WO2016135814A1 - Led駆動回路 - Google Patents

Led駆動回路 Download PDF

Info

Publication number
WO2016135814A1
WO2016135814A1 PCT/JP2015/054966 JP2015054966W WO2016135814A1 WO 2016135814 A1 WO2016135814 A1 WO 2016135814A1 JP 2015054966 W JP2015054966 W JP 2015054966W WO 2016135814 A1 WO2016135814 A1 WO 2016135814A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
detection
voltage
circuit
switch device
Prior art date
Application number
PCT/JP2015/054966
Other languages
English (en)
French (fr)
Inventor
勲 大城
Original Assignee
新電元工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新電元工業株式会社 filed Critical 新電元工業株式会社
Priority to JP2016514204A priority Critical patent/JP6062602B1/ja
Priority to PCT/JP2015/054966 priority patent/WO2016135814A1/ja
Priority to CA2927030A priority patent/CA2927030C/en
Priority to EP15848129.1A priority patent/EP3264864B1/en
Priority to US15/032,282 priority patent/US9544958B2/en
Publication of WO2016135814A1 publication Critical patent/WO2016135814A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J6/00Arrangement of optical signalling or lighting devices on cycles; Mounting or supporting thereof; Circuits therefor
    • B62J6/16Arrangement of switches
    • B62J6/165Wireless switches
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/20Responsive to malfunctions or to light source life; for protection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J6/00Arrangement of optical signalling or lighting devices on cycles; Mounting or supporting thereof; Circuits therefor
    • B62J6/01Electric circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J6/00Arrangement of optical signalling or lighting devices on cycles; Mounting or supporting thereof; Circuits therefor
    • B62J6/02Headlights
    • B62J6/022Headlights specially adapted for motorcycles or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2101/00Point-like light sources

