WO2016132565A1 - Electrolysis system - Google Patents

Electrolysis system Download PDF

Info

Publication number
WO2016132565A1
WO2016132565A1 PCT/JP2015/057942 JP2015057942W WO2016132565A1 WO 2016132565 A1 WO2016132565 A1 WO 2016132565A1 JP 2015057942 W JP2015057942 W JP 2015057942W WO 2016132565 A1 WO2016132565 A1 WO 2016132565A1
Authority
WO
WIPO (PCT)
Prior art keywords
adjustment tank
seawater
electrolysis system
electrolysis
line
Prior art date
Application number
PCT/JP2015/057942
Other languages
French (fr)
Japanese (ja)
Inventor
勇作 那須
達也 松村
水谷 洋
中村 謙治
宏幸 高波
Original Assignee
三菱重工環境・化学エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工環境・化学エンジニアリング株式会社 filed Critical 三菱重工環境・化学エンジニアリング株式会社
Priority to CN201580011684.8A priority Critical patent/CN106061904B/en
Priority to MYPI2016703144A priority patent/MY188112A/en
Priority to KR1020167025574A priority patent/KR101910262B1/en
Publication of WO2016132565A1 publication Critical patent/WO2016132565A1/en
Priority to SA516371888A priority patent/SA516371888B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination

Definitions

  • the present invention relates to an electrolysis system including an electrolyzer that electrolyzes a liquid to be treated such as seawater.
  • Patent Document 1 describes an apparatus that supplies air into a liquid to be treated in order to prevent scale from adhering to an electrode of an electrolysis apparatus during electrolysis. This apparatus improves the electrode cleaning effect by increasing the flow velocity on the electrode surface and making it turbulent by blowing air into the liquid to be treated.
  • the scale is placed at the bottom of the electrolytic tank (electrode surface) for electrolysis and the adjustment tank for temporarily storing the liquid to be treated.
  • the removal of the precipitated scale requires a large-scale work such as an acid cleaning work, which increases the running cost of the electrolytic system.
  • An object of the present invention is to provide an electrolysis system capable of preventing a deposited substance (scale) from being precipitated at the bottom of a regulating tank.
  • an electrolysis system includes an electrolyzer that contains an anode and a cathode as electrodes, and electrolyzes a liquid to be treated, and a treatment to be treated by the electrolysis device.
  • An adjustment tank for temporarily storing the liquid, a recycle line for returning a part of the stored liquid, which is stored in the adjustment tank and contains the fine particles and the precipitated substance formed by precipitation of the fine particles, to the electrolytic cell, and in the adjustment tank And a preventive means for preventing precipitation of the precipitated substance.
  • the fine particles contained in the stored liquid are desorbed along with the deposited substances generated on the electrode surface.
  • the fine particles contained in the stored liquid returned to the electrolytic cell function as seed crystals, so that it is possible to suppress the growth of the deposited substance on the electrode surface.
  • precipitates such as calcium carbonate and magnesium hydroxide that precipitate due to the increase in pH of the liquid to be treated with electrolysis are separated from the electrode surface on the surface of fine particles (seed crystals) that float in the liquid. By precipitating, it is possible to prevent deposition of the depositing substance on the cathode surface.
  • the prevention means may include a discharge pipe for discharging a liquid to the adjustment tank.
  • the liquid stored in the adjustment tank is agitated by injecting the liquid through the discharge pipe.
  • the effect which prevents that a deposit substance precipitates in the bottom part of an adjustment tank can be raised.
  • the discharge pipe may be discharged in a direction in which a swirling flow is generated in the stored liquid stored in the adjustment tank.
  • the precipitation substance contained in the stored liquid can be stably stirred, so that the effect of preventing the precipitation substance from being precipitated at the bottom of the adjustment tank can be improved.
  • the prevention means supplies air to a wall member that extends in the vertical direction of the adjustment tank and divides the inside of the adjustment tank into an ascending part and a descending part, and a lower part of the ascending part And an air stirrer having an air supply unit.
  • the agitation / dispersion effect of the stored liquid can be obtained by the aeration power of air.
  • the effect which prevents that a deposit substance precipitates in the bottom part of an adjustment tank can be raised.
  • the prevention means may be a mechanical stirring device that mechanically stirs the stored liquid in the adjustment tank.
  • the stored liquid is forcibly stirred.
  • the effect which prevents that a deposit substance precipitates in the bottom part of an adjustment tank can be raised.
  • the anode may be coated with titanium with a coating material containing iridium oxide.
  • an injection line for supplying a part of the electrolytic solution from the recycling line to a predetermined place, a seawater supply line for supplying seawater to the adjustment tank, and a part of the seawater in the seawater supply line are injected.
  • the flow rate of the injection line can be increased by injecting seawater through the branch line. Therefore, even when the distance of the injection line is long and the precipitated substance is likely to precipitate, deposition of the precipitated substance due to a decrease in the flow rate of the injection line can be prevented.
  • FIG. 1 is a schematic diagram showing an outline of an electrolysis system 1 according to the present embodiment.
  • the electrolytic system 1 of the present embodiment is a system that generates an electrolytic solution E containing sodium hypochlorite (chlorine, sodium hypochlorite) by electrolyzing a liquid to be treated such as seawater W.
  • E sodium hypochlorite
  • the electrolysis system 1 of the present embodiment cools a plant such as a thermal power plant, a nuclear power plant, a seawater desalination plant, a chemical plant, and an iron manufacturing plant via an injection line 13 with an electrolyte E containing sodium hypochlorite.
  • a plant such as a thermal power plant, a nuclear power plant, a seawater desalination plant, a chemical plant, and an iron manufacturing plant via an injection line 13 with an electrolyte E containing sodium hypochlorite.
  • Supply to a predetermined place such as piping of equipment, nitrogen treatment tank in which wastewater containing nitrogen is stored.
  • the electrolysis system 1 includes a seawater supply pump 5 that introduces seawater W necessary for electrolysis, an adjustment tank 3 that temporarily stores an electrolytic solution E (seawater W) that has been treated by the electrolysis apparatus 2, an electrolysis apparatus 2, An annular recycle line 10 that circulates the electrolytic solution E, and an injection line 13 that injects the electrolytic solution E that circulates through the recycle line 10 into, for example, piping of a plant.
  • the recycling line 10 includes a first recycling line 11 and a second recycling line 12.
  • the adjustment tank 3 is a bottomed cylindrical tank that stores the electrolyte E circulating in the system and the seawater W supplied from the seawater supply pump 5.
  • the adjustment tank 3 has a fan (not shown) that supplies air to the gas phase of the adjustment tank 3.
  • the shape of the adjustment tank 3 is not limited to the bottomed cylindrical shape, and may be a rectangular parallelepiped shape.
  • the electrolyzer 2 is an apparatus that electrolyzes the seawater W in the middle of the recycle line 10.
  • the electrolysis device 2 includes an electrolytic cell 6 and a DC power supply device 7 (rectifier).
  • the electrolysis apparatus 2 is an apparatus that generates sodium hypochlorite by electrolyzing seawater W.
  • the electrolytic cell 6 includes an electrode support box 26, a terminal plate 28, and a plurality of electrodes 30.
  • the electrolytic cell 6 contains an anode A and a cathode K as electrodes 30.
  • the electrolytic cell 6 has an inlet 15 for introducing the electrolytic solution E into the electrolytic cell 6 and an outlet 16 for discharging the electrolytic solution E from the electrolytic cell 6.
  • the terminal plate 28 has a role of supplying a current from the outside of the electrolytic cell 6 to the electrode 30 supported in the electrode support box 26.
  • One terminal board 28 is disposed at each end of the electrode support box 26.
  • the electrode 30 has a plate shape, and a plurality of electrodes 30 are fixedly supported on the support bar 26a of the electrode support box 26 in an arrayed state.
  • three types of electrodes 30, a bipolar electrode plate 31, an anode plate 32, and a cathode plate 33 are used as the electrode 30.
  • the bipolar electrode plate 31 has a structure in which a titanium substrate as an electrode substrate is divided into two, one of which is an anode A and the other is a cathode K. That is, the bipolar electrode plate 31 has a half region at one end side as an anode A whose surface is coated with a coating material containing iridium oxide (iridium oxide-based coating material), and a half region at the other end side. Is a cathode K whose surface is not coated with the above-mentioned iridium oxide-based coating material.
  • the anode plate 32 has a structure in which the entire surface of the titanium substrate is coated with an iridium oxide-based coating material.
  • the entire anode plate 32 functions as the anode A during electrolysis.
  • As the cathode plate 33 a titanium substrate on which no coating is applied is employed.
  • the entire cathode plate 33 functions as a cathode K during electrolysis.
  • the bipolar electrode plate 31, the anode plate 32, and the cathode plate 33 are each fixedly supported by a support bar 26a in the electrode support box 26.
  • the plurality of bipolar electrode plates 31 are arranged with the anode A facing the liquid inlet side and the cathode K facing the liquid outlet side.
  • the plurality of bipolar electrode plates 31 are arranged so that the extending direction of the bipolar electrode plates 31 is along the flow direction of the seawater W.
  • the plurality of bipolar electrode plates 31 constitutes the electrode group M by being arranged in series at intervals in the flow direction of the seawater W.
  • a plurality of electrode groups M are provided at intervals so as to be parallel to each other.
  • the plurality of electrode groups M are provided in parallel with each other.
  • the DC power supply device 7 is a device that supplies a current for electrolysis of seawater W.
  • the DC power supply device 7 for example, a configuration including a DC power supply and a constant current control circuit can be employed.
  • the DC power source is a power source that outputs DC power, and may be configured to rectify and output AC power output from the AC power source to DC, for example.
  • the seawater supply pump 5 and the adjustment tank 3 are connected by a seawater supply line 4.
  • the seawater supply line 4 may be provided with a strainer for preventing entry of foreign substances that hinder electrolysis.
  • the adjustment tank 3 and the inlet 15 of the electrolytic cell 6 are connected by a first recycle line 11. That is, a part of the electrolytic solution E (reserved liquid R) in the adjustment tank 3 is introduced into the electrolytic tank 6 through the first recycling line 11.
  • An injection pump 17 is provided on the first recycle line 11.
  • the injection pump 17 is a pump that supplies the circulating electrolyte solution E to the adjustment tank 3 and transfers the electrolyte solution E to the injection line 13.
  • the second recycling line 12 is a line that connects the outlet 16 of the electrolytic cell 6 and the adjustment tank 3. That is, the electrolytic solution E generated in the electrolysis apparatus 2 is introduced into the adjustment tank 3 through the second recycle line 12.
  • An injection nozzle (not shown) is provided at the downstream end of the injection line 13. By providing the injection nozzle, sodium hypochlorite produced by the electrolysis apparatus 2 can be efficiently diffused into the plant piping.
  • a discharge pipe 18 that discharges the electrolytic solution E into the adjustment tank 3 is provided at a connection portion between the second recycling line 12 and the adjustment tank 3 of the present embodiment.
  • the electrolytic solution E circulated through the recycle line 10 and supplied to the adjustment tank 3 is discharged to the stored liquid R stored in the adjustment tank 3 via the discharge pipe 18.
  • the discharge pipe 18 is a tubular member and is disposed so as to generate a swirling flow in the stored liquid R in the adjustment tank 3.
  • the discharge pipe 18 is oriented so that the electrolyte E discharged from above is discharged along the outer peripheral surface 3 a of the adjustment tank 3.
  • the discharge pipe 18 is arranged (tangentially) so that the extending direction of the discharge pipe 18 is along the tangential direction of the outer peripheral surface 3 a of the adjustment tank 3.
  • seawater W is introduced into the adjustment tank 3 through the seawater supply line 4.
  • Seawater W is introduced into the first recycling line 11, the electrolytic cell 6, and the second recycling line 12, and circulates.
  • the seawater W is returned to the electrolytic cell 6 via the first recycle line 11.
  • the electrode 30 the cathode K and the anode A
  • the electrolytic solution E circulated from the second recycling line 12 is discharged to the stored liquid R in the adjustment tank 3 through the discharge pipe 18.
  • Electrolysis is performed on the seawater W as a current flows through the seawater W between the electrodes 30. That is, in the anode A, as shown in the following formula (1), electrons e are taken from chloride ions in the seawater W, oxidation occurs, and chlorine is generated. 2Cl ⁇ ⁇ Cl 2 + 2e ⁇ (1) On the other hand, at the cathode K, as shown in the following formula (2), electrons are given to the water in the seawater W to cause reduction, and hydroxide ions and hydrogen gas are generated. 2H 2 O + 2e ⁇ ⁇ 2OH ⁇ + H 2 (2)
  • sodium hypochlorite having an inhibitory effect on the adhesion of marine products is generated.
  • concentration of sodium hypochlorite is preferably 500 to 5,000 ppm because the chloride ion concentration of seawater W is increased to 30,000 to 40,000 mg / l.
  • the electrolyte solution E returned to the seawater W or the electrolytic cell 6 includes scale components (fine particles that precipitate scales, scale lumps, fine particles that function as seed crystals that precipitate scales), for example, magnesium ions (Mg 2+ ), calcium ions (Ca 2+ ), manganese ions (Mn 2+ ), and silicic acid ([SiO X (OH) 4-2X ] n ).
  • scale components fine particles that precipitate scales, scale lumps, fine particles that function as seed crystals that precipitate scales
  • Mg 2+ magnesium ions
  • Ca 2+ calcium ions
  • manganese ions Mn 2+
  • silicic acid [SiO X (OH) 4-2X ] n .
  • the anode A coated with the iridium oxide-based coating material is attached with a manganese scale, which is a deposit due to manganese ions contained in the seawater W during electrolysis.
  • a manganese scale which is a deposit due to manganese ions contained in the seawater W during electrolysis.
  • the anode A is consumed, and the catalytic activity on the surface of the electrode 30 is reduced, so that the chlorine generation efficiency is reduced.
  • a scale caused by magnesium or calcium contained in the seawater W adheres to the cathode K, and the consumption of the electrode 30 also proceeds by the scale.
  • the electrolyte E circulating from the second recycle line 12 generates a swirling flow in the stored liquid R through the discharge pipe 18.
  • the discharge pipe 18 functions as a prevention means for preventing sedimentation of scale.
  • the scale components and scales contained in the electrolyte solution E are desorbed along with the scale generated on the electrode 30 surface. That is, the scale fine particles contained in the electrolyte solution E that has flowed in function as seed crystals and desorb the scale on the electrode 30 surface. Thereby, accumulation of scale on the surface of the electrode 30 is suppressed.
  • the pH (hydrogen ion index) of the electrolytic solution E increases with electrolysis and becomes highly alkaline, so that the scale component is deposited as a scale such as calcium hydroxide or magnesium hydroxide.
  • the electrolyzed seawater W flows out from the outlet 16 of the electrolytic cell 6 together with hydrogen gas as the electrolytic solution E, and is stored in the adjustment tank 3 through the second recycle line 12.
  • hydrogen gas generated by the electrolytic reaction accumulates on the gas phase side. Hydrogen gas is exhausted after being diluted to below the explosion limit by air supplied to the gas phase.
  • the stored liquid R including the electrolytic solution E stored in the adjustment tank 3 is introduced into the injection line 13 by the injection pump 17 and then injected into a predetermined place such as a piping of the cooling facility. That is, the electrolytic solution E containing sodium hypochlorite is injected into a predetermined place through the injection line 13 by operating the injection pump 17 pump.
  • the electrolytic solution E containing sodium hypochlorite into a predetermined place such as a piping of a cooling facility through the injection line 13, it is possible to effectively suppress the attachment of marine organisms. Can do.
  • emitted from a plant via the injection line 13 can be removed. That is, the nitrogen component contained in the waste water can be removed by injecting the electrolytic solution E containing sodium hypochlorite into the nitrogen treatment tank in which the nitrogen-containing waste water is stored.
  • the scale component contained in the stored liquid R is detached along with the scale generated on the surface of the electrode 30.
  • accumulation of scale on the surface of the electrode 30 can be prevented. That is, the scale fine particles contained in the storage liquid R returned to the electrolytic cell 6 function as seed crystals, so that electrode deterioration can be moderated.
  • an increase in electrolytic voltage deterioration of power consumption
  • the spark by the short circuit of electrodes 30 can be prevented and safety can be improved.
  • the surface of the scale fine particles (seed crystals) floating in the liquid away from the electrode 30 surface such as calcium carbonate and magnesium hydroxide, which are precipitated when the pH of the electrolytic solution E increases with electrolysis By precipitating at, it is possible to prevent the scale from being deposited on the cathode surface.
  • the seawater W supplied via the seawater supply pump 5 may be discharged by the discharge pipe 18. That is, it is only necessary that a swirl flow can be generated in the stored liquid R stored in the adjustment tank 3.
  • the mechanical stirring device 20 includes a motor 21 having an output shaft and a screw 22 provided on the output shaft of the motor 21.
  • the stored liquid R stored in the adjustment tank 3 is forcibly stirred.
  • scale components (fine particles) and scales contained in the electrolytic solution E stored in the adjustment tank 3 are not precipitated by riding on the flow formed by the mechanical stirring device 20.
  • the stored liquid R stored in the adjustment tank 3 is forcibly stirred. Thereby, it can prevent that a scale settles in the bottom part of the adjustment tank 3.
  • the adjustment tank 3 of the electrolysis system 1C of the present embodiment is provided with a pneumatic stirring device 34 as an alternative to the discharge pipe 18 of the first embodiment.
  • the pneumatic stirrer 34 includes a wall member 36 positioned in the adjustment tank 3 and an air supply unit 35 that supplies air to the stored liquid R.
  • the wall member 36 is a plate-like member that extends in the vertical direction of the adjustment tank 3 and divides the inside of the adjustment tank 3.
  • the wall member 36 is sized such that a predetermined gap is generated between the lower end of the wall member 36 and the bottom of the adjustment tank 3 and between the upper end of the wall member 36 and the liquid level of the stored liquid R.
  • the air supply unit 35 is a device that supplies air to the lower part of one space partitioned by the wall member 36.
  • the air supply unit 35 includes a blower (not shown) that pressurizes air to form pressurized air, and a nozzle 37 that supplies the pressurized air to the storage liquid R.
  • the nozzle 37 is in the stored liquid R and supplies air to the lower part of one space partitioned by the wall member 36.
  • pressurized air is supplied through the nozzle 37, one space becomes a rising portion 38 where the air rises from the bottom.
  • the pressurized air rises and escapes from the top. Therefore, there is almost no air in the other space (the descending portion 39).
  • the stored liquid R in the adjustment tank 3 circulates between the ascending part 38 and the descending part 39 due to the difference in density of the stored liquid R between the ascending part 38 and the descending part 39.
  • the agitation / dispersion effect of the stored liquid R can be obtained by the aeration power of air.
  • DO dissolved oxygen
  • the reaction promotes the oxidation of manganese ions and silicic acid to manganese dioxide (MnO 2 ) and silicon dioxide (SiO 2 ). It is possible to prevent the component from depositing on the surface of the electrode 30 (anode A).
  • aeration with air is performed to increase the dissolved carbon dioxide (CO 3 2+ ) concentration in the electrolytic solution E (for example, pH 8.5), promote the reaction in which calcium ions are precipitated as calcium carbonate, and the scale component is the electrode 30 ( Scale deposition on the cathode K) surface can be prevented.
  • CO 3 2+ dissolved carbon dioxide
  • the electrolysis system 1D of 4th embodiment of this invention is demonstrated based on drawing.
  • the seawater W supplied by the seawater supply pump 5 is directly introduced into the injection line 13.
  • a branch line 41 (backup line) is provided. That is, the electrolysis system 1 of this embodiment can branch directly to the injection line 13 without sending the seawater W flowing through the seawater supply line 4 to the adjustment tank 3.
  • a seawater branch flow rate adjustment valve 42 for adjusting the flow rate of the seawater W flowing through the branch line 41 is provided.
  • the flow rate of the injection line 13 can be increased. Thereby, even when the distance of the injection line 13 is long and the pH of the electrolytic solution changes and the scale is likely to precipitate, the deposition of the scale can be suppressed. That is, scale accumulation due to a decrease in the flow rate of the injection line 13 can be prevented.
  • the flow rate of the seawater W injected through the branch line 41 can be adjusted as appropriate by operating the seawater branch flow rate adjustment valve 42.
  • a columnar structure 24 having a columnar shape extending in the vertical direction is disposed in the center portion viewed from above the adjustment tank 3 of the present embodiment.
  • the columnar structure 24 is disposed so as to be substantially coaxial with the central axis of the bottomed cylindrical adjustment tank 3. It is formed near the center of the swirling flow of the stored liquid R formed by the discharge pipe 18.
  • the columnar structure 24 is installed in order to suppress the formation of a scale lump at the center of the bottom 3b of the adjustment tank 3, but this is not a limitation.
  • an upward convex protrusion may be formed at the center of the bottom 3b of the adjustment tank 3 to suppress the formation of the scale lump.
  • the shape of the columnar structure 24 is not limited to a cylindrical shape, and may be a prismatic shape. Moreover, it is not necessary to be solid, and a cylindrical shape having a hollow portion inside may be used.
  • Electrolysis system 1
  • Adjustment tank 3a Outer peripheral surface 3b Bottom 4 Seawater supply line 5
  • Electrolysis tank 7 DC power supply device 10
  • Recycle line 11 First recycle line 12
  • Injection Line 15 Inlet 16
  • Outlet 17 Infusion pump 18
  • Discharge pipe (prevention means) 20
  • Mechanical stirring device (prevention means) 22
  • Screw 24 Columnar structure 26
  • Electrode support box 30 Electrode 31
  • Bipolar electrode plate 32
  • Pneumatic stirrer (prevention means) 35 Air supply part 36
  • Nozzle 38 Ascending part 39 Lowering part 41
  • Branch line 42 Seawater branch flow rate adjusting valve A
  • Anode E Electrolyte K Cathode M
  • Electrode group Storage liquid W Seawater

