WO2016135824A1 - 光受信装置 - Google Patents

光受信装置 Download PDF

Info

Publication number
WO2016135824A1
WO2016135824A1 PCT/JP2015/055037 JP2015055037W WO2016135824A1 WO 2016135824 A1 WO2016135824 A1 WO 2016135824A1 JP 2015055037 W JP2015055037 W JP 2015055037W WO 2016135824 A1 WO2016135824 A1 WO 2016135824A1
Authority
WO
WIPO (PCT)
Prior art keywords
control signal
voltage
optical receiver
temperature
level conversion
Prior art date
Application number
PCT/JP2015/055037
Other languages
English (en)
French (fr)
Inventor
白井 聡
雅樹 野田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US15/538,075 priority Critical patent/US9923642B2/en
Priority to PCT/JP2015/055037 priority patent/WO2016135824A1/ja
Priority to JP2017501575A priority patent/JP6275322B2/ja
Publication of WO2016135824A1 publication Critical patent/WO2016135824A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/691Arrangements for optimizing the photodetector in the receiver
    • H04B10/6911Photodiode bias control, e.g. for compensating temperature variations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3084Automatic control in amplifiers having semiconductor devices in receivers or transmitters for electromagnetic waves other than radiowaves, e.g. lightwaves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J2001/4406Plural ranges in circuit, e.g. switchable ranges; Adjusting sensitivity selecting gain values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J2001/4446Type of detector
    • G01J2001/446Photodiode
    • G01J2001/4466Avalanche
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J40/00Photoelectric discharge tubes not involving the ionisation of a gas
    • H01J40/02Details
    • H01J40/14Circuit arrangements not adapted to a particular application of the tube and not otherwise provided for
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • H03G3/20Automatic control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers

Definitions

  • the present invention relates to an optical receiver for optical communication.
  • An optical receiver for optical communication may include an APD (avalanche photodiode, hereinafter referred to as “avalanche photodiode”) that can amplify an optical reception signal and receive light.
  • APD is a photodiode whose light receiving sensitivity is increased by utilizing a phenomenon called avalanche multiplication.
  • the optical receiver can receive an optical signal attenuated by long-distance transmission.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain an optical receiving apparatus that can suppress an increase in the size of its own apparatus, can realize a low-cost configuration with low power consumption.
  • an optical receiver is an optical receiver that receives an optical signal, and a plurality of avalanches whose reception sensitivity is set by a given bias signal.
  • the optical receiving apparatus can suppress an increase in the size of its own apparatus, and has an effect of realizing a low-cost configuration with low power consumption.
  • FIG. 1 is a block diagram showing an optical receiver according to a first embodiment of the present invention.
  • the flowchart which shows the example of a process of the processor of the optical receiver concerning Embodiment 1 of this invention
  • the figure which shows the structural example of the variable resistance part of the optical receiver concerning Embodiment 1 of this invention. 6 is a flowchart showing a table generation procedure for associating temperature information of the optical receiver according to the first embodiment of the present invention with a control signal to the booster circuit.
  • FIG. 4 is a diagram illustrating an example of temperature characteristics of a base-emitter voltage of a transistor used in the optical receiver according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of a temperature dependence table of a base-emitter voltage of a transistor used in the optical receiver according to the first embodiment of the present invention.
  • 6 is a flowchart showing a table generation procedure for associating temperature information of the optical receiver according to the first embodiment of the present invention with a control signal to the level conversion circuit.
  • FIG. 3 is a diagram illustrating an example of a lookup table of the optical receiver according to the first embodiment of the present invention.
  • FIG. 1 is a block diagram showing an optical receiving apparatus according to Embodiment 1 of the present invention.
  • 1 includes a booster circuit 11, a filter 12, level conversion circuits 13 1 ,..., 13 n , n APDs 16 1 ,..., 16 n , a control unit 14, and temperature detection. , 17 n , and n amplifiers 18 1 ,..., 18 n, and n TIAs (Trans Impedance Amplifiers) 17 1 ,. n is an integer of 2 or more, and so on.
  • the booster circuit 11 is a booster that boosts the power supply voltage of its own device.
  • the filter 12 removes voltage noise generated by the booster circuit 11.
  • the n level conversion circuits 13 1 ,..., 13 n are n level conversion units that convert the voltage level of the DC voltage that has passed through the filter 12 to generate a bias voltage that is a bias signal.
  • the receiving sensitivity of the n APDs 16 1 ,..., 16 n is set by a given bias voltage.
  • the control unit 14 provides the first control signal S1 based on the temperature information to the level conversion circuits 13 1 ,..., 13 n and also provides the second control signal S2 based on the temperature information to the booster circuit 11.
  • the temperature detector 15 detects the temperature of the device itself and outputs temperature information to the control unit 14.
  • n pieces of TIA17 1, ..., 17 n are, APD16 1, ..., it converts the current outputted from the 16 n to a voltage.
  • n number of amplifiers 18 1, ..., 18 n are, TIA17 1, ..., it amplifies the converted voltage by 17 n.
  • the self apparatus is the optical receiving apparatus 10.
  • the booster circuit 11 includes a booster IC (Integrated Circuit) 110 and an inductor L1.
  • the booster circuit 11 generates a voltage obtained by boosting the power supply voltage based on the second control signal S2 input to the booster IC 110 and the inductance of the inductor L1.
  • Voltage boosting circuit 11 generates is a DC voltage, APD16 1, ..., 16 level conversion circuit 13 1 in order to obtain a bias voltage applied to the n, ..., it is the reference voltage applied to 13 n.
  • the booster circuit 11 may include a conversion circuit that converts the digital signal into an analog signal.
  • the filter 12 includes an inductor L2 having one end connected to the output of the booster circuit 11, and a capacitor C1 connected between the other end of the inductor L2 and the ground.
  • the filter 12 acts as a low pass filter.
  • the filter 12 removes the high frequency component of the reference voltage generated by the booster circuit 11.
  • the voltage V1 at the other end of the inductor L2 is applied to the level conversion circuits 13 1 ,..., 13 n as the reference voltage V1.
  • the n level conversion circuits 13 1 ,..., 13n are provided corresponding to the n APDs 16 1 ,.
  • Level conversion circuit 13 1, ..., 13 n the corresponding APD16 1, ..., and generates a bias voltage applied to 16 n.
  • the level conversion circuits 13 1 ,..., 13 n convert the voltage level of the reference voltage V1 to generate the bias voltage Vapd.
  • Level conversion circuit 13 1, ..., 13 n gives the bias voltage Vapd, corresponding APD16 1, ..., to 16 n.
  • the control unit 14 generates a control signal S1 corresponding to the temperature of the device itself, and controls the level conversion amounts of the plurality of level conversion circuits 13 1 ,..., 13 n by the control signal S1.
  • the control unit 14 generates a control signal S2 corresponding to the temperature of the device itself, and controls the reference voltage generated by the booster circuit 11 by the control signal S2.
  • the temperature detector 15 detects the temperature of its own device at regular intervals and outputs temperature information to the control unit 14. Specifically, the temperature of each part constituting the optical receiver 10 is set as the temperature of the own device. For example, APD16 1 of the optical receiver 10, ..., 16 the average value of the temperature of the n, the level converting circuit 13 1, ..., the average value or the temperature of the housing of the air temperature of 13 n, and the temperature of the device itself .
  • APDs 16 1 ,..., 16 n are connected to the filter 12 in parallel.
  • APDs 16 1 ,..., 16 n are provided corresponding to n channels Ch 1 to Ch n in order to realize wavelength multiplexing.
  • the APDs 16 1 ,..., 16 n amplify the light reception signals and receive light.
  • the APDs 16 1 ,..., 16 n are given a voltage of about 30 [V] to 50 [V] in order to amplify the received signal.
  • a voltage applied to the APDs 16 1 ,..., 16 n in order to amplify the received signal is referred to as a bias voltage.
  • n transimpedance amplifiers 17 1 ,..., 17 n and n amplifiers 18 1 ,..., 18 n are provided corresponding to the n APDs 16 1 ,. ing.
  • n APDs 16 1 ,..., 16 n are connected in parallel to the control unit 14, the booster circuit 11, and the filter 12.
  • a booster circuit 11, a filter 12, a controller 14, and a temperature detector 15 are provided in common for the APDs 16 1 ,..., 16 n .
  • n pieces of TIA17 1, ..., 17 n are, APD16 1, ..., are provided after the 16 n.
  • n pieces of TIA17 1, ..., 17 n are, APD16 1, ..., converts each current output from 16 n to a voltage.
  • n number of amplifiers 18 1, ..., 18 n, the corresponding TIA17 1, ..., amplify each voltage converted by 17 n.
  • Each electrical signal amplified by the n amplifiers 18 1 ,..., 18 n becomes an output of the optical receiver 10.
  • FIG. 2 is a diagram of a configuration example of the control unit 14 of the optical receiving device according to the first embodiment of the present invention.
  • the control unit 14 includes a memory 141 that stores a program 146 and data necessary for processing, a processor 142 that reads and executes the program 146 from the memory 141, an input of temperature information, and a control signal S1 and It has an input / output device 143 that functions as an output interface of S2, and a bus 144 that interconnects the components in the control unit 14.
  • the memory 141 stores a look-up table (LUT) 145.
  • LUT look-up table
  • the control unit 14 functions as a micro control unit (MCU) that controls writing of data into the memory 141 and reading of data from the memory 141.
  • the look-up table 145 is a table that associates the temperature information with the first control signal S1 to the level conversion circuits 13 1 ,..., 13 n and the second control signal S2 to the booster circuit 11.
  • the control unit 14 may be realized by a general-purpose microprocessor and memory, or the control unit 14 may be realized by a dedicated integrated circuit having an MCU function.
  • the control unit 14 stores, in the lookup table 145, the digital value of the control signal S1 to each level conversion circuit 13 1 ,..., 13 n and the digital value of the control signal S2 to the booster circuit 11 corresponding to the temperature. is doing.
  • the controller 14 writes and reads data to and from the lookup table 145 by the processor 142.
  • the control unit 14 inputs temperature information detected by the temperature detector 15 via the input / output device 143.
  • the control unit 14 outputs control signals S1 and S2 having values corresponding to the temperature information via the input / output device 143.
  • the control unit 14 controls the level conversion amount of each of the level conversion circuits 13 1 ,..., 13 n by the control signal S 1 output through the input / output device 143 and also outputs the control signal through the input / output device 143.
  • the control signal S1 is a control signal based on I 2 C (Inter-Integrated Circuit) communication.
  • I 2 C communication is serial communication performed by transmitting and receiving serial data and a serial clock.
  • the control unit 14 acquires temperature information from the temperature detector 15 via the input / output device 143 at regular time intervals. When there is a temperature change, the control unit 14 outputs control signals S1 and S2 corresponding to the changed temperature via the input / output device 143. By controlling the reference voltage output from the booster circuit 11 and the level conversion amounts of the level conversion circuits 13 1 ,..., 13 n , the control unit 14 generates a bias voltage suitable for each APD using each temperature. And give to each APD.
  • FIG. 3 is a flowchart showing an example of processing of the processor 142 included in the control unit 14 of the optical receiver according to the first embodiment of the present invention.
  • the processor 142 determines whether or not the power supply of its own device is turned on. If the processor 142 determines that the power is turned on (Yes in step S11), in step S12, the temperature detector 15 acquires temperature information indicating the temperature of the own device via the input / output device 143 and the bus 144. To do.
  • step S ⁇ b> 13 the processor 142 stores temperature information in the memory 141 via the bus 144.
