WO2016136001A1 - 内燃機関の制御装置及びこれを備えた船舶並びに内燃機関の運転方法 - Google Patents

内燃機関の制御装置及びこれを備えた船舶並びに内燃機関の運転方法 Download PDF

Info

Publication number
WO2016136001A1
WO2016136001A1 PCT/JP2015/072401 JP2015072401W WO2016136001A1 WO 2016136001 A1 WO2016136001 A1 WO 2016136001A1 JP 2015072401 W JP2015072401 W JP 2015072401W WO 2016136001 A1 WO2016136001 A1 WO 2016136001A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel gas
compression ratio
combustion
premixed
fuel
Prior art date
Application number
PCT/JP2015/072401
Other languages
English (en)
French (fr)
Inventor
石田 裕幸
晃洋 三柳
平岡 直大
耕之 駒田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to JP2017501833A priority Critical patent/JP6412243B2/ja
Priority to KR1020177022662A priority patent/KR101953050B1/ko
Priority to CN201580076408.XA priority patent/CN107250515B/zh
Publication of WO2016136001A1 publication Critical patent/WO2016136001A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a control device for an internal combustion engine that performs premixed combustion using fuel gas, a ship equipped with the same, and a method of operating the internal combustion engine.
  • DF engines dual fuel engines (hereinafter also referred to as “DF engines”) applicable to marine low-speed two-stroke diesel engines have been developed (see Patent Documents 1 and 2 below).
  • the DF engine has, as its operation mode, a fuel oil operation for burning the fuel oil as in the prior art and a fuel gas operation for burning the fuel gas such as LNG.
  • fuel oil is generally used as a pilot fuel for ignition.
  • a fuel oil diffusion combustion method is generally employed in fuel oil operation in which fuel oil diffusion combustion is performed, but in fuel gas operation, fuel gas diffusion in which fuel gas diffusion combustion is performed.
  • Two combustion methods that is, a combustion method and a fuel gas premix combustion method for performing premixed combustion of fuel gas, can be adopted.
  • Patent No. 5395848 gazette International Publication No. 2013/183737 A1
  • the compression ratio can be made as high as that of a normal diesel engine, and there is no output restriction in this point.
  • the thermal efficiency does not decrease, but because NOx emissions increase, in the exhaust regulation enhanced sea area, engine such as EGR or SCR is added There is a problem that an apparatus is required.
  • the present invention is a control of an internal combustion engine that enables the engine output to be secured in other sea areas while enabling the emission of NOx to be suppressed without using additional devices in the area where exhaust control is strengthened. It is an object of the present invention to provide an apparatus, a ship equipped with the same, and a method of operating an internal combustion engine.
  • a control device of an internal combustion engine is a combustion method selecting means capable of selecting at least a fuel gas diffusion combustion method and a fuel gas premixed combustion method during operation of the internal combustion engine
  • a fuel injection control means for controlling fuel injection to be in a fuel injection mode corresponding to the combustion mode selected by the combustion mode selection means, and an actual compression according to the combustion mode selected by the combustion mode selection means
  • An actual compression ratio control means for controlling an actual compression ratio so as to become a ratio, wherein the actual compression ratio control means controls the actual compression ratio to a low compression ratio when the fuel gas premixed combustion system is selected When the fuel gas diffusion combustion system is selected, the actual compression ratio is controlled to a high compression ratio.
  • the fuel gas premixed combustion method all the fuel gas premixed combustion method in which the fuel gas is burned only by the fuel gas premixed combustion method, and a part of the fuel gas is premixed and burned, and the remaining is diffused combustion
  • the combustion system selection means including at least the fuel gas diffusion combustion system, the entire fuel gas premixed combustion system, and the fuel gas during operation of the internal combustion engine It is possible to select a partial premixed combustion system, and the actual compression ratio control means may lower the actual compression ratio if the entire fuel gas premixed combustion system or the fuel gas partial premixed combustion system is selected. It is preferable to control the ratio and to control the actual compression ratio to a high compression ratio when the fuel gas diffusion combustion system is selected.
  • the engine is provided with a valve gear capable of changing the exhaust valve closing timing, and the actual compression ratio control means operates the exhaust valve closing timing to control the actual compression ratio, and the actual compression ratio is controlled.
  • the exhaust valve closing timing is controlled to the retard side, and when the actual compression ratio is made the high compression ratio, the exhaust valve closing timing is controlled to the advance side. Is preferred.
  • the engine is provided with a supercharger capable of increasing or decreasing the supercharging amount, and at least in the high load state where the load of the engine is larger than a predetermined load, the combustion system selection means is the fuel gas diffusion combustion
  • the system includes a supercharge control means for setting the supercharge amount in a normal state when the system is selected, and for increasing the supercharge amount when the combustion mode selection means selects the fuel gas premixed combustion mode.
  • the supercharger is a supercharger capable of switching between two-stage supercharging and single-stage supercharging, and the supercharging control means sets the supercharging amount to a normal state.
  • the supercharger is single-stage supercharged, and when the supercharge amount is increased, the supercharger is dual-stage supercharged.
  • the supercharge control unit performs the supercharging if the load of the internal combustion engine is in a low load state equal to or less than the predetermined load. It is preferred to increase the amount.
  • the fuel cell system further includes a determination unit that determines whether the exhaust emission control state is to restrict exhaust gas from the engine, and the combustion mode selection unit determines that the fuel is in the exhaust emission control state by the determination unit. It is preferable to select a gas premixed combustion system, and to select the fuel gas diffusion combustion system when it is determined by the determination means that the exhaust gas is not in the restricted state.
  • the engine is a marine engine equipped on a ship, and the judgment means judges that the exhaust restriction state is in the exhaust restriction area if the navigation area where the ship is traveling is within the exhaust restriction area, If the navigation sea area is outside the exhaust control area, it is preferable to determine that the exhaust control state is not in the above-mentioned state.
  • a ship according to the present invention includes the control device for an internal combustion engine according to any one of the above (1) to (8), and the internal combustion engine controlled by the control device. There is.
  • the operating method of the internal combustion engine according to the present invention selects a combustion method of at least one of the fuel gas diffusion combustion method and the fuel gas premixed combustion method during operation of the internal combustion engine. And a compression ratio control step of controlling an actual compression ratio of the internal combustion engine in accordance with the step and the combustion method selected in the combustion method selection step.
  • the fuel gas premixed combustion method all the fuel gas premixed combustion method to be burned only by the fuel gas premixed combustion method using the fuel gas, and a part of the fuel gas is premixed and burned, and the remaining is diffused combustion And a fuel gas partial premixed combustion system, the combustion system selection step including at least the fuel gas diffusion combustion system, the entire fuel gas premixed combustion system, and the fuel gas in the operation of the internal combustion engine. It is preferable to select one of the combustion methods including the partial premixed combustion method.
  • the fuel injection control means controls the fuel injection to be in the fuel injection mode according to the selected combustion method
  • the actual compression ratio control means controls the actual compression according to the selected combustion method
  • the actual compression ratio is controlled to become the ratio, and in particular, the actual compression ratio control means controls the actual compression ratio to a low compression ratio when the fuel gas premixed combustion system is selected, and the fuel gas diffusion combustion system is selected. Then, since the actual compression ratio is controlled to a high compression ratio, it is possible to stably carry out a fuel gas premixed combustion system in which the amount of NOx emission is small.
  • the actual compression ratio control means may select the actual compression ratio as the low compression ratio if all the fuel gas premixed combustion system or the fuel gas partial premixed combustion system is selected. If the fuel gas diffusion combustion system is selected, the actual compression ratio is controlled to a high compression ratio, so that the fuel gas full premix combustion system or the fuel gas partial premix combustion system with low NOx emissions is stabilized. It can be implemented.
  • the fuel gas diffusion combustion method can be selected to secure the output of the engine.
  • FIG. 1 is a block diagram showing a control device of an internal combustion engine according to a first embodiment of the present invention.
  • FIG. 2 is an entire configuration view showing an internal combustion engine according to a first embodiment of the present invention.
  • 3A and 3B are schematic views of the configuration around the inside of a cylinder including the cylinder liner of FIG. 2, FIG. 3A is a plan view, and FIG. 3B is a longitudinal sectional view.
  • FIGS. 3A and 3B show a state in which the fuel gas is injected by the premix fuel method.
  • FIG. 4 is a time chart explaining control by the control device for an internal combustion engine according to the first embodiment of the present invention.
  • FIG. 5 is a block diagram showing a control device of an internal combustion engine according to a second embodiment of the present invention.
  • An internal combustion engine according to an embodiment of the present invention is a cross-head type diesel engine (hereinafter, also simply referred to as an engine) 1 as shown in FIG.
  • the engine 1 is, for example, a low-speed two-stroke one-cycle uniflow scavenging system used as a marine main vessel of a liquefied gas carrier such as an LNG carrier.
  • the engine 1 is configured as a dual fuel engine (hereinafter also referred to as a DF engine) capable of using fuel gas in addition to fuel oil.
  • the engine 1 includes a base plate 3 positioned below, a frame 5 provided on the base plate 3, and a jacket 7 provided on the frame 5.
  • the base plate 3, the frame 5 and the jacket 7 are integrally fastened and fixed by a plurality of tension bolts (not shown) extending in the vertical direction.
  • the jacket 7 is provided with a cylinder liner 9, and a plurality of scavenging ports 10 are formed on the lower end side of the cylinder liner 9.
  • a cylinder cover 11 is provided at the upper end of the cylinder liner 9.
  • the cylinder cover 11 is provided with an exhaust valve 12.
  • a uniflow scavenging system is used in which air is introduced into the cylinder from below as scavenging air from the scavenging port 10 provided on the lower end side of the cylinder liner 9 and the combustion exhaust gas is exhausted from the exhaust valve 12 located in the upper side It is adopted.
  • the exhaust gas discharged from the exhaust valve 12 is collected in the exhaust gas manifold 14 and then sent to the turbocharger 16.
  • the turbocharger 16 the exhaust gas (not shown in FIG. 2) is rotated by the introduced exhaust gas, and thereby the coaxially connected compressor (not shown in FIG. 2) is rotated.
  • the compressor compresses the air taken in from the outside, is cooled by the air cooler 18, and is led to the scavenging manifold 20.
  • the compressed air led to the scavenging manifold 20 is led to the scavenging port 10 described above.
  • the details of the turbocharger 16 will be described later.
  • a piston 13 is provided so as to be capable of reciprocating.
  • the upper end of the piston rod 15 is rotatably attached to the lower end of the piston 13.
  • the super stroke is such that the bore stroke ratio, which is the ratio of the stroke of the piston 13 to the inner diameter of the cylinder liner 9, is 3 or more.
  • the base plate 3 is a crankcase, and a crankshaft 17 is provided.
  • the rotational output taken from the crankshaft 17 is transmitted to the propulsion propeller of the ship.
  • the lower end of the connecting rod 19 is rotatably connected to the upper end of the crankshaft 17.
  • the frame 5 is provided with a crosshead 21 that rotatably connects the piston rod 15 and the connecting rod 19. That is, the lower end of the piston rod 15 and the upper end of the connecting rod 19 are connected to the cross head 21.
  • a pair of sliding plates 23 extending in the vertical direction is provided on both sides (left and right in FIG. 2) of the cross head 21 in a state of being fixed to the frame 5 side.
  • the cylinder cover 11 includes a fuel gas injection valve for premixing (hereinafter referred to as “premixed gas valve”) 30 as a first fuel gas injection valve, and a second fuel.
  • premixed gas valve a fuel gas injection valve for premixing
  • second fuel a second fuel.
  • a diffusion fuel gas injection valve (hereinafter referred to as “diffusion gas valve”) 32 as a gas injection valve and a fuel oil injection valve (hereinafter referred to as “fuel oil valve”) 34 are provided.
  • the premixed gas valve 30 is connected to a fuel gas supply source (not shown), and injects the fuel gas at high pressure into the cylinder formed by the cylinder liner 9 and the cylinder cover 11.
  • fuel gas hydrocarbon gas such as vaporized LNG is used.
  • the gas injection pressure from the premixed gas valve 30 is, for example, 1.0 MPa or more and 50 MPa or less in absolute pressure, preferably 20 MPa or more and 30 MPa or less in absolute pressure.
  • the nozzle provided at the tip of the premixed gas valve 30 is provided with a plurality of injection holes, and fuel gas is injected from the respective injection holes into the cylinder.
  • FIG. 3B the state in which the fuel gas is injected from each of the four injection holes is shown.
  • the direction of the fuel gas injected from the premixed gas valve 30 is in the direction of the piston 13, more specifically, at the top of the piston 13 after closing the scavenging port 10 with the piston 13. It is directed to inject fuel gas toward the top face made circular.
  • the premixed gas valve 30 may be provided with each injection hole so that the fuel gas is injected from the at least one injection hole in the direction of the piston 13, and all the injection holes are in the direction of the piston 13 It does not have to be provided to inject
  • the premixed gas valve 30 is activated when the diesel engine 1 is operated by premixed combustion (fuel gas premixed combustion) by fuel gas, and diffusion combustion operation by fuel gas (fuel gas diffusion combustion operation) or diffusion by fuel oil It is stopped without being started at the time of combustion operation (fuel oil diffusion combustion operation).
  • the start and stop of the premixed gas valve 30 are performed by a command from the control device 40 described later.
  • the injection timing of the premixed gas valve 30 is controlled by a control device 40 described later, and is set to a range in which fuel gas does not leak from the exhaust valve 12 to the outside of the system. Specifically, for example, 140 to 20 deg BTDC (BTDC is Before Top) Dead Center), preferably 100 or more and 60 deg BTDC or less.
  • the timing at which the exhaust valve 12 closes is, for example, about 90 deg BTDC.
  • a period which injects fuel gas namely, period which continues injecting fuel gas