Abstract

Provided is an electrolysis system (1) having: an electrolysis device (2), which has an electrolysis vessel (6), wherein a positive electrode and a negative electrode are accommodated for the electrodes, and which is for electrolysis of a fluid to be processed; a regulating tank (3) for temporarily retaining the fluid to be processed that is processed by the electrolysis device (2); a recycling line (10) for returning part of a retained fluid (R) that includes microparticles and a deposited substance wherein microparticles have been deposited and that has been retained in the regulating tank (3) to the electrolysis vessel (6); and a prevention means (18) for preventing sedimentation of the deposited substance in the regulating tank (3).

Description

電解システムElectrolysis system
 本発明は、海水などの被処理液を電気分解する電解装置を備えた電解システムに関する。
 本願は、2015年2月17日に出願された特願2015-028499号について優先権を主張し、その内容をここに援用する。
The present invention relates to an electrolysis system including an electrolyzer that electrolyzes a liquid to be treated such as seawater.
This application claims priority in Japanese Patent Application No. 2015-028499 for which it applied on February 17, 2015, and uses the content here.
 従来、海水を多量に使用する火力発電所、原子力発電所、海水淡水化プラント、化学プラント等においては、その取水口や配管、復水器、各種冷却器などの海水と接する部分の藻類や貝類の付着繁殖が課題となっている。
 この課題を解決するために、天然の海水に電気分解を施すことで次亜塩素酸ソーダ(塩素、次亜塩素酸ナトリウム)を生成する電解システムが提案されている。このシステムは、次亜塩素酸ソーダを含む電解液を取水口中に注入することにより海洋生物の付着を抑制している(例えば特許文献1参照)。一般的に、このシステムにおいては、海水中のマグネシウムイオンなどのスケール成分に起因して、スケールが生成してしまう。
Conventionally, in thermal power plants, nuclear power plants, seawater desalination plants, chemical plants, etc. that use a large amount of seawater, the algae and shellfish that are in contact with seawater such as intakes, piping, condensers, and various coolers Adherence breeding has become an issue.
In order to solve this problem, an electrolysis system that generates sodium hypochlorite (chlorine, sodium hypochlorite) by electrolyzing natural seawater has been proposed. This system suppresses the adhesion of marine organisms by injecting an electrolytic solution containing sodium hypochlorite into a water inlet (see, for example, Patent Document 1). In general, in this system, scale is generated due to scale components such as magnesium ions in seawater.
 特許文献1には、電解処理に伴い電解装置の電極にスケールが付着することを防止するために、被処理液中に空気を供給する装置が記載されている。この装置は、被処理液中に空気を吹き込むことによる電極表面での流速の増大と乱流化により、電極の洗浄効果を向上させている。 Patent Document 1 describes an apparatus that supplies air into a liquid to be treated in order to prevent scale from adhering to an electrode of an electrolysis apparatus during electrolysis. This apparatus improves the electrode cleaning effect by increasing the flow velocity on the electrode surface and making it turbulent by blowing air into the liquid to be treated.
日本国特許第4932529号公報Japanese Patent No. 4932529
 しかしながら、電解装置から排出される被処理液を、調整槽(循環槽)に循環させるシステムでは、電気分解を行う電解槽(電極表面)、及び被処理液を一時貯留する調整槽の底部にスケールが沈殿するという課題がある。
 沈殿したスケールの除去には、酸洗浄工事などの大掛かりな工事が必要であり、電解システムのランニングコストを増大させてしまうという課題があった。
However, in a system that circulates the liquid to be treated discharged from the electrolyzer to the adjustment tank (circulation tank), the scale is placed at the bottom of the electrolytic tank (electrode surface) for electrolysis and the adjustment tank for temporarily storing the liquid to be treated. There is a problem of precipitation.
The removal of the precipitated scale requires a large-scale work such as an acid cleaning work, which increases the running cost of the electrolytic system.
 この発明は、調整槽の底部に析出物質(スケール)が沈殿することを防止することができる電解システムを提供することを目的とする。 An object of the present invention is to provide an electrolysis system capable of preventing a deposited substance (scale) from being precipitated at the bottom of a regulating tank.
 本発明の第一の態様によれば、電解システムは、電極として陽極及び陰極が収容された電解槽を有し、被処理液を電気分解する電解装置と、前記電解装置で処理された被処理液を一時貯留する調整槽と、前記調整槽に貯留され、微粒子及び前記微粒子が析出してなる析出物質を含む貯留液の一部を前記電解槽に戻すリサイクルラインと、前記調整槽中で前記析出物質の沈殿を防止する防止手段と、を有することを特徴とする。 According to the first aspect of the present invention, an electrolysis system includes an electrolyzer that contains an anode and a cathode as electrodes, and electrolyzes a liquid to be treated, and a treatment to be treated by the electrolysis device. An adjustment tank for temporarily storing the liquid, a recycle line for returning a part of the stored liquid, which is stored in the adjustment tank and contains the fine particles and the precipitated substance formed by precipitation of the fine particles, to the electrolytic cell, and in the adjustment tank And a preventive means for preventing precipitation of the precipitated substance.
 このような構成によれば、防止手段によって、調整槽の底部に析出物質が沈殿することを防止することができる。
 また、貯留液が電解槽に戻されることによって、貯留液に含まれる微粒子が、電極面上に生成した析出物質を同伴して脱離する。これにより、電極面への析出物質の蓄積を防止することができる。即ち、電解槽に戻された貯留液に含まれる微粒子が種晶として機能することによって、電極面に析出物質が成長することを抑制することができる。
 また、電気分解に伴って被処理液のpHが上昇することにより析出する炭酸カルシウムや、水酸化マグネシウムなどの析出物質を、電極面から離れて液中に浮遊する微粒子(種晶)の表面において析出させることで、陰極面上における析出物質の析出を防止することができる。
According to such a structure, it can prevent that a deposit substance precipitates in the bottom part of an adjustment tank by a prevention means.
In addition, when the stored liquid is returned to the electrolytic cell, the fine particles contained in the stored liquid are desorbed along with the deposited substances generated on the electrode surface. Thereby, accumulation of the deposited substance on the electrode surface can be prevented. That is, the fine particles contained in the stored liquid returned to the electrolytic cell function as seed crystals, so that it is possible to suppress the growth of the deposited substance on the electrode surface.
In addition, precipitates such as calcium carbonate and magnesium hydroxide that precipitate due to the increase in pH of the liquid to be treated with electrolysis are separated from the electrode surface on the surface of fine particles (seed crystals) that float in the liquid. By precipitating, it is possible to prevent deposition of the depositing substance on the cathode surface.
 上記電解システムにおいて、前記防止手段は、前記調整槽へ液を吐出する吐出管を有してよい。 In the electrolysis system, the prevention means may include a discharge pipe for discharging a liquid to the adjustment tank.
 このような構成によれば、吐出管によって液が注入されることによって、調整槽中の貯留液が攪拌される。これにより、調整槽の底部に析出物質が沈殿することを防止する効果を上げることができる。 According to such a configuration, the liquid stored in the adjustment tank is agitated by injecting the liquid through the discharge pipe. Thereby, the effect which prevents that a deposit substance precipitates in the bottom part of an adjustment tank can be raised.
 上記電解システムにおいて、前記吐出管は、前記調整槽に貯留された前記貯留液に旋回流を生じる方向へ吐出されてよい。 In the electrolysis system, the discharge pipe may be discharged in a direction in which a swirling flow is generated in the stored liquid stored in the adjustment tank.
 このような構成によれば、貯留液に含まれる析出物質が安定して攪拌されることによって、調整槽の底部に析出物質が沈殿することを防止する効果を上げることができる。 According to such a configuration, the precipitation substance contained in the stored liquid can be stably stirred, so that the effect of preventing the precipitation substance from being precipitated at the bottom of the adjustment tank can be improved.
 上記電解システムにおいて、前記防止手段は、前記調整槽の上下方向に延在して前記調整槽の内部を上昇部と下降部とに区分する壁部材と、前記上昇部の下部に空気を供給する空気供給部と、を有する空気式攪拌装置であってよい。 In the electrolysis system, the prevention means supplies air to a wall member that extends in the vertical direction of the adjustment tank and divides the inside of the adjustment tank into an ascending part and a descending part, and a lower part of the ascending part And an air stirrer having an air supply unit.
 このような構成によれば、空気の曝気動力によって貯留液の攪拌・分散効果を得ることができる。これにより、調整槽の底部に析出物質が沈殿することを防止する効果を上げることができる。 According to such a configuration, the agitation / dispersion effect of the stored liquid can be obtained by the aeration power of air. Thereby, the effect which prevents that a deposit substance precipitates in the bottom part of an adjustment tank can be raised.
 上記電解システムにおいて、前記防止手段は、前記調整槽中の前記貯留液を機械的に攪拌する機械式攪拌装置であってよい。 In the electrolysis system, the prevention means may be a mechanical stirring device that mechanically stirs the stored liquid in the adjustment tank.
 このような構成によれば、貯留液が強制的に攪拌される。これにより、調整槽の底部に析出物質が沈殿することを防止する効果を上げることができる。 According to such a configuration, the stored liquid is forcibly stirred. Thereby, the effect which prevents that a deposit substance precipitates in the bottom part of an adjustment tank can be raised.
 上記電解システムにおいて、前記陽極は、酸化イリジウムを含むコーティング材をチタンにて被覆してよい。 In the above electrolysis system, the anode may be coated with titanium with a coating material containing iridium oxide.
 このような構成によれば、電気分解の際にマンガンスケールが付着しやすい酸化イリジウムを含むコーティング材をチタンにて被覆してなる陽極であっても、電極面に析出物質が成長することを抑制することができる。 According to such a configuration, even when the anode is formed by coating titanium with a coating material containing iridium oxide, which easily adheres to manganese scale during electrolysis, the growth of deposited substances on the electrode surface is suppressed. can do.
 上記電解システムにおいて、前記リサイクルラインから一部の電解液を所定の場所へ供給する注入ラインと、前記調整槽へ海水を供給する海水供給ラインと、前記海水供給ラインの海水の一部を前記注入ラインへ分岐する分岐ラインを有してよい。 In the electrolysis system, an injection line for supplying a part of the electrolytic solution from the recycling line to a predetermined place, a seawater supply line for supplying seawater to the adjustment tank, and a part of the seawater in the seawater supply line are injected. You may have a branch line which branches to a line.
 このような構成によれば、分岐ラインを介して海水を注入することによって、注入ラインの流速を早めることができる。これにより、注入ラインの距離が長く、析出物質が析出しやすい状態になった場合においても、注入ラインの流量低下による析出物質の堆積を防止することができる。 According to such a configuration, the flow rate of the injection line can be increased by injecting seawater through the branch line. Thereby, even when the distance of the injection line is long and the precipitated substance is likely to precipitate, deposition of the precipitated substance due to a decrease in the flow rate of the injection line can be prevented.
 本発明によれば、調整槽の底部に析出物質が沈殿することを防止することができる。 According to the present invention, it is possible to prevent the deposited substance from being precipitated at the bottom of the adjustment tank.
本発明の第一実施形態の電解システムの概要を示す模式図である。It is a mimetic diagram showing an outline of an electrolysis system of a first embodiment of the present invention. 本発明の第一実施形態の電解装置を構成する電解槽の概要を示す縦断面図である。It is a longitudinal section showing an outline of an electrolytic cell which constitutes an electrolysis device of a first embodiment of the present invention. 本発明の第一実施形態の調整槽の上方から見た模式図である。It is the schematic diagram seen from the upper direction of the adjustment tank of 1st embodiment of this invention. 本発明の第二実施形態の電解システムの概要を示す模式図である。It is a schematic diagram which shows the outline | summary of the electrolysis system of 2nd embodiment of this invention. 本発明の第三実施形態の電解システムの概要を示す模式図である。It is a schematic diagram which shows the outline | summary of the electrolysis system of 3rd embodiment of this invention. 本発明の第四実施形態の電解システムの概要を示す模式図である。It is a schematic diagram which shows the outline | summary of the electrolysis system of 4th embodiment of this invention. 本発明の第五実施形態の電解システムの調整槽の斜視図である。It is a perspective view of the adjustment tank of the electrolysis system of a fifth embodiment of the present invention.