  • step S14 the processor 142 reads the temperature information stored in the memory 141 via the bus 144, and compares the temperature information acquired this time with the temperature information acquired last time.
  • step S15 the processor 142 determines whether or not the comparison result in step S14 matches. If the temperature information does not match (No in step S15), in step S16, the digital values of the control signals S1 and S2 output from the lookup table 145 to each level conversion circuit and the booster circuit 11 via the bus 144 are obtained. Read. The digital values of the control signals S1 and S2 read from the lookup table 145 are values corresponding to the temperature information acquired last time.
  • step S17 the processor 142 outputs the read digital value control signals S1 and S2 to the level conversion circuits 13 1 ,..., 13 n and the booster circuit 11 via the bus 144 and the input / output device 143.
  • step S18 it is determined whether or not the processing of the processor 142 is complete.
  • the processing is terminated.
  • finished is a case where the power supply of an own apparatus is cut
  • step S18 when the process of the processor 142 is not completed (No in step S18), the process returns to step S12, and the processor 142 continues the process from step S12 to step S18.
  • step S15 if the pieces of temperature information match (Yes in step S15), the temperature does not change, so the processor 142 returns to step S12 without reading the digital values of the control signals S1 and S2, and from step S12 to step S12. The process of S18 is continued.
  • step S11 If it is determined in step S11 that the power of the apparatus is not turned on, the process returns to step S11 (No in step S11), and the processor 142 continues the process.
  • FIG. 4 is a diagram showing an example of a level conversion circuit 13 1 of the configuration of the optical receiving apparatus according to a first embodiment of the present invention.
  • the level converting circuit 13 1 includes a variable resistor 21 for the reference voltage V1 is applied to one end, one end connected to the other end of the variable resistor 21, is connected the other end to the ground It has a fixed resistor 22, a fixed resistor 23 that acts as a collector resistor, and a transistor 24 that is a semiconductor element constituting an emitter follower circuit.
  • the transistor 24 is an npn-type transistor.
  • the resistance value of the variable resistance unit 21 is set by the first control signal S1 output from the control unit 14.
  • a digital potentiometer is used as the variable resistance unit 21, but the type of the variable resistance unit 21 is not limited.
  • Level conversion circuit 13 the variable resistor portion 21 and the fixed resistor 22 and a dividing resistor circuit and converts the voltage level of the reference voltage V1 by the resistance division circuit. That is, in the first embodiment, the divided resistor circuit includes the variable resistor portion 21 whose resistance value changes according to the control signal S1 and the fixed resistor 22 connected to the variable resistor portion 21.
  • the level conversion circuit 13 the level of the voltage divided by the divided resistor circuit, i.e. the level of the voltage at the node between the variable resistor 21 and fixed resistor 22 and converted by the variable resistor 21, as the bias voltage Vapd1 , give to the corresponding APD16 1.
  • the voltage at the connection point between the variable resistor unit 21 and the fixed resistor 22, whose voltage level is converted, is applied to the base of the npn transistor 24. Therefore, the base voltage of the transistor 24, the base of the transistor 24 - only emitter voltage Vbe partial voltage drop voltage is output from the level converting circuit 13 1.
  • the base-emitter voltage Vbe of the transistor 24 is about 0.8V.
  • the emitter of the transistor 24 is connected to a corresponding APD16 1, the emitter follower circuit is formed.
  • Level conversion circuit 13 1 a bias voltage Vapd1 as APD voltage, gives the corresponding APD16 1.
  • APD16 photocurrent i.e. APD current flows when a 1 is received the light signal, the collector of the transistor 24 from the booster circuit 11 - flows through the emitter.
  • Level conversion circuit 13 by changing the resistance value of the variable resistor 21, it is possible to adjust the bias voltage Vapd1 give the APD16 1. Adjustable range of the bias voltage Vapd1 by the level converting circuit 13 1, the reference voltage V1 [V] - a range of voltage Vbe [V] or less.
  • npn-type transistor 24 instead of the npn-type transistor 24, a pnp-type transistor or a field effect transistor may be used.
  • FIG. 5 is a diagram illustrating a configuration example of the variable resistance unit 21 according to the first embodiment.
  • the variable resistance unit 21 includes a serial input register 211 that converts the first control signal S1 output from the control unit 14 into a parallel signal, and a control signal S3 having a resistance value corresponding to the parallel signal. It has an RDAC (Resistor Digital to Analog Converter) register 212 to be generated, and a variable resistor 213 whose resistance value is set by the control signal S3.
  • RDAC Resistor Digital to Analog Converter
  • the first control signal S1 output from the control unit 14 is a control signal by I 2 C communication.
  • the first control signal S1 by I 2 C communication includes serial data SDA and a serial clock SCL.
  • the serial input register 211 converts the serial data SDA into a parallel signal in synchronization with the serial clock SCL.
  • the RDAC register 212 converts a parallel signal into an analog signal and outputs it as a resistance value control signal S3.
  • the variable resistor 213 has terminals A1, B1, and W1. Between the terminal A1 and the terminal B1, there is a maximum resistance value that can be set by the variable resistor 213.
  • the terminal W1 is a wiper terminal connected to a wiper contact for selecting the resistance value of the variable resistor 213.
  • the reference voltage V1 is applied to the terminal A1, and the fixed resistance 22 is connected to the terminal W1.
  • the resistance value between the terminal A 1 and the terminal W 1 is set by the control signal S 1 output from the control unit 14, and the voltage determined by the divided resistance circuit of the resistance value and the resistance value of the fixed resistor 22 is the base of the transistor 24. Given to.
  • the lookup table 145 includes the temperature information and the digital value of the first control signal S1 to the level conversion circuits 13 1 ,..., 13 n and the digital value of the second control signal S2 to the booster circuit 11. Is a table that associates.
  • a table for associating the digital value of the second control signal S2 of the temperature information to the booster circuit 11, temperature information and the level converting circuit 13 1, ..., a first control signal to the 13 n A table that associates the digital value of S1 is created, and the two tables are combined to create a lookup table 145.
  • FIG. 6 is a flowchart showing a table generation procedure for associating the temperature information of the optical receiver according to the first embodiment of the present invention with the digital value of the control signal S2 to the booster circuit 11.
  • FIG. 7 is a diagram illustrating the temperature dependence of the bias voltage of the optical receiver according to the first embodiment of the present invention.
  • step S21 the optimum bias voltage Vapd of the APD connected to each channel is obtained at a plurality of points, that is, at a plurality of types of temperatures.
  • step S22 the bias voltage Vapd measured at a plurality of types of temperatures is plotted on a graph.
  • step S23 bias voltages Vapd of a plurality of types of temperatures are approximated by a polynomial, and bias voltages at temperatures not measured are calculated by interpolation.
  • Graph as shown in FIG. 7 is created when determining the temperature dependency of the bias voltage for Ch n from each channel Ch 1.
  • the measured temperature is indicated by a black circle. Curved parts without black circles are interpolated parts. Referring to the graph shown in FIG. 7, it can be seen which channel requires the highest bias voltage at each temperature. The largest bias voltage is defined as the maximum bias voltage Vapd_max.
  • step S24 a voltage 1 volt higher than the maximum bias voltage Vapd_max, that is, the maximum bias voltage Vapd_max + 1 [V] is set as the reference voltage V1 (t).
  • (T) indicates a value depending on the temperature t, and the same applies to the following description.
  • the basis for 1 [V] is that the base-emitter voltage Vbe of the npn transistor 24 is about 0.8 [V], and the variation of the base-emitter voltage Vbe due to the temperature and the semiconductor element is 1 [V]. V].
  • a voltage value determined based on a voltage between a base terminal which is a control terminal of a transistor used in the level conversion circuit and an emitter terminal which is an output terminal is added to the maximum bias voltage Vapd_max which is the largest voltage and the reference voltage V1 is generated.
  • step S25 a table of the relationship between the temperature t and the digital value of the second control signal S2 for causing the booster circuit 11 to output the reference voltage V1 (t) is created.
  • the control unit 14 outputs a second control signal S2 corresponding to the temperature t when the temperature t is given.
  • the second control signal S2 is a signal for causing the booster circuit 11 to output a voltage corresponding to the temperature t on the maximum bias voltage Vapd_max + 1 indicated by a solid line in FIG. 7 as the reference voltage V1.
  • the created table is stored in the memory 141 or a register in the processor 142.
  • FIG. 8 is a diagram illustrating an example of the temperature characteristic of the base-emitter voltage Vbe (t) of the transistor 24 used in the optical receiver according to the first embodiment of the present invention. As shown in FIG. 8, the base-emitter voltage Vbe (t) of the transistor 24 decreases as the temperature t [° C.] increases. Further, the base-emitter voltage Vbe (t) of the transistor 24 increases as the temperature t [° C.] decreases. FIG.
  • FIG. 9 is a diagram illustrating an example of a temperature dependence table of the base-emitter voltage Vbe (t) of the transistor 24 used in the optical receiver according to the first embodiment of the present invention.
  • the temperature dependence table shows that the voltage Vbe (t) between the base and emitter of the transistor 24 is high when the temperature t [° C.] of the device is low, and the temperature t [° C.] of the device itself. Is high, the base-emitter voltage Vbe (t) of the transistor 24 has a low voltage value. That is, the temperature dependence table shown in FIG. 9 shows that the base-emitter voltage Vbe (t) decreases with increasing temperature and the base-emitter voltage Vbe (t) increases with decreasing temperature. .
  • FIG. 10 is a flowchart showing a table generation procedure for associating the temperature information of the optical receiver according to the first embodiment of the present invention with the digital values of the control signal S1 to the level conversion circuits 13 1 ,..., 13 n . .
  • step S31 a channel to be processed is determined.