  • two diffusion gas valves 32 are provided on the outer peripheral side of the cylinder cover 11 in plan view.
  • the two diffusion gas valves 32 are disposed at positions facing each other across the center of the cylinder cover 11 (that is, the center of the exhaust valve 12).
  • each diffusion gas valve 32 is disposed at a position deviated circumferentially by a predetermined angle with respect to the premixed gas valve 30.
  • the diffusion gas valve 32 and the premixed gas valve 30 have cylinder covers 11. It should be placed on top.
  • the number of diffusion gas valves 32 is only two as an example, and may be one or three or more, but the same as the number of fuel oil valves 34 .
  • the diffusion gas valve 32 is connected to a fuel gas supply source (not shown), and injects the fuel gas into the cylinder formed by the cylinder liner 9 and the cylinder cover 11.
  • a fuel gas supply source not shown
  • a hydrocarbon-based gas such as vaporized LNG is used.
  • the gas injection pressure from the diffusion gas valve 32 is a pressure higher than air (scavenging air) after being compressed by the piston 13 and is 50 MPa or less, for example, 10 MPa or more and 30 MPa or less in absolute pressure.
  • the nozzle provided at the tip of the diffusion gas valve 32 is provided with a plurality of injection holes, and fuel gas is injected from the respective injection holes into the cylinder.
  • the direction of the fuel gas injected from the diffusion gas valve 32 is slightly horizontal or in the horizontal direction so that diffusion combustion by the fuel gas is performed in the combustion space where the piston 13 is raised to near the top dead center and narrowed. And the direction not facing the top of the piston 13.
  • the diffusion gas valve 32 is activated when operating the diesel engine 1 by diffusion combustion, and is stopped without being activated in a premixed combustion operation with fuel gas or a diffusion combustion operation with fuel oil.
  • the start and stop of the diffusion gas valve 32 are performed by a command from the control device 40 described later.
  • a period in which the diffusion gas valve 32 injects the fuel gas is controlled by a control unit (not shown), and is, for example, 20 degrees or more and 30 degrees or less when the load of the diesel engine 1 is 100%.
  • each fuel oil valve 34 is disposed at a circumferentially offset position with respect to the diffusion gas valve 32 and the premixed gas valve 30 by a predetermined angle.
  • the number of fuel oil valves 34 is only two as an example, and may be one or three or more. Further, if it is on the outer peripheral side than the exhaust valve 12, it may not be on the inner peripheral side with respect to the premixed gas valve 30 and the diffusion gas valve 32.
  • the fuel oil valve 34 is connected to a fuel oil supply source (not shown), and injects the fuel oil into the cylinder formed by the cylinder liner 9 and the cylinder cover 11.
  • fuel oil heavy oil having a relatively high ratio of residual oil such as, for example, C heavy oil (heavy oil in which 90% or more is a residual oil) according to JIS of Japan is used.
  • the injection pressure from the fuel oil valve 34 is a pressure higher than the air (scavenging air) after being compressed by the piston 13, and is, for example, 30 MPa or more and 80 MPa or less in absolute pressure.
  • the nozzle provided at the tip of the fuel oil valve 34 is provided with a plurality of injection holes, and fuel oil is injected from the respective injection holes into the cylinder.
  • the direction of the fuel oil injected from the fuel oil valve 34 may be horizontal or horizontal such that ignition or diffusion combustion may be performed in the combustion space where the piston 13 is raised to near the top dead center and narrowed. , And a direction not directed to the top of the piston 13.
  • the fuel oil valve 34 operates to inject fuel oil for diffusion combustion when the diesel engine 1 is operated by diffusion combustion with fuel oil (so-called oil-only combustion operation), and pre-mixed combustion with fuel gas During operation and diffusion combustion operation with fuel gas, it operates to inject pilot oil for ignition.
  • the operation of the fuel oil valve 34 is performed by a command from a control unit (not shown).
  • the engine 1 operates by appropriately switching between the fuel gas operation and the fuel oil operation, and in the fuel gas operation, the fuel gas diffusion combustion method, the fuel gas all-premixed combustion method, and the fuel gas partial premixed combustion method Three combustion methods are selectively used, and fuel oil operation uses a fuel oil diffusion combustion method.
  • the fuel gas is burned by the fuel gas premix combustion method using the fuel gas
  • the all premix fuel system that implements the premix combustion method and the fuel gas diffusion combustion using the fuel gas Partial fuel cell mode in which the fuel gas is burned in the fuel system and fuel gas partial combustion in which the fuel gas is burned by the premix combustion method and the remaining fuel gas is burned by the diffusion combustion method
  • the diffusion combustion or the diffusion combustion method is also simply referred to as the diffusion combustion or the diffusion combustion method when it is not necessary to distinguish between the fuel gas diffusion combustion and the fuel oil diffusion combustion.
  • the fuel gas premixed combustion system is a combustion system using at least the premixed gas valve 30 for fuel supply, and includes all the fuel gas premixed combustion system and the fuel gas partial premixed combustion system. That is, the fuel gas premixed combustion system broadly indicates a combustion system in which combustion is performed by the premixed combustion system using the fuel gas, and either of the fuel gas all premixed combustion system and the fuel gas partial premixed combustion system Or both.
  • the premixed gas valve 30 In the fully premixed fuel gas mode, the premixed gas valve 30 is used for fuel supply, and the fuel oil valve 34 is used for pilot.
  • the diffusion fuel gas mode In the diffusion fuel gas mode, the diffusion gas valve 32 is used for fuel supply, and the fuel oil valve 34 is used for pilot.
  • the partial premixed fuel gas mode In the partial premixed fuel gas mode, the premixed gas valve 30 is used as a fuel supply and the fuel oil valve 34 is used as a pilot for fuel gas premixed combustion type combustion, and the fuel gas diffusion combustion type diffusion is used for fuel gas diffusion combustion type combustion
  • the gas valve 32 is used for fuel supply and the fuel oil valve 34 is used for pilot.
  • the fuel oil valve 34 In the diffusion fuel oil mode, the fuel oil valve 34 is exclusively used.
  • the all-premixed fuel gas mode is suitable, for example, when the vessel navigates within the ECA (air pollution control area, also simply referred to as emission control area) because NOx emissions are low.
  • ECA air pollution control area
  • all premixed fuel gas modes are prone to abnormal combustion such as pre-ignition and knocking, and in order to avoid this, it is necessary to lower the compression ratio than in the normal (diffusion combustion type) case . Lowering the compression ratio limits the maximum output.
  • the diffusion fuel gas mode has higher combustion stability than the premix fuel gas mode, but a high compression ratio can be adopted.
  • the amount of NOx generation is larger than that in the premix fuel gas mode, for example, Used when sailing outside.
  • the SOx generation amount is small as in the diffusion fuel oil mode, so if combustion stability is required within a predetermined time within the range that does not exceed the NOx control amount even within ECA It can be used in place of the premixed fuel gas mode.
  • a high compression ratio can be adopted because combustion stability is higher, but SOx derived from fuel oil is generated more than in the case of using a fuel gas. Therefore, for example, when traveling in a sea area where SOx emission regulations are relatively loose, it is used when higher combustion stability is required or where it is better to use fuel oil than fuel gas.
  • the injection timing of the fuel gas from the premixed gas valve 30 is selected within a range in which the fuel gas does not leak out of the system from the exhaust valve 12 after the piston 13 closes the scavenging port 10, for example, 140 or more deg BTDC Hereinafter, preferably, it is selected between 100 and 60 deg BTDC. In this case, the timing at which the exhaust valve 12 closes is about 90 deg BTDC.
  • the injection period in which the fuel gas continues to be injected from the premixed gas valve 30 is, for example, 20 degrees or more and 30 degrees or less when the load of the internal combustion engine is 100%.
  • the premixed gas valve 30 injects from the upper cylinder cover 11 toward the top of the lower piston 13, the longitudinal direction of the longitudinally elongated combustion space after closing the scavenging port 10 with the piston 13 is effectively used.
  • the fuel gas can be injected to the whole, and the mixing of the fuel gas with the air (scavenging gas; oxidant gas) is promoted.
  • the diesel engine 1 of the present embodiment has an extremely long stroke, mixing by fuel gas injection in the longitudinal direction is considered effective.
  • the piston 13 moves upward to compress the premixed air. Then, when reaching near the top dead center, pilot oil is injected from the fuel oil valve 34 and ignition is performed. While the flame formed by this ignition propagates in the premixed air, premixed combustion is performed, and the combustion and expansion strokes are performed (at this time, the injection of the pilot oil from the fuel oil valve 34 is stopped), The piston 13 moves downward.
  • the diffusion fuel gas mode will be described.
  • the fuel oil is injected as a pilot oil from the fuel oil valve 34, and simultaneously or immediately after this pilot oil, the in-cylinder pressure at compression 50 MPa or more from the diffusion gas valve 32
  • the fuel gas is injected at a high pressure of (absolute pressure) or less, more preferably 10 MPa or more and 30 MPa or less in absolute pressure.
  • the partial premixed fuel gas mode will be described.
  • a portion of the fuel gas is injected from the premixed gas valve 30 toward the top of the piston 13 at the same absolute pressure and timing as the all premixed fuel gas mode.
  • the diffusion gas valve 32 is closed.
  • the remaining fuel gas is injected from the diffusion gas valve 32 at the same absolute pressure and timing as the diffusion fuel gas mode.
  • the premixed gas valve 30 is closed.
  • the diffusion fuel oil mode (so-called oil-only combustion mode) is not shown, but is similar to diffusion combustion using a common fuel oil. Specifically, the exhaust valve 12 is closed to compress air as the piston 13 ascends, and fuel oil is injected from the fuel oil valve 34 at high pressure near the top dead center to perform diffusion combustion, and expansion by this diffusion combustion The piston 13 is lowered by the stroke.
  • the diesel engine 1 can be established as a dual fuel engine (DF engine) used in combination with the operation using fuel gas.
  • DF engine dual fuel engine
  • the premixed gas valve 30 and the diffusion gas valve 32 are always closed.
  • the engine 1 of the present embodiment further includes premixed transition control performed when transitioning from the diffusion fuel gas mode or the diffusion fuel oil mode to the all-premixed fuel gas mode or the partially premixed fuel gas mode.
  • the fuel gas injected from the diffusion gas injection valve 32 is reduced and the injection from the premix gas valve 30 is performed. Increase fuel gas. That is, at the time of switching from the diffusion fuel gas mode to the premix fuel gas mode, the premix ratio, which is the ratio of the fuel gas injected from the premix gas valve 30 to the total fuel gas to be injected, is 0% (fuel gas diffusion 100% in the case of diffusion fuel gas mode with only combustion, and 100% in the case of all premix fuel gas mode with only premixed combustion, and set in the case of partially premixed fuel gas mode with both premixed combustion and diffusion combustion Increase towards the specified percentage).
  • the fuel gas injected from the premixed gas valve 30 is completely burned in the combustion stroke in the first cycle immediately after switching from the diffusion fuel gas mode to the premixed fuel gas mode by the premixed transfer control by the control unit.
  • the amount of fuel gas injected from the pre-mixture gas valve 30 is increased to the concentration at which the pre-mixture ratio is rapidly increased.
  • the premixing ratio is rapidly raised from 0% to 40% or more and 60% or less.
  • the premix ratio is gradually increased toward the predetermined ratio in the subsequent cycles.
  • the same control is performed when switching from the diffusion fuel oil mode using fuel oil to the premix fuel gas mode. That is, when switching from the diffusion fuel oil mode to the mixed fuel gas mode, the fuel oil injected from the fuel oil valve 34 is decreased and the fuel gas injected from the premixed gas valve 30 is increased.
  • the premix ratio which is the calorific value ratio of the fuel gas injected from the premix gas valve 30 to the total fuel injected, is 0% (fuel oil diffusion 100% in the case of the premixed fuel gas mode of only the premixed combustion and a predetermined ratio set in the case of the partially premixed fuel gas mode of combined use of the premixed combustion and the diffusion combustion from a predetermined ratio (the mixed fuel gas mode of only the premixed fuel Increase towards%).
  • the fuel gas injected from the premixed gas valve 30 is completely burned in the combustion stroke in the first cycle immediately after switching from the diffusion fuel oil mode to the premixed fuel gas mode by the premixed transfer control by the control unit.
  • the amount of fuel gas injected from the pre-mixture gas valve 30 is increased to the concentration at which the pre-mixture ratio is rapidly increased.
  • the premixing ratio is rapidly raised from 0% to 40% or more and 60% or less.
  • the premixing ratio is gradually increased in a plurality of subsequent cycles.
  • the control device 40 determines a determination unit (determination means) 42 that determines whether or not the engine 1 is in an exhaust emission control state in which exhaust is to be restricted.
  • Operation mode selection unit (combustion system selection means) 44 which appropriately selects and sets combustion system) and fuel injection control section (fuel which controls fuel injection to become a fuel injection mode corresponding to the selected operation mode) Injection control means) 46, an actual compression ratio control unit (actual compression ratio control means) 48 for controlling the actual compression ratio so as to achieve an actual compression ratio corresponding to the selected and set operation mode,
  • a supercharge control unit (supercharge control means) 50 for controlling the amount of supply is provided as a functional element.
  • the determination unit 42 determines whether the sea area where the vessel equipped with the engine 1 travels is the emission control area or not, and if the navigation area is the emission control area, the engine 1 is in a state to restrict the exhaust It is determined that the navigation sea area can be determined by acquiring the position information of the ship, for example, from the GPS or the like, and using the position information and the information of the exhaust regulation sea area stored in advance.
  • the operation mode selection unit 44 selects all the premixed fuel gas mode or the partially premixed fuel gas mode when the determination unit 42 determines that the navigation sea area of the relevant ship is the emission control area (the engine 1 is in the emission restriction state). If the determination section 42 determines that the navigation sea area of the ship is not the exhaust control area (the engine 1 is not in the exhaust control state), the diffusion fuel oil mode or the diffusion fuel gas mode is selected.
