和澱物(中和残渣)と、ニッケル回収用の母液となる中和終液とを生成させる。なお、中和処理の具体的な説明は、中和工程S3と同様であるためここでは省略する。
 (硫化工程について)
 中和工程S16における中和処理により得られた中和終液(母液)は、硫化工程S18に移送されて硫化処理が施される。
 この硫化工程S18は、図1に工程図を示す湿式製錬方法の硫化工程S4に相当し、ニッケル回収用の母液である中和終液に対して、硫化水素ガス等の硫化剤を吹き込んで硫化反応を生じさせ、不純物成分の少ないニッケル及びコバルトを含む混合硫化物(ニッケル・コバルト混合硫化物)と、ニッケル濃度を低い水準で安定させた貧液(硫化後液)とを得る。なお、硫化処理の具体的な説明は、硫化工程S4と同様であるためここでは省略する。
 (最終中和工程)
 硫化工程S18における硫化処理により得られた貧液と、残渣洗浄工程S17にて多段洗浄された浸出残渣(加圧浸出残渣)は、最終中和工程S19に移送されて排出基準を満たす所定のpH範囲に調整する中和処理(無害化処理が)が施される。
 この最終中和工程S19は、図1に工程図を示す湿式製錬方法の最終中和工程S5に相当し、例えば炭酸カルシウムや水酸化カルシウム等の中和剤を用いた中和処理により、貧液や加圧浸出残渣に含まれる重金属イオンを中和処理する。なお、重金属が水溶液中から除去された最終中和澱物スラリーは、尾鉱ダム(テーリングダム)に移送される。
 以下、本発明に実施例を示してより具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。
 [実施例1~4]
 容量1000mLの邪魔板付きセパラブルフラスコに、下記表1に示す硫酸濃度の硫酸水、又は、下記表1に示す鉄濃度及び硫酸濃度のHPAL浸出液(加圧浸出により生成した加圧浸出液)を入れ、オイルバスを用いて90℃に加温した。
 次に、所定のマグネシウム品位を有する低品位ニッケル酸化鉱石を、下記表1に示す所定の[Fe(SO+硫酸]/鉱石Mg当量(mol/mol)となるように添加し、700rpmの攪拌速度で攪拌しながら、6時間にわたり常圧浸出処理を行った。反応開始から、0.5、1、1.5、2、3、4、5、6時間が経過したときに15mLずつサンプリングを行い、濾過処理を実施した後、その濾液の遊離酸濃度と各種の化学分析を行った。下記表2に、それぞれの反応時間での遊離酸濃度の測定結果をまとめて示し、図3~5に、その遊離酸濃度と各種の化学分析結果についてのグラフ図を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例1と実施例2は、硫酸/鉱石Mg当量比(mol/mol)(Fe考慮しない)を同じ水準とした例である。しかしながら、表2及び図3に示すように、反応開始から6時間(360分)経過後において、実施例1では常圧浸出処理終液の遊離酸濃度が2.1g/Lまで低下したのに対して、加圧浸出液を用いた実施例2では常圧浸出処理終液の遊離酸濃度が8.4g/Lまでしか低下しなかった。なお、図3は、反応時間に対する遊離酸濃度の関係を示すグラフ図である。
 一方、実施例3と実施例4は、鉄を酸として計算して、(鉄+酸)/鉱石Mg当量比(mol/mol)を同じ水準とした例である。表2及び図3に示すように、各反応時間経過後において、実施例4の方が、常圧浸出処理終液の遊離酸濃度は若干高いものの、実施例1と実施例2との遊離酸濃度の差と比較すると、その実施例3と実施例4とでの遊離酸濃度の差は1g/L程度と小さく、ほぼ同じ範囲内であるといえる。
 また、図4は、遊離酸濃度に対する鉄の濃度の関係を示すグラフ図である。この図4から、実施例2においては、遊離酸濃度が12g/L以下となる付近から鉄濃度も低下したことが分かる。
 また、図5は、浸出処理を行った溶液のpHに対する鉄の濃度の関係を示すグラフ図である。この図5のグラフ図に示される結果から、例えば実施例2における鉄濃度の低下は、3価鉄イオン(Fe3+)の水酸化沈殿によるものと考えられる。
 以上の実施例1~4の結果から、加圧浸出液中の鉄イオンは、遊離酸の中和が進んでpHが上昇すると水酸化物を形成して沈殿するため、それがあたかも酸として働いて、Mg(OH)を消費すると考えられる。このことから、鉄イオン濃度は酸として計算して常圧浸出に必要な酸量(加圧浸出液量)を決定する必要があることが分かる。
 [実施例5~10]
 500mLの邪魔板付きセパラブルフラスコに、下記表3に示す鉄濃度及び遊離硫酸濃度のHPAL浸出液(加圧浸出液)を入れ、オイルバスを用いて90℃に加温した。