  • step S32 the temperature t is determined.
  • step S33 the temperature dependence table of Vbe (t) of the transistor 24 is referred to.
  • the bias voltage Vapd (t) is obtained.
  • the bias voltage Vapd (t) is calculated from the resistance value R1 of the fixed resistor 22, the reference voltage V1 (t), the base-emitter voltage Vbe (t), and the resistance value Rv1 (t) of the variable resistor unit 21 by the equation (1). ).
  • step S35 the resistance of the variable resistor 21 Rv1 (t) is determined necessary to produce the APD16 1 bias voltage Vapd (t).
  • the resistance value Rv1 (t) is obtained as shown in Equation (2). Since the reference voltage V1 (t), the bias voltage Vapd (t), and the base voltage Vbe (t) are already known, the variable resistance value Rv1 (t) at each temperature is obtained using these values.
  • step S36 it is determined whether or not the bias voltage Vapd (t) and the resistance value Rv1 (t) have been obtained for each temperature.
  • Step S37 the bias voltage Vapd (t) and the resistance value Rv1 (t) are obtained for each channel. Judgment is made whether or not it is requested.
  • step S38 the bias voltage Vapd (t) and the resistance value Rv1 (t) are stored in the memory 141 or the processor. 142 is stored in a register.
  • step S36 when the bias voltage Vapd (t) and the resistance value Rv1 (t) are not obtained for each temperature (No in step S36), the process returns to step S32, and for other temperatures, the bias voltage Vapd (t) and The process for obtaining the resistance value Rv1 (t) is continued.
  • step S37 when the bias voltage Vapd (t) and the resistance value Rv1 (t) are not obtained for each channel (No in step S37), the process returns to step S31, and for the other channels, the bias voltage Vapd (t) and The process for obtaining the resistance value Rv1 (t) is continued.
  • control unit 14 can create a table in which the digital value of the control signal S1 that becomes the resistance value Rv1 (t) is stored for each temperature.
  • the controller 14 creates this for n channels, and for each temperature, the digital value of the second control signal S2 of the reference voltage V1 (t) and the resistance value Rv1 (t) in the level conversion circuit of each channel.
  • the digital value of the control signal S1 of 1 is stored in the memory 141 as a lookup table 145.
  • the processing in FIG. 6 and the processing in FIG. 10 may be performed by the control unit 14 or may be performed by a device different from the control unit 14 to store the lookup table 145 in the memory 141. Also good.
  • the control unit 14 performs the processing in FIG. 6 and the processing in FIG. 10 to store the lookup table 145 in the memory 141.
  • Table example 11 the level conversion circuit 13 1 and the temperature t [° C.] of the optical receiving apparatus according to a first embodiment of the present invention, ..., a table showing the correspondence between the digital value of the first control signal S1 13 n It is a figure which shows an example.
  • the control unit 14 can create the table 145A shown in FIG. 11 by the processing shown in FIG.
  • FIG. 12 is a diagram illustrating an example of a table indicating the correspondence between the temperature t [° C.] of the optical receiver according to the first embodiment of the present invention and the digital value of the second control signal S2 of the booster circuit 11. is there.
  • the control unit 14 can create the table 145B shown in FIG. 12 by the processing of FIG.
  • FIG. 13 is a diagram illustrating an example of a lookup table of the optical receiver according to the first embodiment of the present invention.
  • the control unit 14 can create the lookup table 145 shown in FIG. 13 by combining the table 145A shown in FIG. 11 and the table 145B shown in FIG.
  • the lookup table 145 is created and stored in the memory 141 of the control unit 14, and the first control signal S1 and the second control signal S2 corresponding to the detected temperature are read from the memory 141 and input.
  • the optical receiving device 10 can give an optimum bias voltage to the APDs 16 1 ,..., 16 n of each channel.
  • the booster circuit 11 is one, a plurality of level conversion circuit 13 1 configured with a simple circuit, ..., APD16 1 multichannel by 13 n, ..., and generates a bias voltage of 16 n Therefore, an increase in size can be suppressed.
  • the optical receiver 10 can also suppress an increase in power consumption. Furthermore, the optical receiver 10 can always drive the APDs 16 1 ,..., 16 n of each channel with an optimum bias voltage.
  • the optical receiving device 10 includes the control unit 14 in common with a plurality of APDs. For this reason, compared with the case where a control part is provided separately for each APD, the optical receiving device 10 can suppress an increase in the size of the own device. Also, the optical receiving device 10 can suppress an increase in the number of parts compared to a case where a control unit is provided separately for each APD. For this reason, the optical receiver 10 can reduce power consumption, and can suppress the increase in the cost of an apparatus.
  • FIG. 14 is a diagram illustrating an example of the configuration of the level conversion circuit 13 1 a according to the second embodiment. As shown in FIG. 14, the level conversion circuit 13 1 a is applied with a reference voltage V1, and a variable resistance unit 25 whose resistance value is changed by the first control signal S1, a fixed resistance 23 that acts as a collector resistance, And an npn-type transistor 24 constituting an emitter follower circuit.
  • the divided resistor circuit includes a variable resistor unit 25 whose resistance value is changed by the first control signal S1.
  • the level conversion circuit 13 1 a converts the level of the voltage of the wiper terminal of the variable resistor 25, as APD voltage to generate a bias voltage Vapd1 a bias signal, applied to the corresponding APD16 1.
  • variable resistance unit 25 has the same configuration as the variable resistance unit 21 described with reference to FIG. However, the reference voltage V1 is applied to the terminal A1 shown in FIG. 5, the base of the transistor 24 is connected to the terminal W1, and the ground is connected to the terminal B1. Thereby, since the variable resistor 25 functions as a three-terminal variable resistor, it is not necessary to provide the fixed resistor 22 in FIG.
  • the variable resistance unit 25 uses the first control signal S1 output from the control unit 14, so that the resistance value R1 between the terminal A1 and the terminal B1, the resistance value Rhigh between the terminal A1 and the terminal W1, and the terminal W1. And a resistance value Rv1 between the terminal B1 and the terminal B1 are set. Then, a voltage determined by the divided resistor circuit based on the resistance value set in the variable resistor unit 25 by the first control signal S ⁇ b> 1 is applied to the base of the transistor 24.
  • the control method and the lookup table creation procedure are the same as those in the first embodiment.
  • the relational expression between the bias voltage Vapd (t) of the APD and the reference voltage V1 (t) is different.
  • the relational expression is represented by Expression (3). Therefore, the resistance value Rv1 (t) can be obtained by Expression (4).
  • All level conversion circuits other than the level conversion circuit 13 1 a have the same configuration as described above and operate in the same manner as described above.
  • a voltage variable range of 0 [V] or more and (V1 ⁇ Vbe) [V] or less can be obtained.
  • the variable range of the bias voltage that is the bias signal can be made wider than the variable range of the bias voltage in the first embodiment.
  • a bias voltage more suitable than that of the first embodiment can be applied to each APD.
  • a divided resistor circuit can be realized by using only the variable resistor 25.
  • Embodiment 2 can reduce the number of parts compared with Embodiment 1, and can suppress the increase in the cost of an apparatus.
  • FIG. 15 is a diagram illustrating an example of the configuration of the level conversion circuit 13 1 b in the third embodiment.
  • the level conversion circuit 13 1 b includes a thermistor 26 to which the reference voltage V1 is applied, a variable resistance section 27 whose resistance value changes according to the control signal S1, and a fixed resistance 23 that acts as a collector resistance. And an npn transistor 24 constituting an emitter follower circuit.
  • the divided resistor circuit includes a variable resistance unit 27 whose resistance value changes according to the first control signal S1, and a thermistor 26 that is connected to the variable resistance unit 27 and whose resistance value changes according to temperature.
  • the level conversion circuit 13 1 b converts the voltage at the node between the variable resistor 27 and the thermistor 26, as APD voltage to generate a bias voltage Vapd1 a bias signal, applied to the corresponding APD16 1.
  • the variable resistance unit 27 has the same configuration as the variable resistance unit 21 described with reference to FIG. However, the thermistor 26 is connected to the terminal A1, and the ground is connected to the terminal W1.
  • the thermistor 26 has an NTC (Negative Temperature Coefficient) characteristic in which the resistance value Rth decreases as the temperature increases. For this reason, in the third embodiment, if the temperature characteristic of the resistance value Rth of the thermistor 26 has linearity, the bias voltage can be obtained without changing the control signal S1 output from the control unit 14 due to a temperature change. Vapd temperature compensation can be performed. That is, when the temperature of the device increases, the resistance value Rth of the thermistor 26 changes and the bias voltage Vapd1 increases, and when the temperature of the device decreases, the bias voltage Vapd1 decreases.
  • NTC Negative Temperature Coefficient
  • the lookup table 145 stores the temperature and the digital value of the second control signal S2 to the booster circuit 11, and the first control signal to each level conversion circuit.
  • the digital value of S1 is not stored.
  • the variable resistance unit 27 may be changed to a fixed resistor.
  • temperature compensation of the bias voltage Vapd1 can be performed with a simpler configuration and control than in the first and second embodiments.
  • the third embodiment also has an advantage that the storage capacity of the memory 141 can be reduced.
  • the digital value of the first control signal S1 that sets the resistance value of the variable resistance unit 27 to a constant value regardless of the temperature may be stored in the lookup table 145.
  • the look-up table 145 is created as a content considering the temperature characteristic of the resistance value Rth of the thermistor 26 and By setting the resistance value of the variable resistance unit 27 in accordance with the change in the APD, an optimum bias voltage can be applied to each APD at each temperature.
  • the control method and the lookup table creation procedure are the same as those in the first embodiment.
  • All level conversion circuits other than the level conversion circuit 13 1 b have the same configuration as described above and operate in the same manner as described above.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Abstract

 光信号を受信する光受信装置は、与えられたバイアス信号によって受信感度が設定される複数のアバランシェフォトダイオードと、複数のアバランシェフォトダイオードに対応して設けられて、バイアス信号を得るための基準電圧のレベルを変換してバイアス信号を生成し、対応するアバランシェフォトダイオードへ与える複数のレベル変換部と、光受信装置の温度に対応した第1の制御信号を生成し、第1の制御信号によって複数のレベル変換部のレベル変換量を制御する制御部と、を含む。

Description

光受信装置
 本発明は、光通信用の光受信装置に関する。
 光通信用の光受信装置は、光受信信号を増幅して受光可能なAPD(avalanche photodiode,以下、「アバランシェフォトダイオード」と記す)を備えることがある。APDは、アバランシェ増倍と呼ばれる現象を利用して受光感度を上昇させたフォトダイオードである。APDを備えることにより、光受信装置は、長距離伝送により減衰した光信号を受信できる。
 特許文献1では、温度センサと、APDのバイアス電圧の温度データを格納するメモリと、メモリに格納されているデータに基づいてAPDのバイアス電圧を制御するCPU(Central Processing Unit)とから構成されたバイアス回路を用いる。こうすることで、常に最適なバイアス電圧でAPDを駆動できる。
特許第3785035号公報
 近年、波長多重を用いたシステムにおいて、APDを並列に配置した光受信装置が必要となっている。この場合、バイアス回路が複数必要となる。そのため、光受信装置のサイズが大きくなってしまうという問題があった。また、複数の昇圧回路により消費電力が増加するとともに部品点数の増加により装置のコストも増加してしまうという問題もあった。
 本発明は、上記に鑑みてなされたものであって、自装置のサイズ増加を抑制でき、低消費電力で、低コストな構成を実現できる光受信装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る光受信装置は、光信号を受信する光受信装置であって、与えられたバイアス信号によって受信感度が設定される複数のアバランシェフォトダイオードと、前記複数のアバランシェフォトダイオードに対応して設けられて、前記バイアス信号を得るための基準電圧のレベルを変換して前記バイアス信号を生成し、対応するアバランシェフォトダイオードへ与える複数のレベル変換部と、前記光受信装置の温度に対応した第1の制御信号を生成し、前記第1の制御信号によって前記複数のレベル変換部のレベル変換量を制御する制御部と、を含む。
 本発明にかかる光受信装置は、自装置のサイズ増加を抑制でき、低消費電力で、低コストな構成を実現できるという効果を奏する。
本発明の実施の形態1にかかる光受信装置を示すブロック図 本発明の実施の形態1にかかる光受信装置の制御部の構成例を示す図 本発明の実施の形態1にかかる光受信装置のプロセッサの処理の例を示すフローチャート 本発明の実施の形態1にかかる光受信装置のレベル変換回路の構成の一例を示す図 本発明の実施の形態1にかかる光受信装置の可変抵抗部の構成例を示す図 本発明の実施の形態1にかかる光受信装置の温度情報と昇圧回路への制御信号とを対応付けるテーブルの生成手順を示すフローチャート 本発明の実施の形態1にかかる光受信装置のバイアス電圧の温度依存性を示す図 本発明の実施の形態1にかかる光受信装置に用いるトランジスタのベース-エミッタ間電圧の温度特性の例を示す図 本発明の実施の形態1にかかる光受信装置に用いるトランジスタのベース-エミッタ間電圧の温度依存性テーブルの例を示す図 本発明の実施の形態1にかかる光受信装置の温度情報とレベル変換回路への制御信号とを対応付けるテーブルの生成手順を示すフローチャート 本発明の実施の形態1にかかる光受信装置の温度とレベル変換回路の制御信号との対応を示すテーブルの例を示す図 本発明の実施の形態1にかかる光受信装置の温度と昇圧回路の制御信号との対応を示すテーブルの例を示す図 本発明の実施の形態1にかかる光受信装置のルックアップテーブルの例を示す図 本発明の実施の形態2にかかる光受信装置のレベル変換回路の例を示す図 本発明の実施の形態3にかかる光受信装置のレベル変換回路の例を示す図
 以下に、本発明の実施の形態にかかる光受信装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1にかかる光受信装置を示すブロック図である。図1に示す光受信装置10は、昇圧回路11と、フィルタ12と、レベル変換回路13,…,13と、n個のAPD16,…,16と、制御部14と、温度検出器15と、n個のTIA(Trans Impedance Amplifire:トランスインピーダンスアンプ)17,…,17と、n個の増幅器18,…,18と、を備えている。nは2以上の整数であり、以下同様である。昇圧回路11は、自装置の電源電圧を昇圧する昇圧部である。フィルタ12は、昇圧回路11で発生させた電圧のノイズを除去する。n個のレベル変換回路13,…,13は、フィルタ12を通過した直流電圧の電圧レベルを変換してバイアス信号であるバイアス電圧を生成するn個のレベル変換部である。n個のAPD16,…,16は、与えられたバイアス電圧によって受信感度が設定される。制御部14は、温度情報に基づく第1の制御信号S1をレベル変換回路13,…,13に与えるとともに、温度情報に基づく第2の制御信号S2を昇圧回路11に与える。温度検出器15は、自装置の温度を検出し、温度情報を制御部14へ出力する。n個のTIA17,…,17は、APD16,…,16から出力される電流を電圧に変換する。n個の増幅器18,…,18は、TIA17,…,17によって変換された電圧を増幅する。なお、自装置とは、光受信装置10である。
 昇圧回路11は、昇圧IC(Integrated Circuit)110とインダクタL1とを備えている。昇圧回路11は、昇圧IC110に入力される第2の制御信号S2及びインダクタL1のインダクタンスに基づき、電源電圧を昇圧した電圧を生成する。昇圧回路11が生成する電圧は直流電圧であり、APD16,…,16に与えられるバイアス電圧を得るためにレベル変換回路13,…,13に与えられる基準電圧である。なお、制御信号S2がデジタル信号である場合、昇圧回路11は、デジタル信号をアナログ信号に変換する変換回路を有していてもよい。
 フィルタ12は、昇圧回路11の出力に一端が接続されたインダクタL2と、インダクタL2の他端とグランドとの間に接続されたキャパシタC1とを備えている。フィルタ12は、低域通過フィルタとして作用する。フィルタ12は、昇圧回路11が生成した基準電圧の高域成分を除去する。インダクタL2の他端の電圧V1が、基準電圧V1としてレベル変換回路13,…,13に与えられる。
 n個のレベル変換回路13,…,13nは、n個のAPD16,…,16に対応して設けられている。レベル変換回路13,…,13は、対応するAPD16,…,16に与えられるバイアス電圧を生成する。レベル変換回路13,…,13は、基準電圧V1の電圧レベルを変換して、バイアス電圧Vapdを生成する。レベル変換回路13,…,13は、バイアス電圧Vapdを、対応するAPD16,…,16に与える。
 制御部14は、自装置の温度に対応した制御信号S1を生成し、制御信号S1によって複数のレベル変換回路13,…,13のレベル変換量を制御する。また、制御部14は、自装置の温度に対応した制御信号S2を生成し、制御信号S2によって昇圧回路11が生成する基準電圧を制御する。
 温度検出器15は、自装置の温度を一定時間ごとに検出し、温度情報を制御部14へ出力する。具体的には、光受信装置10を構成する各部の温度を自装置の温度とする。例えば、光受信装置10のAPD16,…,16の温度の平均値、レベル変換回路13,…,13の温度の平均値又は筐体内の空気の温度を、自装置の温度とする。
 APD16,…,16は、フィルタ12に対して並列に接続されている。APD16,…,16は、波長多重を実現するために、n個のチャネルChからChに対応して設けられている。APD16,…,16は、光受信信号を増幅して受光する。APD16,…,16には、受光した信号を増幅するために30[V]から50[V]程度の電圧が与えられる。受光した信号を増幅するためにAPD16,…,16に与えられる電圧を、バイアス電圧と称する。
 光受信装置10では、n個のトランスインピーダンスアンプ17,…,17、及びn個の増幅器18,…,18が、n個のAPD16,…,16に対応して設けられている。光受信装置10では、n個のAPD16,…,16は、制御部14、昇圧回路11及びフィルタ12に対して、並列に接続されている。光受信装置10では、APD16,…,16に対して共通に、昇圧回路11、フィルタ12、制御部14及び温度検出器15を設けている。
 n個のTIA17,…,17は、APD16,…,16の後段に設けられている。n個のTIA17,…,17は、APD16,…,16から出力される各電流を電圧に変換する。
 n個の増幅器18,…,18は、対応するTIA17,…,17によって変換された各電圧を増幅する。n個の増幅器18,…,18によって増幅された各電気信号は、光受信装置10の出力となる。
(制御部の構成例)
 図2は、本発明の実施の形態1にかかる光受信装置の制御部14の構成例を示す図である。図2に示すように、制御部14は、処理に必要なプログラム146及びデータを記憶するメモリ141と、メモリ141からプログラム146を読出して実行するプロセッサ142と、温度情報の入力及び制御信号S1及びS2の出力のインタフェースとして機能する入出力装置143と、制御部14内の各部を相互に接続するバス144とを有する。メモリ141は、ルックアップテーブル(Look Up Table:LUT)145を記憶する。制御部14は、メモリ141へのデータの書込み及びメモリ141からの読出しを制御する、マイクロコントロールユニット(Micro Control Unit:MCU)として機能する。ルックアップテーブル145は、温度情報と、レベル変換回路13,…,13への第1の制御信号S1及び昇圧回路11への第2の制御信号S2とを対応付けるテーブルである。なお、汎用のマイクロプロセッサ及びメモリによって制御部14を実現してもよいし、MCUの機能を有する専用の集積回路によって制御部14を実現してもよい。
 制御部14は、温度に対応した、各レベル変換回路13,…,13への制御信号S1のデジタル値と、昇圧回路11への制御信号S2のデジタル値とをルックアップテーブル145に記憶している。制御部14は、プロセッサ142により、ルックアップテーブル145に対するデータの書込み及び読出しを行う。制御部14は、入出力装置143を介して、温度検出器15で検出された温度情報を入力する。また、制御部14は、入出力装置143を介して、温度情報に対応した値の制御信号S1,S2を出力する。制御部14は、入出力装置143を介して出力する制御信号S1により、各レベル変換回路13,…,13のレベル変換量を制御するとともに、入出力装置143を介して出力する制御信号S2により、昇圧回路11が出力する基準電圧を制御し、各APDへのバイアス電圧を生成する。本実施の形態1では、制御信号S1は、IC(Inter-Integrated Circuit)通信による制御信号である。IC通信は、シリアルデータとシリアルクロックとを送受信して行う、シリアル通信である。
 制御部14は、入出力装置143を介して、一定時間ごとに温度検出器15からの温度情報を取得する。制御部14は、温度変化があった場合、変化後の温度に対応した制御信号S1,S2を、入出力装置143を介して出力する。昇圧回路11が出力する基準電圧と、レベル変換回路13,…,13のレベル変換量とを制御することにより、制御部14は、各温度を用いて各APDに適したバイアス電圧を生成し、各APDに与える。