  • the fuel injection control unit 46 controls the fuel injection to be in a fuel injection mode corresponding to the operation mode set by the operation mode selection unit 44. That is, when the premixed fuel gas mode is all set, fuel injection is performed using the premixed gas valve 30 for fuel supply and the fuel oil valve 34 for pilot as described above. When the partial premixed fuel gas mode is set, fuel injection is performed using the premixed gas valve 30 and the diffusion gas valve 32 for fuel supply and the fuel oil valve 34 for pilot as described above. When the diffusion fuel gas mode is set, fuel injection is performed using the diffusion gas valve 32 for fuel supply and the fuel oil valve 34 for pilot as described above. If the diffusion fuel oil mode is set, fuel injection is performed using the fuel oil valve 34 as described above.
  • the actual compression ratio control unit 48 controls the actual compression ratio in accordance with the operation mode set by the operation mode selection unit 44. That is, if the premixed fuel gas mode or the partially premixed fuel gas mode is all set, the actual compression ratio is controlled to a low compression ratio, and if the diffused fuel gas mode or the diffused fuel oil mode is set, the actual compression ratio To a high compression ratio.
  • the premixed gas valve 30 is used to direct the scavenging port 10 to the piston 13 after closing with the piston 13 (for example, from above) Injecting the fuel gas to the whole by effectively using the piston reciprocation direction (for example, the vertical direction) of the combustion space after the scavenging port 10 is closed by the piston 13 by injecting the fuel gas downward)
  • the piston reciprocation direction for example, the vertical direction
  • the local minimum ⁇ (where ⁇ is the excess air ratio) at which the fuel gas concentration increases locally can be increased, and combustion stability can be avoided by avoiding abnormal combustion such as pre-ignition or knocking as much as possible. Can be improved.
  • abnormal combustion such as pre-ignition and knocking can be avoided as much as possible, the reduction ratio of the compression ratio can be made smaller than that of the conventional premixed engine, and the reduction of the thermal efficiency can be minimized. It is also possible to operate at a high load which is regarded as the in-cylinder average effective pressure).
  • the engine 1 is configured to be able to change the actual compression ratio during operation of the engine 1.
  • the change of the actual compression ratio is realized by changing the closing timing of the exhaust valve 12. That is, by delaying (ie, retarding) the closing timing of the exhaust valve 12, the in-cylinder volume at the start of substantial compression of the engine 1 can be reduced, and the actual compression ratio can be reduced. Conversely, by advancing the closing timing of the exhaust valve 12 (that is, advancing it), the in-cylinder volume at the start of substantial compression of the engine 1 can be increased, and the actual compression ratio can be increased.
  • the engine 1 is provided with a valve operating device (variable valve operating valve device) 12A capable of changing at least the closing timing of the exhaust valve 12.
  • This valve gear 12A is a so-called camless type valve gear that controls the exhaust valve 12 with an actuator (not shown), and the control device 40 controls the operation of the actuator to facilitate the closing timing of the exhaust valve 12 Can be changed to
  • the variable valve-type valve gear one using the mechanical variable valve mechanism of the engine 1 may be used.
  • the supercharge control unit 50 controls the supercharge amount corresponding to the operation mode set by the operation mode selection unit 44. That is, in the high load state where at least the load of the engine 1 is larger than the fixed load, if the diffusion fuel gas mode or the diffusion fuel oil mode is set, the supercharging amount is made normal, and all the premixed fuel gas mode or If the partial premixed fuel gas mode is set, the supercharging amount is increased.
  • FIG. 4 is a time chart illustrating the change of the closing timing of the exhaust valve 12, and the opening / closing timing of the scavenging port 10, the opening / closing timing of the exhaust valve 12, and the in-cylinder pressure according to this are combined with the timing of fuel injection. Show. As shown in FIG. 4, as the piston 13 moves from top dead center TDC to bottom dead center BDC, the in-cylinder pressure decreases, and when the exhaust valve 12 is opened at time t1, the in-cylinder pressure further decreases. However, after that, when the scavenging port 10 is opened at time t2, the in-cylinder pressure slightly recovers and the piston 13 reaches the bottom dead center BDC. When the scavenging port 10 is closed at time t3 and the exhaust valve 12 is closed thereafter at time t4, the in-cylinder pressure increases as the piston 13 moves to the top dead center TDC.
  • the actual compression ratio can be reduced by delaying the closing timing of the exhaust valve 12 from time t4 to time t5, while the open / close timing of the normal exhaust valve 12 is shown by a solid line.
  • the in-cylinder pressure decreases from the level of normal closing timing (diffuse combustion) shown by a solid line as shown by a two-dot chain line (premixed combustion 2). Therefore, the amount of air trapped in the cylinder is reduced.
  • the amount of air trapped in the cylinder is increased by increasing the supercharging amount of the turbocharger 16, and as a result, the in-cylinder pressure recovers as shown by the broken line (premixed combustion 1) .
  • the supercharger 16 mounted on the engine 1 has a configuration in which two superchargers 16A and 16B are connected in series, and switching of the valve can switch between two-stage supercharging and single-stage supercharging. It has become.
  • a scavenging connection passage 161a is provided, and an exhaust connection passage 162a is provided between the exhaust turbine 16AT of the first turbocharger 16A and the exhaust turbine 16BT of the second turbocharger 16B.
  • a scavenging connection passage 161b is provided between the compressor 16AC of the first turbocharger 16A and the scavenging manifold 20 (see FIG. 2), and the exhaust turbine 16AT of the first turbocharger 16A and the exhaust manifold 14 (FIG.
  • An exhaust connection passage 162b is provided between the two. Further, a scavenging connection passage 161c is provided between the compressor 16BC of the second turbocharger 16B and the scavenging manifold 20, and for exhaust between the exhaust turbine 16BT of the second turbocharger 16B and the exhaust manifold 14. A connection passage 162c is provided. An air cooler 18 is provided in each of the scavenging connection passages 161b and 161c. The air coolers 18 of the scavenging connection passages 161b and 161c can be used in combination.
  • on-off valves 163a to 163c are interposed in the scavenging connection passages 161a to 161c, and on-off valves 164a to 164c are interposed in the exhaust connection passages 163a to 163c.
  • the on-off valves 163a, 163c and 164a, 164c are closed, the on-off valves 163b and 164b are opened, and the exhaust gas discharged from the engine 1 is discharged from the exhaust manifold 14 through the exhaust turbine 16AT of the first turbocharger 16A. , Rotationally drive the exhaust turbine 16AT. As a result, the compressor 16AC is rotationally driven to pressurize the scavenging air with single stage charging.
  • the actual compression ratio is reduced by changing the closing timing of the exhaust valve 12 to cause an abnormality such as pre-ignition or knocking.
  • the reduction of the amount of air trapped in the cylinder by this is compensated by the increase of the supercharging pressure by the two-stage supercharging, while the combustion is suppressed, so that the maximum output of the engine 1 is improved.
  • the supercharge control unit 50 When the diffusion fuel gas mode or the diffusion fuel oil mode is set, the supercharge control unit 50 normally sets the supercharge amount by single-stage supercharging when the load of the engine 1 is high. However, this is because it is difficult to increase the supercharge amount by the two-stage supercharging when the load is high, and when the load of the engine 1 is a low load condition less than a certain load, the supercharge amount increases by the two-stage supercharge Two-stage supercharging will be implemented.
  • control device of the dual fuel engine according to the first embodiment of the present invention and the ship equipped with the same are configured as described above, when the ship enters the emission control area, all mixed fuel gas mode or partial The premixed fuel gas mode is selected, and the vessel can be operated in a state where the exhaust emission regulation is cleared in a state where the NOx emission amount is small.
  • the diffused fuel gas mode or the diffused fuel oil mode is selected, and the vessel can be operated in a state where a large maximum output can be obtained with high efficiency.
  • the actual compression ratio is lowered in the all premix fuel gas mode or the partially premixed fuel gas mode, and the actual compression ratio is increased in the diffusion fuel gas mode or the diffusion fuel oil mode.
  • the operation in the mixed fuel gas mode and the operation in the diffusion fuel gas mode or the diffusion fuel oil mode which can increase the actual compression ratio to obtain a large output with high efficiency can be implemented.
  • the amount of air trapped in the cylinder decreases.
  • the maximum output of the engine 1 is limited, in the present embodiment, the amount of air trapped in the cylinder is increased by increasing the amount of supercharging of the supercharger 16, so all premixed fuel gas is The maximum power of the engine 1 in the mode or partially premixed fuel gas mode can be improved.
  • the present embodiment is different from the first embodiment only in the configuration of the supercharger 16 capable of increasing and decreasing the supercharging amount.
  • a first supercharger 16C and a second supercharger 16D are provided in parallel.
  • a scavenging connection passage 165a is provided between the compressor 16CC of the first turbocharger 16C and the scavenging manifold 20, and an exhausting connection passage between the exhaust turbine 16CT of the first turbocharger 16C and the exhaust manifold 14 166a is provided.
  • a scavenging connection passage 165b is provided between the compressor 16DC of the second turbocharger 16D and the scavenging manifold 20, and for exhaust between the exhaust turbine 16DT of the second turbocharger 16D and the exhaust manifold 14.
  • a connection passage 166b is provided.
  • An air cooler 18 is provided in each of the scavenging connection passages 165a and 165b.
  • On-off valves 167 and 168 are interposed in the scavenging connection passage 165b and the exhaust connection passage 166b.
  • the second supercharger 16D operates when the on-off valves 167 and 168 are opened, and stops when the on-off valves 167 and 168 are closed.
  • the exhaust pressure is concentrated only by the first turbocharger 16C because the exhaust pressure is low.
  • the exhaust pressure is high. The exhaust pressure can be used effectively to increase the amount of supercharging, both with the turbocharger 16D.
  • the all premix fuel gas mode or the partial premix fuel gas mode when the all premix fuel gas mode or the partial premix fuel gas mode is set, all the premix fuel gas is compensated to compensate for the decrease in the amount of air trapped in the cylinder.
  • the first supercharger 16C and the second supercharger 16D are both used to increase the supercharge amount.
  • supercharging amount is excessive when both of the first supercharger 16C and the second supercharger 16D are used. Also, only the first turbocharger 16C is used.
  • control device for a dual fuel engine according to the second embodiment of the present invention and the ship equipped with the same are configured as described above, when the ship enters the emission control area, as in the first embodiment, When the vessel is operated with all NOx mixed and exhaust restrictions cleared in a state where exhaust gas restriction is low and the ship exits out of the exhaust restriction area, diffuse fuel gas mode or The diffusion fuel oil mode is selected, and the ship can be operated with high efficiency and large maximum output.
  • the actual compression ratio is reduced in the all-premixed fuel gas mode or the partially-premixed fuel gas mode and the actual compression ratio is increased in the diffused fuel gas mode or the diffused fuel oil mode, as in the first embodiment, Operation in stable fully premixed fuel gas mode or partially premixed fuel gas mode, and operation in diffused fuel gas mode or diffused fuel oil mode that can increase the actual compression ratio and obtain large maximum output with high efficiency be able to.
  • the amount of supercharging of the supercharger 16 is increased to increase the amount of air trapped in the cylinder, whereby the premixing is performed.
  • the maximum power of the engine 1 in the fuel gas mode or the partially premixed fuel gas mode can be improved.
  • the supercharger 16 capable of increasing the supercharging amount in the fully premixed fuel gas mode or the partially premixed fuel gas mode
  • a motor-assisted type supercharger is applied, and the premixed fuel gas mode
  • the amount of supercharging can be increased by using an electric assist.
  • a variable capacity supercharger may be applied, and the capacity may be increased to increase the supercharging amount in the premixed fuel gas mode.
  • the control device 40 determines whether or not the navigation sea area where the ship is traveling is within the emission control sea area, and automatically selects the operation mode (combustion method) of the engine 1; It is artificially judged whether the navigation sea area currently being traveled is within the emission control area, and if it is within the emission control area, the combustion mode selection unit (combustion system selection means) of the control device 40 is all
  • the manual selection command of the premixed fuel gas mode (fuel gas all premixed combustion method) or the partially premixed fuel gas mode (fuel gas partial premixed combustion method) is manually instructed, and if not within the exhaust control area, the controller 40
  • the diffusion fuel gas mode or the diffusion fuel oil mode (fuel gas diffusion combustion method) may be manually selected and commanded to the combustion mode selection unit (combustion method selection means).
  • the present invention illustrated a dual fuel engine as an internal combustion engine, but the internal combustion engine according to the present invention can select at least a fuel gas diffusion combustion system and a fuel gas premix combustion system during operation.
  • the dual fuel engine it is not limited to the dual fuel engine, as long as it can select at least the fuel gas diffusion combustion system, the all fuel gas premix combustion system, and the fuel gas partial premix combustion system during operation. It may be an internal combustion engine (gas engine) operated by gas only.
  • one of the combustion methods including at least the fuel gas diffusion combustion method and the fuel gas premixed combustion method, or at least the fuel gas diffusion combustion method and all the fuel gas premixed
  • the actual compression of the internal combustion engine according to the combustion method selection step of selecting one of the combustion methods including the combustion method and the fuel gas partial premixed combustion method, and the combustion method selected in the combustion method selection step By performing the compression ratio control step of controlling the ratio, it is possible to operate in a direction to offset the change in engine performance accompanying the change of the combustion system by the control of the actual compression ratio.
  • Dual fuel engine (internal combustion engine) 9 cylinder liner 10 scavenging port 11 cylinder cover 12 exhaust valve 13 piston 14 exhaust gas manifold 16 supercharger 30 premixed gas valve (first fuel gas injection valve) 32 Diffusion gas valve (second fuel gas injection valve) 34 Fuel oil valve (fuel oil injection valve) 40 control device 42 determination unit (determination means) 44 Operation mode selection section (combustion system selection means) 46 Fuel injection control unit (fuel injection control means) 48 Real compression ratio control section (Real compression ratio control means) 50 Supercharge control unit (supercharge control means)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