 次に、所定のマグネシウム品位を持つ低品位ニッケル酸化鉱石を、下記表3に示す所定の[Fe(SO+硫酸]/鉱石Mg当量(mol/mol)となるように添加し、700rpmの攪拌速度で3時間撹拌しながら常圧浸出処理を行った。反応開始から、1、2、3時間が経過したときに15mLずつサンプリングを行い、濾過処理を実施した後、その濾液の遊離酸濃度を測定した。また、サンプリングで得られた常圧浸出残渣について化学分析を行い、そのマグネシウム品位を確認した。図6及び図7に測定結果を示す。
Figure JPOXMLDOC01-appb-T000003
 図6は、[Fe(SO+硫酸]/鉱石Mg当量に対する常圧浸出により生成した浸出残渣中のマグネシウム品位の関係を示すグラフ図である。この図6から、高マグネシウム品位の鉱石から、常圧浸出により目標とするマグネシウム品位の常圧浸出残渣を得るために必要な酸量と反応時間とを確認することができる。
 また、図7は、[Fe(SO+硫酸]/鉱石Mg当量に対する反応後終液の遊離酸濃度の関係を示すグラフ図である。この図7から、常圧浸出処理の反応時間を3時間以下とする場合、常圧浸出終液の遊離酸濃度を低く抑えるためには、[Fe(SO+硫酸]/鉱石Mg当量を1.5(mol/mol)以下に調整することが望ましいことが分かる。
 以上の実施例1~10の結果から、常圧浸出処理の条件を、[Fe(SO+硫酸]/鉱石Mg当量(mol/mol)として規格化することによって、高マグネシウム品位の鉱石から、常圧浸出により目標とするマグネシウム品位の常圧浸出残渣を得るために必要な酸量と反応時間とを制御できることが分かった。
 [実施例11~13]
 下記表4に示す金属品位の常圧浸出残渣と下記表5に示す濃度の常圧浸出液(常圧浸出終液)とからなる浸出スラリー(35重量%)と、表4に示す金属品位の低マグネシウム品位ニッケル酸化鉱石(40重量%スラリー:希釈は水道水)とを、表4及び表5に示す物量(g)、液量(L)で混合させ、そこに、下記表6に示す量の硫酸と水を添加して、濃度が28重量%のスラリーにそれぞれを調整した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 各実施例において、調整したスラリーを容量3リットルのオートクレーブに入れ、反応温度245℃、保持時間1時間としてバッチ処理により加圧浸出した。
 加圧浸出処理により得られた浸出残渣スラリーを濾過して固液分離し、得られた浸出液の遊離酸濃度を測定した。また、化学分析により、その浸出液中の各成分濃度と、得られた浸出残渣中の成分品位を測定し、それぞれの成分の浸出率を算出した。下記表6に得られた浸出液(加圧浸出液)の各成分濃度を示し、下記表7に各成分の浸出率を示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表6及び表7から、遊離酸濃度が低い場合であっても、つまり硫酸を過剰量としなくても、高い浸出率で有価金属を浸出できることが分かる。このことは、後述する比較例1~3の結果と比較すると、より明確に理解することができる。
 [比較例1~3]
 下記表8に示す金属品位を有する、高マグネシウム品位のニッケル酸化鉱石(サプロライト系鉱石)を、下記表9に示す硫酸添加量で、上述した実施例11~13と同様の方法により加圧浸出した。
Figure JPOXMLDOC01-appb-T000008
 加圧浸出処理により得られた浸出残渣スラリーを濾過して固液分離し、得られた浸出液の遊離酸濃度を測定した。また、化学分析により、その浸出液中の各成分濃度と、得られた浸出残渣中の成分品位を測定し、それぞれの成分の浸出率を算出した。下記表9に得られた浸出液(加圧浸出液)の各成分濃度を示し、下記表10に各成分の浸出率を示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 表9及び表10から、高マグネシウム鉱石に対して直接加圧浸出すると、ニッケルやコバルトの浸出率を高く維持できないことが分かり、有価金属を高い浸出率で回収するためには、硫酸添加量を増やして遊離酸濃度を高くする必要が生じてしまうことが分かる。なお、より具体的に、比較例1~3での結果に基づくと、遊離酸濃度が46.1g/L程度(比較例3)となってはじめてニッケル浸出率が95%以上となることが分かる。
 図8は、実施例11~13、及び、比較例1~3における、遊離酸濃度とニッケル浸出率の関係を示すグラフ図である。この図8に示されるように、実施例11~13にて実施した方法によれば、効率的にかつ高い回収率で有価金属を回収できることが分かる。