Definitions

  • the present invention relates to an LED drive circuit.
  • an input circuit for detecting on / off of a switch device for a user to operate a headlight, turn signal or the like of an automobile or a motorcycle.
  • this conventional input circuit in order to prevent erroneous detection of ON / OFF of the switch device due to the leak current when the switch device is submerged, the leak current is released to the ground.
  • the conventional input circuit takes measures such as devising the lamp wiring and letting the leakage current escape to the lamp.
  • the switch device in an LED drive device that is an input circuit for detecting on / off of a switch device for a user to operate an LED lamp such as a headlight or a blinker, the switch device is wet while reducing costs. It is an object of the present invention to suppress erroneous detection of ON / OFF of the switch device due to the leakage current of the current.
  • An LED driving circuit includes: An LED driving circuit that controls driving of an LED lamp according to on / off of a mechanical switch device, A first terminal to which one end of the current path of the switch device is connected; The second terminal to which the other end side of the current path of the switch device is connected, and the switch device and the battery are connected in series between the first terminal and the second terminal.
  • the second terminal A detection circuit for periodically detecting a current flowing through the first terminal and outputting a detection signal corresponding to the detection result from the first node; A comparison circuit that compares a detection voltage according to the detection signal with a threshold voltage and outputs a comparison result signal according to the comparison result; A control circuit for controlling the current detection operation of the detection circuit and controlling the driving of the LED lamp based on the comparison result signal;
  • the control circuit includes: When the comparison result signal indicates that the detected voltage is equal to or higher than the threshold voltage, it is determined that the switch device is turned on and that one end and the other end of the current path are conductive, On the other hand, when the comparison result signal indicates that the detected voltage is less than the threshold voltage, it is determined that the switch device is turned off and the one end and the other end of the current path are disconnected. It is characterized by.
  • the detection circuit includes: A first switch element having one end connected to the first terminal and controlled to be turned on or off by the control circuit; A detecting capacitor having one end connected to the other end of the first switch element and the other end connected to the first node; A detection resistor having one end connected to the first node and the other end connected to the second terminal; Between the other end of the first switch element and the second terminal, one end is connected to the other end of the first switch element so as to be connected in parallel with the detection resistor and the detection capacitor. A discharge resistor connected at the other end to the second terminal,
  • the control circuit includes: Controlling the first switch element to periodically turn on and off;
  • the detection circuit includes: The detection signal is output from the first node.
  • the detection circuit includes: A second switch element connected in series with the discharge resistor between the other end of the first switch element and the second terminal;
  • the control circuit includes: When turning on the first switch element, control to turn off the second switch element, Further, when the first switch element is turned off, the second switch element is controlled to be turned on.
  • It further includes a peak hold circuit that holds the peak voltage of the detection signal and outputs the held peak voltage as the detection voltage from the second node.
  • the peak hold circuit is: A holding diode having an anode connected to the first node and a cathode connected to the second node; A holding capacitor connected between the second node and the second terminal.
  • the comparison circuit is A voltage dividing circuit that outputs a divided voltage obtained by dividing a voltage between the first terminal and the second terminal as the threshold voltage;
  • a comparator that inputs the detection voltage and the threshold voltage, compares the detection voltage with the threshold voltage, and outputs the comparison result signal in accordance with the comparison result;
  • the voltage dividing circuit includes: A first voltage dividing resistor having one end connected to the first terminal and the other end connected to a voltage dividing node; A second voltage dividing resistor having one end connected to the voltage dividing node and the other end connected to a second terminal; The voltage dividing circuit outputs the voltage of the voltage dividing node as the threshold voltage.
  • the threshold voltage is determined by the detection circuit when the control circuit periodically switches the first switch element on and off in a state where the switch device is turned off and a leakage current flows in the current path. It is set to be higher than the detection voltage which is a peak voltage of the detection signal to be output.
  • the threshold voltage is a peak voltage of the detection signal output from the detection circuit when the control circuit periodically switches on and off the first switch element in a state where the switch device is on. It is characterized by being set to be lower than a certain detected voltage.
  • the switch device and the battery include the first terminal and the second so that the positive side of the battery is connected to the first terminal and the negative side of the battery is connected to the second terminal. It is characterized by being connected in series with the terminal.
  • the capacitance value of the detection capacitor is larger than the capacitance value of the holding capacitor.
  • the LED drive circuit is mounted on a motorcycle,
  • the LED lamp is a headlight of the motorcycle or a winker of the motorcycle,
  • the switch device is a steering wheel switch of the motorcycle that is operated by a user and controls driving of the LED lamp.
  • a power supply circuit connected to the first terminal and configured to supply power to the control circuit based on a current input from the first terminal;
  • the power supply circuit operates with a current input from the first terminal when the switch device is turned on, or when the switch device is turned off and a leakage current flows through the current path, and Supplying power to the control circuit based on the current input from the first terminal;
  • the control circuit operates with power supplied from the power supply circuit and drives the LED lamp.
  • the first switch element is a pMOS transistor having a source connected to the first terminal, a drain connected to one end of the detection capacitor, and a gate voltage controlled by the control circuit. .
  • An LED drive circuit is an LED drive circuit that controls driving of an LED lamp in accordance with on / off of a mechanical switch device, and one end side of a current path of the switch device is connected. A second terminal to which the other end of the current path of the switch device is connected, the switch device and the battery between the first terminal and the second terminal.
  • the detection circuit which periodically detects the current flowing through the first terminal and outputs a detection signal corresponding to the detection result from the first node, and the detection A comparison circuit that compares a detection voltage according to the signal and a threshold voltage, and outputs a comparison result signal according to the comparison result, and controls the current detection operation of the detection circuit, and the comparison result signal Based on said L And a control circuit for controlling the driving of the D lamp.
  • the control circuit turns on the switch device and conducts between one end and the other end of the current path.
  • the switch device is turned off and the current path is connected between one end and the other end. Is determined to be blocked.
  • the LED driving circuit according to the present invention does not require adjustment of detection timing and use of expensive elements such as a hall device. Furthermore, since the LED drive circuit according to the present invention can be applied to a relatively inexpensive mechanical switch device (such as a switch device with a low waterproof function), the cost can be reduced.
  • the LED drive circuit according to the present invention can suppress erroneous detection of ON / OFF of the switch device due to leakage current when the switch device is wet while reducing the cost.
  • FIG. 1 is a diagram illustrating an example of a configuration of an LED drive system 1000 according to the first embodiment.
  • FIG. 2 is a waveform diagram showing an example of operation waveforms of the LED drive circuit 100 shown in FIG.
  • FIG. 3 is a waveform diagram showing another example of operation waveforms of the LED drive circuit 100 shown in FIG.
  • FIG. 4 is a diagram illustrating an example of the configuration of the LED drive system 2000 according to the second embodiment.
  • the LED drive system 1000 (FIG. 1) according to the first embodiment includes a battery B, a mechanical switch device SW connected to the battery B, an LED lamp 101, and an on / off state of the mechanical switch device SW. And an LED driving circuit 100 that controls the driving of the LED lamp 101 in response to turning off.
  • the LED drive system 1000 is mounted on, for example, a motorcycle.
  • the LED lamp 101 is a headlight of the motorcycle or a winker of the motorcycle.
  • the switch device SW is a steering wheel switch of the motorcycle that is operated by the user and controls the driving of the LED lamp 101.
  • the LED drive circuit 100 includes a first terminal T1 to which one end side of the current path of the switch device SW is connected, and a second terminal T2 to which the other end side of the current path of the switch device SW is connected ( FIG. 1).
  • the switch device SW and the battery B are connected in series between the first terminal T1 and the second terminal T2.
  • one end of the current path of the switch device SW is connected to the first terminal T1
  • the other end of the current path of the switch device SW is connected to the positive electrode of the battery B
  • the negative electrode of the battery B is the second.
  • the switch device SW and the battery B are connected to the first terminal T1 and the second terminal so that the positive side of the battery B is connected to the first terminal T1 and the negative side of the battery B is connected to the second terminal T2. Are connected in series with the terminal T2.
  • the second terminal T2 is grounded.
  • the LED drive circuit 100 includes a detection circuit DC that periodically detects a current flowing through the first terminal T1 and outputs a detection signal SX corresponding to the detection result from the first node N1. Further, the LED drive circuit 100 includes a comparison circuit CC that compares the detection voltage VZ according to the detection signal SX with the threshold voltage Vth and outputs a comparison result signal So according to the comparison result.
  • the LED drive circuit 100 further includes a peak hold circuit HC that holds the peak voltage of the detection signal SX and outputs the held peak voltage as the detection voltage VZ from the second node N2. Further, the LED drive circuit 100 includes a control circuit CON that controls the current detection operation of the detection circuit DC and controls the drive of the LED lamp 101 based on the comparison result signal So.
  • the LED drive circuit 100 includes a power supply circuit SC that is connected to the first terminal T1 and supplies power to the control circuit CON based on the current input from the first terminal T1.
  • the detection circuit DC has one end connected to the first terminal T1, and is controlled to be turned on or off by the control circuit CON, and one end is the first switch.
  • a detection capacitor CX connected to the other end of the element Q1 and having the other end connected to the first node N1.
  • the detection circuit DC has one end connected to the first node N1, the other end connected to the second terminal T2, and one end connected to the other end of the first switch element Q1.
  • a discharge resistor RY having the other end connected to the second terminal T2.
  • the first switch element Q1 is, for example, a pMOS transistor having a source connected to the first terminal T1 and a drain connected to one end of the detection capacitor CX, as shown in FIG.
  • the gate voltage of the pMOS transistor is controlled by a control signal output from the control circuit CON (by a gate signal SG1 output from the predrive circuit PC). That is, the pMOS transistor is controlled to be turned on or off by the gate signal SG1.
  • the detection resistor RX is a resistor for detecting the current IX flowing through the detection capacitor CX.
  • the discharge resistor RY is connected in parallel with the detection resistor RX and the detection capacitor CX between the other end of the first switch element Q1 and the second terminal T2.
  • the discharge resistor RY is a resistor for discharging the electric charge charged in the detection capacitor CX.
  • the detection circuit DC having such a configuration outputs a detection signal SX from the first node N1. That is, the detection signal SX is the voltage of the first node N1.
  • the switch device SW in a state where the switch device SW is turned off and a leakage current flows in the current path of the switch device SW, or in a state where the switch device SW is turned on and current flows in the current path of the switch device SW
  • the first switch element Q1 is turned on (that is, in a state where current flows from the first terminal T1)
  • the current IX flows from the first terminal T1 to the detection capacitor CX
  • the detection capacitor CX is charged.
  • the switch device SW when the switch device SW is turned off and no leakage current flows in the current path of the switch device SW (that is, when no current flows from the first terminal T1), the first switch element Q1 is turned on. Even so, the current IX does not flow from the first terminal T1 to the detection capacitor CX, and the detection capacitor CX is not charged.
  • the peak hold circuit HC holds the peak voltage of the detection signal SX, and outputs the held peak voltage from the second node N2 as the detection voltage VZ.
  • the peak hold circuit HC includes a holding diode DZ having an anode connected to the first node N1 and a cathode connected to the second node N2, a second node N2, and a second node N2.
  • a holding capacitor CZ connected to the terminal T2.
  • the capacitance value of the above-described detection capacitor CX is set to be larger than the capacitance value of the holding capacitor CZ.
  • the peak voltage of the voltage of the detection signal SX (the voltage VX across the detection resistor RX) is peak-held by the holding capacitor CZ via the holding diode DZ.
  • the voltage VZ across the holding capacitor CZ is about the voltage of the battery B.
  • the voltage VZ across the holding capacitor CZ is low because the current IX flowing through the detection capacitor CX is small. It can be suppressed.
  • the comparison circuit CC compares the detection voltage VZ corresponding to the detection signal SX with the threshold voltage Vth, and outputs the comparison result signal So corresponding to the comparison result.
  • the comparison circuit CC compares the detection voltage VZ with the threshold voltage Vth, and outputs a “High” level comparison result signal So if the detection voltage VZ is equal to or higher than the threshold voltage Vth.