 内燃機関において、排気規制強化海域では、追加装置を用いずにNOxの排出を抑えることができるようにしながら、その他の海域では、機関の出力を確保することができるようにする。 内燃機関の運転中に少なくとも燃料ガス拡散燃焼方式と燃料ガス予混合燃焼方式を選択可能な燃焼方式選択手段(44)と、選択された燃焼方式に応じた燃料噴射態様となるように燃料噴射を制御する燃料噴射制御手段(46)と、選択された燃焼方式に基づいて実圧縮比を変更する実圧縮比変更手段(48)と、を備え、実圧縮比変更手段(48)は、内燃機関の運転中に、燃料ガス予混合燃焼方式に切り替わったら実圧縮比を低圧縮比に変更し、燃料ガス拡散燃焼方式に切り替わったら前記実圧縮比を高圧縮比に変更する。

Description

内燃機関の制御装置及びこれを備えた船舶並びに内燃機関の運転方法
 本発明は、燃料ガスを用いて予混合燃焼を行う内燃機関の制御装置及びこれを備えた船舶並びに内燃機関の運転方法に関するものである。
 近年、舶用低速2ストロークディーゼル機関に適用できるデュアルフュエル機関(以下「DF機関」ともいう。)の開発が行われている(下記特許文献1及び2参照)。このDF機関は、その運転モードとして、従来のように燃料油の燃焼を行う燃料油運転と、LNG等の燃料ガスの燃焼を行う燃料ガス運転とを備えている。なお、燃料ガス運転は、着火用のパイロット燃料として燃料油が用いられるのが一般的である。
 また、このようなDF機関において、燃料油運転では、一般的に、燃料油の拡散燃焼を行う燃料油拡散燃焼方式を採用するが、燃料ガス運転では、燃料ガスの拡散燃焼を行う燃料ガス拡散燃焼方式と、燃料ガスの予混合燃焼を行う燃料ガス予混合燃焼方式との2つの燃焼方式を採用できる。
特許第5395848号公報 国際公開第2013/183737A1号
 ところで、予混合方式によれば、有害なNOxの排出が少ないためEGRやSCRは不要である。しかし、予混合方式は過早着火やノッキングなどの異常燃焼が生じ易く、これを回避するために、通常のディーゼルよりも圧縮比を下げざるを得ない。このため、予混合方式では、最大出力が制限されてしまう課題がある。このように圧縮比を下げたDF機関で燃料油運転をする場合、低い圧縮比のため熱効率の低下が生じる課題もある。
 一方、燃料ガス拡散燃焼方式や燃料油拡散燃焼方式は異常燃焼の心配が無いため、圧縮比を通常のディーゼル機関並みに高くすることができ、この点での出力制限もない。しかし、このように圧縮比を高くしたDF機関で燃料油運転をする場合、熱効率の低下は生じないが、NOx排出量が多くなるため、排気規制強化海域では、機関にEGRやSCRなどの追加装置が必要となる課題がある。
 本発明は、排気規制強化海域では、追加装置を用いずにNOxの排出を抑えることができるようにしながら、その他の海域では、機関の出力を確保することができるようにした、内燃機関の制御装置及びこれを備えた船舶並びに内燃機関の運転方法を提供することを目的とする。
 (1)上記の目的を達成するために、本発明の内燃機関の制御装置は、内燃機関の運転中に少なくとも燃料ガス拡散燃焼方式と燃料ガス予混合燃焼方式とを選択可能な燃焼方式選択手段と、前記燃焼方式選択手段により選択された燃焼方式に応じた燃料噴射態様となるように燃料噴射を制御する燃料噴射制御手段と、前記燃焼方式選択手段により選択された燃焼方式に応じた実圧縮比となるように実圧縮比を制御する実圧縮比制御手段と、を備え、前記実圧縮比制御手段は、前記燃料ガス予混合燃焼方式が選択されたら前記実圧縮比を低圧縮比に制御し、前記燃料ガス拡散燃焼方式が選択されたら前記実圧縮比を高圧縮比に制御することを特徴としている。
 (2)前記燃料ガス予混合燃焼方式は、燃料ガスを用いて燃料ガス予混合燃焼方式だけで燃焼させる燃料ガス全部予混合燃焼方式と、燃料ガスの一部を予混合燃焼させ残りを拡散燃焼させる燃料ガス部分予混合燃焼方式とを含み、前記燃焼方式選択手段は、前記内燃機関の運転中に、少なくとも、前記燃料ガス拡散燃焼方式と、前記燃料ガス全部予混合燃焼方式と、前記燃料ガス部分予混合燃焼方式とを、選択可能であって、前記実圧縮比制御手段は、前記燃料ガス全部予混合燃焼方式或いは前記燃料ガス部分予混合燃焼方式が選択されたら前記実圧縮比を低圧縮比に制御し、前記燃料ガス拡散燃焼方式が選択されたら前記実圧縮比を高圧縮比に制御することが好ましい。
 (3)前記機関は、排気弁閉止タイミングを変更可能な動弁装置を備え、前記実圧縮比制御手段は、前記排気弁閉止タイミングを操作して前記実圧縮比を制御し、前記実圧縮比を低圧縮比にする際には、前記排気弁閉止タイミングを遅角側に制御し、前記実圧縮比を高圧縮比にする際には、前記排気弁閉止タイミングを進角側に制御することが好ましい。
 (4)前記機関は、過給量を増減操作可能な過給機を備え、少なくとも前記機関の負荷が一定負荷よりも大きい高負荷状態の場合に、前記燃焼方式選択手段が前記燃料ガス拡散燃焼方式を選択したら前記過給量を通常状態とし、前記燃焼方式選択手段が前記燃料ガス予混合燃焼方式を選択したら前記過給量を増加状態とする過給制御手段とを備えていることが好ましい。
 (5)この場合、前記過給機は、2段過給と単段過給とが切り替え可能な過給機であって、前記過給制御手段は、前記過給量を通常状態とする際は前記過給機を単段過給とし、前記過給量を増加状態とする際は前記過給機を2段過給とすることが好ましい。
 (6)また、前記過給制御手段は、前記燃焼方式選択手段が前記燃料ガス拡散燃焼方式を選択した場合に、前記内燃機関の負荷が前記一定負荷以下の低負荷状態であったら前記過給量を増加状態とすることが好ましい。
 (7)前記機関の排気を規制すべき排気規制状態であるか否かを判定する判定手段を備え、前記燃焼方式選択手段は、前記判定手段により排気規制状態であると判定されると前記燃料ガス予混合燃焼方式を選択し、前記判定手段により排気規制状態でないと判定されると前記燃料ガス拡散燃焼方式を選択することが好ましい。
 (8)前記機関は船舶に装備された舶用機関であって、前記判定手段は、前記船舶の航行している航行海域が排気規制海域内であれば前記排気規制状態であると判定し、前記航行海域が排気規制海域外であれば前記排気規制状態でないと判定することが好ましい。
 (9)本発明の船舶は、上記(1)~(8)の何れか1項に記載の内燃機関の制御装置と、前記制御装置により制御される前記内燃機関と、を有することを特徴としている。
 (10)本発明の内燃機関の運転方法は、内燃機関の運転中に少なくとも燃料ガス拡散燃焼方式と燃料ガス予混合燃焼方式とを含む燃焼方式のうちの一つの燃焼方式を選択する燃焼方式選択工程と、前記燃焼方式選択工程において選択した燃焼方式に応じて、前記内燃機関の実圧縮比を制御する圧縮比制御工程と、を備えることを特徴としている。
 (11)前記燃料ガス予混合燃焼方式は、燃料ガスを用いて燃料ガス予混合燃焼方式だけで燃焼させる燃料ガス全部予混合燃焼方式と、燃料ガスの一部を予混合燃焼させ残りを拡散燃焼させる燃料ガス部分予混合燃焼方式とを含み、前記燃焼方式選択工程では、前記内燃機関の運転中に、少なくとも、前記燃料ガス拡散燃焼方式と、前記燃料ガス全部予混合燃焼方式と、前記燃料ガス部分予混合燃焼方式とを含む燃焼方式のうちの一つの燃焼方式を選択することが好ましい。 
 本発明によれば、燃料噴射制御手段は、選択された燃焼方式に応じた燃料噴射態様となるように燃料噴射を制御し、実圧縮比制御手段は、選択された燃焼方式に応じた実圧縮比となるように実圧縮比を制御し、特に、実圧縮比制御手段は、燃料ガス予混合燃焼方式が選択されたら実圧縮比を低圧縮比に制御し、燃料ガス拡散燃焼方式が選択されたら前記実圧縮比を高圧縮比に制御するので、NOx排出量が少ない燃料ガス予混合燃焼方式を安定して実施することができる。これにより、例えば、舶用機関において、排気規制強化海域では、燃料ガス予混合燃焼方式を選択し追加装置を用いずにNOxの排出を抑えることができ、その他の海域では、燃料ガス拡散燃焼方式を選択し機関の出力を確保することができる。
 また、内燃機関の燃料ガス予混合燃焼方式に、燃料ガスを用いて燃料ガス予混合燃焼方式だけで燃焼させる燃料ガス全部予混合燃焼方式と、燃料ガスの一部を予混合燃焼させ残りを拡散燃焼させる燃料ガス部分予混合燃焼方式とが含まれていれば、実圧縮比制御手段は、燃料ガス全部予混合燃焼方式又は燃料ガス部分予混合燃焼方式が選択されたら実圧縮比を低圧縮比に制御し、燃料ガス拡散燃焼方式が選択されたら前記実圧縮比を高圧縮比に制御するので、NOx排出量が少ない燃料ガス全部予混合燃焼方式又は燃料ガス部分予混合燃焼方式を安定して実施することができる。これにより、例えば、舶用機関において、排気規制強化海域では、燃料ガス全部予混合燃焼方式又は燃料ガス部分予混合燃焼方式を選択し追加装置を用いずにNOxの排出を抑えることができ、その他の海域では、燃料ガス拡散燃焼方式を選択し機関の出力を確保することができる。
図1は本発明の第1実施形態にかかる内燃機関の制御装置を示すブロック図である。 図2は本発明の第1実施形態にかかる内燃機関を示す全体構成図である。 図3A,図3Bは図2のシリンダライナを含む筒内周りの構成の概略図であり、図3Aは平面図、図3Bは縦断面図である。図3A,図3Bはでは、予混合燃料方式で燃料ガスを噴射した状態を示す。 図4は本発明の第1実施形態にかかる内燃機関の制御装置による制御を説明するタイムチャートである。 図5は本発明の第2実施形態にかかる内燃機関の制御装置を示すブロック図である。
 以下、本発明にかかる実施形態について、図面を参照して説明する。
 なお、以下に示す実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。以下の実施形態の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができるとともに、必要に応じて取捨選択することができ、あるいは適宜組み合わせることが可能である。
 〔第1実施形態〕
 〔内燃機関の構成〕
 本発明の第1実施形態を説明する。まず、本実施形態及び後述の第2実施形態にかかる内燃機関の構成について、図2,図3A,図3Bを参照して説明する。
 本発明の実施形態にかかる内燃機関は、図2に示すように、クロスヘッド型ディーゼル機関(以下、単に機関とも言う)1である。この機関1は、例えばLNG船等の液化ガス運搬船の舶用主機として用いられる低速2ストローク1サイクルのユニフロー掃気方式とされている。また、機関1は、燃料油の他に燃料ガスを使用可能なデュアルフュエル機関(以下、DF機関とも言う)として構成される。 
 この機関1は、下方に位置する台板3と、台板3上に設けられた架構5と、架構5上に設けられたジャケット7とを備えている。これら台板3、架構5及びジャケット7は、上下方向に延在する複数のテンションボルト(図示せず)によって一体的に締め付けられて固定されている。
 ジャケット7にはシリンダライナ9が設けられており、シリンダライナ9の下端側には複数の掃気ポート10が形成されている。シリンダライナ9の上端には、シリンダカバー11が設けられている。シリンダカバー11には、排気弁12が設けられている。このように、シリンダライナ9の下端側に設けた掃気ポート10から空気が掃気として下方から筒内に導入され、筒内の上方に位置する排気弁12から燃焼排ガスが排気されるユニフロー掃気方式が採用されている。
 排気弁12から排出させた排ガスは、排気ガスマニホールド14に集められた後に、過給機16へと送られる。過給機16では、導かれた排ガスによって排気タービン(図2では図示略)が回転され、これにより同軸にて接続されたコンプレッサ(図2では図示略)が回転される。コンプレッサは、外部から取り込んだ空気を圧縮し、エアクーラ18にて冷却された後に掃気マニホールド20へと導かれる。掃気マニホールド20へと導かれた圧縮空気は、上述した掃気ポート10へと導かれる。なお、過給機16の詳細については後述する。
 シリンダライナ9及びシリンダカバー11によって形成された空間内には、ピストン13が往復動可能に設けられている。ピストン13の下端には、ピストン棒15の上端が回動可能に取り付けられている。本実施形態のディーゼル機関1では、シリンダライナ9の内径に対するピストン13のストロークの比であるボアストローク比が3以上とされた超ロングストロークとされている。