(プロセッサの動作)
 次に、プロセッサ142の動作について説明する。
 図3は、本発明の実施の形態1にかかる光受信装置の制御部14が備えるプロセッサ142の処理の例を示すフローチャートである。プロセッサ142は、ステップS11では、自装置の電源がオンされたか否か判断する。プロセッサ142は、電源がオンされたと判断した場合(ステップS11でYes)、ステップS12では、温度検出器15から、入出力装置143及びバス144を介して、自装置の温度を示す温度情報を取得する。
 ステップS13では、プロセッサ142は、バス144を介して、メモリ141に温度情報を記憶する。ステップS14では、プロセッサ142は、バス144を介して、メモリ141に記憶された温度情報を読出し、今回取得した温度情報と前回取得した温度情報とを比較する。ステップS15では、プロセッサ142は、ステップS14における比較結果が一致であるか否か判定する。温度情報同士が一致しない場合(ステップS15でNo)、ステップS16において、バス144を介して、ルックアップテーブル145から、各レベル変換回路及び昇圧回路11へ出力する制御信号S1,S2のデジタル値を読出す。ルックアップテーブル145から読出される制御信号S1,S2のデジタル値は、前回取得した温度情報に対応した値である。ステップS17では、プロセッサ142は、読出したデジタル値の制御信号S1,S2を、バス144及び入出力装置143を介して、各レベル変換回路13,…,13及び昇圧回路11へ出力する。
 ステップS18では、プロセッサ142の処理が終了であるか否か判断する。プロセッサ142の処理が終了である場合(ステップS18でYes)、処理は終了となる。なお、プロセッサ142の処理が終了である場合とは、例えば、自装置の電源を切断された場合である。
 ステップS18において、プロセッサ142の処理が終了でない場合(ステップS18でNo)、ステップS12に戻り、プロセッサ142はステップS12からステップS18の処理を継続する。ステップS15において、温度情報同士が一致する場合(ステップS15でYes)、温度に変化がないため、プロセッサ142は制御信号S1,S2のデジタル値を読出すことなくステップS12に戻り、ステップS12からステップS18の処理を継続する。
 ステップS11において、自装置の電源が投入されていないと判断した場合、ステップS11に戻り(ステップS11でNo)、プロセッサ142は処理を継続する。
(レベル変換回路の構成例)
 図4は、本発明の実施の形態1にかかる光受信装置のレベル変換回路13の構成の一例を示す図である。図4に示すように、レベル変換回路13は、一端に基準電圧V1が印加される可変抵抗部21と、一端が可変抵抗部21の他端に接続され、他端がグランドに接続される固定抵抗22と、コレクタ抵抗として作用する固定抵抗23と、エミッタフォロア回路を構成する半導体素子であるトランジスタ24と、を有する。本実施の形態1では、トランジスタ24は、npn型のトランジスタである。
 可変抵抗部21は、制御部14から出力される第1の制御信号S1によって、抵抗値が設定される。本実施の形態1では、可変抵抗部21に、デジタルポテンショメータを用いるが、可変抵抗部21の種類は問わない。
 レベル変換回路13は、可変抵抗部21と固定抵抗22とを分割抵抗回路とし、この分割抵抗回路によって基準電圧V1の電圧レベルを変換する。つまり、本実施の形態1において、分割抵抗回路は、制御信号S1によって抵抗値が変化する可変抵抗部21と、可変抵抗部21と接続された固定抵抗22とを含む。そして、レベル変換回路13は、分割抵抗回路によって分割された電圧のレベル、すなわち可変抵抗部21と固定抵抗22との接続点の電圧のレベルを可変抵抗部21によって変換し、バイアス電圧Vapd1として、対応するAPD16に与える。
 電圧レベルが変換された、可変抵抗部21と固定抵抗22との接続点の電圧は、npn型のトランジスタ24のベースに与えられる。このため、トランジスタ24のベース電圧から、トランジスタ24のベース-エミッタ間電圧Vbe分だけ電圧降下した電圧が、レベル変換回路13から出力される。例えば、トランジスタ24のベース-エミッタ間電圧Vbeは、0.8V程度である。トランジスタ24のエミッタは、対応するAPD16に接続されており、エミッタフォロア回路が形成される。
 レベル変換回路13は、バイアス電圧Vapd1をAPD電圧として、対応するAPD16に与える。APD16が光信号を受光した時に流れる光電流すなわちAPD電流は、昇圧回路11からトランジスタ24のコレクタ-エミッタ間を通って流れる。
 レベル変換回路13は、可変抵抗部21の抵抗値を変化させることにより、APD16へ与えるバイアス電圧Vapd1を調整することができる。レベル変換回路13によるバイアス電圧Vapd1の調整可能範囲は、基準電圧V1[V]-電圧Vbe[V]以下の範囲である。
 npn型のトランジスタ24の代わりに、pnp型のトランジスタを用いてもよいし、電界効果トランジスタを用いてもよい。
(可変抵抗部)
 図5は、本実施の形態1における可変抵抗部21の構成例を示す図である。図5に示すように、可変抵抗部21は、制御部14から出力される第1の制御信号S1をパラレル信号に変換するシリアル入力レジスタ211と、パラレル信号に応じた抵抗値の制御信号S3を生成するRDAC(Resistor Digital to Analog Converter)レジスタ212と、制御信号S3によって抵抗値が設定される可変抵抗213と、を有する。
 先述したように、本実施の形態1では、制御部14から出力される第1の制御信号S1は、IC通信による制御信号である。IC通信による第1の制御信号S1は、本実施の形態1では、シリアルデータSDAとシリアルクロックSCLとを含む。シリアル入力レジスタ211は、シリアルデータSDAを、シリアルクロックSCLに同期してパラレル信号に変換する。
 RDACレジスタ212は、パラレル信号をアナログ信号に変換し、抵抗値の制御信号S3として出力する。
 可変抵抗213は、端子A1,B1及びW1を有する。端子A1と端子B1との間は、可変抵抗213によって設定できる最大抵抗値である。端子W1は、可変抵抗213の抵抗値を選択するためのワイパーコンタクトに接続されるワイパー端子である。
 可変抵抗部21では、端子A1に基準電圧V1を与え、端子W1に固定抵抗22を接続する。制御部14から出力される制御信号S1によって、端子A1と端子W1との間の抵抗値が設定され、その抵抗値と固定抵抗22の抵抗値との分割抵抗回路によって定まる電圧がトランジスタ24のベースに与えられる。
 図1中のレベル変換回路13以外のすべてのレベル変換回路13,…,13も前述した構成であり、同様に動作する。
(ルックアップテーブルの生成方法)
 次に、制御部14による、APDのバイアス電圧のルックアップテーブルの作成方法について説明する。先述したように、ルックアップテーブル145は、温度情報とレベル変換回路13,…,13への第1の制御信号S1のデジタル値及び昇圧回路11への第2の制御信号S2のデジタル値とを対応付けるテーブルである。本実施の形態1では、温度情報と昇圧回路11への第2の制御信号S2のデジタル値とを対応付けるテーブルと、温度情報とレベル変換回路13,…,13への第1の制御信号S1のデジタル値とを対応付けるテーブルとが作成され、2つのテーブルが組合されることによって、ルックアップテーブル145が作成される。
 図6は、本発明の実施の形態1にかかる光受信装置の温度情報と昇圧回路11への制御信号S2のデジタル値とを対応付けるテーブルの生成手順を示すフローチャートである。図7は、本発明の実施の形態1にかかる光受信装置のバイアス電圧の温度依存性を示す図である。
 まず、基準電圧V1を生成する昇圧回路11への制御信号S2のデジタル値の作成方法について説明する。図6に示すように、まず、ステップS21では、各チャネルに接続されるAPDの最適なバイアス電圧Vapdを複数ポイント、すなわち複数種類の温度で取得する。ステップS22では、複数種類の温度で測定したバイアス電圧Vapdをグラフにプロットする。ステップS23では、複数種類の温度のバイアス電圧Vapdを多項式で近似し、測定していない温度でのバイアス電圧を、補間することによって算出する。
 各チャネルChからChについてバイアス電圧の温度依存性を求めると図7に示すようなグラフが作成される。図7に示すグラフは、測定した温度が黒丸で示される。黒丸が無い曲線部分は補間した部分である。図7に示すグラフを参照すると、各温度で最も大きなバイアス電圧が必要なチャネルが分かる。最も大きなバイアス電圧を最大バイアス電圧Vapd_maxとする。
 そして、ステップS24では、最大バイアス電圧Vapd_maxよりも1ボルト高い電圧すなわち最大バイアス電圧Vapd_max+1[V]を基準電圧V1(t)に設定する。(t)は、温度tに依存する値であることを示し、以下の説明においても同様である。1[V]の根拠は、npn型のトランジスタ24のベース-エミッタ間電圧Vbeが約0.8[V]であり、温度及び半導体素子によるベース-エミッタ間電圧Vbeのバラツキを考慮して1[V]とした。すなわち、レベル変換回路に用いるトランジスタの制御端子であるベース端子と出力端子であるエミッタ端子との間の電圧に基づいて定めた電圧値を、最も大きな電圧である最大バイアス電圧Vapd_maxに加えて基準電圧V1を生成する。
 最大バイアス電圧Vapd_max+1を基に、ステップS25では、温度tと、昇圧回路11に基準電圧V1(t)を出力させるための第2の制御信号S2のデジタル値との関係のテーブルが作成される。作成されたテーブルを参照することにより、制御部14は、温度tが与えられると、温度tに対応する第2の制御信号S2を出力する。第2の制御信号S2は、図7中に実線で示される最大バイアス電圧Vapd_max+1上の温度tに対応する電圧を、基準電圧V1として昇圧回路11に出力させるための信号である。ステップS26では、作成したテーブルがメモリ141又はプロセッサ142内のレジスタに記憶される。
 次に、各チャネルのバイアス電圧Vapdを生成するためのレベル変換回路への制御信号S1のデジタル値の作成方法について説明する。まず、使用するトランジスタ24のベース-エミッタ間電圧Vbe(t)の温度依存性テーブルを用意しておく。図8は、本発明の実施の形態1にかかる光受信装置に用いるトランジスタ24のベース-エミッタ間電圧Vbe(t)の温度特性の例を示す図である。図8に示すように、トランジスタ24のベース-エミッタ間電圧Vbe(t)は、温度t[℃]が上昇すると低下する。また、トランジスタ24のベース-エミッタ間電圧Vbe(t)は、温度t[℃]が下降すると上昇する。図9は本発明の実施の形態1にかかる光受信装置に用いるトランジスタ24のベース-エミッタ間電圧Vbe(t)の温度依存性テーブルの例を示す図である。図9に示すように、温度依存性テーブルは、自装置の温度t[℃]が低い場合はトランジスタ24のベース-エミッタ間電圧Vbe(t)が高い電圧値、自装置の温度t[℃]が高い場合はトランジスタ24のベース-エミッタ間電圧Vbe(t)が低い電圧値となる。つまり、図9に示す温度依存性テーブルは、温度上昇に伴ってベース-エミッタ間電圧Vbe(t)が低下し、温度低下に伴ってベース-エミッタ間電圧Vbe(t)が上昇することを示す。
 図10は、本発明の実施の形態1にかかる光受信装置の温度情報とレベル変換回路13,…,13への制御信号S1のデジタル値とを対応付けるテーブルの生成手順を示すフローチャートである。図10に示すように、ステップS31では、処理の対象とするチャネルを決定する。ステップS32では、温度tを決定する。ステップS33では、トランジスタ24のVbe(t)の温度依存性テーブルを参照する。ステップS34では、バイアス電圧Vapd(t)を求める。バイアス電圧Vapd(t)は、固定抵抗22の抵抗値R1と基準電圧V1(t)とベース-エミッタ間電圧Vbe(t)と、可変抵抗部21の抵抗値Rv1(t)とから式(1)のように求められる。
Figure JPOXMLDOC01-appb-M000001
 ステップS35では、APD16のバイアス電圧Vapd(t)を生成するために必要な可変抵抗部21の抵抗値Rv1(t)が求められる。抵抗値Rv1(t)は式(2)のように求められる。基準電圧V1(t)及びバイアス電圧Vapd(t)、ベース電圧Vbe(t)はすでに分かっているので、これらの値を用いて各温度での可変抵抗値Rv1(t)が求められる。
Figure JPOXMLDOC01-appb-M000002
 ステップS36では、各温度について、バイアス電圧Vapd(t)及び抵抗値Rv1(t)を求めたか否か判断する。各温度について、バイアス電圧Vapd(t)及び抵抗値Rv1(t)を求めた場合(ステップS36でYes)、ステップS37では、各チャネルについて、バイアス電圧Vapd(t)及び抵抗値Rv1(t)を求めたか否か判断する。
 各チャネルについて、バイアス電圧Vapd(t)及び抵抗値Rv1(t)を求めた場合(ステップS37でYes)、ステップS38では、バイアス電圧Vapd(t)及び抵抗値Rv1(t)がメモリ141又はプロセッサ142内のレジスタに記憶される。
 ステップS36において、各温度について、バイアス電圧Vapd(t)及び抵抗値Rv1(t)を求めていない場合(ステップS36でNo)、ステップS32に戻り、他の温度について、バイアス電圧Vapd(t)及び抵抗値Rv1(t)を求める処理を継続する。
 ステップS37において、各チャネルについて、バイアス電圧Vapd(t)及び抵抗値Rv1(t)を求めていない場合(ステップS37でNo)、ステップS31に戻り、他のチャネルについて、バイアス電圧Vapd(t)及び抵抗値Rv1(t)を求める処理を継続する。
 以上のように、制御部14は、抵抗値Rv1(t)となる制御信号S1のデジタル値を各温度に対して格納したテーブルを作成することができる。制御部14は、これをnチャネル分作成し、各温度に対する、基準電圧V1(t)の第2の制御信号S2のデジタル値と各チャネルのレベル変換回路内の抵抗値Rv1(t)の第1の制御信号S1のデジタル値とをルックアップテーブル145としてメモリ141に記憶する。
 なお、上記の図6の処理及び図10の処理は、制御部14が行ってもよいし、制御部14とは別の装置が行って、メモリ141にルックアップテーブル145を記憶させるようにしてもよい。本実施の形態1では、制御部14が図6の処理及び図10の処理を行って、メモリ141にルックアップテーブル145を記憶させる。
(テーブルの例)
 図11は、本発明の実施の形態1にかかる光受信装置の温度t[℃]とレベル変換回路13,…,13の第1の制御信号S1のデジタル値との対応を示すテーブルの例を示す図である。制御部14は、図10に示す処理によって、図11に示すテーブル145Aを作成することができる。
 また、図12は、本発明の実施の形態1にかかる光受信装置の温度t[℃]と昇圧回路11の第2の制御信号S2のデジタル値との対応を示すテーブルの例を示す図である。制御部14は、図6の処理によって、図12に示すテーブル145Bを作成することができる。
 図13は、本発明の実施の形態1にかかる光受信装置のルックアップテーブルの例を示す図である。制御部14は、図11に示すテーブル145Aと図12に示すテーブル145Bとを組合せることによって、図13に示すルックアップテーブル145を作成することができる。
 以上のように、ルックアップテーブル145を作成して、制御部14のメモリ141に格納しておき、検出した温度に対する第1の制御信号S1及び第2の制御信号S2をメモリ141から読出して入出力装置143によって制御部14から出力することで、光受信装置10は、各チャネルのAPD16,…,16に最適なバイアス電圧を与えることができる。光受信装置10は、昇圧回路11は1つで、簡易な回路で構成された複数のレベル変換回路13,…,13により多チャネルのAPD16,…,16のバイアス電圧を生成することができるため、サイズの増加を抑制することができる。また、元の基準電圧V1も各温度で制御し、必要以上に高い電圧を発生させることが無いので、光受信装置10は消費電力の増加を抑制することもできる。さらに、光受信装置10は、各チャネルのAPD16,…,16を、常に最適なバイアス電圧で駆動することができる。
 APDは受信感度が最も良くなる増倍率がある。このため、通常、受信感度が最も良くなるようにAPD16,…,16のバイアス電圧を設定する。しかしながら、APDの増倍率には温度特性があるため、昇圧回路11から出力する基準電圧を固定値にすると温度によって増倍率が変化してしまう。そこで、本実施の形態1において、光受信装置10は、複数のAPDに共通に、制御部14を備えている。このため、各APDに対して別々に制御部を設ける場合に比べて、光受信装置10は、自装置のサイズ増加を抑制できる。また、光受信装置10は、各APDに対して別々に制御部を設ける場合に比べて、部品点数の増加を抑制できる。このため、光受信装置10は、消費電力を低くすることができ、装置のコストの増加を抑えることができる。
実施の形態2.
 上記の実施の形態1において用いたレベル変換回路13を別の構成にすることができる。図14は、実施の形態2におけるレベル変換回路13aの構成の一例を示す図である。図14に示すように、レベル変換回路13aは、基準電圧V1が印加され、第1の制御信号S1によって抵抗値が変化する可変抵抗部25と、コレクタ抵抗として作用する固定抵抗23と、エミッタフォロア回路を構成するnpn型のトランジスタ24と、を有する。
 本実施の形態2において、分割抵抗回路は、第1の制御信号S1によって抵抗値が変化する可変抵抗部25を含む。そして、レベル変換回路13aは、可変抵抗部25のワイパー端子の電圧のレベルを変換して、バイアス信号であるバイアス電圧Vapd1を生成しAPD電圧として、対応するAPD16に与える。
 可変抵抗部25は、図5を参照して説明した可変抵抗部21と同様の構成である。ただし、図5に示す端子A1に基準電圧V1を与え、端子W1にトランジスタ24のベースを接続し、端子B1にグランドを接続する。これにより、可変抵抗部25は、3端子可変抵抗として機能するため、図4中の固定抵抗22を光受信装置10に設ける必要はない。
 可変抵抗部25は、制御部14から出力される第1の制御信号S1によって、端子A1と端子B1との間の抵抗値R1、端子A1と端子W1との間の抵抗値Rhigh、及び端子W1と端子B1との間の抵抗値Rv1が設定される。そして、第1の制御信号S1によって可変抵抗部25に設定される抵抗値による分割抵抗回路によって定まる電圧がトランジスタ24のベースに与えられる。
 実施の形態2において、制御の方法及びルックアップテーブルの作成手順は、実施の形態1の場合と同じである。ただし、APDのバイアス電圧Vapd(t)と基準電圧V1(t)との関係式が異なる。その関係式は、式(3)で表される。よって、抵抗値Rv1(t)は式(4)で求めることができる。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 レベル変換回路13a以外のすべてのレベル変換回路も上記と同様の構成であり、上記と同様に動作する。
 実施の形態2では、0[V]以上、(V1-Vbe)[V]以下の電圧可変範囲を得ることができる。このため、実施の形態2では、バイアス信号であるバイアス電圧の可変範囲を、実施の形態1におけるバイアス電圧の可変範囲よりも広くすることができる。これにより、各APDに、実施の形態1よりも適したバイアス電圧を与えることができる。また、実施の形態2では、可変抵抗部25だけで分割抵抗回路を実現できる。このため、実施の形態2は、実施の形態1よりも部品数を削減でき、装置のコストの増加を抑えることができる。
実施の形態3.
 上記の実施の形態1において用いたレベル変換回路13を別の構成にすることができる。図15は、実施の形態3におけるレベル変換回路13bの構成の一例を示す図である。図15に示すように、レベル変換回路13bは、基準電圧V1が印加されるサーミスタ26と、制御信号S1によって抵抗値が変化する可変抵抗部27と、コレクタ抵抗として作用する固定抵抗23と、エミッタフォロア回路を構成するnpn型のトランジスタ24と、を有する。
 本実施の形態3において、分割抵抗回路は、第1の制御信号S1によって抵抗値が変化する可変抵抗部27と、可変抵抗部27と接続され、温度に応じて抵抗値が変化するサーミスタ26とを含む。そして、レベル変換回路13bは、可変抵抗部27とサーミスタ26との接続点の電圧を変換して、バイアス信号であるバイアス電圧Vapd1を生成しAPD電圧として、対応するAPD16に与える。
 可変抵抗部27は、図5を参照して説明した可変抵抗部21と同様の構成である。ただし、端子A1にサーミスタ26を接続し、端子W1にグランドが接続される。
 サーミスタ26は、温度が上昇すると抵抗値Rthが下がるNTC(Negative Temperature Coefficient)特性を有する。このため、実施の形態3では、サーミスタ26の抵抗値Rthの温度特性が直線性を有していれば、制御部14から出力される制御信号S1を温度変化によって変化させなくても、バイアス電圧Vapdの温度補償を行うことができる。すなわち、自装置の温度が上がると、サーミスタ26の抵抗値Rthが変化してバイアス電圧Vapd1は高くなり、自装置の温度が下がるとバイアス電圧Vapd1は低くなる。
 このため、実施の形態3では、ルックアップテーブル145は、温度と昇圧回路11への第2の制御信号S2のデジタル値とを記憶したものであり、各レベル変換回路への第1の制御信号S1のデジタル値については記憶していない。この場合、可変抵抗部27が固定抵抗器に変更されてもよい。実施の形態3によれば、実施の形態1及び実施の形態2に比べて、より簡易な構成及び制御によって、バイアス電圧Vapd1の温度補償を行うことができる。実施の形態3は、メモリ141の記憶容量も少なくて済むという利点もある。
 なお、実施の形態3において、可変抵抗部27の抵抗値を、温度によらず、一定値に設定する第1の制御信号S1のデジタル値をルックアップテーブル145に記憶してもよい。
 ところで、サーミスタ26の抵抗値Rthの温度特性が直線性を有していない場合、ルックアップテーブル145を、サーミスタ26の抵抗値Rthの温度特性を考慮した内容として作成しておき、自装置の温度の変化に応じて可変抵抗部27の抵抗値を設定することにより、各温度にて各APDに最適なバイアス電圧を与えることができる。その場合、制御の方法及びルックアップテーブルの作成手順は、実施の形態1の場合と同じである。
 レベル変換回路13b以外のすべてのレベル変換回路も上記と同様の構成であり、上記と同様に動作する。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 10 光受信装置、11 昇圧回路、12 フィルタ、14 制御部、15 温度検出器、21,25,27 可変抵抗部、22,23 固定抵抗、24 トランジスタ、26 サーミスタ、13,13,13,13a,13b レベル変換回路、141 メモリ、142 プロセッサ、143 入出力装置、144 バス、145 ルックアップテーブル、16,16 APD、17,17 TIA、18,18 増幅器、211 シリアル入力レジスタ、212 RDACレジスタ、213 可変抵抗、A1,B1,W1 端子、S1,S2,S3 制御信号、V1 基準電圧、Vapd バイアス電圧。