Claims (1)

  1.  ニッケル酸化鉱石からニッケルやコバルト等の有価金属を回収するニッケル酸化鉱石の湿式製錬方法であって、
     前記ニッケル酸化鉱石を、マグネシウム品位が2重量%以下である低マグネシウム品位のリモナイト系鉱石と、マグネシウム品位が2重量%を越える高マグネシウム品位のサプロライト系鉱石とに選別する工程(A)と、
     前記工程(A)で得られたサプロライト系鉱石に対して、下記工程(C)における加圧浸出により得られる加圧浸出液に含まれる遊離酸濃度と存在形態が3価であるとして算出した鉄イオン濃度との合計値を該サプロライト系鉱石に含まれるマグネシウム品位で除した値が1.5mol/mol当量以下となるように硫酸濃度を調整した該加圧浸出液を添加して常圧浸出し、常圧浸出液と常圧浸出残渣とを得る工程(B)と、
     前記工程(A)で得られたリモナイト系鉱石と、前記工程(B)で得られた常圧浸出残渣とを混合し、高温高圧下の酸性雰囲気で硫酸と反応させることにより加圧浸出し、加圧浸出液を得る工程(C)と
     を含むニッケル酸化鉱石の湿式製錬方法。
PCT/JP2015/084417 2015-02-24 2015-12-08 ニッケル酸化鉱石の湿式製錬方法 WO2016136087A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201580076721.3A CN107250394B (zh) 2015-02-24 2015-12-08 镍氧化物矿石的湿式冶炼方法
EP15883377.2A EP3252177B1 (en) 2015-02-24 2015-12-08 Wet smelting method for nickel oxide ore
CA2977456A CA2977456C (en) 2015-02-24 2015-12-08 Wet smelting method for nickel oxide ore
AU2015384689A AU2015384689B2 (en) 2015-02-24 2015-12-08 Wet smelting method for nickel oxide ore
US15/552,307 US10227675B2 (en) 2015-02-24 2015-12-08 Wet smelting method for nickel oxide ore
PH12017501516A PH12017501516A1 (en) 2015-02-24 2017-08-22 Wet smelting method for nickel oxide ore

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-033940 2015-02-24
JP2015033940A JP6036875B2 (ja) 2015-02-24 2015-02-24 ニッケル酸化鉱石の湿式製錬方法

Publications (1)

Publication Number Publication Date
WO2016136087A1 true WO2016136087A1 (ja) 2016-09-01

Family

ID=56789149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084417 WO2016136087A1 (ja) 2015-02-24 2015-12-08 ニッケル酸化鉱石の湿式製錬方法

Country Status (8)

Country Link
US (1) US10227675B2 (ja)
EP (1) EP3252177B1 (ja)
JP (1) JP6036875B2 (ja)
CN (1) CN107250394B (ja)
AU (1) AU2015384689B2 (ja)
CA (1) CA2977456C (ja)
PH (1) PH12017501516A1 (ja)
WO (1) WO2016136087A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6589950B2 (ja) * 2017-08-16 2019-10-16 住友金属鉱山株式会社 浸出処理方法、ニッケル酸化鉱石の湿式製錬方法
JP6729536B2 (ja) * 2017-11-08 2020-07-22 住友金属鉱山株式会社 浸出処理方法、ニッケル酸化鉱石の湿式製錬方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003514109A (ja) * 1999-11-03 2003-04-15 ビーエイチピー ミネラルズ インターナショナル インコーポレイテッド ライモナイト及びサプロライト鉱石からニッケル及びコバルトを回収するための大気浸出プロセス
JP2005523996A (ja) * 2002-04-29 2005-08-11 クニ・テクノロジー・ピーティーワイ・リミテッド ラテライトニッケル鉱石のための大気圧浸出方法
JP2008530356A (ja) * 2005-02-14 2008-08-07 ビーエイチピー・ビリトン・エスエスエム・テクノロジー・ピーティーワイ・リミテッド ラテライト鉱石の促進酸浸出方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4548794A (en) 1983-07-22 1985-10-22 California Nickel Corporation Method of recovering nickel from laterite ores
JP3203707B2 (ja) 1991-10-09 2001-08-27 大平洋金属株式会社 酸化鉱石から有価金属を回収する方法
US6379636B2 (en) 1999-11-03 2002-04-30 Bhp Minerals International, Inc. Method for leaching nickeliferous laterite ores
JP4525428B2 (ja) 2004-05-13 2010-08-18 住友金属鉱山株式会社 ニッケル酸化鉱石の湿式製錬方法
JP5060033B2 (ja) 2005-09-15 2012-10-31 大平洋金属株式会社 ニッケルまたはコバルトの回収方法
WO2010020245A1 (en) * 2008-08-20 2010-02-25 Intex Resources Asa An improved process of leaching lateritic ore with sulphoric acid
WO2010060144A1 (en) * 2008-11-28 2010-06-03 Bhp Billiton Ssm Development Pty Ltd Process for separating limonite and saprolite
CN102206749B (zh) * 2011-04-30 2012-12-19 广西师范大学 一种同时处理高铁和高镁含量红土矿的常压浸出方法
CN102226232A (zh) * 2011-05-06 2011-10-26 广西银亿科技矿冶有限公司 一种处理红土镍矿的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003514109A (ja) * 1999-11-03 2003-04-15 ビーエイチピー ミネラルズ インターナショナル インコーポレイテッド ライモナイト及びサプロライト鉱石からニッケル及びコバルトを回収するための大気浸出プロセス
JP2005523996A (ja) * 2002-04-29 2005-08-11 クニ・テクノロジー・ピーティーワイ・リミテッド ラテライトニッケル鉱石のための大気圧浸出方法
JP2008530356A (ja) * 2005-02-14 2008-08-07 ビーエイチピー・ビリトン・エスエスエム・テクノロジー・ピーティーワイ・リミテッド ラテライト鉱石の促進酸浸出方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3252177A4 *