 台板3はクランクケースとされており、クランク軸17が設けられている。クランク軸17から取り出された回転出力が船舶の推進用プロペラへと伝達されるようになっている。クランク軸17の上端には、連接棒19の下端が回動可能に接続されている。
 架構5には、ピストン棒15と連接棒19とを回動可能に接続するクロスヘッド21が設けられている。すなわち、ピストン棒15の下端および連接棒19の上端がクロスヘッド21に接続されている。クロスヘッド21の両側(図2において左右)には、上下方向に延在する一対の摺動板23が架構5側に固定された状態で設けられている。
 図3A,図3Bには、ディーゼル機関1の筒内周りの構成が模式的に示されている。同図に示されているように、シリンダカバー11には、第1の燃料ガス噴射弁としての予混合用燃料ガス噴射弁(以下「予混合ガス弁」という。)30と、第2の燃料ガス噴射弁としての拡散用燃料ガス噴射弁(以下「拡散ガス弁」という。)32と、燃料油噴射弁(以下「燃料油弁」という。)34と、が設けられている。
 予混合ガス弁30は、図示しない燃料ガス供給源に接続されており、シリンダライナ9及びシリンダカバー11によって形成される筒内に燃料ガスを高圧で噴射する。燃料ガスとしては、気化したLNGといった炭化水素系のガスが用いられる。
 予混合ガス弁30からのガス噴射圧力は、例えば、絶対圧で1.0MPa以上50MPa以下、好ましくは絶対圧で20MPa以上30MPa以下とされる。予混合ガス弁30の先端に設けられたノズルには複数の噴孔が設けられており、それぞれの噴孔から燃料ガスが筒内に噴射される。例えば、図3Bに示す例では、4つの噴孔のそれぞれから燃料ガスが噴射された状態が示されている。この図に示すように、予混合ガス弁30から噴射される燃料ガスの向きは、ピストン13の方向、より詳しくは掃気ポート10をピストン13で閉じた後のピストン13の頂部すなわちピストン13上端の円形とされた頂面に向けて燃料ガスを噴射する向きとされている。
 なお、予混合ガス弁30は少なくとも一つの噴孔からピストン13の方向に燃料ガスが噴射されるように各噴孔が設けられていればよく、全ての噴孔がピストン13の方向に燃料ガスを噴射するように設けられる必要はない。
 予混合ガス弁30は、燃料ガスによる予混合燃焼(燃料ガス予混合燃焼)によりディーゼル機関1を動作させる場合に起動され、燃料ガスによる拡散燃焼運転(燃料ガス拡散燃焼運転)や燃料油による拡散燃焼運転(燃料油拡散燃焼運転)の際には起動されずに停止される。予混合ガス弁30の起動および停止は、後述の制御装置40からの指令によって行われる。
 予混合ガス弁30の噴射タイミングは、後述の制御装置40によって制御され、排気弁12から燃料ガスが系外にリークしない範囲とされ、具体的には、例えば140以上20degBTDC以下(BTDCはBefore Top Dead Centre)、好ましくは100以上60degBTDC以下とされる。ここで、排気弁12が閉じるタイミングとしては、例えば約90degBTDCとされる。
 燃料ガスを噴射する期間(すなわち燃料ガスを噴射し続ける期間)としては、例えばディーゼル機関1の負荷が100%の場合には20deg以上30deg以下とされる。
 拡散ガス弁32は、図3Aに示すように、シリンダカバー11を平面視した場合の外周側に2つ設けられている。2つの拡散ガス弁32は、シリンダカバー11の中心(すなわち排気弁12の中心)を挟んで互いに対向する位置に配置されている。本実施形態では、各拡散ガス弁32は、予混合ガス弁30に対して所定角度だけ周方向にずれた位置に配置されているが、拡散ガス弁32と予混合ガス弁30はシリンダカバー11上に配置されていればよい。なお、拡散ガス弁32の数は、例示として2つとしているだけであり、1つであってもよいし、3つ以上であってもよいが、燃料油弁34の数と同じとされる。
 拡散ガス弁32は、図示しない燃料ガス供給源に接続されており、シリンダライナ9及びシリンダカバー11によって形成される筒内に燃料ガスを噴射する。燃料ガスとしては、予混合ガス弁30と同様に、気化したLNGといった炭化水素系のガスが用いられる。
 拡散ガス弁32からのガス噴射圧力は、ピストン13によって圧縮された後の空気(掃気)よりも高い圧力であって50MPa以下とされており、例えば絶対圧で10MPa以上30MPa以下とされる。拡散ガス弁32の先端に設けられたノズルには複数の噴孔が設けられており、それぞれの噴孔から燃料ガスが筒内に噴射される。拡散ガス弁32から噴射される燃料ガスの向きは、ピストン13が上死点近傍まで上昇して狭められた燃焼空間内で燃料ガスによる拡散燃焼が行われるように、水平方向または水平方向から少しだけ下方を向いた方向とされ、しかもピストン13の頂部に向かわない方向とされている。
 拡散ガス弁32は、拡散燃焼によりディーゼル機関1を動作させる場合に起動され、燃料ガスによる予混合燃焼運転や燃料油による拡散燃焼運転の際には起動されずに停止される。拡散ガス弁32の起動および停止は、後述の制御装置40からの指令によって行われる。
 拡散ガス弁32が燃料ガスを噴射する期間(即ち噴射し続ける期間)は、図示しない制御部によって制御され、例えばディーゼル機関1の負荷が100%の場合には20deg以上30deg以下とされる。
 燃料油弁34は、図3Aに示すように、シリンダカバー11を平面視した場合に、排気弁12よりも外周側でかつ予混合ガス弁30及び拡散ガス弁32よりも内周側に2つ設けられている。2つの燃料油弁34は、シリンダカバー11の中心(すなわち排気弁12の中心)を挟んで互いに対向する位置に配置されている。ただし、各燃料油弁34は、拡散ガス弁32及び予混合ガス弁30に対して所定角度だけ周方向にずれた位置に配置されている。なお、燃料油弁34の数は、例示として2つとしているだけであり、1つであってもよいし、3つ以上であってもよい。また、排気弁12よりも外周側であれば、予混合ガス弁30及び拡散ガス弁32よりも内周側でなくてもよい。
 燃料油弁34は、図示しない燃料油供給源に接続されており、シリンダライナ9及びシリンダカバー11によって形成される筒内に燃料油を噴射する。燃料油としては、例えば我が国のJIS規格で言うC重油(90%以上が残渣油である重油)等の残渣油の割合が比較的高い重油が用いられる。
 燃料油弁34からの噴射圧力は、ピストン13によって圧縮された後の空気(掃気)よりも高い圧力とされており、例えば絶対圧で30MPa以上80MPa以下とされる。燃料油弁34の先端に設けられたノズルには複数の噴孔が設けられており、それぞれの噴孔から燃料油が筒内に噴射される。例えば、燃料油弁34から噴射される燃料油の向きは、ピストン13が上死点近傍まで上昇して狭められた燃焼空間内で、着火または拡散燃焼が行われるように、水平方向または水平方向から少しだけ下方を向いた方向とされ、しかもピストン13の頂部に向かわない方向とされている。
 燃料油弁34は、燃料油による拡散燃焼によりディーゼル機関1を動作させる場合には拡散燃焼のための燃料油を噴射するように動作し(いわゆる油専焼運転)、また、燃料ガスによる予混合燃焼運転および燃料ガスによる拡散燃焼運転の際には、着火用のパイロット油を噴射するように動作する。燃料油弁34の動作は、図示しない制御部からの指令によって行われる。
 〔デュアルフュエル機関としての動作モード〕
 次に、上記構成のディーゼル機関1の動作モードについて説明する。機関1は、燃料ガス運転と燃料油運転とを適宜切り替えて運転し、燃料ガス運転では、燃料ガス拡散燃焼方式と、燃料ガス全部予混合燃焼方式と、燃料ガス部分予混合燃焼方式と、の3つの燃焼方式を選択的に用い、燃料油運転は燃料油拡散燃焼方式を用いる。
 デュアルフュエル機関の動作モードには、燃料ガスを用いて燃料ガス予混合燃焼方式で燃焼させる燃料ガス全部予混合燃焼方式を実施する全部予混合燃料ガスモードと、燃料ガスを用いて燃料ガス拡散燃焼方式で燃焼させる拡散燃料ガスモードと、燃料ガスの一部を用いて予混合燃焼方式で燃焼させ残りの燃料ガスを用いて拡散燃焼方式で燃焼させる燃料ガス部分予混合燃焼方式を実施する部分予混合燃料ガスモードと、燃料油を用いて燃料油拡散燃焼方式で燃焼させる拡散燃料油モード(いわゆる油専焼モード)と、がある。なお、拡散燃焼或いは拡散燃焼方式について、燃料ガス拡散燃焼か燃料油拡散燃焼かを区別しない場合には、単に、拡散燃焼或いは拡散燃焼方式とも言う。また、燃料ガス予混合燃焼方式とは、少なくとも予混合ガス弁30を燃料供給用として用いる燃焼方式であり、燃料ガス全部予混合燃焼方式と燃料ガス部分予混合燃焼方式とを包含する。つまり、燃料ガス予混合燃焼方式とは、燃料ガスを用いて予混合燃焼方式で燃焼させる燃焼方式を広く示すもので、燃料ガス全部予混合燃焼方式と燃料ガス部分予混合燃焼方式との何れか又は両方を示すものとする。
 全部予混合燃料ガスモードでは、予混合ガス弁30を燃料供給用として用い、燃料油弁34をパイロット用として用いる。
 拡散燃料ガスモードでは、拡散ガス弁32を燃料供給用として用い、燃料油弁34をパイロット用として用いる。
 部分予混合燃料ガスモードでは、燃料ガス予混合燃焼方式の燃焼に関しては予混合ガス弁30を燃料供給用として用いて燃料油弁34をパイロット用として用い、燃料ガス拡散燃焼方式の燃焼に関しては拡散ガス弁32を燃料供給用として用い、燃料油弁34をパイロット用として用いる。
 拡散燃料油モードでは、専ら燃料油弁34を用いる。
 全部予混合燃料ガスモードは、NOx排出量が少ないため、例えば、船舶がECA(大気汚染物質放出規制海域、単に、排気規制海域とも言う)内を航行する際に好適である。しかし、全部予混合燃料ガスモードは過早着火やノッキングなどの異常燃焼が生じ易く、これを回避するためには、通常の(拡散燃焼方式の)場合よりも圧縮比を下げることが必要になる。圧縮比を下げると、最大出力が制限されてしまう。
 拡散燃料ガスモードは、予混合燃料ガスモードよりも燃焼安定性が高いため高い圧縮比を採用できるが、一方で、予混合燃料ガスモードに比べてNOx発生量が多いので、例えば、船舶がECA外を航行する際に用いられる。ただし、拡散燃料ガスモードは、拡散燃料油モードのようにSOx発生量は少ないので、ECA内であってもNOx規制量を超えない範囲で所定の時間内あれば、燃焼安定性が求められる場合に予混合燃料ガスモードに代えて用いることができる。
 拡散燃料油モードは、燃焼安定性がより高いため高い圧縮比を採用できるが、燃料油由来のSOxが燃料ガスを用いる場合に比べて多く発生する。そこで、例えば、SOx排出規制が比較的緩い海域を航行する際に、より高い燃焼安定性が求められる場合や、燃料ガスよりも燃料油を用いた方がよい場合に用いられる。
 (全部予混合燃料ガスモード)
 全部予混合燃料ガスモードについて説明する。
 図3A,図3Bに示すように、排気弁12が閉じられてさらにピストン13が掃気ポート10を閉じた後の圧縮行程の初期に、制御部の指令によって、予混合ガス弁30から絶対圧で1.0MPa以上50MPa以下、好ましくは絶対圧で20MPa以上30MPa以下の高圧とされた燃料ガスがピストン13の頂部に向けて噴射される。なお、全部混合燃料ガスモードでは、拡散ガス弁32は閉じられていて、燃料ガスは専ら予混合ガス弁30から噴射される。ただし拡散ガス弁32を併用する場合もある。
 なお、予混合ガス弁30からの燃料ガスの噴射タイミングとしては、掃気ポート10をピストン13が閉じた後でかつ排気弁12から燃料ガスが系外にリークしない範囲で選定され、例えば140以上20degBTDC以下、好ましくは100以上60degBTDC以下の間で選定される。この場合、排気弁12が閉じるタイミングは約90degBTDCである。予混合ガス弁30から燃料ガスが噴射し続ける噴射期間は、例えば内燃機関の負荷が100%の場合には20deg以上30deg以下とされる。
 予混合ガス弁30は、上方のシリンダカバー11から下方のピストン13の頂部に向かって噴射するので、掃気ポート10をピストン13で閉じた後の縦長とされた燃焼空間の長手方向を有効に使って燃料ガスを全体に噴射することができ、空気(掃気;酸化剤ガス)に対する燃料ガスの混合が促進される。特に、本実施形態のディーゼル機関1は超ロングストロークとされているので、長手方向の燃料ガス噴射による混合は効果的とされる。
 予混合ガス弁30から噴射された燃料ガスによって筒内に予混合気が形成された後、ピストン13は上方へと移動して予混合気を圧縮する。そして、上死点付近まで到達すると、燃料油弁34からパイロット油が噴射されて着火が行われる。この着火によって形成された火炎が予混合気内を伝播しながら予混合燃焼が行われ、燃焼及び膨張行程が行われ(このとき燃料油弁34からのパイロット油の噴射は停止されている)、ピストン13が下方へと移動する。 
 (拡散燃料ガスモード)
 拡散燃料ガスモードについて説明する。
 排気弁12が閉じられてさらにピストン13が掃気ポート10を閉じた後の圧縮行程では、掃気ポート10から導入した空気のみを圧縮する。そして、ピストン13が上死点付近まで到達すると、燃料油弁34から燃料油をパイロット油として噴射するとともに、このパイロット油と同時または直後に、拡散ガス弁32から、圧縮時の筒内圧以上50MPa(絶対圧)以下、より好ましくは絶対圧で10MPa以上30MPa以下の高圧とされた燃料ガスを噴射する。これにより、燃料ガスの噴射に応じて筒内で拡散燃焼が行われ(このとき燃料油弁34からのパイロット油の噴射は停止されている)、膨張行程によってピストン13が下方へと押し下げられる。
 なお、拡散燃料ガスモードでは、予混合ガス弁30は常時閉じられている。
 (部分予混合燃料ガスモード)
 部分予混合燃料ガスモードについて説明する。
 部分予混合燃料ガスモードでは、燃料ガスの一部が、前記全部予混合燃料ガスモードと同様の絶対圧及びタイミングで、予混合ガス弁30からピストン13の頂部に向けて噴射される。このときには、拡散ガス弁32は閉じられている。また、その後、残りの燃料ガスが、前記拡散燃料ガスモードと同様の絶対圧及びタイミングで、拡散ガス弁32から噴射される。このときには、予混合ガス弁30は閉じられている。
 (拡散燃料油モード)
 拡散燃料油モード(いわゆる油専焼モード)については、図示しないが、一般の燃料油を用いた拡散燃焼と同様である。具体的には、排気弁12を閉じてピストン13の上昇とともに空気の圧縮を行い、上死点付近で燃料油弁34から燃料油を高圧で噴射して拡散燃焼を行い、この拡散燃焼による膨張行程によりピストン13が下降する。
 このように拡散燃料油モードを備えることにより、燃料ガスを用いた運転と併用されるデュアルフュエル機関(DF機関)としてディーゼル機関1を成立させることができる。
 なお、拡散燃料油モードでは、予混合ガス弁30及び拡散ガス弁32は常時閉じられている。
 (予混合移行制御)
 本実施形態の機関1は、さらに、拡散燃料ガスモード又は拡散燃料油モードから全部予混合燃料ガスモード又は部分予混合燃料ガスモードに移行する際に行われる予混合移行制御を備えている。
 燃料ガスを用いた拡散燃料ガスモードから全部予混合燃料ガスモード又は部分予混合燃料ガスモードに切り替える際には、拡散ガス噴射弁32から噴射する燃料ガスを減少させるとともに予混合ガス弁30から噴射する燃料ガスを増大させる。すなわち、拡散燃料ガスモードから予混合燃料ガスモードへの切換時には、噴射する全燃料ガス中のうち予混合ガス弁30から噴射される燃料ガスの割合である予混合割合を0%(燃料ガス拡散燃焼のみの拡散燃料ガスモード)から所定割合(予混合燃焼のみの全部予混合燃料ガスモードの場合は100%、予混合燃焼及び拡散燃焼を併用する部分予混合燃料ガスモードの場合は設定された所定%)に向かって増大させていく。このとき、制御部による予混合移行制御により、拡散燃料ガスモードから予混合燃料ガスモードに切り替えた直後の最初のサイクルにおける燃焼行程にて、予混合ガス弁30から噴射される燃料ガスが完全燃焼する濃度まで、予混合ガス弁30から噴射される燃料ガス量を増大させて予混合割合を一気に上昇させる。具体的には、モード切換時の最初のサイクルで、予混合割合を0%から40%以上60%以下まで一気に上昇させる。そして、モード切替直後の最初のサイクルで40%以上60%以下の予混合割合とした後は、続く複数のサイクルにて徐々に予混合割合を所定割合に向けて増大させる。
 これにより、拡散燃料ガスモードから予混合燃料ガスモードへの切替時に、最初のサイクルから予混合燃料の完全燃焼が行われることになり、未燃ガスが排気弁12から排出されることを防止することができる。すなわち、モード切替直後に複数のサイクルにわたって予混合割合を0%から徐々に増大させていくと、予混合割合が小さい初期のサイクルでは予混合ガス弁30から噴射される燃料ガス量が少なく予混合濃度が低すぎて燃料ガスを完全燃焼させることができず未燃の燃料ガスである炭化水素(HC)を排気弁12から排出してしまうという不具合を回避することができる。
 また、燃料油を用いた拡散燃料油モードから予混合燃料ガスモードへの切替時においても、同様の制御を行う。すなわち、拡散燃料油モードから混合燃料ガスモードに切り替える際には、燃料油弁34から噴射する燃料油を減少させるとともに予混合ガス弁30から噴射する燃料ガスを増大させる。すなわち、拡散燃料油モードから予混合燃料ガスモードへの切換時には、噴射する全燃料のうち予混合ガス弁30から噴射される燃料ガスの発熱量割合である予混合割合を0%(燃料油拡散燃焼のみの拡散燃料油モード)から所定割合(予混合燃焼のみの予混合燃料ガスモードの場合は100%、予混合燃焼及び拡散燃焼を併用する部分予混合燃料ガスモードの場合は設定された所定%)に向かって増大させていく。このとき、制御部による予混合移行制御により、拡散燃料油モードから予混合燃料ガスモードに切り替えた直後の最初のサイクルにおける燃焼行程にて、予混合ガス弁30から噴射される燃料ガスが完全燃焼する濃度まで、予混合ガス弁30から噴射される燃料ガス量を増大させて予混合割合を一気に上昇させる。具体的には、モード切換時の最初のサイクルで、予混合割合を0%から40%以上60%以下まで一気に上昇させる。そして、モード切替直後の最初のサイクルで40%以上60%以下の予混合割合とした後は、続く複数のサイクルにて徐々に予混合割合を増大させる。
 これにより、拡散燃料油モードから予混合燃料ガスモードへの切替時に、最初のサイクルから予混合燃料の完全燃焼が行われることになり、未燃ガスが排気弁12から排出されることを防止することができる。すなわち、モード切替直後に複数のサイクルにわたって予混合割合を0%から徐々に増大させていくと、予混合割合が小さい初期のサイクルでは予混合ガス弁30から噴射される燃料ガス量が少なく予混合濃度が低すぎて燃料ガスを完全燃焼させることができず未燃の燃料ガスである炭化水素(HC)を排気弁12から排出してしまうという不具合を回避することができる。
 〔デュアルフュエル機関の制御装置による制御〕
 ここで、図1を参照して、本実施形態にかかるデュアルフュエル機関の制御装置40による制御について説明する。
 図1に示すように、本制御装置40は、機関1が排気を規制すべき排気規制状態であるか否かを判定する判定部(判定手段)42と、機関1の運転中に作動モード(燃焼方式)を適宜選択して設定する作動モード選択部(燃焼方式選択手段)44と、選択設定された作動モードに対応した燃料噴射態様となるように燃料噴射を制御する燃料噴射制御部(燃料噴射制御手段)46と、選択設定された作動モードに対応した実圧縮比となるように実圧縮比を制御する実圧縮比制御部(実圧縮比制御手段)48と、過給機16の過給量を制御する過給制御部(過給制御手段)50とを、機能要素として備えている。
 まず、判定部42による判定を説明する。判定部42は、機関1を搭載した船舶が航行する海域が、排気規制海域であるか否かを判定し、航行海域が排気規制海域であれば、機関1は排気を規制すべき状態にあると判定し、この航行海域の判定は、船舶の位置情報を例えばGPS等から取得して、この位置情報と予め記憶された排気規制海域の情報とから実施することができる。
 作動モード選択部44は、判定部42が当該船舶の航行海域が排気規制海域である(機関1は排気規制状態にある)と判定したら全部予混合燃料ガスモード又は部分予混合燃料ガスモードを選択し、判定部42が当該船舶の航行海域が排気規制海域でない(機関1は排気規制状態にない)と判定したら拡散燃料油モード又は拡散燃料ガスモードを選択するようになっている。
 燃料噴射制御部46は、作動モード選択部44により設定された作動モードに対応した燃料噴射態様となるように燃料噴射を制御する。つまり、全部予混合燃料ガスモードが設定されれば、前述のように、予混合ガス弁30を燃料供給用として用い燃料油弁34をパイロット用として用いて燃料噴射を行なう。部分予混合燃料ガスモードが設定されれば、前述のように、予混合ガス弁30,拡散ガス弁32を燃料供給用として用い燃料油弁34をパイロット用として用いて燃料噴射を行なう。また、拡散燃料ガスモードが設定されれば、前述のように、拡散ガス弁32を燃料供給用として用い、燃料油弁34をパイロット用として用いて燃料噴射を行なう。拡散燃料油モードが設定されれば、前述のように、燃料油弁34を用いて燃料噴射を行なう。
 実圧縮比制御部48では、作動モード選択部44により設定された作動モードに対応して実圧縮比を制御する。つまり、全部予混合燃料ガスモード又は部分予混合燃料ガスモードが設定されれば、実圧縮比を低圧縮比に制御し、拡散燃料ガスモード又は拡散燃料油モードが設定されれば、実圧縮比を高圧縮比に制御する。
 ここで、実圧縮比制御部48による実圧縮比の制御を説明する。
 上述のように、全部予混合燃料ガスモード又は部分予混合燃料ガスモードでは、予混合ガス弁30を用いて、掃気ポート10をピストン13で閉じた後のピストン13に向けて(例えば、上方から下方に向けて)燃料ガスを噴射することにより、掃気ポート10をピストン13で閉じた後の燃焼空間のピストン往復動方向(例えば上下方向)を有効に使って燃料ガスを全体に噴射することができ、酸化剤ガスに対する燃料ガスの混合を促進することができる。
 したがって、局所的に燃料ガス濃度が高くなる局所的最小λ(λは空気過剰率)を大きくすることができ、過早着火やノッキング等の異常燃焼を可及的に回避することで燃焼安定性を向上させることができる。また、過早着火やノッキング等の異常燃焼を可及的に回避することができるので、従来の予混合機関よりも圧縮比の下げ代を小さくでき、熱効率の低下を最小化でき、高いPme(筒内平均有効圧力)とされた高負荷での運転も可能となる。
 しかしながら、このように、従来の予混合機関よりも圧縮比の下げ代を小さくできるとしても、拡散燃料油モードや拡散燃料ガスモードにおいて、機関1の熱効率を高め大きな出力を得るには、全部予混合燃料ガスモード又は部分予混合燃料ガスモードで採用可能な圧縮比では十分でなく、より高い圧縮比を用いる必要がある。
 そこで、機関1には、機関1の運転中に実圧縮比を変更可能に構成されている。
本実施形態では、この実圧縮比の変更を排気弁12の閉止タイミングを変更することで実現している。つまり、排気弁12の閉止タイミングを遅らせること(即ち、遅角させること)で、機関1の実質的な圧縮開始時の筒内容積が小さくなり、実圧縮比を小さくすることができる。逆に、排気弁12の閉止タイミングを進ませること(即ち、進角させること)で、機関1の実質的な圧縮開始時の筒内容積が大きくなり、実圧縮比を大きくすることができる。
 このため、機関1には、少なくとも排気弁12の閉止タイミングを変更可能な動弁装置(可変動弁式動弁装置)12Aが備えられている。この動弁装置12Aは、排気弁12をアクチュエータ(図示略)で制御するいわゆるカムレス方式の動弁装置であり、制御装置40によって、アクチュエータの作動を制御することにより排気弁12の閉止タイミングを容易に変更することができる。ただし、可変動弁式動弁装置には、機関1のメカニカルな可変動弁機構を用いたものを用いてもよい。
 過給制御部50では、作動モード選択部44により設定された作動モードに対応して過給量を制御する。つまり、少なくとも機関1の負荷が一定負荷よりも大きい高負荷状態の場合において、拡散燃料ガスモード又は拡散燃料油モードが設定されれば、過給量を通常状態とし、全部予混合燃料ガスモード又は部分予混合燃料ガスモードが設定されれば、過給量を増加状態とする。