  • the comparison circuit CC compares the detection voltage VZ with the threshold voltage Vth, and outputs a “Low” level comparison result signal So when the detection voltage VZ is less than the threshold voltage Vth.
  • the comparison circuit CC includes a voltage dividing circuit RD that outputs a divided voltage obtained by dividing the voltage between the first terminal T1 and the second terminal T2 as a threshold voltage Vth. And a converter COMP that receives the detection voltage VZ and the threshold voltage Vth, compares the detection voltage VZ with the threshold voltage Vth, and outputs a comparison result signal So according to the comparison result.
  • the voltage dividing circuit RD includes a first voltage dividing resistor RD1 having one end connected to the first terminal T1 and the other end connected to the voltage dividing node ND, and one end. Is connected to the voltage dividing node ND, and a second voltage dividing resistor RD2 having the other end connected to the second terminal T2.
  • the voltage dividing circuit RD outputs the voltage of the voltage dividing node ND as the threshold voltage Vth.
  • the comparison circuit CC includes an output resistor Ro connected between the first terminal T1 and the output of the converter COMP, and a protective resistor RA connected between the second node N2 and the input of the converter COMP. Is provided.
  • the comparison circuit CC shown in FIG. 1 is configured using the converter COMP, the comparison circuit CC may be configured using a circuit such as another transistor capable of comparing voltages.
  • control circuit CON controls the current detection operation of the detection circuit DC and controls the driving of the LED lamp 101 based on the comparison result signal So.
  • the control circuit CON controls the first switch element Q1 to be periodically switched on and off.
  • the control circuit CON turns on the switch device SW and switches between one end and the other end of the current path of the switch device SW. It is determined that the gap is conducting.
  • control circuit CON turns on the LED lamp 101 by supplying a driving current to the LED lamp 101, for example.
  • the control circuit CON turns off the switch device SW and switches between one end and the other end of the current path of the switch device SW. It is determined that there is a break.
  • control circuit CON turns off the LED lamp 101, for example, by not supplying a drive current to the LED lamp 101.
  • the threshold voltage Vth is such that the control circuit CON periodically switches on and off the first switch element Q1 in a state where the switch device SW is turned off and a leakage current flows in the current path of the switch device SW.
  • the detection voltage is set to be higher than the detection voltage VZ that is the peak voltage of the detection signal SX output from the detection circuit DC.
  • the control circuit CON turns on the switch device SW and sets one end and the other end of the current path of the switch device SW. It can be determined that the gap is conductive.
  • the threshold voltage Vth is the peak of the detection signal SX output from the detection circuit DC when the control circuit CON periodically switches on and off the first switch element Q1 in a state where the switch device SW is on. It is set to be lower than the detection voltage VZ which is a voltage.
  • the control circuit CON turns off the switch device SW and sets one end and the other end of the current path of the switch device SW. It can be determined that the interval is interrupted.
  • the LED drive circuit 100 controls the gate signal SG1 of the pMOS transistor in accordance with a control signal for controlling the first switch element Q1 output from the control circuit CON (drives the first switch element Q1).
  • a pre-drive circuit PC may be omitted. That is, the control circuit CON may directly output the gate signal SG1 to control the first switch element Q1.
  • the LED drive circuit 100 further includes an interface circuit IC that processes the comparison result signal So output from the comparison circuit CC and outputs the result to the control circuit CON.
  • the control circuit CON receives the comparison result signal So from the comparison circuit CC via the interface circuit IC.
  • the interface circuit IC may be omitted.
  • the LED drive circuit 100 includes the peak hold circuit HC in order to more reliably detect the on / off of the switch device SW. For example, the LED drive circuit 100 switches depending on whether or not a pulse signal is fed back. If the on / off state of the device SW can be detected, the peak hold circuit HC may be omitted.
  • the power supply circuit SC is connected to the first terminal T1, and supplies power to the control circuit CON based on the current input from the first terminal T1.
  • the power supply circuit SC has a current input from the first terminal T1 when the switch device SW is turned on or when the switch device SW is turned off and a leakage current flows in the current path of the switch device SW. Works with.
  • the power supply circuit SC supplies power to the control circuit CON based on the current input from the first terminal T1.
  • control circuit CON operates with the power supplied from the power supply circuit SC and drives the LED lamp. Further, the control circuit CON outputs a pulse signal to the pre-drive circuit PC to periodically switch the first switch element Q1 of the detection circuit DC.
  • the pulse signal preferably has a frequency of about 10 to 200 Hz and an on-duty of about 1% to 10%. That is, the switching frequency of the first switch element Q1 by the control circuit CON is 10 to 200 Hz, and the on-duty is about 1% to 10%.
  • FIG. 2 shows a waveform in a case where the switching device SW is turned off and the switching device SW is turned off and the leakage current does not flow in the current path of the switching device SW.
  • the power supply circuit SC operates with the current input from the first terminal T1 when the switch device SW is turned on.
  • the power supply circuit SC supplies power to the control circuit CON based on the current input from the first terminal T1.
  • control circuit CON periodically switches the first switch element Q1 of the detection circuit DC (before time t2 in FIG. 2).
  • the first switch element Q1 when the first switch element Q1 is controlled to be turned on at time t1, the current IX flows through the detection capacitor CX, and the detection capacitor CX is charged. As a result, the voltage VX across the detection resistor RX (the voltage of the detection signal SX) increases.
  • the peak hold circuit HC holds the peak voltage of the voltage VX across the detection resistor RX, and outputs the held peak voltage from the second node N2 as the detection voltage VZ.
  • the comparison circuit CC compares the detection voltage VZ with the threshold voltage Vth, and outputs the “High” level comparison result signal So because the detection voltage VZ is equal to or higher than the threshold voltage Vth.
  • control circuit CON indicates that the comparison result signal So indicates that the detection voltage VZ is equal to or higher than the threshold voltage Vth, so that the switch device SW is turned on and the current path of the switch device SW is between one end and the other end. Judged to be conductive.
  • control circuit CON turns on the LED lamp 101 by supplying a driving current to the LED lamp 101, for example.
  • the switch device SW is turned off by the user.
  • the operation of the power supply circuit SC is stopped, the control circuit CON is also stopped, the drive current is not supplied to the LED lamp 101, and the LED lamp 101 is turned off.
  • FIG. 3 shows a waveform in a case where the switch device SW is turned off and the switch device SW is turned off and a leakage current flows in the current path of the switch device SW.
  • the power supply circuit SC operates with the current input from the first terminal T1 when the switch device SW is turned on.
  • the power supply circuit SC supplies power to the control circuit CON based on the current input from the first terminal T1.
  • control circuit CON periodically switches the first switch element Q1 of the detection circuit DC (before time t2 in FIG. 3).
  • the operation up to time t2 in FIG. 3 is the same as that in FIG.
  • the switch device SW is turned off by the user.
  • the switch device SW is flooded, the switch device SW is turned off, and a leakage current flows in the current path of the switch device SW.
  • the power supply circuit SC In a state where the switch device SW is turned off and a leak current flows through the current path of the switch device SW, the power supply circuit SC operates with the current input from the first terminal T1.
  • the power supply circuit SC supplies power to the control circuit CON based on the current input from the first terminal T1.
  • control circuit CON periodically switches the first switch element Q1 of the detection circuit DC (after time t2 in FIG. 3).
  • the first switch element Q1 when the first switch element Q1 is controlled to be on at times t3 and t5, the current IX flows through the detection capacitor CX, and the detection capacitor CX is charged. As a result, the voltage VX across the detection resistor RX (the voltage of the detection signal SX) increases.
  • the peak hold circuit HC holds the peak voltage of the voltage VX across the detection resistor RX, and outputs the held peak voltage from the second node N2 as the detection voltage VZ.
  • the voltage VZ across the holding capacitor CZ is small because the current IX flowing through the detection capacitor CX is small. It can be kept low.
  • the comparison circuit CC compares the detection voltage VZ with the threshold voltage Vth, and outputs the “Low” level comparison result signal So when the detection voltage VZ is less than the threshold voltage Vth (time t4 in FIG. 3). ).
  • control circuit CON indicates that the comparison result signal So indicates that the detection voltage VZ is less than the threshold voltage Vth, so that the switch device SW is turned off and a gap between one end and the other end of the current path of the switch device SW is established. Judge that it is shut off.
  • control circuit CON turns off the LED lamp 101, for example, by not supplying a drive current to the LED lamp 101.
  • an LED drive circuit 100 uses, for example, a relatively inexpensive mechanical switch device SW having a low waterproof property, even if a leakage current flows due to moisture, the switch device SW. ON / OFF can be detected more reliably. And the LED drive circuit 100 can light an LED lamp according to ON / OFF of a switch apparatus.
  • an LED drive circuit according to one embodiment of the present invention is an LED drive circuit that controls driving of an LED lamp according to on / off of a mechanical switch device. A first terminal to which one end side is connected and a second terminal to which the other end side of the current path of the switch device is connected, and the switch device and the battery are connected between the first terminal and the second terminal.
  • a second terminal connected in series, a current that flows through the first terminal periodically, a detection circuit that outputs a detection signal corresponding to the detection result from the first node, and a detection signal corresponding to the detection signal
  • the comparison circuit that compares the detection voltage with the threshold voltage and outputs a comparison result signal according to the comparison result, and controls the current detection operation of the detection circuit, and based on the comparison result signal, the LED lamp A control circuit for controlling the drive and Equipped with a.
  • the control circuit determines that the switch device is turned on and that one end and the other end of the current path are conducting. On the other hand, if the comparison result signal indicates that the detected voltage is less than the threshold voltage, it is determined that the switch device is turned off and the current path is disconnected from one end.
  • the LED driving circuit according to the present invention does not require adjustment of detection timing and use of expensive elements such as a hall device. Furthermore, since the LED drive circuit according to the present invention can be applied to a relatively inexpensive mechanical switch device (such as a switch device with a low waterproof function), the cost can be reduced.
  • the LED drive circuit according to the present invention can suppress erroneous detection of ON / OFF of the switch device due to leakage current when the switch device is wet while reducing the cost.
  • the LED driving circuit more reliably detects on / off of a switch device for a user to operate an LED lamp such as a headlight or a winker, and turns the LED lamp on / off of the switch device. It can be turned on according to.
  • FIG. 4 is a circuit diagram showing an example of the configuration of the LED drive system 2000 according to the second embodiment.
  • the same reference numerals as those in FIG. 1 indicate the same configurations as those in the first embodiment, and the description thereof is omitted.
  • the LED drive system 2000 (FIG. 4) according to the second embodiment includes a battery B, a mechanical switch device SW connected to the battery B, an LED lamp 101, and an on / off state of the mechanical switch device SW. And an LED driving circuit 200 that controls the driving of the LED lamp 101 in response to turning off.
  • the LED drive circuit 200 according to the second embodiment is different in the configuration of the detection circuit DC from the LED drive circuit 100 of the first embodiment.
  • the detection circuit DC has one end connected to the first terminal T1, the first switch element Q1 controlled to be turned on or off by the control circuit CON, and one end connected to the other end of the first switch element Q1.
  • the other end of the detection capacitor CX is connected to the first node N1, the one end is connected to the first node N1, the other end is connected to the second terminal T2, and the one end is the first.
  • a second switch element Q2 connected in series with the resistor RY.
  • the detection circuit DC further includes a second switch element Q2 as compared with the first embodiment.
  • the second switch element Q2 is connected in series with the discharging resistor RY between the other end of the first switch element Q1 and the second terminal T2, and is controlled by the control circuit CON.
  • This is an nMOS transistor whose gate voltage is controlled.
  • the control circuit CON uses the second gate signal SG2 to turn on the second switching element Q2. Control to turn off.
  • control circuit CON turns on the second switch element Q2 by the second gate signal SG2 when turning off the first switch element Q1 by the first gate signal SG1 via the pre-drive circuit PC. To control.
  • the detection capacitor CX is discharged only when the first switch element Q1 is off. Thereby, the efficiency of charging and discharging of the detection capacitor CX can be improved.
  • LED drive circuit 200 Other configurations of the LED drive circuit 200 are the same as those of the LED drive circuit 100 shown in FIG.
  • the other operational characteristics of the LED drive circuit 200 having the above configuration are the same as those in the first embodiment.
  • the LED drive circuit according to the second embodiment as in the first embodiment, erroneous detection of on / off of the switch device due to leakage current when the switch device is wet while reducing the cost. Can be suppressed.
  • the LED driving circuit more reliably detects on / off of a switch device for a user to operate an LED lamp such as a headlight or a winker, and turns the LED lamp on / off of the switch device. It can be turned on according to.
  • LED drive circuit demonstrated by the above-mentioned embodiment demonstrated the case where ON / OFF of the switch apparatus for a user operating LED lamps, such as a two-wheeled vehicle headlight and a blinker, was detected, for example, implementation
  • a user operating LED lamps such as a two-wheeled vehicle headlight and a blinker