(第一実施形態)
 以下、本発明の第一実施形態について図面を参照して詳細に説明する。
 図1は本実施形態に係る電解システム1の概要を示す模式図である。本実施形態の電解システム1は、海水Wなどの被処理液を電気分解することで次亜塩素酸ソーダ(塩素、次亜塩素酸ナトリウム)を含む電解液Eを発生させるシステムである。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic diagram showing an outline of an electrolysis system 1 according to the present embodiment. The electrolytic system 1 of the present embodiment is a system that generates an electrolytic solution E containing sodium hypochlorite (chlorine, sodium hypochlorite) by electrolyzing a liquid to be treated such as seawater W.
 本実施形態の電解システム1は、次亜塩素酸ソーダを含む電解液Eを注入ライン13を介して、例えば、火力及び原子力発電所、海水淡水化プラント、化学プラント、製鉄プラントなどのプラントの冷却設備の配管、窒素を含有する排水が貯留される窒素処理槽などの所定の場所へ供給する。 The electrolysis system 1 of the present embodiment cools a plant such as a thermal power plant, a nuclear power plant, a seawater desalination plant, a chemical plant, and an iron manufacturing plant via an injection line 13 with an electrolyte E containing sodium hypochlorite. Supply to a predetermined place such as piping of equipment, nitrogen treatment tank in which wastewater containing nitrogen is stored.
 電解システム1は、電気分解に必要な海水Wを導入する海水供給ポンプ5と、電解装置2で処理された電解液E(海水W)を一時的に貯留する調整槽3と、電解装置2と、電解液Eを循環させる環状のリサイクルライン10と、リサイクルライン10を循環する電解液Eを、例えば、プラントの配管に注入する注入ライン13と、を有している。
 リサイクルライン10は、第一リサイクルライン11と第二リサイクルライン12とから構成されている。
The electrolysis system 1 includes a seawater supply pump 5 that introduces seawater W necessary for electrolysis, an adjustment tank 3 that temporarily stores an electrolytic solution E (seawater W) that has been treated by the electrolysis apparatus 2, an electrolysis apparatus 2, An annular recycle line 10 that circulates the electrolytic solution E, and an injection line 13 that injects the electrolytic solution E that circulates through the recycle line 10 into, for example, piping of a plant.
The recycling line 10 includes a first recycling line 11 and a second recycling line 12.
 調整槽3は、システムを循環する電解液Eと、海水供給ポンプ5から供給される海水Wとを貯留する、有底円筒形状の槽である。調整槽3は、調整槽3の気相に対して空気を供給するファン(図示せず)を有している。調整槽3の形状は、有底円筒形状に限ることはなく、直方体形状としてもよい。 The adjustment tank 3 is a bottomed cylindrical tank that stores the electrolyte E circulating in the system and the seawater W supplied from the seawater supply pump 5. The adjustment tank 3 has a fan (not shown) that supplies air to the gas phase of the adjustment tank 3. The shape of the adjustment tank 3 is not limited to the bottomed cylindrical shape, and may be a rectangular parallelepiped shape.
 電解装置2は、リサイクルライン10の途中で海水Wを電気分解する装置である。電解装置2は、電解槽6と、直流電源装置7(整流器)と、を有している。電解装置2は、海水Wを電気分解することによって、次亜塩素酸ソーダを生成する装置である。
 図2に示すように、電解槽6は、電極支持箱26、端子板28及び複数の電極30から構成されている。電解槽6は、電極30として陽極A及び陰極Kを収容している。電解槽6は、電解槽6の内部に電解液Eを導入する流入口15と、電解槽6の内部から電解液Eを排出する流出口16と、を有している。
The electrolyzer 2 is an apparatus that electrolyzes the seawater W in the middle of the recycle line 10. The electrolysis device 2 includes an electrolytic cell 6 and a DC power supply device 7 (rectifier). The electrolysis apparatus 2 is an apparatus that generates sodium hypochlorite by electrolyzing seawater W.
As shown in FIG. 2, the electrolytic cell 6 includes an electrode support box 26, a terminal plate 28, and a plurality of electrodes 30. The electrolytic cell 6 contains an anode A and a cathode K as electrodes 30. The electrolytic cell 6 has an inlet 15 for introducing the electrolytic solution E into the electrolytic cell 6 and an outlet 16 for discharging the electrolytic solution E from the electrolytic cell 6.
 端子板28は、電極支持箱26内に支持される電極30に対して、電解槽6外部からの電流を供給する役割を有している。端子盤28は、電極支持箱26の両端に一つずつ配置されている。
 電極30は、板状をなしており、電極支持箱26の支持バー26aに複数が配列状態で固定支持されている。本実施形態においては、この電極30として、二極電極板31、陽極板32及び陰極板33の三種類が用いられている。
The terminal plate 28 has a role of supplying a current from the outside of the electrolytic cell 6 to the electrode 30 supported in the electrode support box 26. One terminal board 28 is disposed at each end of the electrode support box 26.
The electrode 30 has a plate shape, and a plurality of electrodes 30 are fixedly supported on the support bar 26a of the electrode support box 26 in an arrayed state. In the present embodiment, three types of electrodes 30, a bipolar electrode plate 31, an anode plate 32, and a cathode plate 33 are used as the electrode 30.
 二極電極板31は、電極基板としてのチタン基板を二分し、その一方を陽極A、他方を陰極Kとした構造を有している。即ち、二極電極板31は、その一端側半分の領域が、酸化イリジウムを含有するコーティング材(酸化イリジウム主体コーティング材)が表面に被覆された陽極Aとされており、他端側半分の領域は、上記酸化イリジウム主体コーティング材が表面に被覆されてない陰極Kとされている。 The bipolar electrode plate 31 has a structure in which a titanium substrate as an electrode substrate is divided into two, one of which is an anode A and the other is a cathode K. That is, the bipolar electrode plate 31 has a half region at one end side as an anode A whose surface is coated with a coating material containing iridium oxide (iridium oxide-based coating material), and a half region at the other end side. Is a cathode K whose surface is not coated with the above-mentioned iridium oxide-based coating material.
 陽極板32は、チタン基板の表面全体に酸化イリジウム主体コーティング材が被覆された構造をなしている。陽極板32全体は、電気分解の際の陽極Aとして機能する。陰極板33としては、コーティングが施されていないチタン基板が採用されている。陰極板33全体は、電気分解の際の陰極Kとして機能する。 The anode plate 32 has a structure in which the entire surface of the titanium substrate is coated with an iridium oxide-based coating material. The entire anode plate 32 functions as the anode A during electrolysis. As the cathode plate 33, a titanium substrate on which no coating is applied is employed. The entire cathode plate 33 functions as a cathode K during electrolysis.
 ここで、電極支持箱26内における三種類の電極30の配列構造について説明する。二極電極板31、陽極板32及び陰極板33はそれぞれ電極支持箱26内の支持バー26aに固定支持されている。
 図2に示すように、電極30のうち複数の二極電極板31は、陽極Aを液入口側に向けるとともに陰極Kを液出口側に向けて配列されている。複数の二極電極板31は、二極電極板31の延在方向が海水Wの流通方向に沿うように配列されている。複数の二極電極板31は、海水Wの流通方向に間隔をあけて直列的に配列されることで電極群Mを構成している。電極群Mは、互いに平行をなすように間隔をあけて複数が設けられている。複数の電極群Mは、互いに並列的に設けられている。
Here, the arrangement structure of the three types of electrodes 30 in the electrode support box 26 will be described. The bipolar electrode plate 31, the anode plate 32, and the cathode plate 33 are each fixedly supported by a support bar 26a in the electrode support box 26.
As shown in FIG. 2, among the electrodes 30, the plurality of bipolar electrode plates 31 are arranged with the anode A facing the liquid inlet side and the cathode K facing the liquid outlet side. The plurality of bipolar electrode plates 31 are arranged so that the extending direction of the bipolar electrode plates 31 is along the flow direction of the seawater W. The plurality of bipolar electrode plates 31 constitutes the electrode group M by being arranged in series at intervals in the flow direction of the seawater W. A plurality of electrode groups M are provided at intervals so as to be parallel to each other. The plurality of electrode groups M are provided in parallel with each other.
 直流電源装置7は、海水Wの電気分解に供される電流を供給する装置である。直流電源装置7としては、例えば、直流電源と定電流制御回路とを備える構成を採用することができる。直流電源は、直流電力を出力する電源であって、例えば交流電源から出力される交流電力を直流に整流して出力する構成であってもよい。 The DC power supply device 7 is a device that supplies a current for electrolysis of seawater W. As the DC power supply device 7, for example, a configuration including a DC power supply and a constant current control circuit can be employed. The DC power source is a power source that outputs DC power, and may be configured to rectify and output AC power output from the AC power source to DC, for example.
 海水供給ポンプ5と調整槽3とは、海水供給ライン4によって接続されている。海水供給ライン4には、電気分解の妨げとなる異物の混入を防ぐためのストレーナーを設けてもよい。
 調整槽3と、電解槽6の流入口15とは、第一リサイクルライン11で接続されている。即ち、調整槽3内の電解液E(貯留液R)の一部は、第一リサイクルライン11を介して電解槽6に導入される。第一リサイクルライン11上には、注入ポンプ17が設けられている。注入ポンプ17は、循環する電解液Eを調整槽3に供給するとともに、電解液Eを注入ライン13に移送するポンプである。
The seawater supply pump 5 and the adjustment tank 3 are connected by a seawater supply line 4. The seawater supply line 4 may be provided with a strainer for preventing entry of foreign substances that hinder electrolysis.
The adjustment tank 3 and the inlet 15 of the electrolytic cell 6 are connected by a first recycle line 11. That is, a part of the electrolytic solution E (reserved liquid R) in the adjustment tank 3 is introduced into the electrolytic tank 6 through the first recycling line 11. An injection pump 17 is provided on the first recycle line 11. The injection pump 17 is a pump that supplies the circulating electrolyte solution E to the adjustment tank 3 and transfers the electrolyte solution E to the injection line 13.
 第二リサイクルライン12は、電解槽6の流出口16と調整槽3とを接続するラインである。即ち、電解装置2にて生成された電解液Eは、第二リサイクルライン12を介して調整槽3に導入される。
 注入ライン13の下流側端部には、注入ノズル(図示せず)が設けられている。注入ノズルを設けることによって、電解装置2で生成された次亜塩素酸ソーダを、プラントの配管へ効率よく拡散させることができる。
The second recycling line 12 is a line that connects the outlet 16 of the electrolytic cell 6 and the adjustment tank 3. That is, the electrolytic solution E generated in the electrolysis apparatus 2 is introduced into the adjustment tank 3 through the second recycle line 12.
An injection nozzle (not shown) is provided at the downstream end of the injection line 13. By providing the injection nozzle, sodium hypochlorite produced by the electrolysis apparatus 2 can be efficiently diffused into the plant piping.
 本実施形態の第二リサイクルライン12と調整槽3との接続部には、電解液Eを調整槽3内に吐出する吐出管18が設けられている。換言すれば、リサイクルライン10を循環して調整槽3に供給される電解液Eは、吐出管18を介して調整槽3に貯留された貯留液Rに吐出される。
 吐出管18は管状の部材であり、調整槽3内の貯留液Rに旋回流を生じさせるように配置されている。図3に示すように、吐出管18は、上方から見て吐出される電解液Eが調整槽3の外周面3aに沿うように吐出されるように方向付けられている。換言すれば、吐出管18は、吐出管18の延在方向が調整槽3の外周面3aの接線方向に沿うように(タンジェンシャル)配置されている。
A discharge pipe 18 that discharges the electrolytic solution E into the adjustment tank 3 is provided at a connection portion between the second recycling line 12 and the adjustment tank 3 of the present embodiment. In other words, the electrolytic solution E circulated through the recycle line 10 and supplied to the adjustment tank 3 is discharged to the stored liquid R stored in the adjustment tank 3 via the discharge pipe 18.
The discharge pipe 18 is a tubular member and is disposed so as to generate a swirling flow in the stored liquid R in the adjustment tank 3. As shown in FIG. 3, the discharge pipe 18 is oriented so that the electrolyte E discharged from above is discharged along the outer peripheral surface 3 a of the adjustment tank 3. In other words, the discharge pipe 18 is arranged (tangentially) so that the extending direction of the discharge pipe 18 is along the tangential direction of the outer peripheral surface 3 a of the adjustment tank 3.
 次に、本実施形態の電解システム1の作用について説明する。
 まず、海水Wが、海水供給ライン4を介して調整槽3に導入される。海水Wは、第一リサイクルライン11、電解槽6、及び第二リサイクルライン12に導入され、循環する。この工程において、海水Wは第一リサイクルライン11を介して電解槽6に戻される。これにより、電解槽6内の電極30(陰極K及び陽極A)が海水Wに浸漬される。
 また、第二リサイクルライン12から循環する電解液Eは、吐出管18を介して調整槽3内の貯留液Rに吐出される。
Next, the operation of the electrolysis system 1 of the present embodiment will be described.
First, seawater W is introduced into the adjustment tank 3 through the seawater supply line 4. Seawater W is introduced into the first recycling line 11, the electrolytic cell 6, and the second recycling line 12, and circulates. In this step, the seawater W is returned to the electrolytic cell 6 via the first recycle line 11. Thereby, the electrode 30 (the cathode K and the anode A) in the electrolytic cell 6 is immersed in the seawater W.