 これは、前述のように、全部予混合燃料ガスモード又は部分予混合燃料ガスモードが設定された際に、排気弁12の閉止タイミングの変更により実圧縮比を小さくすると、筒内にトラップされる空気量が減少して、機関1の最大出力が制限されてしまうので、本実施形態では、過給機16の過給量を増加させて筒内にトラップされる空気量を増大させることにより、機関1の最大出力の向上を図っているのである。
 図4は、排気弁12の閉止タイミングの変更を例示するタイムチャートであり、掃気ポート10の開閉タイミングと、排気弁12の開閉タイミングと、これに応じた筒内圧を、燃料噴射のタイミングと併せて示す。図4に示すように、ピストン13が上死点TDCから下死点BDCへと移動するのにしたがって、筒内圧は低下し、時点t1で排気弁12が開放されると筒内圧は更に低下するが、その後、時点t2で掃気ポート10が開放されると、筒内圧はやや回復しながらピストン13は下死点BDCへ達する。時点t3で掃気ポート10が閉止され、その後時点t4で排気弁12が閉止されるとその後は、ピストン13が上死点TDCに向かうのに従って筒内圧は増大する。
 通常の排気弁12の開閉タイミングを実線で示し、排気弁12の閉止タイミングを時点t4から時点t5へと遅らせると、実圧縮比を低下させることができる。しかし、これと同時に、筒内圧は実線で示す通常の閉止タイミングのレベル(拡散燃焼)から二点鎖線で示すように低下する(予混合燃焼2)。このため、筒内にトラップされる空気量が減少する。これに対して、過給機16の過給量を増加させることで、筒内にトラップされる空気量を増大し、この結果、筒内圧は破線で示すように回復する(予混合燃焼1)。
 この過給制御部50による過給機16の過給量の制御について具体的に説明する。
 本実施形態では、機関1に装備される過給機16は、2つの過給機16A,16Bを直列に接続し、バルブの切替で2段過給と単段過給とを切り替えられる構成となっている。
 つまり、掃気通路の上流側且つ排気通路の下流側の第1過給機16Aのコンプレッサ16ACと、掃気通路の下流側且つ排気通路の上流側の第2過給機16Bのコンプレッサ16BCとの間には、掃気用接続通路161aが設けられ、第1過給機16Aの排気タービン16ATと、第2過給機16Bの排気タービン16BTとの間には、排気用接続通路162aが設けられる。また、第1過給機16Aのコンプレッサ16ACと掃気マニホールド20(図2参照)との間には掃気用接続通路161bが設けられ、第1過給機16Aの排気タービン16ATと排気マニホールド14(図2参照)との間には排気用接続通路162bが設けられる。さらに、第2過給機16Bのコンプレッサ16BCと掃気マニホールド20との間には掃気用接続通路161cが設けられ、第2過給機16Bの排気タービン16BTと排気マニホールド14との間には排気用接続通路162cが設けられる。
 なお、各掃気用接続通路161b,161cにはエアクーラ18が設けられる。この掃気用接続通路161b,161cのエアクーラ18は兼用可能である。
 そして、各掃気用接続通路161a~161cには、開閉バルブ163a~163cが介装され、各排気用接続通路163a~163cには、開閉バルブ164a~164cが介装されている。
 開閉バルブ163b及び164bを閉鎖し、開閉バルブ163a,163c及び164a,164cを開放すると、機関1から排出された排気は、排気マニホールド14から第2過給機16Bの排気タービン16BT,第1過給機16Aの排気タービン16ATを経て排出されながら、排気タービン16BT,16ATを回転駆動する。これによって、コンプレッサ16AC,16BCが回転駆動され、掃気用空気を2段過給で加圧する。
 開閉バルブ163a,163c及び164a,164cを閉鎖すると、開閉バルブ163b及び164bを開放し、機関1から排出された排気は、排気マニホールド14から第1過給機16Aの排気タービン16ATを経て排出されながら、排気タービン16ATを回転駆動する。これによって、コンプレッサ16ACが回転駆動され、掃気用空気を単段過給で加圧する。
 このようにして、全部予混合燃料ガスモード又は部分予混合燃料ガスモードが設定された際には、排気弁12の閉止タイミングの変更により実圧縮比を小さくして過早着火やノッキングなどの異常燃焼を抑制しつつ、これにより筒内にトラップされる空気量の減少を、2段過給による過給圧の増大によって補うことで、機関1の最大出力の向上を図っているのである。
 なお、過給制御部50では、拡散燃料ガスモード又は拡散燃料油モードが設定されている際には、機関1の負荷が高負荷状態の場合は単段過給によって過給量を通常状態するが、これは、高負荷時には二段過給による過給量の増加は困難なためであり、機関1の負荷が一定負荷以下の低負荷状態の場合は二段過給による過給量の増加を見込むことができるので、二段過給を実施する。
 本発明の第1実施形態にかかるデュアルフュエル機関の制御装置及びこれを備えた船舶は、上述のように構成されているので、船舶が排気規制海域に進入したら、全部予混合燃料ガスモード又は部分予混合燃料ガスモードが選択され、NOx排出量が少ない状態で排気規制をクリアした状態で船舶を運行することができる。また、船舶が排気規制海域を脱出したら、拡散燃料ガスモード或いは拡散燃料油モードが選択され、高効率で大きな最大出力を得られる状態で船舶を運行することができる。
 本制御装置では、特に、全部予混合燃料ガスモード又は部分予混合燃料ガスモードでは実圧縮比を低下させ、拡散燃料ガスモード或いは拡散燃料油モードでは実圧縮比を高めているので、安定した予混合燃料ガスモードでの運転と、実圧縮比を高めて高効率で大きな最大出力を得られる拡散燃料ガスモード或いは拡散燃料油モードでの運転を実施することができる。
 しかも、全部予混合燃料ガスモード又は部分予混合燃料ガスモードが設定された際に、排気弁12の閉止タイミングの変更により実圧縮比を小さくすると、筒内にトラップされる空気量が減少して、機関1の最大出力が制限されてしまうが、本実施形態では、過給機16の過給量を増加させて筒内にトラップされる空気量を増大させているので、全部予混合燃料ガスモード又は部分予混合燃料ガスモードにおける機関1の最大出力を向上させることができる。
 〔第2実施形態〕
 次に本発明の第2実施形態を説明する。 
 本実施形態は、過給量を増減操作可能な過給機16の構成のみが第1実施形態と異なっている。
 図5に示すように、本過給機16は、第1過給機16Cと第2過給機16Dとが並列に設けられている。第1過給機16Cのコンプレッサ16CCと掃気マニホールド20との間には掃気用接続通路165aが設けられ、第1過給機16Cの排気タービン16CTと排気マニホールド14との間には排気用接続通路166aが設けられる。さらに、第2過給機16Dのコンプレッサ16DCと掃気マニホールド20との間には掃気用接続通路165bが設けられ、第2過給機16Dの排気タービン16DTと排気マニホールド14との間には排気用接続通路166bが設けられる。
 なお、各掃気用接続通路165a,165bにはエアクーラ18が設けられる。
 そして、掃気用接続通路165b及び排気用接続通路166bには、開閉バルブ167,168が介装されている。
 第1過給機16Cは常時作動であるが、第2過給機16Dは開閉バルブ167及び168を開放すると作動し、開閉バルブ167及び168を閉鎖すると停止する。
 機関1の低負荷時には、排気圧が低いので第1過給機16Cのみによって排気圧を集中的に使用し、機関1の高負荷時には、排気圧が高いので第1過給機16Cと第2過給機16Dとの両方を用いて排気圧を効果的に使用して過給量を増大させることができる。
 本実施形態では、全部予混合燃料ガスモード又は部分予混合燃料ガスモードが設定された際には、筒内にトラップされる空気量が減少してしまうのを補うように、全部予混合燃料ガスモード又は部分予混合燃料ガスモードにおける機関1の高負荷時には、第1過給機16Cと第2過給機16Dとの両方を用いて過給量を増大させる。なお、拡散燃料ガスモード或いは拡散燃料油モードでは、第1過給機16Cと第2過給機16Dとの両方を用いると過給量が過剰になるので、機関1の高負荷時であっても第1過給機16Cのみを用いる。
 本発明の第2実施形態にかかるデュアルフュエル機関の制御装置及びこれを備えた船舶は、上述のように構成されているので、第1実施形態と同様に、船舶が排気規制海域に進入したら、全部予混合燃料ガスモード或いは部分予混合燃料ガスモードが選択され、NOx排出量が少ない状態で排気規制をクリアした状態で船舶を運行し、船舶が排気規制海域を脱出したら、拡散燃料ガスモード或いは拡散燃料油モードが選択され、高効率で大きな最大出力を得られる状態で船舶を運行することができる。
 また、全部予混合燃料ガスモード或いは部分予混合燃料ガスモードでは実圧縮比を低下させ、拡散燃料ガスモード或いは拡散燃料油モードでは実圧縮比を高めているので、第1実施形態と同様に、安定した全部予混合燃料ガスモード或いは部分予混合燃料ガスモードでの運転と、実圧縮比を高めて高効率で大きな最大出力を得られる拡散燃料ガスモード或いは拡散燃料油モードでの運転を両立することができる。
 そして、全部予混合燃料ガスモード或いは部分予混合燃料ガスモードが設定された際に、過給機16の過給量を増加させて筒内にトラップされる空気量を増大させることにより、予混合燃料ガスモード或いは部分予混合燃料ガスモードにおける機関1の最大出力を向上させることができる。
 〔その他〕
 以上、本発明の形態を説明したが、本発明は、その趣旨を逸脱しない範囲で上記実施形態を種々変形して実施することができる。
 例えば、全部予混合燃料ガスモード時或いは部分予混合燃料ガスモード時に、過給量を増加可能な過給機16としては、例えば、電動アシスト式の過給機を適用し、予混合燃料ガスモード時には電動アシストを用いて過給量を増加させることもできる。また、容量可変式の過給機を適用し、予混合燃料ガスモード時には容量を増大して過給量を増加させることもできる。
 また、上記実施形態では、制御装置40が船舶の航行している航行海域が排気規制海域内であるか否かを判定し、機関1の動作モード(燃焼方式)を自動で選択したが、船舶の航行している航行海域が排気規制海域内であるか否かを人為的に判定し、排気規制海域内である場合には、制御装置40の燃焼モード選択部(燃焼方式選択手段)に全部予混合燃料ガスモード(燃料ガス全部予混合燃焼方式)或いは部分予混合燃料ガスモード(燃料ガス部分予混合燃焼方式)を手動で選択指令し、排気規制海域内でない場合には、制御装置40の燃焼モード選択部(燃焼方式選択手段)に拡散燃料ガスモード又は拡散燃料油スモード(燃料ガス拡散燃焼方式)を手動で選択指令するようにしてもよい。
 また、上記実施形態では、本発明は、内燃機関としてデュアルフュエル機関を例示したが、本発明にかかる内燃機関は、運転中に少なくとも燃料ガス拡散燃焼方式と燃料ガス予混合燃焼方式とを選択可能なもの、或いは、運転中に少なくとも燃料ガス拡散燃焼方式と燃料ガス全部予混合燃焼方式と燃料ガス部分予混合燃焼方式とを選択可能なものであればよく、デュアルフュエル機関に限定されず、燃料ガスのみによって運転する内燃機関(ガスエンジン)であってもよい。
 そして、こうした内燃機関の運転中に、少なくとも燃料ガス拡散燃焼方式と燃料ガス予混合燃焼方式とを含む燃焼方式のうちの一つの燃焼方式、或いは、少なくとも燃料ガス拡散燃焼方式と燃料ガス全部予混合燃焼方式と燃料ガス部分予混合燃焼方式とを含む燃焼方式のうちの一つの燃焼方式、を選択する燃焼方式選択工程と、燃焼方式選択工程において選択した燃焼方式に応じて、内燃機関の実圧縮比を制御する圧縮比制御工程と、を実施することにより、燃焼方式の変更に伴う機関の性能変化分を実圧縮比の制御によって相殺する方向に操作することができる。
 1 デュアルフュエル機関(内燃機関)
 9 シリンダライナ
 10 掃気ポート
 11 シリンダカバー
 12 排気弁
 13 ピストン
 14 排気ガスマニホールド
 16 過給機
 30 予混合ガス弁(第1の燃料ガス噴射弁)
 32 拡散ガス弁(第2の燃料ガス噴射弁)
 34 燃料油弁(燃料油噴射弁)
 40 制御装置
 42 判定部(判定手段)
 44 作動モード選択部(燃焼方式選択手段)
 46 燃料噴射制御部(燃料噴射制御手段)
 48 実圧縮比制御部(実圧縮比制御手段)
 50 過給制御部(過給制御手段) 

Claims (11)

  1.  内燃機関の運転中に少なくとも燃料ガス拡散燃焼方式と燃料ガス予混合燃焼方式とを選択可能な燃焼方式選択手段と、
     前記燃焼方式選択手段により選択された燃焼方式に応じた燃料噴射態様となるように燃料噴射を制御する燃料噴射制御手段と、
     前記燃焼方式選択手段により選択された燃焼方式に応じた実圧縮比となるように実圧縮比を制御する実圧縮比制御手段と、を備え、
     前記実圧縮比制御手段は、前記燃料ガス予混合燃焼方式が選択されたら前記実圧縮比を低圧縮比に制御し、前記燃料ガス拡散燃焼方式が選択されたら前記実圧縮比を高圧縮比に制御する
    ことを特徴とする内燃機関の制御装置。
  2.  前記燃料ガス予混合燃焼方式は、燃料ガスを用いて燃料ガス予混合燃焼方式だけで燃焼させる燃料ガス全部予混合燃焼方式と、燃料ガスの一部を予混合燃焼させ残りを拡散燃焼させる燃料ガス部分予混合燃焼方式とを含み、
     前記燃焼方式選択手段は、前記内燃機関の運転中に、少なくとも、前記燃料ガス拡散燃焼方式と、前記燃料ガス全部予混合燃焼方式と、前記燃料ガス部分予混合燃焼方式とを、選択可能であって、
     前記実圧縮比制御手段は、前記燃料ガス全部予混合燃焼方式或いは前記燃料ガス部分予混合燃焼方式が選択されたら前記実圧縮比を低圧縮比に制御し、前記燃料ガス拡散燃焼方式が選択されたら前記実圧縮比を高圧縮比に制御する
    ことを特徴とする請求項1記載の内燃機関の制御装置。
  3.  前記内燃機関は、排気弁閉止タイミングを変更可能な動弁装置を備え、
     前記実圧縮比制御手段は、前記排気弁閉止タイミングを操作して前記実圧縮比を制御し、前記実圧縮比を低圧縮比にする際には、前記排気弁閉止タイミングを遅角側に制御し、前記実圧縮比を高圧縮比にする際には、前記排気弁閉止タイミングを進角側に制御する
    ことを特徴とする請求項1又は2記載の内燃機関の制御装置。
  4.  前記内燃機関は、過給量を増減操作可能な過給機を備え、
     少なくとも前記内燃機関の負荷が一定負荷よりも大きい高負荷状態の場合に、前記燃焼方式選択手段が前記燃料ガス拡散燃焼方式を選択したら前記過給量を通常状態とし、前記燃焼方式選択手段が前記燃料ガス予混合燃焼方式を選択したら前記過給量を増加状態とする過給制御手段とを備えている
    ことを特徴とする請求項1~3の何れか1項に記載の内燃機関の制御装置。
  5.  前記過給機は、2段過給と単段過給とが切り替え可能な過給機であって、
     前記過給制御手段は、前記過給量を通常状態とする際は前記過給機を単段過給とし、前記過給量を増加状態とする際は前記過給機を2段過給とする
    ことを特徴とする請求項4記載の内燃機関の制御装置。
  6.  前記過給制御手段は、前記燃焼方式選択手段が前記燃料ガス拡散燃焼方式を選択した場合には、前記内燃機関の負荷が前記一定負荷以下の低負荷状態であったら前記過給量を増加状態とする
    ことを特徴とする請求項4又は5記載の内燃機関の制御装置。
  7.  前記内燃機関の排気を規制すべき排気規制状態であるか否かを判定する判定手段を備え、
     前記燃焼方式選択手段は、前記判定手段により排気規制状態であると判定されると前記燃料ガス予混合燃焼方式を選択し、前記判定手段により排気規制状態でないと判定されると前記燃料ガス拡散燃焼方式を選択する
    ことを特徴とする請求項1~6の何れか1項に記載の内燃機関の制御装置。 
  8.  前記内燃機関は船舶に装備された舶用機関であって、
     前記判定手段は、前記船舶の航行している航行海域が排気規制海域内であれば前記排気規制状態であると判定し、前記航行海域が排気規制海域外であれば前記排気規制状態でないと判定する
    ことを特徴とする請求項7記載の内燃機関の制御装置。
  9.  請求項1~8の何れか1項に記載の内燃機関の制御装置と、前記制御装置により制御される前記内燃機関と、を有する
    ことを特徴とする船舶。
  10.  内燃機関の運転中に少なくとも燃料ガス拡散燃焼方式と燃料ガス予混合燃焼方式とを含む燃焼方式のうちの一つの燃焼方式を選択する燃焼方式選択工程と、
     前記燃焼方式選択工程において選択した燃焼方式に応じて、前記内燃機関の実圧縮比を制御する圧縮比制御工程と、を備える
    ことを特徴とする内燃機関の運転方法。
  11.  前記燃料ガス予混合燃焼方式は、燃料ガスを用いて燃料ガス予混合燃焼方式だけで燃焼させる燃料ガス全部予混合燃焼方式と、燃料ガスの一部を予混合燃焼させ残りを拡散燃焼させる燃料ガス部分予混合燃焼方式とを含み、
     前記燃焼方式選択工程では、前記内燃機関の運転中に、少なくとも、前記燃料ガス拡散燃焼方式と、前記燃料ガス全部予混合燃焼方式と、前記燃料ガス部分予混合燃焼方式とを含む燃焼方式のうちの一つの燃焼方式を選択する
    ことを特徴とする請求項10記載の内燃機関の運転方法。 
PCT/JP2015/072401 2015-02-27 2015-08-06 内燃機関の制御装置及びこれを備えた船舶並びに内燃機関の運転方法 WO2016136001A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017501833A JP6412243B2 (ja) 2015-02-27 2015-08-06 内燃機関の制御装置及びこれを備えた船舶並びに内燃機関の運転方法
KR1020177022662A KR101953050B1 (ko) 2015-02-27 2015-08-06 내연 기관의 제어 장치 및 이것을 구비한 선박 그리고 내연 기관의 운전 방법
CN201580076408.XA CN107250515B (zh) 2015-02-27 2015-08-06 内燃机的控制装置以及具备其的船舶、内燃机的运行方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015039150 2015-02-27
JP2015-039150 2015-02-27

Publications (1)

Publication Number Publication Date
WO2016136001A1 true WO2016136001A1 (ja) 2016-09-01

Family

ID=56787994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072401 WO2016136001A1 (ja) 2015-02-27 2015-08-06 内燃機関の制御装置及びこれを備えた船舶並びに内燃機関の運転方法

Country Status (4)

Country Link
JP (1) JP6412243B2 (ja)
KR (1) KR101953050B1 (ja)
CN (1) CN107250515B (ja)
WO (1) WO2016136001A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017096254A (ja) * 2015-11-26 2017-06-01 マン・ディーゼル・アンド・ターボ・エスイー エンジンを運転するための方法および制御デバイス
JP2020094576A (ja) * 2018-12-14 2020-06-18 株式会社Ihi エンジンシステム
JP2021188569A (ja) * 2020-05-29 2021-12-13 株式会社三井E&Sマシナリー 水素燃料を用いた内燃機関

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302169A (ja) * 1987-06-02 1988-12-09 Mitsubishi Heavy Ind Ltd ガス焚きディ−ゼルエンジンのガス供給装置
JPH09228853A (ja) * 1996-02-27 1997-09-02 Hitachi Ltd ガスタービン燃焼器
JP2000018013A (ja) * 1998-07-03 2000-01-18 Mitsubishi Heavy Ind Ltd 内燃機関の圧縮比調整装置
JP2005030243A (ja) * 2003-07-09 2005-02-03 Fuji Seratekku Kk 燃料改質装置
JP2006052676A (ja) * 2004-08-11 2006-02-23 Toyota Motor Corp 圧縮着火内燃機関の燃焼制御システム
JP2006152943A (ja) * 2004-11-30 2006-06-15 Isuzu Motors Ltd 内燃機関の動弁制御装置
JP2007198273A (ja) * 2006-01-27 2007-08-09 Toyota Motor Corp ガス燃料内燃機関
JP2008038870A (ja) * 2006-08-10 2008-02-21 Mitsubishi Heavy Ind Ltd 多段過給式排気ターボ過給機の製造方法
JP2014058308A (ja) * 2013-10-23 2014-04-03 Mitsubishi Heavy Ind Ltd 船舶

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5395848A (en) 1977-02-02 1978-08-22 Sumitomo Metal Ind Ltd Gas shielded arc welding
JP3925112B2 (ja) * 2001-06-20 2007-06-06 富士ゼロックス株式会社 画像処理装置
JP5065914B2 (ja) * 2005-02-24 2012-11-07 フィッツジェラルド,ジョン,ダブリュー. 可変ピストンストローク式の4シリンダ、4サイクル、フリーピストン、予混合気圧縮点火型の内燃往復ピストンエンジン
JP4838666B2 (ja) * 2006-08-31 2011-12-14 ヤンマー株式会社 予混合圧縮自着火式エンジンの運転方法
JP5949183B2 (ja) 2012-06-06 2016-07-06 株式会社Ihi 2ストロークユニフローエンジン

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302169A (ja) * 1987-06-02 1988-12-09 Mitsubishi Heavy Ind Ltd ガス焚きディ−ゼルエンジンのガス供給装置
JPH09228853A (ja) * 1996-02-27 1997-09-02 Hitachi Ltd ガスタービン燃焼器
JP2000018013A (ja) * 1998-07-03 2000-01-18 Mitsubishi Heavy Ind Ltd 内燃機関の圧縮比調整装置
JP2005030243A (ja) * 2003-07-09 2005-02-03 Fuji Seratekku Kk 燃料改質装置
JP2006052676A (ja) * 2004-08-11 2006-02-23 Toyota Motor Corp 圧縮着火内燃機関の燃焼制御システム
JP2006152943A (ja) * 2004-11-30 2006-06-15 Isuzu Motors Ltd 内燃機関の動弁制御装置
JP2007198273A (ja) * 2006-01-27 2007-08-09 Toyota Motor Corp ガス燃料内燃機関
JP2008038870A (ja) * 2006-08-10 2008-02-21 Mitsubishi Heavy Ind Ltd 多段過給式排気ターボ過給機の製造方法
JP2014058308A (ja) * 2013-10-23 2014-04-03 Mitsubishi Heavy Ind Ltd 船舶

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017096254A (ja) * 2015-11-26 2017-06-01 マン・ディーゼル・アンド・ターボ・エスイー エンジンを運転するための方法および制御デバイス
KR20170061600A (ko) * 2015-11-26 2017-06-05 만 디젤 앤 터보 에스이 엔진을 작동하기 위한 방법 및 제어 디바이스
KR102546911B1 (ko) * 2015-11-26 2023-06-22 만 에너지 솔루션즈 에스이 엔진을 작동하기 위한 방법 및 제어 디바이스
JP2020094576A (ja) * 2018-12-14 2020-06-18 株式会社Ihi エンジンシステム
JP7309111B2 (ja) 2018-12-14 2023-07-18 株式会社三井E&S Du エンジンシステム
JP2021188569A (ja) * 2020-05-29 2021-12-13 株式会社三井E&Sマシナリー 水素燃料を用いた内燃機関
JP7236407B2 (ja) 2020-05-29 2023-03-09 株式会社三井E&Sマシナリー 水素燃料を用いた内燃機関

Also Published As

Publication number Publication date
KR20170102551A (ko) 2017-09-11
CN107250515A (zh) 2017-10-13
CN107250515B (zh) 2020-09-15
JP6412243B2 (ja) 2018-10-24
KR101953050B1 (ko) 2019-02-27
JPWO2016136001A1 (ja) 2017-11-30

Similar Documents

Publication Publication Date Title
US7793638B2 (en) Low emission high performance engines, multiple cylinder engines and operating methods
US7954472B1 (en) High performance, low emission engines, multiple cylinder engines and operating methods
US7302939B2 (en) Exhaust gas recirculation methods and apparatus for reducing NOx emissions from internal combustion engines
US7302918B2 (en) Method and apparatus for providing for high EGR gaseous-fuelled direct injection internal combustion engine
US20080264393A1 (en) Methods of Operating Low Emission High Performance Compression Ignition Engines
US20080208435A1 (en) Internal combustion engine and working cycle
EP2948667B1 (en) Method for operating piston engine and piston engine
US20110108012A1 (en) Internal combustion engine and working cycle
KR101918378B1 (ko) 내연 기관 및 이를 구비한 선박
US20160153375A1 (en) Method for operating an engine
US11898448B2 (en) Hydrogen-powered opposed-piston engine
WO2014084023A1 (ja) 天然ガスエンジン及び天然ガスエンジンの運転方法
WO2016136001A1 (ja) 内燃機関の制御装置及びこれを備えた船舶並びに内燃機関の運転方法
JP6675887B2 (ja) クロスヘッド式内燃機関
Beatrice et al. Compression ratio influence on the performance of an advanced single-cylinder diesel engine operating in conventional and low temperature combustion mode
CN111550307A (zh) 具有辅助鼓风机的大型发动机和操作方法
US20220112834A1 (en) Device for fuel injection for internal combustion engines
JP4306462B2 (ja) 4サイクル内燃機関
JP4779386B2 (ja) ディーゼルエンジン
CN111051668B (zh) 内燃机和用于控制这种内燃机的方法
JP7307293B1 (ja) 大型ターボ過給式2ストロークユニフロークロスヘッド圧縮着火内燃機関及びその動作方法
JP6031431B2 (ja) 内燃機関の吸気制御装置
JP2004092574A (ja) 副室掃気装置を備えたガスエンジン
GB2546115A (en) Internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883291

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177022662

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017501833

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15883291

Country of ref document: EP

Kind code of ref document: A1