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mechanical Engineering (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

 LED駆動回路は、スイッチ装置の電流経路の一端側が接続される第1の端子と、スイッチ装置の電流経路の他端側が接続される第2の端子であって、第1の端子と第2の端子との間でスイッチ装置とバッテリとが直列に接続される第2の端子と、第1の端子に流れる電流を周期的に検出し、この検出結果に応じた検出信号を第1ノードから出力する検出回路と、検出信号に応じた検出電圧と、閾値電圧とを比較し、この比較結果に応じた比較結果信号を出力する比較回路と、検出回路の電流の検出動作を制御するとともに、比較結果信号に基づいて、LEDランプの駆動を制御する制御回路と、を備える。

Description

LED駆動回路
 本発明は、LED駆動回路に関する発明である。
 従来、自動車や二輪車のヘッドライトやウインカー等をユーザが操作するためのスイッチ装置のオン/オフを検出するための入力回路がある。この従来の入力回路では、スイッチ装置が被水した時のリーク電流によるスイッチ装置のオン/オフの誤検出を防止するため、このリーク電流を接地に逃がしていた。
 特に、二輪車のヘッドライトやウインカーのスイッチ装置は、二輪車の構造上、被水し且つリーク電流も大きい。したがって、従来の入力回路は、このリーク電流による誤検出と、誤点灯を防止するため、ランプの配線を工夫しリーク電流をランプに逃がす等の対応を実施している。
 また、灯体としてLEDランプを適用する従来技術として、LEDと並列に抵抗を接続する技術(例えば、特開2003-63305号参照)、スイッチングしながら検出する技術(特開2013-33610)、定電流回路を用いる技術(例えば、特開2014-40142参照)、磁石とホールデバイスを用いる技術(例えば、特表2014-531715号参照)がある。
 しかしながら、上記従来技術では、抵抗や定電流回路の発熱の対策、サンプリングタイミングの調整、磁石とホールデバイスを用いることによるコストの上昇等が問題となる。
 そこで、本発明では、ヘッドライトやウインカー等のLEDランプをユーザが操作するためのスイッチ装置のオン/オフを検出する入力回路であるLED駆動装置において、コストを削減しつつスイッチ装置の被水時のリーク電流によるスイッチ装置のオン/オフの誤検出を抑制することを目的とする。
 本発明の一態様に係る実施例に従ったLED駆動回路は、
 機械式のスイッチ装置のオン/オフに応じて、LEDランプの駆動を制御するLED駆動回路であって、
 前記スイッチ装置の電流経路の一端側が接続される第1の端子と、
 前記スイッチ装置の前記電流経路の他端側が接続される第2の端子であって、前記第1の端子と前記第2の端子との間で前記スイッチ装置とバッテリとが直列に接続される、前記第2の端子と、
 前記第1の端子に流れる電流を周期的に検出し、この検出結果に応じた検出信号を第1ノードから出力する検出回路と、
 前記検出信号に応じた検出電圧と、閾値電圧とを比較し、この比較結果に応じた比較結果信号を出力する比較回路と、
 前記検出回路の電流の検出動作を制御するとともに、前記比較結果信号に基づいて、前記LEDランプの駆動を制御する制御回路と、を備え、
 前記制御回路は、
 前記比較結果信号が、前記検出電圧が前記閾値電圧以上であることを示す場合には、前記スイッチ装置がオンして前記電流経路の一端と他端との間が導通していると判断し、
 一方、前記比較結果信号が、前記検出電圧が前記閾値電圧未満であることを示す場合には、前記スイッチ装置がオフして前記電流経路の一端と他端との間が遮断していると判断する
 ことを特徴とする。
 前記LED駆動回路において、
 前記検出回路は、
 一端が前記第1の端子に接続され、前記制御回路によりオン又はオフに制御される第1のスイッチ素子と、
 一端が前記第1のスイッチ素子の他端に接続され、他端が前記第1ノードに接続された検出用コンデンサと、
 一端が前記第1ノードに接続され、他端が前記第2の端子に接続された検出用抵抗と、
 前記第1のスイッチ素子の他端と前記第2の端子との間で、前記検出用抵抗および前記検出用コンデンサと並列に接続されるように、一端が前記第1のスイッチ素子の他端に接続され、他端が前記第2の端子に接続された放電用抵抗と、を備え、
 前記制御回路は、
 前記第1のスイッチ素子を周期的にオンとオフを切り換えるように制御し、
 前記検出回路は、
 前記第1ノードから前記検出信号を出力することを特徴とする。
 前記LED駆動回路において、
 前記検出回路は、
 前記第1のスイッチ素子の他端と前記第2の端子との間で、前記放電用抵抗と直列に接続された第2のスイッチ素子をさらに備え、
 前記制御回路は、
 前記第1のスイッチ素子をオンする場合は、前記第2のスイッチ素子をオフするように制御し、
 また、前記第1のスイッチ素子をオフする場合は、前記第2のスイッチ素子をオンするように制御する
 ことを特徴とする。
 前記LED駆動回路において、
 前記検出信号のピーク電圧を保持し、この保持した前記ピーク電圧を前記検出電圧として第2ノードから出力するピークホールド回路をさらに備えることを特徴とする。
 前記LED駆動回路において、
 前記ピークホールド回路は、
 アノードが前記第1ノードに接続され、カソードが前記第2ノードに接続された保持用ダイオードと、
 前記第2ノードと前記第2の端子との間に接続された保持用コンデンサと、を備えることを特徴とする。
 前記LED駆動回路において、
 前記比較回路は、
 前記第1の端子と前記第2の端子との間の電圧を分圧した分圧電圧を前記閾値電圧として出力する分圧回路と、
 前記検出電圧と前記閾値電圧とが入力され、前記検出電圧と前記閾値電圧とを比較し、この比較結果に応じて前記比較結果信号を出力するコンパレータと、を備える
 ことを特徴とする。
 前記LED駆動回路において、
 前記分圧回路は、
 一端が前記第1の端子に接続され、他端が分圧ノードに接続された第1の分圧抵抗と、
 一端が前記分圧ノードに接続され、他端が第2の端子に接続された第2の分圧抵抗と、を備え、
 前記分圧回路は、前記分圧ノードの電圧を前記閾値電圧として出力することを特徴とする。
 前記LED駆動回路において、
 前記閾値電圧は、前記スイッチ装置がオフし且つ前記電流経路にリーク電流が流れている状態において、前記制御回路が前記第1のスイッチ素子を周期的にオンとオフを切り換えることで前記検出回路が出力する前記検出信号のピーク電圧である前記検出電圧よりも、高くなるように設定されている
 ことを特徴とする。
 前記LED駆動回路において、
 前記閾値電圧は、前記スイッチ装置がオンしている状態において、前記制御回路が前記第1のスイッチ素子を周期的にオンとオフを切り換えることで前記検出回路が出力する前記検出信号のピーク電圧である前記検出電圧よりも、低くなるように設定されている
 ことを特徴とする。
 前記LED駆動回路において、
 前記バッテリの正極側が前記第1の端子に接続され、前記バッテリの負極側が前記第2の端子に接続されるように、前記スイッチ装置と前記バッテリとは、前記第1の端子と前記第2の端子との間で直列に接続されている
 ことを特徴とする。
 前記LED駆動回路において、
 前記検出用コンデンサの容量値は、前記保持用コンデンサの容量値よりも大きいことを特徴とする。
 前記LED駆動回路において、
 前記スイッチ装置が被水することにより、前記スイッチ装置がオフした状態で、前記スイッチ装置の前記電流経路にリーク電流が流れることを特徴とする。
 前記LED駆動回路において、
 前記LED駆動回路は、二輪車に積載され、
 前記LEDランプは、前記二輪車のヘッドライト、又は、前記二輪車のウインカーであり、
 前記スイッチ装置は、ユーザにより操作され且つ前記LEDランプの駆動を制御するための前記二輪車のハンドルスイッチである
 ことを特徴とする。
 前記LED駆動回路において、
 前記第1の端子に接続され、前記第1の端子から入力された電流に基づいて、前記制御回路に電力を供給する電源回路をさらに備え、
 前記電源回路は、前記スイッチ装置がオンした状態のとき、又は前記スイッチ装置がオフし且つ前記電流経路にリーク電流が流れた状態のとき、前記第1の端子から入力された電流で動作し且つ前記第1の端子から入力された電流に基づいて前記制御回路に電力を供給し、
 前記制御回路は、前記電源回路から供給される電力で、動作するとともに前記LEDランプを駆動する
 ことを特徴とする。
 前記LED駆動回路において、
 前記第1のスイッチ素子は、ソースが前記第1の端子に接続され、ドレインが前記検出用コンデンサの一端に接続され、前記制御回路によりゲート電圧が制御されるpMOSトランジスタである
 ことを特徴とする。
 本発明の一態様に係るLED駆動回路は、機械式のスイッチ装置のオン/オフに応じて、LEDランプの駆動を制御するLED駆動回路であって、前記スイッチ装置の電流経路の一端側が接続される第1の端子と、前記スイッチ装置の前記電流経路の他端側が接続される第2の端子であって、前記第1の端子と前記第2の端子との間で前記スイッチ装置とバッテリとが直列に接続される、前記第2の端子と、前記第1の端子に流れる電流を周期的に検出し、この検出結果に応じた検出信号を第1ノードから出力する検出回路と、前記検出信号に応じた検出電圧と、閾値電圧と、を比較し、この比較結果に応じた比較結果信号を出力する比較回路と、前記検出回路の電流の検出動作を制御するとともに、前記比較結果信号に基づいて、前記LEDランプの駆動を制御する制御回路と、を備える。
 さらに、前記制御回路は、前記比較結果信号が、前記検出電圧が前記閾値電圧以上であることを示す場合には、前記スイッチ装置がオンして前記電流経路の一端と他端との間が導通していると判断し、一方、前記比較結果信号が、前記検出電圧が前記閾値電圧未満であることを示す場合には、前記スイッチ装置がオフして前記電流経路の一端と他端との間が遮断していると判断する。
 これにより、スイッチ装置の被水時のリーク電流に拘わらず、スイッチ装置のオン/オフを検出することができる。
 また、本発明に係るLED駆動回路は、検出のタイミングの調整やホールデバイス等の高価な素子を用いる必要が無い。さらに、本発明に係るLED駆動回路は、比較的安価な機械式のスイッチ装置(防水機能が低いスイッチ装置等)に適用できるため、コストの低減を図ることができる。
 すなわち、本発明に係るLED駆動回路は、コストを削減しつつスイッチ装置の被水時のリーク電流によるスイッチ装置のオン/オフの誤検出を抑制することができる。
図1は、第1の実施形態に係るLED駆動システム1000の構成の一例を示す図である。 図2は、図1に示すLED駆動回路100の動作波形の一例を示す波形図である。 図3は、図1に示すLED駆動回路100の動作波形の他の例を示す波形図である。 図4は、第2の実施形態に係るLED駆動システム2000の構成の一例を示す図である。
 以下、本発明に係る実施形態について図面に基づいて説明する。
第1の実施形態
 第1の実施形態に係るLED駆動システム1000(図1)は、バッテリBと、このバッテリBに接続された機械式のスイッチ装置SWと、LEDランプ101と、機械式のスイッチ装置SWのオン/オフに応じて、LEDランプ101の駆動を制御するLED駆動回路100と、を備える。