Further, the electrolytic solution E circulated from the second recycling line 12 is discharged to the stored liquid R in the adjustment tank 3 through the discharge pipe 18.
 電極30間の海水W内を電流が流通することで海水Wに対して電気分解が施される。
 即ち、陽極Aにおいては、下記(1)式に示すように、海水W中の塩化物イオンから電子eが奪われ酸化が起こり、塩素が生成される。
 2Cl → Cl + 2e   …(1)
 一方、陰極Kにおいては、下記(2)式に示すように、海水W中の水に電子が与えられて還元が起こり、水酸化イオンと水素ガスが生成される。
 2HO + 2e → 2OH + H   …(2)
Electrolysis is performed on the seawater W as a current flows through the seawater W between the electrodes 30.
That is, in the anode A, as shown in the following formula (1), electrons e are taken from chloride ions in the seawater W, oxidation occurs, and chlorine is generated.
2Cl → Cl 2 + 2e (1)
On the other hand, at the cathode K, as shown in the following formula (2), electrons are given to the water in the seawater W to cause reduction, and hydroxide ions and hydrogen gas are generated.
2H 2 O + 2e → 2OH + H 2 (2)
 また、下記(3)式に示すように、陰極Kで生成された水酸化イオンは海水W中のナトリウムイオンと反応して水酸化ナトリウムが生成される。
 2Na + 2OH → 2NaOH   …(3)
Further, as shown in the following formula (3), the hydroxide ions generated at the cathode K react with sodium ions in the seawater W to generate sodium hydroxide.
2Na + + 2OH → 2NaOH (3)
 さらに、(4)式に示すように、水酸化ナトリウムと塩素とが反応することにより、次亜塩素酸、塩化ナトリウム及び水が生成される。
 Cl + 2NaOH → NaClO + NaCl + HO   …(4)
 このように、海水Wの電気分解に基づいて、海洋生成物の付着に対して抑制効果を有する次亜塩素酸ナトリウムが生成される。
 次亜塩素酸ナトリウムの濃度は、海水Wの塩化物イオン濃度が30,000~40,000mg/lまで高められていることから、500~5,000ppmとされることが好ましい。
Furthermore, as shown in the formula (4), sodium hydroxide and chlorine react to produce hypochlorous acid, sodium chloride, and water.
Cl 2 + 2NaOH → NaClO + NaCl + H 2 O (4)
Thus, based on the electrolysis of the seawater W, sodium hypochlorite having an inhibitory effect on the adhesion of marine products is generated.
The concentration of sodium hypochlorite is preferably 500 to 5,000 ppm because the chloride ion concentration of seawater W is increased to 30,000 to 40,000 mg / l.
 ここで、一般に、海水Wや電解槽6に戻される電解液Eには、スケール成分(スケール、スケール塊を析出させる微粒子、スケールを析出させる種晶として機能する微粒子)、例えば、マグネシウムイオン(Mg2+),カルシウムイオン(Ca2+),マンガンイオン(Mn2+),ケイ酸([SiO(OH)4-2X)が含まれている。 Here, in general, the electrolyte solution E returned to the seawater W or the electrolytic cell 6 includes scale components (fine particles that precipitate scales, scale lumps, fine particles that function as seed crystals that precipitate scales), for example, magnesium ions (Mg 2+ ), calcium ions (Ca 2+ ), manganese ions (Mn 2+ ), and silicic acid ([SiO X (OH) 4-2X ] n ).
 また、一般に、酸化イリジウム主体コーティング材を被覆した陽極Aには、電気分解の際に海水W中に含まれるマンガンイオンに起因した析出物質であるマンガンスケールが付着する。マンガンスケールの付着によって陽極Aの消耗が進行してしまい、さらに、電極30表面の触媒活性が低下するため、塩素発生効率が低下する。陰極Kには、海水W中に含まれるマグネシウムやカルシウムに起因したスケールが付着し、スケールによってやはり電極30の消耗が進行する。 In general, the anode A coated with the iridium oxide-based coating material is attached with a manganese scale, which is a deposit due to manganese ions contained in the seawater W during electrolysis. As the manganese scale adheres, the anode A is consumed, and the catalytic activity on the surface of the electrode 30 is reduced, so that the chlorine generation efficiency is reduced. A scale caused by magnesium or calcium contained in the seawater W adheres to the cathode K, and the consumption of the electrode 30 also proceeds by the scale.
 本実施形態の電解システム1においては、第二リサイクルライン12から循環する電解液Eが吐出管18によって貯留液Rに旋回流が発生する。これにより、電解液E、及び貯留液Rに含まれるスケールの沈殿が防止される。即ち、吐出管18はスケールの沈殿を防止する防止手段として機能する。 In the electrolysis system 1 of the present embodiment, the electrolyte E circulating from the second recycle line 12 generates a swirling flow in the stored liquid R through the discharge pipe 18. Thereby, precipitation of the scale contained in the electrolyte solution E and the stored solution R is prevented. That is, the discharge pipe 18 functions as a prevention means for preventing sedimentation of scale.
 本実施形態の電解システム1においては、電解液Eに含まれるスケール成分やスケールが、電極30面上に生成したスケールを同伴して脱離する。即ち、流入した電解液Eに含まれるスケール微粒子が種晶として機能して電極30面上のスケールを脱離させる。これにより、電極30表面へのスケールの蓄積が抑制される。 In the electrolysis system 1 of the present embodiment, the scale components and scales contained in the electrolyte solution E are desorbed along with the scale generated on the electrode 30 surface. That is, the scale fine particles contained in the electrolyte solution E that has flowed in function as seed crystals and desorb the scale on the electrode 30 surface. Thereby, accumulation of scale on the surface of the electrode 30 is suppressed.
 また、電気分解に伴って電解液EのpH(水素イオン指数)が上昇し高アルカリ性となることにより、スケール成分は水酸化カルシウムや、水酸化マグネシウムなどのスケールとして析出する。
 本実施形態の電解システム1においては、スケール成分を含む電解液Eが電解槽6に戻されることによって、炭酸カルシウムや、水酸化マグネシウムなどのスケールが、電極30から離れて液中に浮遊するスケール成分の表面において析出する。これにより、陰極K面上におけるスケールの析出を防止することができる。
Further, the pH (hydrogen ion index) of the electrolytic solution E increases with electrolysis and becomes highly alkaline, so that the scale component is deposited as a scale such as calcium hydroxide or magnesium hydroxide.
In the electrolysis system 1 of this embodiment, the scale in which the scale such as calcium carbonate and magnesium hydroxide is separated from the electrode 30 and floats in the liquid by returning the electrolytic solution E containing the scale component to the electrolytic cell 6. Precipitates on the surface of the component. Thereby, precipitation of the scale on the cathode K surface can be prevented.
 電気分解が施された海水Wは、水素ガスとともに電解液Eとして電解槽6の流出口16から流出し、第二リサイクルライン12を介して調整槽3に貯留される。調整槽3では、電解反応により発生した水素ガスが気相側に溜まる。水素ガスは、気相に供給された空気により爆発限界以下まで希釈された後排出される。
 調整槽3に貯留された電解液Eを含む貯留液Rは注入ポンプ17によって注入ライン13に導入され、次いで、冷却設備の配管などの所定の場所に注入される。即ち、次亜塩素酸ソーダを含んだ電解液Eが、注入ポンプ17ポンプが稼動することによって注入ライン13を介して所定の場所に注入される。
The electrolyzed seawater W flows out from the outlet 16 of the electrolytic cell 6 together with hydrogen gas as the electrolytic solution E, and is stored in the adjustment tank 3 through the second recycle line 12. In the adjustment tank 3, hydrogen gas generated by the electrolytic reaction accumulates on the gas phase side. Hydrogen gas is exhausted after being diluted to below the explosion limit by air supplied to the gas phase.
The stored liquid R including the electrolytic solution E stored in the adjustment tank 3 is introduced into the injection line 13 by the injection pump 17 and then injected into a predetermined place such as a piping of the cooling facility. That is, the electrolytic solution E containing sodium hypochlorite is injected into a predetermined place through the injection line 13 by operating the injection pump 17 pump.
 上記実施形態によれば、注入ライン13を介して冷却設備の配管等の所定の場所に次亜塩素酸ソーダを含む電解液Eを注入することによって、効果的に海洋生物の付着を抑制することができる。
 また、注入ライン13を介して、プラントから排出される窒素含有排水に含まれる窒素成分を除去することができる。即ち、窒素含有排水が貯留される窒素処理槽に次亜塩素酸ソーダを含む電解液Eを注入することによって、排水に含まれる窒素成分を除去することができる。
According to the embodiment, by injecting the electrolytic solution E containing sodium hypochlorite into a predetermined place such as a piping of a cooling facility through the injection line 13, it is possible to effectively suppress the attachment of marine organisms. Can do.
Moreover, the nitrogen component contained in the nitrogen containing waste_water | drain discharged | emitted from a plant via the injection line 13 can be removed. That is, the nitrogen component contained in the waste water can be removed by injecting the electrolytic solution E containing sodium hypochlorite into the nitrogen treatment tank in which the nitrogen-containing waste water is stored.
 また、吐出管18を介して電解液Eが調整槽3に吐出されることによって、調整槽3内の貯留液Rに旋回流が生じる。これにより、調整槽3の底部にスケールが沈殿することを防止することができる。即ち、旋回流によってスケールが貯留液R中に浮遊し続ける。これにより、スケールが調整槽3の底部に溜まりにくくなり、スケール除去工事の負荷が軽減され、メンテナンス性を向上させることができる。 Further, as the electrolytic solution E is discharged to the adjustment tank 3 through the discharge pipe 18, a swirling flow is generated in the stored liquid R in the adjustment tank 3. Thereby, it can prevent that a scale settles in the bottom part of the adjustment tank 3. FIG. That is, the scale continues to float in the stored liquid R by the swirling flow. Thereby, it becomes difficult for a scale to collect in the bottom part of the adjustment tank 3, the load of scale removal construction is reduced, and maintainability can be improved.
 また、貯留液Rが電解槽6に戻されることによって、貯留液Rに含まれるスケール成分が、電極30面上に生成したスケールを同伴して脱離する。これにより、電極30表面へのスケールの蓄積を防止することができる。即ち、電解槽6に戻された貯留液Rに含まれるスケール微粒子が種晶として機能することによって、電極劣化を緩やかにすることができる。
 また、電極30表面へのスケールの蓄積を防止されることによって、電解電圧上昇(電力原単位の悪化)を抑制することができる。
 また、電極30同士の短絡によるスパークを防止し、安全性を向上させることができる。
In addition, when the stored liquid R is returned to the electrolytic cell 6, the scale component contained in the stored liquid R is detached along with the scale generated on the surface of the electrode 30. Thereby, accumulation of scale on the surface of the electrode 30 can be prevented. That is, the scale fine particles contained in the storage liquid R returned to the electrolytic cell 6 function as seed crystals, so that electrode deterioration can be moderated.
Further, by preventing the accumulation of scale on the surface of the electrode 30, an increase in electrolytic voltage (deterioration of power consumption) can be suppressed.
Moreover, the spark by the short circuit of electrodes 30 can be prevented and safety can be improved.
 また、電気分解に伴って電解液EのpHが上昇することにより析出する炭酸カルシウムや、水酸化マグネシウムなどのスケールを、電極30表面から離れて液中に浮遊するスケール微粒子(種晶)の表面において析出させることで、陰極面上におけるスケールの析出を防止することができる。 In addition, the surface of the scale fine particles (seed crystals) floating in the liquid away from the electrode 30 surface, such as calcium carbonate and magnesium hydroxide, which are precipitated when the pH of the electrolytic solution E increases with electrolysis By precipitating at, it is possible to prevent the scale from being deposited on the cathode surface.
 また、電気分解の際にマンガンスケールが付着しやすい酸化イリジウムを含むコーティング材をチタンにて被覆してなる陽極Aであっても、電極30の表面にスケールが成長することを抑制することができる。 Further, even in the anode A formed by coating titanium with a coating material containing iridium oxide that easily adheres manganese scale during electrolysis, scale growth on the surface of the electrode 30 can be suppressed. .
 また、海水W中に含まれる汚濁物質(NH,COD等)が次亜塩素酸ソーダによって酸化分解されて、汚濁物質が電極30(陽極A)酸化されることで生じる電極劣化を防止することができる。 Further, it is possible to prevent electrode degradation caused by oxidation of pollutants (NH 3 , COD, etc.) contained in the seawater W by sodium hypochlorite and oxidation of the pollutants by the electrode 30 (anode A). Can do.
 なお、上記実施形態においては、吐出管18によって電解液Eが吐出される構成としたが、これに限ることはない。例えば、海水供給ポンプ5を介して供給される海水Wを吐出管18によって吐出する構成としてもよい。即ち、調整槽3に貯留された貯留液Rに旋回流を生じさせることができればよい。 In addition, in the said embodiment, although it was set as the structure by which the electrolyte solution E is discharged by the discharge pipe 18, it does not restrict to this. For example, the seawater W supplied via the seawater supply pump 5 may be discharged by the discharge pipe 18. That is, it is only necessary that a swirl flow can be generated in the stored liquid R stored in the adjustment tank 3.
(第二実施形態)
 以下、本発明の第二実施形態の電解システム1Bを図面に基づいて説明する。なお、本実施形態では、上述した第一実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