Also Published As

Publication number Publication date
US10227675B2 (en) 2019-03-12
CN107250394B (zh) 2018-09-04
AU2015384689B2 (en) 2018-03-08
JP6036875B2 (ja) 2016-11-30
CA2977456A1 (en) 2016-09-01
EP3252177A4 (en) 2018-01-17
EP3252177B1 (en) 2019-03-27
PH12017501516B1 (en) 2018-02-05
AU2015384689A1 (en) 2017-09-07
JP2016156042A (ja) 2016-09-01
PH12017501516A1 (en) 2018-02-05
EP3252177A1 (en) 2017-12-06
CA2977456C (en) 2018-01-09
US20180037972A1 (en) 2018-02-08
CN107250394A (zh) 2017-10-13

Similar Documents

Publication Publication Date Title
AU2015389766A1 (en) Method for manufacturing nickel and cobalt mixed sulfide and nickel oxide ore hydrometallurgical method
WO2016194709A1 (ja) 遊離酸除去設備、遊離酸除去方法、ニッケル及びコバルト混合硫化物の製造方法
JP6589950B2 (ja) 浸出処理方法、ニッケル酸化鉱石の湿式製錬方法
JP6953988B2 (ja) 硫化剤の除去方法
JP6036875B2 (ja) ニッケル酸化鉱石の湿式製錬方法
JP2016113703A (ja) ニッケル酸化鉱石の湿式製錬における中和方法
WO2017110572A1 (ja) 硫化剤の除去方法
JP7005909B2 (ja) 中和処理方法、及び中和終液の濁度低減方法
WO2013187367A1 (ja) 中和処理方法
JP7238686B2 (ja) 中和処理方法
JP6724351B2 (ja) 硫化剤の除去方法
JP7279546B2 (ja) ニッケル酸化鉱石の浸出処理方法及びこれを含む湿式製錬方法
JP7200698B2 (ja) ニッケル酸化鉱石の湿式製錬方法
JP7147362B2 (ja) ニッケル酸化鉱石の湿式製錬法における臭気低減方法
JP2020028858A (ja) ニッケル酸化鉱石の湿式製錬プロセスにおける最終中和方法
JP2018079435A (ja) 中和処理方法
AU2017220174B2 (en) Neutralization method and nickel oxide ore hydrometallurgical method
JP7273269B1 (ja) ニッケル酸化鉱石の湿式製錬方法
JP7087601B2 (ja) 硫化剤の除去方法及びニッケル酸化鉱石の湿式製錬方法
JP2022150719A (ja) ニッケル酸化鉱石の湿式製錬方法
JP2022148784A (ja) ニッケル酸化鉱石の湿式製錬方法
JP2019077928A (ja) 中和処理方法およびニッケル酸化鉱石の湿式製錬方法
JP2019049020A (ja) ニッケル酸化鉱石の湿式製錬方法
JP2020076130A (ja) ニッケル酸化鉱石の湿式製錬方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883377

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15552307

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2977456

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12017501516

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015883377

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015384689

Country of ref document: AU

Date of ref document: 20151208

Kind code of ref document: A