 このLED駆動システム1000は、例えば、二輪車に積載される。この場合、例えば、LEDランプ101は、当該二輪車のヘッドライト、又は、当該二輪車のウインカーである。さらに、この場合、スイッチ装置SWは、ユーザにより操作され且つLEDランプ101の駆動を制御するための当該二輪車のハンドルスイッチである。
 ここで、例えば、機械式であるスイッチ装置SWが被水することにより、スイッチ装置SWがオフした状態で、スイッチ装置SWの電流経路にリーク電流が流れる。
 また、LED駆動回路100は、スイッチ装置SWの電流経路の一端側が接続される第1の端子T1と、スイッチ装置SWの電流経路の他端側が接続される第2の端子T2と、を備える(図1)。
 そして、この第1の端子T1と第2の端子T2との間でスイッチ装置SWとバッテリBとが直列に接続されている。この図1の例では、スイッチ装置SWの電流経路の一端が第1の端子T1に接続され、スイッチ装置SWの電流経路の他端がバッテリBの正極に接続され、バッテリBの負極が第2の端子T2に接続されている。
 すなわち、バッテリBの正極側が第1の端子T1に接続され、バッテリBの負極側が第2の端子T2に接続されるように、スイッチ装置SWとバッテリBとは、第1の端子T1と第2の端子T2との間で直列に接続されている。
 なお、図1の例では、第2の端子T2は、接地されている。
 また、LED駆動回路100は、第1の端子T1に流れる電流を周期的に検出し、この検出結果に応じた検出信号SXを第1ノードN1から出力する検出回路DCを備える。さらに、LED駆動回路100は、該検出信号SXに応じた検出電圧VZと、閾値電圧Vthとを比較し、この比較結果に応じた比較結果信号Soを出力する比較回路CCを備える。
 また、LED駆動回路100は、検出信号SXのピーク電圧を保持し、この保持したピーク電圧を検出電圧VZとして第2ノードN2から出力するピークホールド回路HCをさらに備える。さらに、LED駆動回路100は、検出回路DCの電流の検出動作を制御するとともに、比較結果信号Soに基づいて、LEDランプ101の駆動を制御する制御回路CONと、を備える。
 また、LED駆動回路100は、第1の端子T1に接続され、第1の端子T1から入力された電流に基づいて、制御回路CONに電力を供給する電源回路SCを備える。
 ここで、図1の例では、検出回路DCは、一端が第1の端子T1に接続され、制御回路CONによりオン又はオフに制御される第1のスイッチ素子Q1と、一端が第1のスイッチ素子Q1の他端に接続され、他端が第1ノードN1に接続された検出用コンデンサCXと、を備える。
 さらに、検出回路DCは、一端が第1ノードN1に接続され、他端が第2の端子T2に接続された検出用抵抗RXと、一端が第1のスイッチ素子Q1の他端に接続され、他端が第2の端子T2に接続された放電用抵抗RYと、を備える。
 なお、第1のスイッチ素子Q1は、例えば、図1に示すように、ソースが第1の端子T1に接続され、ドレインが検出用コンデンサCXの一端に接続されたpMOSトランジスタである。このpMOSトランジスタは、制御回路CONが出力する制御信号により(プリドライブ回路PCが出力するゲート信号SG1により)ゲート電圧が制御される。すなわち、このpMOSトランジスタは、ゲート信号SG1により、オン又はオフに制御される。
 また、検出用抵抗RXは、検出用コンデンサCXに流れる電流IXを検出するための抵抗である。
 また、放電用抵抗RYは、第1のスイッチ素子Q1の他端と第2の端子T2との間で、検出用抵抗RXおよび検出用コンデンサCXと並列に接続されている。 この放電用抵抗RYは、検出用コンデンサCXに充電された電荷を放電するための抵抗である。
 このような構成を有する検出回路DCは、第1ノードN1から検出信号SXを出力する。すなわち、検出信号SXは、第1ノードN1の電圧である。
 ここで、例えば、スイッチ装置SWがオフし且つスイッチ装置SWの電流経路にリーク電流が流れている状態、又は、スイッチ装置SWがオンし且つスイッチ装置SWの電流経路に電流が流れている状態において(すなわち、第1の端子T1から電流が流れる状態において)、第1のスイッチ素子Q1がオンすると、第1の端子T1から電流IXが検出用コンデンサCXに流れ、検出用コンデンサCXが充電される。
 そして、第1のスイッチ素子Q1がオフすると、検出用コンデンサCXに充電された電荷が放電用抵抗RYから放電される。
 なお、スイッチ装置SWがオフし且つスイッチ装置SWの電流経路にリーク電流が流れていない状態において(すなわち、第1の端子T1から電流が流れない状態において)は、第1のスイッチ素子Q1がオンしても、第1の端子T1から電流IXが検出用コンデンサCXに流れず、検出用コンデンサCXが充電されない。
 また、既述のように、ピークホールド回路HCは、検出信号SXのピーク電圧を保持し、この保持したピーク電圧を検出電圧VZとして第2ノードN2から出力する。
 このピークホールド回路HCは、例えば、図1に示すように、アノードが第1ノードN1に接続され、カソードが第2ノードN2に接続された保持用ダイオードDZと、第2ノードN2と第2の端子T2との間に接続された保持用コンデンサCZと、を備える。
 なお、既述の検出用コンデンサCXの容量値は、この保持用コンデンサCZの容量値よりも大きくなるように設定されている。
 ここで、検出信号SXの電圧(検出抵抗RXの両端間の電圧VX)のピーク電圧は、保持用ダイオードDZを介して保持用コンデンサCZにピークホールドされる。
 このとき、例えば、スイッチ装置SWがオンしている状態の場合、保持用コンデンサCZの両端間の電圧VZは、バッテリBの電圧程度になる。一方、スイッチ装置SWがオフし且つスイッチ装置SWの電流経路にリーク電流が流れている状態では、保持用コンデンサCZの両端間の電圧VZは、検出用コンデンサCXに流れる電流IXが小さいため、低く抑えられる。
 また、既述のように、比較回路CCは、該検出信号SXに応じた検出電圧VZと、閾値電圧Vthとを比較し、この比較結果に応じた比較結果信号Soを出力する。
 例えば、比較回路CCは、検出電圧VZと、閾値電圧Vthとを比較し、検出電圧VZが閾値電圧Vth以上である場合には、“High”レベルの比較結果信号Soを出力する。一方、比較回路CCは、検出電圧VZと、閾値電圧Vthとを比較し、検出電圧VZが閾値電圧Vth未満である場合には、“Low”レベルの比較結果信号Soを出力する。
 この比較回路CCは、例えば、図1に示すように、第1の端子T1と第2の端子T2との間の電圧を分圧した分圧電圧を閾値電圧Vthとして出力する分圧回路RDと、検出電圧VZと閾値電圧Vthとが入力され、検出電圧VZと閾値電圧Vthとを比較し、この比較結果に応じて比較結果信号Soを出力するコンバータCOMPと、を備える。
 ここで、分圧回路RDは、例えば、図1に示すように、一端が第1の端子T1に接続され、他端が分圧ノードNDに接続された第1の分圧抵抗RD1と、一端が分圧ノードNDに接続され、他端が第2の端子T2に接続された第2の分圧抵抗RD2と、を備える。
 分圧回路RDは、分圧ノードNDの電圧を閾値電圧Vthとして出力する。
 さらに、比較回路CCは、第1の端子T1とコンバータCOMPの出力との間に接続された出力抵抗Roと、第2ノードN2とコンバータCOMPの入力との間に接続された保護用抵抗RAとを備える。 
 なお、この図1に示す比較回路CCは、コンバータCOMPを用いて構成しているが、電圧を比較することが可能な他のトランジスタ等の回路を用いて構成するようにしてもよい。
 また、既述のように、制御回路CONは、検出回路DCの電流の検出動作を制御するとともに、比較結果信号Soに基づいて、LEDランプ101の駆動を制御する。
 この制御回路CONは、第1のスイッチ素子Q1を周期的にオンとオフを切り換えるように制御する。
 また、制御回路CONは、比較結果信号Soが、検出電圧VZが閾値電圧Vth以上であることを示す場合には、スイッチ装置SWがオンしてスイッチ装置SWの電流経路の一端と他端との間が導通していると判断する。
 この場合、制御回路CONは、例えば、LEDランプ101に駆動電流を供給することで、LEDランプ101を点灯させる。
 一方、制御回路CONは、比較結果信号Soが、検出電圧VZが閾値電圧Vth未満であることを示す場合には、スイッチ装置SWがオフしてスイッチ装置SWの電流経路の一端と他端との間が遮断していると判断する。
 この場合、制御回路CONは、例えば、LEDランプ101へ駆動電流を供給しないことで、LEDランプ101を消灯させる。
 なお、閾値電圧Vthは、スイッチ装置SWがオフし且つスイッチ装置SWの電流経路にリーク電流が流れている状態において、制御回路CONが第1のスイッチ素子Q1を周期的にオンとオフを切り換えることで検出回路DCが出力する検出信号SXのピーク電圧である検出電圧VZよりも、高くなるように設定されている。
 これにより、制御回路CONは、比較結果信号Soが、検出電圧VZが閾値電圧Vth以上であることを示す場合には、スイッチ装置SWがオンしてスイッチ装置SWの電流経路の一端と他端との間が導通していると判断することができる。
 さらに、閾値電圧Vthは、スイッチ装置SWがオンしている状態において、制御回路CONが第1のスイッチ素子Q1を周期的にオンとオフを切り換えることで検出回路DCが出力する検出信号SXのピーク電圧である検出電圧VZよりも、低くなるように設定されている。
 これにより、制御回路CONは、比較結果信号Soが、検出電圧VZが閾値電圧Vth未満であることを示す場合には、スイッチ装置SWがオフしてスイッチ装置SWの電流経路の一端と他端との間が遮断していると判断することができる。
 ここで、LED駆動回路100は、制御回路CONが出力した第1のスイッチ素子Q1を制御するための制御信号に応じて、pMOSトランジスタのゲート信号SG1を制御(第1のスイッチ素子Q1を駆動)するプリドライブ回路PCを備える。なお、このプリドライブ回路PCは、省略されてもよい。すなわち、制御回路CONが、直接、ゲート信号SG1を出力して、第1のスイッチ素子Q1を制御するようにしてもよい。
 また、LED駆動回路100は、比較回路CCが出力した比較結果信号Soを処理して制御回路CONに出力するインターフェイス回路ICをさらに備える。すなわち、制御回路CONは、比較回路CCから、このインターフェイス回路ICを介して、比較結果信号Soが入力される。なお、このインターフェイス回路ICは、省略されてもよい。
 また、既述のように、LED駆動回路100は、より確実にスイッチ装置SWのオン/オフを検出するため、ピークホールド回路HCを備えるが、例えば、パルス信号がフィードバックされるか否かでスイッチ装置SWのオン/オフを検出できれば、ピークホールド回路HCを省略してもよい。
 ここで、既述のように、電源回路SCは、第1の端子T1に接続され、第1の端子T1から入力された電流に基づいて、制御回路CONに電力を供給する。
 この電源回路SCは、スイッチ装置SWがオンした状態のとき、又はスイッチ装置SWがオフし且つスイッチ装置SWの電流経路にリーク電流が流れた状態のとき、第1の端子T1から入力された電流で動作する。そして、電源回路SCは、第1の端子T1から入力された電流に基づいて制御回路CONに電力を供給する。
 このとき、制御回路CONは、電源回路SCから供給される電力で、動作するとともにLEDランプを駆動する。 