 図4に示すように、本実施形態の電解システム1Bの調整槽3には、第一実施形態の吐出管18の代替として、調整槽3中の貯留液Rを機械的に攪拌する機械式攪拌装置20が設けられている。機械式攪拌装置20は、吐出管18と同様にスケールの沈殿を防止する防止手段である。
(Second embodiment)
Hereinafter, the electrolysis system 1B of 2nd embodiment of this invention is demonstrated based on drawing. In the present embodiment, differences from the first embodiment described above will be mainly described, and description of similar parts will be omitted.
As shown in FIG. 4, in the adjustment tank 3 of the electrolysis system 1B of this embodiment, mechanical agitation that mechanically agitates the stored liquid R in the adjustment tank 3 as an alternative to the discharge pipe 18 of the first embodiment. A device 20 is provided. The mechanical stirrer 20 is a prevention means for preventing sedimentation of scale, like the discharge pipe 18.
 機械式攪拌装置20は、出力軸を有するモータ21と、モータ21の出力軸に設けられたスクリュー22とを有している。
 機械式攪拌装置20を作動させることによって、強制的に調整槽3に貯留された貯留液Rが攪拌される。換言すれば、調整槽3に貯留される電解液Eに含まれるスケール成分(微粒子)やスケールは機械式攪拌装置20によって形成された流れに乗ることで沈殿することがない。
The mechanical stirring device 20 includes a motor 21 having an output shaft and a screw 22 provided on the output shaft of the motor 21.
By operating the mechanical stirring device 20, the stored liquid R stored in the adjustment tank 3 is forcibly stirred. In other words, scale components (fine particles) and scales contained in the electrolytic solution E stored in the adjustment tank 3 are not precipitated by riding on the flow formed by the mechanical stirring device 20.
 上記実施形態によれば、機械式攪拌装置20を用いることによって、調整槽3に貯留された貯留液Rが強制的に攪拌される。これにより、調整槽3の底部にスケールが沈殿することを防止することができる。 According to the above embodiment, by using the mechanical stirring device 20, the stored liquid R stored in the adjustment tank 3 is forcibly stirred. Thereby, it can prevent that a scale settles in the bottom part of the adjustment tank 3. FIG.
(第三実施形態)
 以下、本発明の第三実施形態の電解システム1Cを図面に基づいて説明する。
 図5に示すように、本実施形態の電解システム1Cの調整槽3には、第一実施形態の吐出管18の代替として、空気式攪拌装置34が設けられている。空気式攪拌装置34は、調整槽3内に位置された壁部材36と、貯留液Rに空気を供給する空気供給部35と、を有している。
(Third embodiment)
Hereinafter, an electrolytic system 1C according to a third embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 5, the adjustment tank 3 of the electrolysis system 1C of the present embodiment is provided with a pneumatic stirring device 34 as an alternative to the discharge pipe 18 of the first embodiment. The pneumatic stirrer 34 includes a wall member 36 positioned in the adjustment tank 3 and an air supply unit 35 that supplies air to the stored liquid R.
 壁部材36は、調整槽3の上下方向に延在して調整槽3の内部を区分する板状部材である。壁部材36は、壁部材36の下端と調整槽3の底部との間、及び壁部材36の上端と貯留液Rの液面との間に所定の間隙が生じるような大きさである。
 空気供給部35は、壁部材36によって区分される一方の空間の下部に空気を供給する装置である。空気供給部35は、空気を昇圧させて加圧空気とするブロワ(図示せず)と、加圧空気を貯留液Rに供給するノズル37と、を有している。
The wall member 36 is a plate-like member that extends in the vertical direction of the adjustment tank 3 and divides the inside of the adjustment tank 3. The wall member 36 is sized such that a predetermined gap is generated between the lower end of the wall member 36 and the bottom of the adjustment tank 3 and between the upper end of the wall member 36 and the liquid level of the stored liquid R.
The air supply unit 35 is a device that supplies air to the lower part of one space partitioned by the wall member 36. The air supply unit 35 includes a blower (not shown) that pressurizes air to form pressurized air, and a nozzle 37 that supplies the pressurized air to the storage liquid R.
 ノズル37は、貯留液R中であって、壁部材36によって区分される一方の空間の下部に空気を供給する。ノズル37を介して加圧空気が供給されることによって、一方の空間は、空気が底部から上昇する上昇部38となる。加圧空気は、上昇して頂上部から外部へ抜ける。そのため、他方の空間(下降部39)に空気はほとんどなくなる。上昇部38と下降部39の貯留液Rの密度の差によって、調整槽3中の貯留液Rは、上昇部38と下降部39との間を循環する。 The nozzle 37 is in the stored liquid R and supplies air to the lower part of one space partitioned by the wall member 36. When pressurized air is supplied through the nozzle 37, one space becomes a rising portion 38 where the air rises from the bottom. The pressurized air rises and escapes from the top. Therefore, there is almost no air in the other space (the descending portion 39). The stored liquid R in the adjustment tank 3 circulates between the ascending part 38 and the descending part 39 due to the difference in density of the stored liquid R between the ascending part 38 and the descending part 39.
 上記実施形態によれば、空気の曝気動力によって貯留液Rの攪拌・分散効果を得ることができる。
 また、空気を用い、溶存酸素(Dissolved Oxygen,DO)濃度を高めることによって、マンガンイオン、ケイ酸、が二酸化マンガン(MnO)、二酸化ケイ素(SiO)まで酸化される反応を促進し、スケール成分が電極30(陽極A)面上にスケール析出するのを防止することができる。
According to the above embodiment, the agitation / dispersion effect of the stored liquid R can be obtained by the aeration power of air.
In addition, by using air and increasing the dissolved oxygen (Dissolved Oxygen, DO) concentration, the reaction promotes the oxidation of manganese ions and silicic acid to manganese dioxide (MnO 2 ) and silicon dioxide (SiO 2 ). It is possible to prevent the component from depositing on the surface of the electrode 30 (anode A).
 また、空気による曝気を行い、電解液E(例えばpH8.5)中の溶存二酸化炭素(CO 2+)濃度を高め、カルシウムイオンが炭酸カルシウムとして析出する反応を促進し、スケール成分が電極30(陰極K)面上にスケール析出するのを防止することができる。 In addition, aeration with air is performed to increase the dissolved carbon dioxide (CO 3 2+ ) concentration in the electrolytic solution E (for example, pH 8.5), promote the reaction in which calcium ions are precipitated as calcium carbonate, and the scale component is the electrode 30 ( Scale deposition on the cathode K) surface can be prevented.
(第四実施形態)
 以下、本発明の第四実施形態の電解システム1Dを図面に基づいて説明する。
 図6に示すように、本実施形態の電解システム1Dの海水供給ライン4と、注入ライン13との間には、海水供給ポンプ5によって供給される海水Wを直接注入ライン13に導入するための分岐ライン41(バックアップライン)が設けられている。即ち、本実施形態の電解システム1は、海水供給ライン4を流れる海水Wを調整槽3に送ることなく、直接注入ライン13に分岐することができる。
 分岐ライン41上には、分岐ライン41を流れる海水Wの流量を調整するための海水分岐流量調整弁42が設けられている。
(Fourth embodiment)
Hereinafter, the electrolysis system 1D of 4th embodiment of this invention is demonstrated based on drawing.
As shown in FIG. 6, between the seawater supply line 4 and the injection line 13 of the electrolysis system 1 </ b> D of this embodiment, the seawater W supplied by the seawater supply pump 5 is directly introduced into the injection line 13. A branch line 41 (backup line) is provided. That is, the electrolysis system 1 of this embodiment can branch directly to the injection line 13 without sending the seawater W flowing through the seawater supply line 4 to the adjustment tank 3.
On the branch line 41, a seawater branch flow rate adjustment valve 42 for adjusting the flow rate of the seawater W flowing through the branch line 41 is provided.
 上記実施形態によれば、分岐ライン41を介して海水Wを注入することによって、注入ライン13の流速を早めることができる。これにより、注入ライン13の距離が長く、電解液のpHが変化してスケールが析出しやすい状態になった場合においても、スケールの析出を抑制することができる。即ち、注入ライン13の流量低下によるスケール堆積を防止することができる。
 分岐ライン41を介して注入される海水Wの流量は、海水分岐流量調整弁42を操作することによって適宜調整することができる。
According to the above embodiment, by injecting the seawater W through the branch line 41, the flow rate of the injection line 13 can be increased. Thereby, even when the distance of the injection line 13 is long and the pH of the electrolytic solution changes and the scale is likely to precipitate, the deposition of the scale can be suppressed. That is, scale accumulation due to a decrease in the flow rate of the injection line 13 can be prevented.
The flow rate of the seawater W injected through the branch line 41 can be adjusted as appropriate by operating the seawater branch flow rate adjustment valve 42.
(第五実施形態)
 以下、本発明の第五実施形態の電解システムを図面に基づいて説明する。なお、本実施形態では、上述した第一実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
 図7に示すように、本実施形態の調整槽3の上方から見た中心部には、鉛直方向に延在する円柱形状の柱状構造物24が配置されている。柱状構造物24は、有底円筒形状の調整槽3の中心軸と略同軸となるように配置されている。吐出管18によって形成される貯留液Rの旋回流の中央近傍に形成されている。
(Fifth embodiment)
Hereinafter, an electrolysis system according to a fifth embodiment of the present invention will be described with reference to the drawings. In the present embodiment, differences from the first embodiment described above will be mainly described, and description of similar parts will be omitted.
As shown in FIG. 7, a columnar structure 24 having a columnar shape extending in the vertical direction is disposed in the center portion viewed from above the adjustment tank 3 of the present embodiment. The columnar structure 24 is disposed so as to be substantially coaxial with the central axis of the bottomed cylindrical adjustment tank 3. It is formed near the center of the swirling flow of the stored liquid R formed by the discharge pipe 18.
 上記実施形態によれば、調整槽3の底部3bの中心部にスケール塊が形成されるのを抑制することができる。
 なお、本実施形態の電解システムでは、調整槽3の底部3bの中心部にスケール塊が形成されるのを抑制するために柱状構造物24を設置したがこれに限ることはない。例えば、調整槽3の底部3bの中央部に上方に凸の凸部を形成して、スケール塊の形成を抑制してもよい。
 柱状構造物24の形状は、円柱形に限らず、角柱形状としてもよい。また、中実である必要はなく、内部に中空部を有する筒形状でもよい。
According to the said embodiment, it can suppress that a scale lump is formed in the center part of the bottom part 3b of the adjustment tank 3. FIG.
In the electrolysis system of the present embodiment, the columnar structure 24 is installed in order to suppress the formation of a scale lump at the center of the bottom 3b of the adjustment tank 3, but this is not a limitation. For example, an upward convex protrusion may be formed at the center of the bottom 3b of the adjustment tank 3 to suppress the formation of the scale lump.
The shape of the columnar structure 24 is not limited to a cylindrical shape, and may be a prismatic shape. Moreover, it is not necessary to be solid, and a cylindrical shape having a hollow portion inside may be used.
 以上、本発明の実施形態について図面を参照して詳述したが、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。また、本発明は実施形態によって限定されることはなく、クレームの範囲によってのみ限定される。 As described above, the embodiments of the present invention have been described in detail with reference to the drawings, but additions, omissions, substitutions, and other modifications can be made without departing from the spirit of the present invention. Further, the present invention is not limited by the embodiments, and is limited only by the scope of the claims.
 1,1B,1C,1D 電解システム
 2 電解装置
 3 調整槽
 3a 外周面
 3b 底部
 4 海水供給ライン
 5 海水供給ポンプ
 6 電解槽
 7 直流電源装置
 10 リサイクルライン
 11 第一リサイクルライン
 12 第二リサイクルライン
 13 注入ライン
 15 流入口
 16 流出口
 17 注入ポンプ
 18 吐出管(防止手段)
 20 機械式攪拌装置(防止手段)
 22 スクリュー
 24 柱状構造物
 26 電極支持箱
 30 電極
 31 二極電極板
 32 陽極板
 33 陰極板
 34 空気式攪拌装置(防止手段)
 35 空気供給部
 36 壁部材
 37 ノズル
 38 上昇部
 39 下降部
 41 分岐ライン
 42 海水分岐流量調整弁
 A 陽極
 E 電解液
 K 陰極
 M 電極群
 R 貯留液
 W 海水
1, 1B, 1C, 1D Electrolysis system 2 Electrolysis device 3 Adjustment tank 3a Outer peripheral surface 3b Bottom 4 Seawater supply line 5 Seawater supply pump 6 Electrolysis tank 7 DC power supply device 10 Recycle line 11 First recycle line 12 Second recycle line 13 Injection Line 15 Inlet 16 Outlet 17 Infusion pump 18 Discharge pipe (prevention means)
20 Mechanical stirring device (prevention means)
22 Screw 24 Columnar structure 26 Electrode support box 30 Electrode 31 Bipolar electrode plate 32 Anode plate 33 Cathode plate 34 Pneumatic stirrer (prevention means)
35 Air supply part 36 Wall member 37 Nozzle 38 Ascending part 39 Lowering part 41 Branch line 42 Seawater branch flow rate adjusting valve A Anode E Electrolyte K Cathode M Electrode group R Storage liquid W Seawater

Claims (7)

  1.  電極として陽極及び陰極が収容された電解槽を有し、被処理液を電気分解する電解装置と、
     前記電解装置で処理された被処理液を一時貯留する調整槽と、
     前記調整槽に貯留され、微粒子及び前記微粒子が析出してなる析出物質を含む貯留液の一部を前記電解槽に戻すリサイクルラインと、
     前記調整槽中で前記析出物質の沈殿を防止する防止手段と、を有する電解システム。
    An electrolyzer having an electrolytic cell containing an anode and a cathode as electrodes, and electrolyzing a liquid to be treated;
    A regulating tank for temporarily storing the liquid to be treated treated by the electrolyzer;
    A recycle line that returns to the electrolytic cell a part of the stored liquid that is stored in the adjustment tank and contains fine particles and a deposited substance formed by the precipitation of the fine particles,
    An electrolysis system comprising: means for preventing precipitation of the deposited substance in the adjustment tank.
  2.  前記防止手段は、前記調整槽へ液を吐出する吐出管を有する請求項1に記載の電解システム。 2. The electrolysis system according to claim 1, wherein the prevention means includes a discharge pipe for discharging liquid to the adjustment tank.
  3.  前記吐出管は、前記調整槽に貯留された前記貯留液に旋回流を生じる方向へ吐出される請求項2に記載の電解システム。 The electrolysis system according to claim 2, wherein the discharge pipe is discharged in a direction in which a swirling flow is generated in the stored liquid stored in the adjustment tank.
  4.  前記防止手段は、前記調整槽の上下方向に延在して前記調整槽の内部を上昇部と下降部とに区分する壁部材と、前記上昇部の下部に空気を供給する空気供給部と、を有する空気式攪拌装置である請求項1に記載の電解システム。 The prevention means includes a wall member that extends in the vertical direction of the adjustment tank and divides the inside of the adjustment tank into an ascending part and a descending part, an air supply part that supplies air to the lower part of the ascending part, The electrolysis system according to claim 1, wherein the electrolysis system is a pneumatic stirrer.
  5.  前記防止手段は、前記調整槽中の前記貯留液を機械的に攪拌する機械式攪拌装置である請求項1に記載の電解システム。 2. The electrolysis system according to claim 1, wherein the preventing means is a mechanical stirring device that mechanically stirs the stored liquid in the adjustment tank.
  6.  前記陽極は、酸化イリジウムを含むコーティング材をチタンにて被覆してなる請求項1から請求項5のいずれか一項に記載の電解システム。 The electrolytic system according to any one of claims 1 to 5, wherein the anode is formed by coating a coating material containing iridium oxide with titanium.
  7.  前記リサイクルラインから一部の電解液を所定の場所へ供給する注入ラインと、
     前記調整槽へ海水を供給する海水供給ラインと、
     前記海水供給ラインの海水の一部を前記注入ラインへ分岐する分岐ラインを有することを特徴とする請求項1から請求項6のいずれか一項に記載の電解システム。
    An injection line for supplying a part of the electrolytic solution from the recycling line to a predetermined place;
    A seawater supply line for supplying seawater to the adjustment tank;
    The electrolysis system according to any one of claims 1 to 6, further comprising a branch line that branches a part of seawater of the seawater supply line to the injection line.
PCT/JP2015/057942 2015-02-17 2015-03-17 Electrolysis system WO2016132565A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580011684.8A CN106061904B (en) 2015-02-17 2015-03-17 Electrolysis system
MYPI2016703144A MY188112A (en) 2015-02-17 2015-03-17 Electrolytic system
KR1020167025574A KR101910262B1 (en) 2015-02-17 2015-03-17 Electrolysis system
SA516371888A SA516371888B1 (en) 2015-02-17 2016-09-25 Electrolytic system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-028499 2015-02-17
JP2015028499A JP6344857B2 (en) 2015-02-17 2015-02-17 Electrolysis system

Publications (1)

Publication Number Publication Date
WO2016132565A1 true WO2016132565A1 (en) 2016-08-25

Family

ID=56692093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057942 WO2016132565A1 (en) 2015-02-17 2015-03-17 Electrolysis system

Country Status (7)

Country Link
JP (1) JP6344857B2 (en)
KR (1) KR101910262B1 (en)
CN (1) CN106061904B (en)
MY (1) MY188112A (en)
SA (1) SA516371888B1 (en)
TW (1) TWI564436B (en)
WO (1) WO2016132565A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6484875B1 (en) * 2018-11-16 2019-03-20 三菱重工環境・化学エンジニアリング株式会社 Vertical electrolyzer
KR101965212B1 (en) * 2019-01-23 2019-04-03 농업회사법인 주식회사 대율시스템 Electrolysis apparatus
CN114686913B (en) * 2022-03-29 2024-02-06 嘉庚创新实验室 Electrochemical reaction equipment and storage device thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52109748A (en) * 1976-03-10 1977-09-14 Hitachi Ltd Pre-treating method of brine
JP2007144258A (en) * 2005-11-24 2007-06-14 Kurita Water Ind Ltd Method for electrolyzing water and electrolytic apparatus
JP2008200636A (en) * 2007-02-21 2008-09-04 Mhi Environment Engineering Co Ltd Water treatment method and apparatus
JP2013117069A (en) * 2011-12-02 2013-06-13 Mitsubishi Electric R & D Centre Europe Bv Scale inhibiting device, water heater and water consumptive apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04118090A (en) * 1990-05-24 1992-04-20 Konica Corp Electrolytic treatment of water to be treated
JP2005021744A (en) * 2003-06-30 2005-01-27 Kurita Water Ind Ltd Method and apparatus for electrolyzing emulsion
CN1291925C (en) * 2004-11-30 2006-12-27 东南大学 Horizontal integrated three phase inner circulation fluidized reactor and its biological reaction process
JP2009166176A (en) * 2008-01-16 2009-07-30 Aisin Seiki Co Ltd Water-soluble coolant cleaning device
KR101071113B1 (en) * 2010-06-07 2011-10-10 주식회사 한국종합기술 Electrolysis apparatus
MY164970A (en) * 2010-11-22 2018-02-28 Mitsubishi Heavy Ind Environmental & Chemical Eng Co Ltd Seawater electrolysis system and seawater electrolysis method
JP2012152695A (en) * 2011-01-26 2012-08-16 Jws Tecnica Kk Electrolytic salt water sterilization method and electrolytic salt water sterilization device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52109748A (en) * 1976-03-10 1977-09-14 Hitachi Ltd Pre-treating method of brine
JP2007144258A (en) * 2005-11-24 2007-06-14 Kurita Water Ind Ltd Method for electrolyzing water and electrolytic apparatus
JP2008200636A (en) * 2007-02-21 2008-09-04 Mhi Environment Engineering Co Ltd Water treatment method and apparatus
JP2013117069A (en) * 2011-12-02 2013-06-13 Mitsubishi Electric R & D Centre Europe Bv Scale inhibiting device, water heater and water consumptive apparatus

Also Published As

Publication number Publication date
MY188112A (en) 2021-11-21
CN106061904B (en) 2020-03-17
KR20160124177A (en) 2016-10-26
JP2016150298A (en) 2016-08-22
KR101910262B1 (en) 2018-10-19
JP6344857B2 (en) 2018-06-20
TWI564436B (en) 2017-01-01
TW201631221A (en) 2016-09-01
CN106061904A (en) 2016-10-26
SA516371888B1 (en) 2019-09-05

Similar Documents

Publication Publication Date Title
KR101585304B1 (en) Seawater electrolysis system and seawater electrolysis method
US20170029307A1 (en) Method and integral system for treating water for cooling towers and processess requiring removal of silica from the water
US4179347A (en) System for electrocatalytic treatment of waste water streams
WO2012029757A1 (en) Carbon dioxide fixation method and carbon dioxide fixation apparatus
CN105793199B (en) The processing equipment and processing method of ship ballast water are electrolysed using carbon dioxide
JP5791377B2 (en) Seawater electrolysis system and seawater electrolysis method
JP4932529B2 (en) Water treatment method
JP6344857B2 (en) Electrolysis system
KR101202765B1 (en) Ballast water treatment apparatus and method using ferrate
JP2005177672A (en) Electrolysis type ozonizer
JP3818619B2 (en) Hypochlorite production apparatus and method
KR101891906B1 (en) Seawater electrolysis system and electrolytic solution infusion method
KR101427563B1 (en) Seawater electrolytic apparatus
EP1587760B1 (en) Electrolytic cell
KR100664683B1 (en) Apparatus and method for treating reproduction wastewater of condensate polisher
JP5122074B2 (en) Water treatment method and system
JPH04222690A (en) Device for removal of cyanogen and method for removing cyanide from waste water
JP2006312124A (en) Sludge treatment method
JP4237582B2 (en) Surplus sludge reduction device and method
JP4451202B2 (en) Electrolytic treatment tank and method for cleaning the electrode plate
CN116655137A (en) Equipment for desalting seawater into industrial system water
JP2005224753A (en) Sludge treatment apparatus
JP2003285073A (en) Cooling tower apparatus
KR20050044227A (en) Electrolytic disinfectants generator
CN104402149A (en) Equipment and technology for processing extracted water from coalbed methane

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20167025574

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201606497

Country of ref document: ID

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15882666

Country of ref document: EP

Kind code of ref document: A1