Claims (8)

  1.  光信号を受信する光受信装置であって、
     与えられたバイアス信号によって受信感度が設定される複数のアバランシェフォトダイオードと、
     前記複数のアバランシェフォトダイオードに対応して設けられて、前記バイアス信号を得るための基準電圧のレベルを変換して前記バイアス信号を生成し、対応するアバランシェフォトダイオードへ与える複数のレベル変換部と、
     前記光受信装置の温度に対応した第1の制御信号を生成し、前記第1の制御信号によって前記複数のレベル変換部のレベル変換量を制御する制御部と、
     を含むことを特徴とする、光受信装置。
  2.  電源電圧を昇圧して前記基準電圧を生成し、前記複数のレベル変換部に与える昇圧部をさらに有し、
     前記複数のレベル変換部は、前記基準電圧のレベルを、前記第1の制御信号に基づいて変換して、前記バイアス信号を生成することを特徴とする、
    請求項1に記載の光受信装置。
  3.  前記昇圧部は、
    前記複数のアバランシェフォトダイオードのバイアス信号のうち最も大きな電圧に、前記レベル変換部に用いるトランジスタの制御端子と出力端子との間の電圧に基づいて定めた電圧値を加えて前記基準電圧を生成し、
     前記制御部は、
    前記光受信装置の温度に対応した第2の制御信号を生成し、前記第2の制御信号によって前記昇圧部が生成した前記基準電圧を制御することを特徴とする、
    請求項2に記載の光受信装置。
  4.  前記制御部は、
     前記光受信装置の温度と前記第1の制御信号及び前記第2の制御信号とを対応付けるテーブルを含み、前記光受信装置の温度に対応した前記第1の制御信号を前記テーブルから読出し、読出した前記第1の制御信号を前記複数のレベル変換部へ出力し、前記光受信装置の温度に応じて前記テーブルから読出した前記第2の制御信号を前記昇圧部へ出力することを特徴とする、
    請求項3に記載の光受信装置。
  5.  前記複数のレベル変換部は、
     前記基準電圧とグランドとの間の電圧を前記第1の制御信号によって分割する分割抵抗回路を有し、
     前記分割抵抗回路によって分割された電圧を用いて前記バイアス信号を生成して、対応するアバランシェフォトダイオードに与えることを特徴とする、
    請求項1から4のいずれか1つに記載の光受信装置。
  6.  前記分割抵抗回路は、
     前記第1の制御信号によって抵抗値が変化する可変抵抗部と、前記可変抵抗部と接続された抵抗とを含み、
     前記複数のレベル変換部は、
     前記可変抵抗部と前記抵抗との接続点の電圧のレベルを変換して前記バイアス信号を生成して、対応するアバランシェフォトダイオードに与えることを特徴とする、
    請求項5に記載の光受信装置。
  7.  前記分割抵抗回路は、
     前記第1の制御信号によって抵抗値が変化する可変抵抗部を含み、
     前記複数のレベル変換部は、
     前記可変抵抗部のワイパー端子の電圧のレベルを変換して前記バイアス信号を生成して、対応するアバランシェフォトダイオードに与えることを特徴とする、
    請求項5に記載の光受信装置。
  8.  前記分割抵抗回路は、
     前記第1の制御信号によって抵抗値が変化する可変抵抗部と、前記可変抵抗部と接続され、温度に応じて抵抗値が変化するサーミスタとを含み、
     前記複数のレベル変換部は、
     前記可変抵抗部と前記サーミスタとの接続点の電圧のレベルを変換して前記バイアス信号を生成して、対応するアバランシェフォトダイオードに与えることを特徴とする、
    請求項5に記載の光受信装置。
PCT/JP2015/055037 2015-02-23 2015-02-23 光受信装置 WO2016135824A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/538,075 US9923642B2 (en) 2015-02-23 2015-02-23 Light receiving device
PCT/JP2015/055037 WO2016135824A1 (ja) 2015-02-23 2015-02-23 光受信装置
JP2017501575A JP6275322B2 (ja) 2015-02-23 2015-02-23 光受信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/055037 WO2016135824A1 (ja) 2015-02-23 2015-02-23 光受信装置

Publications (1)

Publication Number Publication Date
WO2016135824A1 true WO2016135824A1 (ja) 2016-09-01

Family

ID=56788018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055037 WO2016135824A1 (ja) 2015-02-23 2015-02-23 光受信装置

Country Status (3)

Country Link
US (1) US9923642B2 (ja)
JP (1) JP6275322B2 (ja)
WO (1) WO2016135824A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106533552B (zh) * 2016-10-27 2019-03-19 武汉光迅科技股份有限公司 一种光放大器突发模式下的光功率和增益探测装置和方法
JP6696695B2 (ja) * 2017-03-16 2020-05-20 株式会社東芝 光検出装置およびこれを用いた被写体検知システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727607A (ja) * 1993-07-09 1995-01-31 Hamamatsu Photonics Kk アバランシェフォトダイオードのバイアス回路
JPH11205249A (ja) * 1998-01-12 1999-07-30 Oki Tec:Kk アバランシェフォトダイオード用バイアス電圧制御回路およびその調整方法
JP2005354485A (ja) * 2004-06-11 2005-12-22 Fujitsu Access Ltd 自動利得制御回路
JP2008048334A (ja) * 2006-08-21 2008-02-28 Matsushita Electric Ind Co Ltd 光受信器

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4819241A (en) * 1985-08-16 1989-04-04 Kabushiki Kaisha Toshiba Laser diode driving circuit
JP2625347B2 (ja) * 1993-04-20 1997-07-02 日本電気株式会社 ディジタル受信器の自動オフセット制御回路
JPH07245540A (ja) * 1994-01-12 1995-09-19 Fujitsu Ltd 光ディジタル通信用の光受信装置
US5953690A (en) * 1996-07-01 1999-09-14 Pacific Fiberoptics, Inc. Intelligent fiberoptic receivers and method of operating and manufacturing the same
US6711189B1 (en) * 2000-02-04 2004-03-23 Stratos Lightwave, Inc. Automatic power control and laser slope efficiency normalizing circuit
JP3785035B2 (ja) 2000-09-07 2006-06-14 富士通株式会社 Apdバイアス電圧制御回路
JP4342111B2 (ja) * 2001-01-30 2009-10-14 富士通マイクロエレクトロニクス株式会社 電流パルス受信回路
US7079775B2 (en) * 2001-02-05 2006-07-18 Finisar Corporation Integrated memory mapped controller circuit for fiber optics transceiver
US6574022B2 (en) * 2001-03-19 2003-06-03 Alan Y. Chow Integral differential optical signal receiver
US6654215B2 (en) * 2001-08-10 2003-11-25 The Boeing Company Photodetector circuit with avalanche photodiode
US7155133B2 (en) * 2002-02-12 2006-12-26 Finisar Corporation Avalanche photodiode controller circuit for fiber optics transceiver
KR100566197B1 (ko) * 2003-01-02 2006-03-29 삼성전자주식회사 Apd 광수신기의 온도 보상 장치
US7170335B2 (en) * 2004-03-08 2007-01-30 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Driver circuit for driving a light source of an optical pointing device
JP2006041628A (ja) * 2004-07-22 2006-02-09 Sumitomo Electric Ind Ltd 光受信回路
US7265334B2 (en) * 2004-11-19 2007-09-04 Mindspeed Technologies, Inc. Laser power control with automatic compensation
US7323671B1 (en) * 2004-12-30 2008-01-29 Ess Technology, Inc. Method and apparatus for varying a CMOS sensor control voltage
US7297922B2 (en) * 2005-09-28 2007-11-20 Intel Corporation Optical receiver protection circuit
WO2007102430A1 (ja) * 2006-03-06 2007-09-13 Nihon University 光通信波長帯高速単一光子検出器
JP4838154B2 (ja) 2007-01-17 2011-12-14 富士通テレコムネットワークス株式会社 自動利得制御回路
US8184991B2 (en) * 2008-03-12 2012-05-22 Farina Joseph P Ditherless optical modulator control
TWI381632B (zh) * 2009-09-30 2013-01-01 Ind Tech Res Inst 光感應器電路
JP5368370B2 (ja) 2010-05-06 2013-12-18 三菱電機株式会社 光受信器
US20120045202A1 (en) * 2010-08-17 2012-02-23 Xu Jiang High Speed Bi-Directional Transceiver, Circuits and Devices Therefor, and Method(s) of Using the Same
JP6315950B2 (ja) * 2013-11-22 2018-04-25 三菱電機株式会社 光パワーモニタ用回路、光モジュール、局側装置、光パワーモニタ方法及びプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727607A (ja) * 1993-07-09 1995-01-31 Hamamatsu Photonics Kk アバランシェフォトダイオードのバイアス回路
JPH11205249A (ja) * 1998-01-12 1999-07-30 Oki Tec:Kk アバランシェフォトダイオード用バイアス電圧制御回路およびその調整方法
JP2005354485A (ja) * 2004-06-11 2005-12-22 Fujitsu Access Ltd 自動利得制御回路
JP2008048334A (ja) * 2006-08-21 2008-02-28 Matsushita Electric Ind Co Ltd 光受信器

Also Published As

Publication number Publication date
JPWO2016135824A1 (ja) 2017-07-06
JP6275322B2 (ja) 2018-02-07
US20180019825A1 (en) 2018-01-18
US9923642B2 (en) 2018-03-20

Similar Documents

Publication Publication Date Title
JP5673843B2 (ja) 光パワーモニタ装置、方法及びプログラム
JP5218210B2 (ja) モニタ回路とこれを用いた光受信器
TWI546641B (zh) 雪崩光電二極體的偏壓產生電路及相關的控制電路
JP2006303524A (ja) アバランシェフォトダイオード用バイアス電圧制御回路およびその調整方法
CN105743340A (zh) 雪崩光电二极管的偏压产生电路及相关的控制电路
JP6275322B2 (ja) 光受信装置
JP5949415B2 (ja) 光受信回路及び光受信装置
JPS5911215B2 (ja) 光受信回路
JP4908223B2 (ja) 受信装置およびそれを用いた電子機器
US11323083B2 (en) Amplifier circuit
JP2007174440A (ja) 光受信回路
JP2007074397A (ja) 光受信器
JP2007159020A (ja) 電流電圧変換回路
JP2008048334A (ja) 光受信器
JP4032531B2 (ja) 光受信器
DK165087B (da) Kredsloeb til foroegelse af dynamikomraadet i en integrerende optoelektrisk modtager
JP5780282B2 (ja) リミッタアンプ回路及びドライバ回路
JP2004288243A (ja) 受光アンプ回路およびそれを備えた光ピックアップ装置
US8362841B2 (en) Conversion circuit from single phase signal to differential phase signal
JPH06244801A (ja) 光受信器
JP3215055B2 (ja) 増幅装置
JPH09260960A (ja) 光受信用増幅器
KR101320953B1 (ko) 단일 출력 증폭기 및 이를 포함하는 적외선 리모콘 수신기
JP2007166096A (ja) バイアス制御回路
KR101681575B1 (ko) 증폭비 조정 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883122

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017501575

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15538075

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15883122

Country of ref document: EP

Kind code of ref document: A1