 さらに、制御回路CONは、プリドライブ回路PCにパルス信号を出力して、検出回路DCの第1のスイッチ素子Q1を周期的にスイッチングする。
 なお、該パルス信号は、例えば、周波数が10~200HZ、オンデューティが1%~10% 程度が望ましい。すなわち、制御回路CONによる第1のスイッチ素子Q1のスイッチングの周波数が10~200HZ、そのオンデューティが1%~10%程度になる。 
 次に、以上のような構成を有するLED駆動回路100の動作の一例について、図2、図3を用いて説明する。
 例えば、図2は、スイッチ装置SWがオンしている状態からスイッチ装置SWがオフし且つスイッチ装置SWの電流経路にリーク電流が流れない状態に遷移する場合の波形を示す。
 電源回路SCは、スイッチ装置SWがオンした状態のとき、第1の端子T1から入力された電流で動作する。そして、電源回路SCは、第1の端子T1から入力された電流に基づいて制御回路CONに電力を供給する。
 そして、制御回路CONは、検出回路DCの第1のスイッチ素子Q1を周期的にスイッチングする(図2の時刻t2以前)。
 例えば、時刻t1において、第1のスイッチ素子Q1がオンに制御されると、検出用コンデンサCXに電流IXが流れて、検出用コンデンサCXが充電される。これにより、検出抵抗RXの両端間の電圧VX(検出信号SXの電圧)が上昇する。
 そして、ピークホールド回路HCは、検出抵抗RXの両端間の電圧VXのピーク電圧を保持し、この保持したピーク電圧を検出電圧VZとして第2ノードN2から出力する。
 なお、スイッチ装置SWがオンしている状態の場合、保持用コンデンサCZの両端間の電圧VZは、バッテリBの電圧程度になる。
 そして、比較回路CCは、検出電圧VZと、閾値電圧Vthとを比較し、検出電圧VZが閾値電圧Vth以上であるので、“High”レベルの比較結果信号Soを出力する。
 そして、制御回路CONは、比較結果信号Soが、検出電圧VZが閾値電圧Vth以上であることを示すので、スイッチ装置SWがオンしてスイッチ装置SWの電流経路の一端と他端との間が導通していると判断する。
 この場合、制御回路CONは、例えば、LEDランプ101に駆動電流を供給することで、LEDランプ101を点灯させる。
 その後、図2の時刻t2において、ユーザによりスイッチ装置SWがオフに操作される。これにより、電源回路SCの動作が停止し、制御回路CONも停止して、LEDランプ101に駆動電流が供給されず、LEDランプ101が消灯する。
 なお、スイッチ装置SWがオフし且つスイッチ装置SWの電流経路にリーク電流が流れない状態では、保持用コンデンサCZの両端間の電圧VZは、検出用コンデンサCXに流れる電流IXが流れないため、ゼロになる。
 次に、図3は、スイッチ装置SWがオンしている状態からスイッチ装置SWがオフし且つスイッチ装置SWの電流経路にリーク電流が流れる状態に遷移する場合の波形を示す。
 既述のように、電源回路SCは、スイッチ装置SWがオンした状態のとき、第1の端子T1から入力された電流で動作する。そして、電源回路SCは、第1の端子T1から入力された電流に基づいて制御回路CONに電力を供給する。
 そして、制御回路CONは、検出回路DCの第1のスイッチ素子Q1を周期的にスイッチングする(図3の時刻t2以前)。この図3の時刻t2までの動作は、図2と同様である。
 その後、図3の時刻t2において、ユーザによりスイッチ装置SWがオフに操作される。このとき、例えば、スイッチ装置SWが被水して、スイッチ装置SWがオフし且つスイッチ装置SWの電流経路にリーク電流が流れる状態になるものとする。
 このスイッチ装置SWがオフし且つスイッチ装置SWの電流経路にリーク電流が流れる状態では、電源回路SCは、第1の端子T1から入力された電流で動作する。そして、電源回路SCは、第1の端子T1から入力された電流に基づいて制御回路CONに電力を供給する。
 そして、制御回路CONは、検出回路DCの第1のスイッチ素子Q1を周期的にスイッチングする(図3の時刻t2以降)。
 例えば、時刻t3、t5において、第1のスイッチ素子Q1がオンに制御されると、検出用コンデンサCXに電流IXが流れて、検出用コンデンサCXが充電される。これにより、検出抵抗RXの両端間の電圧VX(検出信号SXの電圧)が上昇する。
 なお、リーク電流に基づいて流れる電流IXは、スイッチ装置SWがオンしているときと比較して小さい。このため、検出抵抗RXの両端間の電圧VX(検出信号SXの電圧)が上昇も、スイッチ装置SWがオンしているときと比較して小さい。
 そして、ピークホールド回路HCは、検出抵抗RXの両端間の電圧VXのピーク電圧を保持し、この保持したピーク電圧を検出電圧VZとして第2ノードN2から出力する。
 ここで、スイッチ装置SWがオフし且つスイッチ装置SWの電流経路にリーク電流が流れている状態では、保持用コンデンサCZの両端間の電圧VZは、検出用コンデンサCXに流れる電流IXが小さいため、低く抑えられる。
 これにより、比較回路CCは、検出電圧VZと、閾値電圧Vthとを比較し、検出電圧VZが閾値電圧Vth未満になると、“Low”レベルの比較結果信号Soを出力する(図3の時刻t4)。
 そして、制御回路CONは、比較結果信号Soが、検出電圧VZが閾値電圧Vth未満であることを示すので、スイッチ装置SWがオフしてスイッチ装置SWの電流経路の一端と他端との間が遮断していると判断する。
 この場合、制御回路CONは、例えば、LEDランプ101へ駆動電流を供給しないことで、LEDランプ101を消灯させる。
 このように、本実施形態に係るLED駆動回路100は、例えば、防水性が低い比較的安価な機械式のスイッチ装置SWを用いた場合に、被水によりリーク電流が流れても、スイッチ装置SWのオン/オフをより確実に検出することができる。そして、LED駆動回路100は、LEDランプをスイッチ装置のオン/オフに応じて点灯させることができる。 
 以上のように、本発明の一態様に係るLED駆動回路は、機械式のスイッチ装置のオン/オフに応じて、LEDランプの駆動を制御するLED駆動回路であって、スイッチ装置の電流経路の一端側が接続される第1の端子と、スイッチ装置の電流経路の他端側が接続される第2の端子であって、第1の端子と第2の端子との間でスイッチ装置とバッテリとが直列に接続される、第2の端子と、第1の端子に流れる電流を周期的に検出し、この検出結果に応じた検出信号を第1ノードから出力する検出回路と、検出信号に応じた検出電圧と、閾値電圧と、を比較し、この比較結果に応じた比較結果信号を出力する比較回路と、検出回路の電流の検出動作を制御するとともに、比較結果信号に基づいて、LEDランプの駆動を制御する制御回路と、を備える。
 さらに、制御回路は、比較結果信号が、検出電圧が閾値電圧以上であることを示す場合には、スイッチ装置がオンして電流経路の一端と他端との間が導通していると判断し、一方、比較結果信号が、検出電圧が閾値電圧未満であることを示す場合には、スイッチ装置がオフして電流経路の一端と他端との間が遮断していると判断する。
 これにより、スイッチ装置の被水時のリーク電流に拘わらず、スイッチ装置のオン/オフを検出することができる。
 また、本発明に係るLED駆動回路は、検出のタイミングの調整やホールデバイス等の高価な素子を用いる必要が無い。さらに、本発明に係るLED駆動回路は、比較的安価な機械式のスイッチ装置(防水機能が低いスイッチ装置等)に適用できるため、コストの低減を図ることができる。
 すなわち、本発明に係るLED駆動回路は、コストを削減しつつスイッチ装置の被水時のリーク電流によるスイッチ装置のオン/オフの誤検出を抑制することができる。
 そして、本実施形態に係るLED駆動回路は、ヘッドライトやウインカー等のLEDランプをユーザが操作するためのスイッチ装置のオン/オフをより確実に検出して、LEDランプをスイッチ装置のオン/オフに応じて点灯させることができる。
第2の実施形態
 本第2の実施形態では、検出回路の構成が第1の実施形態と異なるLED駆動回路の構成の一例について説明する。図4は、第2の実施形態に係るLED駆動システム2000の構成の一例を示す回路図である。なお、この図4において、図1と同じ符号は、第1の実施形態と同様の構成を示し、説明を省略する。
 第2の実施形態に係るLED駆動システム2000(図4)は、バッテリBと、このバッテリBに接続された機械式のスイッチ装置SWと、LEDランプ101と、機械式のスイッチ装置SWのオン/オフに応じて、LEDランプ101の駆動を制御するLED駆動回路200と、を備える。
 この第2の実施形態に係るLED駆動回路200は、第1の実施形態のLED駆動回路100と比較して、検出回路DCの構成が異なる。
 この検出回路DCは、一端が第1の端子T1に接続され、制御回路CONによりオン又はオフに制御される第1のスイッチ素子Q1と、一端が第1のスイッチ素子Q1の他端に接続され、他端が第1ノードN1に接続された検出用コンデンサCXと、一端が第1ノードN1に接続され、他端が第2の端子T2に接続された検出用抵抗RXと、一端が第1のスイッチ素子Q1の他端に接続され、他端が第2の端子T2に接続された放電用抵抗RYと、第1のスイッチ素子Q1の他端と第2の端子T2との間で、放電用抵抗RYと直列に接続された第2のスイッチ素子Q2と、を備える。
 すなわち、この検出回路DCは、第1の実施形態と比較して、第2のスイッチ素子Q2をさらに備える。なお、図4の例では、第2のスイッチ素子Q2は、第1のスイッチ素子Q1の他端と第2の端子T2との間で、放電用抵抗RYと直列に接続され、制御回路CONによりゲート電圧が制御されるnMOSトランジスタである。
 ここで、制御回路CONは、プリドライブ回路PCを介して、例えば、第1のゲート信号SG1により第1のスイッチ素子Q1をオンする場合は、第2のゲート信号SG2により第2のスイッチ素子Q2をオフするように制御する。
 一方、制御回路CONは、プリドライブ回路PCを介して、第1のゲート信号SG1により第1のスイッチ素子Q1をオフする場合は、第2のゲート信号SG2により第2のスイッチ素子Q2をオンするように制御する。
 この第2のスイッチ素子Q2の動作により、第1のスイッチ素子Q1がオフのときのみ、検出用コンデンサCXが放電することなる。これにより、検出用コンデンサCXの充放電の効率を向上させることができる。
 このLED駆動回路200のその他の構成は、図1に示すLED駆動回路100と同様である。
 そして、以上のような構成を有するLED駆動回路200のその他の動作特性は、第1の実施形態と同様である。
 すなわち、本第2の実施形態に係るLED駆動回路によれば、第1の実施形態と同様に、コストを削減しつつスイッチ装置の被水時のリーク電流によるスイッチ装置のオン/オフの誤検出を抑制することができる。
 そして、本実施形態に係るLED駆動回路は、ヘッドライトやウインカー等のLEDランプをユーザが操作するためのスイッチ装置のオン/オフをより確実に検出して、LEDランプをスイッチ装置のオン/オフに応じて点灯させることができる。
 なお、既述の実施形態で説明したLED駆動回路は、例えば、二輪車のヘッドライトやウインカー等のLEDランプをユーザが操作するためのスイッチ装置のオン/オフを検出する場合について説明したが、実施形態は、これに限られるものではない。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。

Claims (15)

  1.  機械式のスイッチ装置のオン/オフに応じて、LEDランプの駆動を制御するLED駆動回路であって、
     前記スイッチ装置の電流経路の一端側が接続される第1の端子と、
     前記スイッチ装置の前記電流経路の他端側が接続される第2の端子であって、前記第1の端子と前記第2の端子との間で前記スイッチ装置とバッテリとが直列に接続される、前記第2の端子と、
     前記第1の端子に流れる電流を周期的に検出し、この検出結果に応じた検出信号を第1ノードから出力する検出回路と、
     前記検出信号に応じた検出電圧と、閾値電圧とを比較し、この比較結果に応じた比較結果信号を出力する比較回路と、
     前記検出回路の電流の検出動作を制御するとともに、前記比較結果信号に基づいて、前記LEDランプの駆動を制御する制御回路と、を備え、
     前記制御回路は、
     前記比較結果信号が、前記検出電圧が前記閾値電圧以上であることを示す場合には、前記スイッチ装置がオンして前記電流経路の一端と他端との間が導通していると判断し、
     一方、前記比較結果信号が、前記検出電圧が前記閾値電圧未満であることを示す場合には、前記スイッチ装置がオフして前記電流経路の一端と他端との間が遮断していると判断する
     ことを特徴とするLED駆動回路。
  2.  前記検出回路は、
     一端が前記第1の端子に接続され、前記制御回路によりオン又はオフに制御される第1のスイッチ素子と、
     一端が前記第1のスイッチ素子の他端に接続され、他端が前記第1ノードに接続された検出用コンデンサと、
     一端が前記第1ノードに接続され、他端が前記第2の端子に接続された検出用抵抗と、
     前記第1のスイッチ素子の他端と前記第2の端子との間で、前記検出用抵抗および前記検出用コンデンサと並列に接続されるように、一端が前記第1のスイッチ素子の他端に接続され、他端が前記第2の端子に接続された放電用抵抗と、を備え、
     前記制御回路は、
     前記第1のスイッチ素子を周期的にオンとオフを切り換えるように制御し、
     前記検出回路は、
     前記第1ノードから前記検出信号を出力することを特徴とする請求項1に記載のLED駆動回路。
  3.  前記検出回路は、
     前記第1のスイッチ素子の他端と前記第2の端子との間で、前記放電用抵抗と直列に接続された第2のスイッチ素子をさらに備え、
     前記制御回路は、
     前記第1のスイッチ素子をオンする場合は、前記第2のスイッチ素子をオフするように制御し、
     また、前記第1のスイッチ素子をオフする場合は、前記第2のスイッチ素子をオンするように制御する
     ことを特徴とする請求項2に記載のLED駆動回路。
  4.  前記検出信号のピーク電圧を保持し、この保持した前記ピーク電圧を前記検出電圧として第2ノードから出力するピークホールド回路をさらに備えることを特徴とする請求項2に記載のLED駆動回路。
  5.  前記ピークホールド回路は、
     アノードが前記第1ノードに接続され、カソードが前記第2ノードに接続された保持用ダイオードと、
     前記第2ノードと前記第2の端子との間に接続された保持用コンデンサと、を備えることを特徴とする請求項4に記載のLED駆動回路。
  6.  前記比較回路は、
     前記第1の端子と前記第2の端子との間の電圧を分圧した分圧電圧を前記閾値電圧として出力する分圧回路と、
     前記検出電圧と前記閾値電圧とが入力され、前記検出電圧と前記閾値電圧とを比較し、この比較結果に応じて前記比較結果信号を出力するコンパレータと、を備える
     ことを特徴とする請求項5に記載のLED駆動回路。
  7.  前記分圧回路は、
     一端が前記第1の端子に接続され、他端が分圧ノードに接続された第1の分圧抵抗と、
     一端が前記分圧ノードに接続され、他端が第2の端子に接続された第2の分圧抵抗と、を備え、
     前記分圧回路は、前記分圧ノードの電圧を前記閾値電圧として出力することを特徴とする請求項6に記載のLED駆動回路。
  8.  前記閾値電圧は、前記スイッチ装置がオフし且つ前記電流経路にリーク電流が流れている状態において、前記制御回路が前記第1のスイッチ素子を周期的にオンとオフを切り換えることで前記検出回路が出力する前記検出信号のピーク電圧である前記検出電圧よりも、高くなるように設定されている
     ことを特徴とする請求項4に記載のLED駆動回路。
  9.  前記閾値電圧は、前記スイッチ装置がオンしている状態において、前記制御回路が前記第1のスイッチ素子を周期的にオンとオフを切り換えることで前記検出回路が出力する前記検出信号のピーク電圧である前記検出電圧よりも、低くなるように設定されている
     ことを特徴とする請求項8に記載のLED駆動回路。
  10.  前記バッテリの正極側が前記第1の端子に接続され、前記バッテリの負極側が前記第2の端子に接続されるように、前記スイッチ装置と前記バッテリとは、前記第1の端子と前記第2の端子との間で直列に接続されている
     ことを特徴とする請求項1に記載のLED駆動回路。
  11.  前記検出用コンデンサの容量値は、前記保持用コンデンサの容量値よりも大きいことを特徴とする請求項5に記載のLED駆動回路。
  12.  前記スイッチ装置が被水することにより、前記スイッチ装置がオフした状態で、前記スイッチ装置の前記電流経路にリーク電流が流れることを特徴とする請求項1に記載のLED駆動回路。
  13.  前記LED駆動回路は、二輪車に積載され、
     前記LEDランプは、前記二輪車のヘッドライト、又は、前記二輪車のウインカーであり、
     前記スイッチ装置は、ユーザにより操作され且つ前記LEDランプの駆動を制御するための前記二輪車のハンドルスイッチである
     ことを特徴とする請求項1に記載のLED駆動回路。
  14.  前記第1の端子に接続され、前記第1の端子から入力された電流に基づいて、前記制御回路に電力を供給する電源回路をさらに備え、
     前記電源回路は、前記スイッチ装置がオンした状態のとき、又は前記スイッチ装置がオフし且つ前記電流経路にリーク電流が流れた状態のとき、前記第1の端子から入力された電流で動作し且つ前記第1の端子から入力された電流に基づいて前記制御回路に電力を供給し、
     前記制御回路は、前記電源回路から供給される電力で、動作するとともに前記LEDランプを駆動する
     ことを特徴とする請求項2に記載のLED駆動回路。
  15.  前記第1のスイッチ素子は、ソースが前記第1の端子に接続され、ドレインが前記検出用コンデンサの一端に接続され、前記制御回路によりゲート電圧が制御されるpMOSトランジスタである
     ことを特徴とする請求項2に記載のLED駆動回路。
PCT/JP2015/054966 2015-02-23 2015-02-23 Led駆動回路 WO2016135814A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016514204A JP6062602B1 (ja) 2015-02-23 2015-02-23 Led駆動回路
PCT/JP2015/054966 WO2016135814A1 (ja) 2015-02-23 2015-02-23 Led駆動回路
CA2927030A CA2927030C (en) 2015-02-23 2015-02-23 Led driver circuit
EP15848129.1A EP3264864B1 (en) 2015-02-23 2015-02-23 Led drive circuit
US15/032,282 US9544958B2 (en) 2015-02-23 2015-02-23 LED driver circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/054966 WO2016135814A1 (ja) 2015-02-23 2015-02-23 Led駆動回路

Publications (1)

Publication Number Publication Date
WO2016135814A1 true WO2016135814A1 (ja) 2016-09-01

Family

ID=56741279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054966 WO2016135814A1 (ja) 2015-02-23 2015-02-23 Led駆動回路

Country Status (5)

Country Link
US (1) US9544958B2 (ja)
EP (1) EP3264864B1 (ja)
JP (1) JP6062602B1 (ja)
CA (1) CA2927030C (ja)
WO (1) WO2016135814A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019006192A (ja) * 2017-06-22 2019-01-17 株式会社小糸製作所 車両用灯具

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6138354B2 (ja) * 2015-02-23 2017-05-31 新電元工業株式会社 負荷駆動回路、および、負荷短絡検出回路
CN111903193B (zh) * 2018-03-28 2024-02-06 株式会社小糸制作所 点灯电路及车辆用灯具
JP2023004182A (ja) 2021-06-25 2023-01-17 キオクシア株式会社 電子機器およびusb機器
TWI831296B (zh) * 2022-07-15 2024-02-01 光寶科技股份有限公司 電子電路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003063305A (ja) 2001-08-27 2003-03-05 Honda Motor Co Ltd 制動灯点灯回路
JP2012011970A (ja) * 2010-07-05 2012-01-19 Honda Motor Co Ltd 鞍乗型車両の発光ダイオード点灯回路
JP2013033610A (ja) 2011-08-01 2013-02-14 Shindengen Electric Mfg Co Ltd 駆動回路
JP2014040142A (ja) 2012-08-21 2014-03-06 Rohm Co Ltd リーク電流検出回路、半導体装置、led照明装置、車両
JP2014531715A (ja) 2011-09-22 2014-11-27 タイコ・エレクトロニクス・コーポレイションTyco Electronics Corporation スイッチアセンブリ及びスイッチシステム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8982578B2 (en) 2010-10-14 2015-03-17 Tyco Electronics Corporation Connector system and assembly having integrated protection circuitry
WO2012132830A1 (ja) * 2011-03-31 2012-10-04 本田技研工業株式会社 車両の灯火制御システム
US20140145637A1 (en) * 2012-11-26 2014-05-29 Lucidity Lights, Inc. Induction rf fluorescent light bulb with synchronized burst-mode dimming
US9408261B2 (en) * 2013-05-07 2016-08-02 Power Integrations, Inc. Dimmer detector for bleeder circuit activation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003063305A (ja) 2001-08-27 2003-03-05 Honda Motor Co Ltd 制動灯点灯回路
JP2012011970A (ja) * 2010-07-05 2012-01-19 Honda Motor Co Ltd 鞍乗型車両の発光ダイオード点灯回路
JP2013033610A (ja) 2011-08-01 2013-02-14 Shindengen Electric Mfg Co Ltd 駆動回路
JP2014531715A (ja) 2011-09-22 2014-11-27 タイコ・エレクトロニクス・コーポレイションTyco Electronics Corporation スイッチアセンブリ及びスイッチシステム
JP2014040142A (ja) 2012-08-21 2014-03-06 Rohm Co Ltd リーク電流検出回路、半導体装置、led照明装置、車両

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019006192A (ja) * 2017-06-22 2019-01-17 株式会社小糸製作所 車両用灯具

Also Published As

Publication number Publication date
EP3264864A4 (en) 2018-03-07
EP3264864A1 (en) 2018-01-03
EP3264864B1 (en) 2019-06-12
CA2927030C (en) 2017-11-07
CA2927030A1 (en) 2016-08-23
US20160295650A1 (en) 2016-10-06
JP6062602B1 (ja) 2017-01-25
US9544958B2 (en) 2017-01-10
JPWO2016135814A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6062602B1 (ja) Led駆動回路
US9462647B2 (en) Lighting device, head light and vehicle
JP5989455B2 (ja) リーク電流検出回路、半導体装置、led照明装置、車両
US9198247B2 (en) Vehicle lamp, driving device thereof, and control method thereof
US7964987B2 (en) Light emitting apparatus
US9162607B2 (en) Vehicular lamp
JP6138354B2 (ja) 負荷駆動回路、および、負荷短絡検出回路
US9762116B2 (en) Voltage conversion apparatus
JP5635209B1 (ja) ランプ駆動電源、および、ランプ駆動電源の制御方法
US20120154969A1 (en) Overcurrent detection circuit of light emitting module
JP6237301B2 (ja) 点灯装置および照明器具
JP6062603B1 (ja) 車両用ledランプ点灯回路、車両用ledランプ点灯装置、および車両用ledランプ点灯回路の制御方法
JPWO2014184847A1 (ja) ランプ駆動電源、および、ランプ駆動電源の制御方法
JP6513825B2 (ja) Led用点灯装置、およびled用点灯装置の制御方法
JP2008131837A (ja) 電源装置
JP6130045B1 (ja) 車両用スイッチ検出回路、および車両用スイッチ検出回路の制御方法
JP6299295B2 (ja) 点灯装置および照明器具
WO2016084145A1 (ja) Ledドライバ回路、及び、led照明装置
WO2023112693A1 (ja) 点灯回路、及び車両用灯具
EP3349546B1 (en) Lighting control device
US9682650B2 (en) Direction indicator system and direction indicator device for a vehicle
JP6323200B2 (ja) 車両用前照灯装置及び定電圧供給装置
WO2016079878A1 (ja) Ledドライバ回路、led照明装置、及び、ledドライバ回路の制御方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016514204

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015848129

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015848129

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: CA2927030

Country of ref document: CA

Ref document number: 2927030

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15032282

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: IDP00201603387

Country of ref document: ID

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15848129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE