JP2009166176A - Water-soluble coolant cleaning device - Google Patents

Water-soluble coolant cleaning device Download PDF

Info

Publication number
JP2009166176A
JP2009166176A JP2008006969A JP2008006969A JP2009166176A JP 2009166176 A JP2009166176 A JP 2009166176A JP 2008006969 A JP2008006969 A JP 2008006969A JP 2008006969 A JP2008006969 A JP 2008006969A JP 2009166176 A JP2009166176 A JP 2009166176A
Authority
JP
Japan
Prior art keywords
water
soluble coolant
plate
anode plate
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008006969A
Other languages
Japanese (ja)
Inventor
Tetsutaro Nakagawa
徹太郎 中川
Osamu Obinata
修 小日向
Michihiro Kikumoto
充弘 菊本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2008006969A priority Critical patent/JP2009166176A/en
Publication of JP2009166176A publication Critical patent/JP2009166176A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Auxiliary Devices For Machine Tools (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water-soluble coolant cleaning device which retrieve positive ions, metal particles, and foreign substance particles in a water-soluble coolant by deposition and absorption to maintain the capability of the water-soluble coolant for a long period, allows an electrode plate to be used for a long period, and performs stable deposition retrieval and absorption retrieval. <P>SOLUTION: A supply means 10 supplies the water-soluble coolant 5 containing positive ions and metal particles to an electrolytic bath 120, where the water-soluble coolant 5 flows along cathode plates 31 and 32 and an anode plate 41, and then a direct current is supplied to the cathode plates 31 and 32 and the anode plate 41. This causes an electrolysis action, by which positive ions and metal particles are deposited on or absorbed to the cathode plates 31 and 32. When the electrolysis action is over, the water-soluble coolant 5 is discharged from the electrolytic bath 120. Subsequently, the direction of the current is reversed to peel or separate substances deposited on and absorbed to the cathode plates 31 and 32 and anode plate 41. The current is then cut off so that a retrieving means 100 precipitates the substances peeled or separated in an electrolytic unit 121 into a precipitation unit 122. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、切削加工機や研削加工機などに用いられる水溶性切削液または水溶性研削液(以下、両方を総称して水溶性クーラントと称する)の中に溶け込んだ陽イオンや混入した金属微粒子を除去する必要性のあるエマルジョンタイプなどの水溶性クーラントに用いられる水溶性クーラント浄化装置に関する。   The present invention relates to a cation or a mixed metal fine particle dissolved in a water-soluble cutting fluid or water-soluble grinding fluid (hereinafter collectively referred to as a water-soluble coolant) used in a cutting machine or a grinding machine. The present invention relates to a water-soluble coolant purifying apparatus used for a water-soluble coolant such as an emulsion type that needs to remove water.

従来技術のクーラント浄化装置として、工作機械の加工機に供給されるクーラント中の金属イオンを回収除去してクーラントを浄化する装置であって、クーラントの循環経路に設けられた貯留タンク内に、直流電源に接続された少なくとも一対の陰極と陽極が配置されてなり、電気化学作用により、陰極表面に金属イオンが析出回収するように構成されたクーラント浄化装置が開示されている(例えば、特許文献1参照。)。
特開2002−11661号公報
As a prior art coolant purification device, a device that recovers and removes metal ions in coolant supplied to a machine tool of a machine tool to purify the coolant, and a direct current is stored in a storage tank provided in a coolant circulation path. There is disclosed a coolant purifying apparatus in which at least a pair of a cathode and an anode connected to a power source are arranged, and metal ions are deposited and collected on the cathode surface by electrochemical action (for example, Patent Document 1). reference.).
JP 2002-11661 A

しかしながら、特許文献1の水溶性クーラント浄化装置は、陰極と陽極の各1枚を一対としているため、互いに対向した側の陰極一面と陽極一面だけにしか殆ど電解作用が及ばず、陽イオンを析出させる能力が低い問題がある。   However, since the water-soluble coolant purifying apparatus of Patent Document 1 has a pair of a cathode and an anode, the electrolysis only affects only one cathode and one anode facing each other, and deposits cations. There is a problem that the ability to make is low.

また、水溶性クーラント中の陽イオンの分布状態を均一にするため攪拌装置を設けているので、陽イオンを陰極に回収し、陽イオンの濃度が薄くなった処理後の液は、攪拌装置によって未処理の液と混合され再び両電極間に供給されてしまう。結果、効率良く陽イオンの析出回収が出来ない問題がある。   In addition, since a stirrer is provided to make the cation distribution in the water-soluble coolant uniform, the cation is recovered at the cathode, and the treated liquid whose cation concentration is reduced is It is mixed with the untreated liquid and supplied again between both electrodes. As a result, there is a problem that cations cannot be collected and recovered efficiently.

また、水溶性クーラントを介在して対向した陰極と陽極に電流を流すと、電流は各電極の角部に集中し対極して流れる。このため、矩形平板の電極の周辺部には陽イオンが良好に析出されるが、広範な中央部では電流密度が周囲より低くなる。結果、面積が広い割に析出効率が悪い問題がある。   In addition, when a current is passed through the cathode and anode facing each other with a water-soluble coolant interposed therebetween, the current is concentrated at the corners of each electrode and flows oppositely. For this reason, cations are favorably deposited on the periphery of the rectangular plate electrode, but the current density is lower than the periphery in a wide central portion. As a result, there is a problem that the deposition efficiency is poor for a large area.

さらに陰極板に析出した陽イオンが成長拡大すると、該陰極板は隣接する陽極板に短絡し、それ以後は析出回収できなくなる問題がある。   Further, when the cations deposited on the cathode plate grow and expand, there is a problem that the cathode plate is short-circuited to the adjacent anode plate and thereafter cannot be collected.

また、直流電源として定電圧電源を使うと液中の陽イオン濃度が薄く、電気抵抗が大きい場合には、電流値が低下し、逆に液中の陽イオン濃度が濃く、電気抵抗が小さい場合には大きな電流が流れる。従って、必要な時に必要な所定の電流値を得られず、析出回収、吸着回収が安定しない問題がある。   In addition, when a constant voltage power supply is used as a DC power supply, if the cation concentration in the liquid is thin and the electric resistance is large, the current value decreases, and conversely, the cation concentration in the liquid is high and the electric resistance is small. A large current flows through. Therefore, there is a problem that a predetermined current value required when necessary cannot be obtained, and precipitation recovery and adsorption recovery are not stable.

本発明は上記問題点に鑑みてなされたものであり、水溶性クーラント中の陽イオン及び金属微粒子や異物微粒子を析出及び吸着回収することにより水溶性クーラントの性能を長期間維持すると共に、電極板が長期間使用でき、しかも析出回収と吸着回収が安定した析出水溶性クーラント浄化装置を提供することを目的とする。   The present invention has been made in view of the above problems, and maintains the performance of the water-soluble coolant for a long period of time by precipitating and adsorbing and recovering cations, metal fine particles and foreign particles in the water-soluble coolant, and electrode plates It is an object of the present invention to provide a precipitation water-soluble coolant purifying apparatus that can be used for a long period of time and in which precipitation recovery and adsorption recovery are stable.

上記課題を解決するため、請求項1に記載の発明は、水溶性クーラントに溶け込んだ陽イオンおよび混入した金属微粒子の少なくとも一つを除去する水溶性クーラント浄化装置であって、水溶性クーラントに浸漬され、且つ直流電源の一方の極に接続される陰極板及び他方の極に接続される陽極板と、陰極板と陽極板とを互いに対向して設置する固定具と、
供給手段によって供給される水溶性クーラントが、陰極板に設けた貫通孔と陽極板に設けた貫通孔とを通って排出される電解槽と、陰極板と陽極板の極性を反転させる極性変更手段と、陰極板と陽極板の表面に析出および吸着した物質の少なくともいずれか一つを剥離または分離させて電解槽の底側に沈殿させる回収手段と、を備える。
In order to solve the above-mentioned problems, the invention described in claim 1 is a water-soluble coolant purifying apparatus that removes at least one of cations dissolved in a water-soluble coolant and mixed metal fine particles, and is immersed in the water-soluble coolant. A cathode plate connected to one pole of the DC power source and an anode plate connected to the other pole, and a fixture for installing the cathode plate and the anode plate facing each other,
An electrolytic cell in which water-soluble coolant supplied by the supply means is discharged through a through hole provided in the cathode plate and a through hole provided in the anode plate, and polarity changing means for reversing the polarity of the cathode plate and the anode plate And a collecting means for separating or separating at least one of the cathode plate and the substance deposited and adsorbed on the surface of the anode plate and depositing it on the bottom side of the electrolytic cell.

また、請求項2に記載の発明は、回収手段は、陰極板及び陽極板を配備した水溶性クーラントが流れる電解部の下側に位置する沈殿部と、電解槽を電解部と沈殿部とに区画し、物質が通過する通路を有する仕切部材と、通路を開閉する開閉手段と、を備える。   Further, the invention according to claim 2 is characterized in that the collecting means includes a precipitation part located below the electrolysis part in which the water-soluble coolant in which the cathode plate and the anode plate are arranged, and an electrolytic cell as the electrolysis part and the precipitation part. The partition member which has a channel | path which divides and a substance passes, and the opening-and-closing means which opens and closes a channel | path are provided.

また、請求項3に記載の発明は、陰極板と陽極板の少なくともいずれか一方の電極板の対向面が他方の電極板の対向面に対向して配置される。   According to a third aspect of the present invention, the facing surface of at least one of the cathode plate and the anode plate is disposed to face the facing surface of the other electrode plate.

また、請求項4に記載の発明は、陰極板と陽極板は、析出性能および吸着性能を確保し、物質による目詰まりしない大きさの複数個の貫通孔が設けられる。   According to a fourth aspect of the present invention, the cathode plate and the anode plate are provided with a plurality of through-holes having a size that ensures deposition performance and adsorption performance and is not clogged by substances.

また、請求項5に記載の発明は、陰極板と陽極板は、析出性能および吸着性能を確保し、物質による陰極板と陽極板とが短絡しない間隔で設置される。   In the invention according to claim 5, the cathode plate and the anode plate are provided at an interval in which the deposition performance and the adsorption performance are ensured and the cathode plate and the anode plate are not short-circuited.

また、請求項6に記載の発明は、直流電源は、定電流直流電源である。   In the invention according to claim 6, the DC power source is a constant current DC power source.

請求項1に記載の発明では、直流電源をオンにし、互いに対向した陰極板と陽極板に所定時間、所定値の電流を通電すると、水溶性クーラントの液に溶け込んでいる陽イオンが電解作用により陰極板に析出回収される。水溶性クーラントの液に漂う金属微粒子や異物微粒子は、電界におけるクーロン力によって両電極板に吸着回収される。所定時間通電した後、極性変更手段により電流の流れを逆方向に換える。即ち、陰極板と陽極板の極性を反転させて反転前の陰極板と陽極板の表面に析出および吸着した物質のうち少なくともいずれか一つを剥離または分離させる。分離した物質は、回収手段により電解槽の底側の沈殿部に重力で沈殿し回収され、浄化の1サイクルを終了する。以後、再び浄化のサイクルを繰返す。従来技術の液攪拌装置よる処理後の液と未処理の液とを混合し陽イオン濃度を均一にする必要はない。従って、陽イオン濃度および金属微粒子や異物微粒子の含有率の低い水溶性クーラントを電解槽から排出し、切削加工機や研削加工機等の加工機に供給できる。結果、水溶性クーラントの性能を長期間維持する水溶性クーラント浄化装置を提供できる。   In the first aspect of the present invention, when the DC power supply is turned on and a current of a predetermined value is applied to the cathode plate and the anode plate facing each other for a predetermined time, the cation dissolved in the water-soluble coolant is caused by electrolytic action. Deposited and collected on the cathode plate. Metal particles and foreign particles floating in the water-soluble coolant are adsorbed and collected on both electrode plates by the Coulomb force in the electric field. After energization for a predetermined time, the current flow is changed in the reverse direction by the polarity changing means. That is, the polarity of the cathode plate and the anode plate is reversed, and at least one of the substances deposited and adsorbed on the surfaces of the cathode plate and the anode plate before the inversion is peeled or separated. The separated substance is collected and collected by gravity in the sedimentation section on the bottom side of the electrolytic cell by the collecting means, and one cycle of purification is completed. Thereafter, the purification cycle is repeated again. It is not necessary to make the cation concentration uniform by mixing the liquid after the treatment by the liquid agitator of the prior art and the untreated liquid. Therefore, a water-soluble coolant having a low cation concentration and a low content of metal fine particles and foreign particles can be discharged from the electrolytic bath and supplied to a processing machine such as a cutting machine or a grinding machine. As a result, it is possible to provide a water-soluble coolant purifying apparatus that maintains the performance of the water-soluble coolant for a long period of time.

また、前述したように陰極板と陽極板の極性を反転させて反転前の陰極板と陽極板の表面に析出および吸着した物質のうち少なくともいずれか一つを剥離または分離させ、回収手段により電解槽の底側に重力で沈殿させ回収する。結果、陰極板と陽極板の両表面は、析出物、吸着物の付着物が除去され元の金属地金が露出し、両電極板の対向面が互いに短絡することなく適正な間隔を維持でき、電極板を長期間使用できる水溶性クーラント浄化装置を提供できる。   Further, as described above, the polarity of the cathode plate and the anode plate is reversed, and at least one of the substances deposited and adsorbed on the surface of the cathode plate and the anode plate before the reversal is separated or separated, and electrolysis is performed by the recovery means. Precipitate by gravity at the bottom of the tank and collect. As a result, both the surfaces of the cathode plate and the anode plate are free of deposits and adhering substances and the original metal ingot is exposed, and the opposing surfaces of both electrode plates can be maintained at an appropriate distance without short-circuiting each other. It is possible to provide a water-soluble coolant purification device that can use the electrode plate for a long period of time.

さらには、陰極板と陽極板を適正な間隔で対向せることで、適正な容量の直流電源で析出回収と吸着回収が安定した水溶性クーラント浄化装置を提供できる。   Furthermore, by making the cathode plate and the anode plate face each other at an appropriate interval, it is possible to provide a water-soluble coolant purifying apparatus in which precipitation recovery and adsorption recovery are stable with a DC power source having an appropriate capacity.

また、請求項2に記載の発明では、回収手段は、陰極板及び陽極板を配備した水溶性クーラントが流れる電解部の下側に位置する沈殿部と、電解槽を電解部と沈殿部とに区画し、物質が通過する通路を有する仕切部材と、通路を開閉する開閉手段と、を備えている。従って、剥離工程(開閉手段:開、直流電源:逆方向オン)で両電極板から剥離あるいは分離された物質は、通路を通過して沈殿部に沈殿し始める。引続く沈殿工程(開閉手段:開、直流電源:オフ)で、電解部で剥離、分離した物質は沈殿部に重力で沈殿し回収される。結果、付着工程(開閉手段:閉、直流電源:正方向オン)において、陽イオンおよび金属微粒子や異物微粒子の少ない、水溶性クーラントを長期間交換することなく電解槽から排出して切削加工機や研削加工機の加工物に供給できる。   Further, in the invention according to claim 2, the recovery means includes a precipitation part positioned below the electrolysis part in which the water-soluble coolant in which the cathode plate and the anode plate are arranged, and the electrolytic cell as an electrolysis part and a precipitation part. The partition member which has the channel | path which partitions off and a substance passes, and the opening-and-closing means which opens and closes a channel | path are provided. Therefore, the substance peeled or separated from both electrode plates in the peeling process (opening / closing means: open, DC power source: reverse direction on) starts to pass through the passage and precipitate in the precipitation part. In the subsequent precipitation step (opening / closing means: open, DC power source: off), the material separated and separated in the electrolysis part is precipitated and collected in the precipitation part by gravity. As a result, in the adhesion process (opening / closing means: closed, DC power supply: positive direction on), the water-soluble coolant with a small amount of cations, metal fine particles and foreign particles is discharged from the electrolytic cell for a long period of time without being replaced. It can be supplied to workpieces of grinding machines.

また、請求項3に記載の発明では、陰極板と陽極板の少なくともいずれか一方の電極板の対向面が、他方の極板の対向面に対向して配置される。従って、陰極板と陽極板の少なくともいずれか一方の電極板の両面を電解作用の対向面に使い、この両面が他方の電極板の対向面に対向するように配置することで、陽イオンの析出と剥離、金属微粒子や異物微粒子の吸着と分離が効率よく行われ、水溶性クーラントの性能を長期間維持する水溶性クーラント浄化装置を提供できる。   In the invention described in claim 3, the facing surface of at least one of the cathode plate and the anode plate is disposed to face the facing surface of the other electrode plate. Accordingly, by using both surfaces of at least one of the cathode plate and the anode plate as opposed surfaces for electrolysis and arranging the both surfaces so as to face the opposed surfaces of the other electrode plate, cation precipitation is achieved. It is possible to provide a water-soluble coolant purifying apparatus that can efficiently perform separation and separation, adsorption and separation of fine metal particles and foreign particles, and maintain the performance of the water-soluble coolant for a long period of time.

また、請求項4に記載の発明では、水溶性クーラントを介在して対向する陰極板と陽極板との間で電解作用を働かせると、電流は電極板の角部に集中する。本発明では、析出および吸着の性能を確保し、析出および吸着した物質による目詰まりのない複数個の貫通孔を設けている。従って、貫通孔を両電極板の全面に略均等に分布させることで、電極全面に略均等(電極板全面を巨視的に見て)に電流が流れ、また水溶性クーラントがスムーズに流れる。結果、効率良く陽イオンおよび金属微粒子や異物微粒子を析出および吸着できる。   Further, in the invention described in claim 4, when an electrolytic action is applied between the cathode plate and the anode plate facing each other with a water-soluble coolant interposed therebetween, the current is concentrated at the corners of the electrode plate. In the present invention, a plurality of through-holes are provided which ensure the performance of precipitation and adsorption and are not clogged by the precipitated and adsorbed substances. Accordingly, by distributing the through holes substantially evenly over the entire surfaces of both electrode plates, a current flows substantially evenly (as viewed macroscopically over the entire surface of the electrode plates), and the water-soluble coolant flows smoothly. As a result, it is possible to efficiently deposit and adsorb cations, metal fine particles and foreign particles.

また、請求項5に記載の発明では、水溶性クーラントの電気伝導率は水溶性クーラントに含まれる陽イオンの濃度や界面活性剤の濃度および種類によって刻々と変化する。これに伴い、水溶性クーラントを介在した陽極板と陰極板との通電条件(電圧値と電流値)も刻々と変化し、また陰極板と陽極板との間隔によっても通電条件は変わる。従って、陰極板と陽極板の対向面は、析出および吸着の性能を確保し、析出および吸着した物質による陰極板と陽極板とが短絡しない所定の間隔で設置することによって、通電条件が一定の範囲に安定する。結果、適正な容量の直流電源で析出回収と吸着回収の安定した水溶性クーラント浄化装置を提供できる。   In the invention described in claim 5, the electrical conductivity of the water-soluble coolant changes every moment depending on the concentration of the cation contained in the water-soluble coolant and the concentration and type of the surfactant. Along with this, the energization conditions (voltage value and current value) between the anode plate and the cathode plate with the water-soluble coolant interposed therebetween change every moment, and the energization conditions also change depending on the distance between the cathode plate and the anode plate. Therefore, the opposing surfaces of the cathode plate and the anode plate ensure the performance of deposition and adsorption, and the energization conditions are constant by installing the cathode plate and the anode plate at a predetermined interval so as not to short-circuit the deposited and adsorbed substances. Stable to range. As a result, it is possible to provide a water-soluble coolant purifying apparatus in which precipitation recovery and adsorption recovery are stable with a DC power source having an appropriate capacity.

また、請求項6に記載の発明では、電解作用あるいはクーロン力は電流値に比例する。直流電源は定電流直流電源であり、溶性クーラント中の陽イオンの濃度には依存せず陰極板と陽極板間に一定電流が流れので、析出回収と吸着回収の安定した水溶性クーラント浄化装置を提供できる。   In the invention described in claim 6, the electrolytic action or Coulomb force is proportional to the current value. The DC power supply is a constant current DC power supply, and a constant current flows between the cathode and anode plates regardless of the concentration of cations in the soluble coolant. Can be provided.

以下に本発明の実施形態を図面を参照しつつ詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明に係る水溶性クーラント浄化装置は、水溶性クーラント中に溶け込んだ陽イオンや混入した金属微粒子を除去する必要性のある水溶性クーラントに用いるものであり、所謂エマルジョンタイプやソリュブルタイプ等々の水溶性クーラントが例示できる。   The water-soluble coolant purifying apparatus according to the present invention is used for a water-soluble coolant that needs to remove cations dissolved in the water-soluble coolant or mixed metal fine particles, so-called emulsion type and soluble type water-soluble coolants. An example of a reactive coolant is illustrated.

図1は、水溶性クーラント浄化装置の説明図である。図1の水溶性クーラント浄化装置1は、クーラント供給部2と、クーラント浄化部3とを供給管13および排出管14とが接続して構成される。   FIG. 1 is an explanatory view of a water-soluble coolant purifying apparatus. The water-soluble coolant purification apparatus 1 in FIG. 1 is configured by connecting a coolant supply unit 2 and a coolant purification unit 3 to a supply pipe 13 and a discharge pipe 14.

クーラント供給部2は、水溶性クーラント5が入った貯留タンク15と、水溶性クーラント5をクーラント浄化部3に送る供給手段10と、加工機(図示せず)の加工物(図示せず)に水溶性クーラント5を供給する行き側循環パイプ17と戻り側循環パイプ18を備えた循環ポンプ16とから構成される。加工機は、切削加工機または研削加工機である。水溶性クーラント5は、切削加工機の場合、水溶性切削液が使われ、研削加工機の場合は水溶性研削液が使われる。水溶性切削液と水溶性研削液の両方を総称して水溶性クーラントと称する。   The coolant supply unit 2 includes a storage tank 15 containing the water-soluble coolant 5, supply means 10 for sending the water-soluble coolant 5 to the coolant purification unit 3, and a workpiece (not shown) of a processing machine (not shown). It is comprised from the circulation pump 16 provided with the return side circulation pipe 17 which supplies the water-soluble coolant 5, and the return side circulation pipe 18. As shown in FIG. The processing machine is a cutting machine or a grinding machine. The water-soluble coolant 5 is a water-soluble cutting fluid in the case of a cutting machine, and a water-soluble grinding fluid in the case of a grinding machine. Both the water-soluble cutting fluid and the water-soluble grinding fluid are collectively referred to as a water-soluble coolant.

供給手段10は、供給ポンプ11と、供給ポンプ11の吸込側および吐出側にそれぞれ配備される吸入管12と、供給管13と、電解槽120と貯留タンク15とを連通する排出管14とから構成される。   The supply means 10 includes a supply pump 11, a suction pipe 12 provided on the suction side and a discharge side of the supply pump 11, a supply pipe 13, and a discharge pipe 14 that communicates the electrolytic cell 120 and the storage tank 15. Composed.

クーラント浄化部3は、電気系統と機械系統とから構成される。電気系統は制御装置21(極性変更手段)と、直流電源22と、陰極板31、32、陽極板41と、各電極板31、32、41と直流電源22とをそれぞれ接続する電線23、24、25とから構成される。直流電源22は、電流が一定である定電流直流電源である。   The coolant purifying unit 3 includes an electric system and a mechanical system. The electric system includes a control device 21 (polarity changing means), a DC power source 22, cathode plates 31, 32, an anode plate 41, and electric wires 23, 24 connecting the electrode plates 31, 32, 41 and the DC power source 22, respectively. , 25. The DC power supply 22 is a constant current DC power supply with a constant current.

機械系統は、供給手段10により貯留タンク15の水溶性クーラント5が供給される電解槽120と、電解槽120内に設けられ陰極板31、32と陽極板41を固定する固定具130と、固定具130に設けられる回収手段100と、回収手段100の下側に設けられる排出手段50とから構成される。電解槽120に供給される水溶性クーラント5は、加工中、溶け込んだ陽イオンあるいは混入した金属微粒子や異物微粒子を多く含む。   The mechanical system includes an electrolytic bath 120 to which the water-soluble coolant 5 of the storage tank 15 is supplied by the supply means 10, a fixture 130 that is provided in the electrolytic bath 120 and fixes the cathode plates 31 and 32 and the anode plate 41. The collection unit 100 provided in the tool 130 and the discharge unit 50 provided below the collection unit 100 are configured. The water-soluble coolant 5 supplied to the electrolytic bath 120 contains a large amount of cations dissolved in the processing or mixed metal fine particles or foreign particles during processing.

固定具130は、略U字形状の絶縁材からなる。固定具130の底板131(仕切部材)は、電解槽120の底側に位置する沈殿部122と、沈殿部122の上側に位置し、陰極板31、32及び陽極板41を配備し、供給される水溶性クーラント5が流れる電解部121とに電解槽120を区画する。   The fixture 130 is made of a substantially U-shaped insulating material. The bottom plate 131 (partition member) of the fixture 130 is provided with a precipitation part 122 located on the bottom side of the electrolytic cell 120 and an upper side of the precipitation part 122, provided with cathode plates 31, 32 and an anode plate 41. The electrolytic cell 120 is partitioned into an electrolysis part 121 through which the water-soluble coolant 5 flows.

回収手段100は、通路132を備えた底板131と、通路132を開閉する弁110(開閉手段)と、沈殿部122とから構成される。弁110は、弁110に設けられるヒンジ111を支点に揺動回転することにより通路132が開閉される。   The collecting means 100 includes a bottom plate 131 having a passage 132, a valve 110 (opening / closing means) for opening and closing the passage 132, and a sedimentation unit 122. The valve 110 is opened and closed by swinging and rotating about a hinge 111 provided on the valve 110 as a fulcrum.

排出手段50は、沈殿部122の下端に設けた第1排出弁51と、第1排出弁51に接続され、第1排出弁51の下側に位置する中間溜部53と、中間溜部53に接続され、中間溜部53の下側に位置する第2排出弁52とから構成される。第2排出弁52の排出口52aの下方には、容器4が適時、配備される。   The discharge means 50 includes a first discharge valve 51 provided at the lower end of the precipitation unit 122, an intermediate reservoir 53 connected to the first discharge valve 51 and positioned below the first discharge valve 51, and an intermediate reservoir 53. And a second discharge valve 52 located on the lower side of the intermediate reservoir 53. Below the discharge port 52a of the second discharge valve 52, the container 4 is disposed in a timely manner.

陰極板31、32と陽極板41のそれぞれの下側辺は、底板131に設けた溝133に挿入される。陽極板41の両方の対向面41aと41bは、それぞれ陰極板31の対向面31aと、陰極板32の対向面32aに対向する。陰極板31、32と陽極板41には,それぞれ複数個の貫通孔33、34、42が設けられる。   The lower side of each of the cathode plates 31 and 32 and the anode plate 41 is inserted into a groove 133 provided in the bottom plate 131. Both facing surfaces 41 a and 41 b of the anode plate 41 face the facing surface 31 a of the cathode plate 31 and the facing surface 32 a of the cathode plate 32, respectively. The cathode plates 31, 32 and the anode plate 41 are provided with a plurality of through holes 33, 34, 42, respectively.

図2は、図1の陰極板31を矢印Bから視た部分拡大図である。図2に示すように陰極板31には、複数個の貫通孔33が全面に亘り略均等に設けられる。陰極板32および陽極板41も、陰極板31と同じようにそれぞれ貫通孔34(図1)、貫通孔42(図1)が全面に亘り略均等に設けられる。後述するように、貫通孔33、34、42の口径は、陰極板32および陽極板41の析出性能および吸着性能を確保し、陰極板31、32と陽極板41から剥離あるいは分離した物質による目詰まりしない大きさである。   FIG. 2 is a partially enlarged view of the cathode plate 31 of FIG. As shown in FIG. 2, the cathode plate 31 is provided with a plurality of through holes 33 substantially evenly over the entire surface. Similarly to the cathode plate 31, the cathode plate 32 and the anode plate 41 are also provided with the through holes 34 (FIG. 1) and the through holes 42 (FIG. 1) substantially uniformly over the entire surface. As will be described later, the diameters of the through holes 33, 34, 42 ensure the deposition performance and adsorption performance of the cathode plate 32 and the anode plate 41, so It is a size that does not clog.

図3は、図1の固定具130の斜視図である。図3に示すように固定具130は、略U字形状をなし、固定具130の下側の底板131と、底板13の両側から立上る側板134、135とを備える。   FIG. 3 is a perspective view of the fixture 130 of FIG. As shown in FIG. 3, the fixture 130 is substantially U-shaped, and includes a bottom plate 131 on the lower side of the fixture 130 and side plates 134 and 135 that rise from both sides of the bottom plate 13.

図4は、図1のA矢視図である。図4に示すように陰極板31、32と陽極板41の側辺は、それぞれ側板134に設けた溝136と、側板135に設けた溝137に装着され、固定される。前述したように陰極板31の対向面31aと陰極板32の対向面32aは、それぞれ陽極板41の対向面41aと対向面41bに対向する。   4 is a view taken in the direction of arrow A in FIG. As shown in FIG. 4, the sides of the cathode plates 31 and 32 and the anode plate 41 are mounted and fixed in grooves 136 provided in the side plate 134 and grooves 137 provided in the side plate 135, respectively. As described above, the facing surface 31a of the cathode plate 31 and the facing surface 32a of the cathode plate 32 face the facing surface 41a and the facing surface 41b of the anode plate 41, respectively.

側板134の外側の側面と側板135の外側の側面は、電解槽120の内面に篏合固定される。そして供給手段10(図1)により供給管13から供給される水溶性クーラン5は、側板134の内側の側面と、側板135の内側の側面との間の開口範囲Lに限定して流れる。即ち、水溶性クーラン5が、開口範囲Lに亘り、順次、側板134と側板135の間の流路138、陰極板31の貫通孔33(図1)、陰極板31と陽極板41との間隙に形成される間隙流路139、陽極板41の貫通孔42(図1)、陰極板32と陽極板41との間隙に形成される間隙流路140、側板134と側板135の間の流路141を通って、排出管14から排出される。   The outer side surface of the side plate 134 and the outer side surface of the side plate 135 are fixedly coupled to the inner surface of the electrolytic cell 120. The water-soluble coolant 5 supplied from the supply pipe 13 by the supply means 10 (FIG. 1) flows only in the opening range L between the inner side surface of the side plate 134 and the inner side surface of the side plate 135. That is, the water-soluble cooling water 5 extends over the opening range L in sequence, the flow path 138 between the side plate 134 and the side plate 135, the through hole 33 (FIG. 1) of the cathode plate 31, and the gap between the cathode plate 31 and the anode plate 41. The gap channel 139 formed in the through hole 42 (FIG. 1) of the anode plate 41, the gap channel 140 formed in the gap between the cathode plate 32 and the anode plate 41, and the channel between the side plate 134 and the side plate 135. 141, and is discharged from the discharge pipe 14.

尚、図1の実施形態の仕切部材である底板131は、側板134、135と一体となって固定具130を形成しているが、底板131と、側板134と、側板135とをそれぞれ別体にして底板131の上面に側板134と、側板135を配備しても良い。また、この場合、側板134と、側板135とを陰極板31、32および陽極板41の上側又は上方で横梁を介在し繋いでも良い。   The bottom plate 131, which is a partition member in the embodiment of FIG. 1, forms the fixture 130 integrally with the side plates 134 and 135. However, the bottom plate 131, the side plate 134, and the side plate 135 are separately provided. Alternatively, the side plate 134 and the side plate 135 may be provided on the upper surface of the bottom plate 131. In this case, the side plate 134 and the side plate 135 may be connected to each other above or above the cathode plates 31 and 32 and the anode plate 41 with a horizontal beam interposed therebetween.

また、水溶性クーラント5の略全流量を固定具130の開口範囲Lに限定して流すように略U字形状の固定具130の側板134、135の外側の側面を電解槽120の内面に篏合固定させているが、固定具130の側板134、135を設けず、固定具130の底板131だけにしても良い。この場合、電解槽120が絶縁材であれば、陰極板31、32の両側辺と陽極板41の両側辺を電解槽120の内周面に接するように配置する。そして電解槽120の水溶性クーラン5の液面より上で各電極板31、32、41を固定具で固定すれば良い。また電解槽120が導電材であれば、陰極板31、32の両側辺および陽極板41の両側辺と電解槽120の内周面の間に絶縁材を設ければ良い。また、底板131は、導電材であれば、各電極板31、32、41と底板131との間に絶縁材を設ければ良い。電解槽120が絶縁材であれば、各電極板31、32、41と底板131との間には絶縁材を設けなくて良い。いずれの場合も、水溶性クーラント5が各電極板31、32、41の両側辺および下側辺から通過しない構成にすれば良い。また各電極板31、32、41の両側辺および下側辺をそれぞれ電解槽120および底板131と電気的に絶縁すれば良い。   Further, the outer side surfaces of the side plates 134 and 135 of the substantially U-shaped fixture 130 are placed on the inner surface of the electrolytic cell 120 so that the substantially total flow rate of the water-soluble coolant 5 is limited to the opening range L of the fixture 130. However, the side plates 134 and 135 of the fixture 130 may not be provided, and only the bottom plate 131 of the fixture 130 may be provided. In this case, if the electrolytic cell 120 is an insulating material, it arrange | positions so that the both sides of the cathode plates 31 and 32 and the both sides of the anode plate 41 may touch the inner peripheral surface of the electrolytic cell 120. And what is necessary is just to fix each electrode plate 31, 32, 41 with a fixing tool above the liquid level of the water-soluble Coolant 5 of the electrolytic cell 120. FIG. Further, if the electrolytic cell 120 is a conductive material, an insulating material may be provided between both sides of the cathode plates 31 and 32 and both sides of the anode plate 41 and the inner peripheral surface of the electrolytic cell 120. Further, if the bottom plate 131 is a conductive material, an insulating material may be provided between each electrode plate 31, 32, 41 and the bottom plate 131. If the electrolytic cell 120 is an insulating material, it is not necessary to provide an insulating material between the electrode plates 31, 32, 41 and the bottom plate 131. In any case, the water-soluble coolant 5 may be configured not to pass from both sides and the lower side of each electrode plate 31, 32, 41. Moreover, what is necessary is just to electrically insulate both the side sides and lower side of each electrode plate 31, 32, 41 from the electrolytic cell 120 and the bottom plate 131, respectively.

また、制御装置21は、直流電源22の電流の流れ方向を変更する制御機能と、直流電源22をオン、オフする制御機能と、弁110を開閉する制御機能と、供給ポンプ11および循環ポンプ16を運転する制御機能とを備える。   The control device 21 also has a control function for changing the current flow direction of the DC power supply 22, a control function for turning the DC power supply 22 on and off, a control function for opening and closing the valve 110, the supply pump 11 and the circulation pump 16. And a control function for driving the vehicle.

また、図1の実施形態では、一枚の陽極板41の両方の対向面41a、41bに対し二枚の陰極板31、32の対向面31a、32aを対向配置しているが、一枚の陰極板の両方の対向面に対し二枚の陽極板の対向面を対向配置しても良い。   Further, in the embodiment of FIG. 1, the opposing surfaces 31 a and 32 a of the two cathode plates 31 and 32 are disposed so as to face both the opposing surfaces 41 a and 41 b of the single anode plate 41. You may arrange | position the opposing surface of two anode plates facing both opposing surfaces of a cathode plate.

次に、図1の本発明の実施形態の動作と効果について説明する。   Next, the operation and effect of the embodiment of the present invention shown in FIG. 1 will be described.

水溶性クーラント浄化装置1は、クーラント浄化部3で陽イオンあるいは金属微粒子や異物微粒子が除去され、浄化した水溶性クーラント5が排出管14を通って、貯留タンク15に戻る。そこから循環ポンプ16により、浄化された水溶性クーラント5は行き側循環パイプ17と通って切削加工機あるいは研削加工機などの稼動中の加工機(図示せず)の加工物(図示せず)に供給される。加工中に陽イオンあるいは金属微粒子や異物微粒子が水溶性クーラント5に溶け込み或は混入した溶性クーラント5は、戻り側循環パイプ18を通って、貯留タンク15に戻る。貯留タンク15に戻ったに陽イオンあるいは金属微粒子や異物微粒子が多く含まれる水溶性クーラント5は、供給手段10により供給管13から電解槽120に供給される。電解槽120に供給された陽イオンあるいは金属微粒子や異物微粒子を多く含む水溶性クーラント5は、クーラント浄化部3において浄化され、排出管14から排出され、貯留タンク15の循環ポンプ16の吸入側近傍に戻る。   In the water-soluble coolant purifying apparatus 1, cations, metal fine particles, and foreign particles are removed by the coolant purifying unit 3, and the purified water-soluble coolant 5 passes through the discharge pipe 14 and returns to the storage tank 15. From there, the water-soluble coolant 5 purified by the circulation pump 16 passes through the return-side circulation pipe 17 and is a workpiece (not shown) of a working machine (not shown) such as a cutting machine or a grinding machine. To be supplied. The soluble coolant 5 in which cations, metal particles or foreign particles are dissolved or mixed in the water-soluble coolant 5 during processing returns to the storage tank 15 through the return-side circulation pipe 18. After returning to the storage tank 15, the water-soluble coolant 5 containing a large amount of cations, metal fine particles and foreign particles is supplied from the supply pipe 13 to the electrolytic cell 120 by the supply means 10. The water-soluble coolant 5 containing a large amount of cations or metal particles and foreign particles supplied to the electrolyzer 120 is purified by the coolant purifying unit 3, discharged from the discharge pipe 14, and in the vicinity of the suction side of the circulation pump 16 of the storage tank 15. Return to.

クーラント浄化部3に供給された金属微粒子や異物微粒子を多く含む水溶性クーラント5は、クーラント浄化部3で、順次、付着工程、剥離工程と、沈殿工程の1サイクルの作動がなされ、浄化される。以下、各工程について説明する。   The water-soluble coolant 5 containing a large amount of fine metal particles and foreign particles supplied to the coolant purifying unit 3 is purified by the coolant purifying unit 3 by sequentially performing one cycle of an adhesion process, a peeling process, and a precipitation process. . Hereinafter, each step will be described.

(付着工程)
弁110を閉状態で直流電源22をオンにし、陽極板41から水溶性クーラント5を介在して陰極板31、32に所定時間、所定値の電流を流すと、電解槽120に供給された水溶性クーラント5は電解作用により、水溶性クーラント5に溶け込んでいる陽イオンが陰極板31、32に析出回収される。また、水溶性クーラント5に漂う金属微粒子や異物微粒子は、電界におけるクーロン力によって両電極板31、32と41に吸着回収される。
(Adhesion process)
When the DC power supply 22 is turned on with the valve 110 closed and a current of a predetermined value is passed from the anode plate 41 to the cathode plates 31 and 32 through the water-soluble coolant 5 for a predetermined time, the water solution supplied to the electrolytic cell 120 is supplied. The cationic coolant 5 precipitates and collects cations dissolved in the water-soluble coolant 5 on the cathode plates 31 and 32 by electrolysis. Further, the metal fine particles and the foreign particles floating in the water-soluble coolant 5 are adsorbed and collected on both electrode plates 31, 32 and 41 by the Coulomb force in the electric field.

(剥離工程)
付着工程の終了後、次に制御装置21により電流の流れ方向を換え、所定時間、通電すると共に弁110を開く。即ち、陰極板31、32と陽極板41の極性を反転させて反転前の陰極板31、32と陽極板41の表面に析出および吸着した物質のうち少なくともいずれか一つを剥離または分離させる。剥離または分離した物質は、重力により通路132を通過して沈殿部122に沈殿して行く。
(Peeling process)
After the adhering step, the control device 21 changes the direction of current flow, energizes for a predetermined time, and opens the valve 110. That is, the polarities of the cathode plates 31 and 32 and the anode plate 41 are reversed, and at least one of the substances deposited and adsorbed on the surfaces of the cathode plates 31 and 32 and the anode plate 41 before the inversion is separated or separated. The separated or separated material passes through the passage 132 by gravity and settles on the settling portion 122.

(沈殿工程)
弁110は開状態を維持し、制御装置21で直流電源22をオフにする。剥離または分離した物質は、回収手段110により継続して通路132を通過し沈殿部122に沈殿する。所定時間経過すると、電解部121で剥離または分離した物質は、電解部121から沈殿部122に移動し沈殿部122に回収されて沈殿工程が終了する。
(Precipitation process)
The valve 110 is kept open, and the DC power supply 22 is turned off by the control device 21. The separated or separated substance continues to pass through the passage 132 by the recovery means 110 and settles in the precipitation portion 122. When a predetermined time elapses, the substance peeled or separated by the electrolysis unit 121 moves from the electrolysis unit 121 to the precipitation unit 122 and is collected by the precipitation unit 122, thus completing the precipitation process.

このようにして、付着工程、剥離工程、沈殿工程は、水溶性クーラント5を浄化する1サイクルを形成し、サイクルが繰返される。   Thus, an adhesion process, a peeling process, and a precipitation process form one cycle which purifies water-soluble coolant 5, and a cycle is repeated.

尚、剥離工程では、弁100を開状態にすることが好ましいが、閉状態にしておいても良い。この場合、沈殿工程の時間が長くなる。   In the peeling process, the valve 100 is preferably opened, but may be closed. In this case, the time for the precipitation process becomes longer.

沈殿部122に沈殿した物質は、排出手段50により適時、排出される。即ち、第1排出弁51を開き、中間溜部53に重力で移動したあと、第1排出弁51を閉じる。次に第2排出弁52を開き排出口52aから容器4に排出される。その後、第2排出弁52を閉じる。   The substance that has settled in the precipitation part 122 is discharged by the discharge means 50 in a timely manner. That is, the first discharge valve 51 is opened, moved to the intermediate reservoir 53 by gravity, and then the first discharge valve 51 is closed. Next, the second discharge valve 52 is opened and discharged to the container 4 from the discharge port 52a. Thereafter, the second discharge valve 52 is closed.

以上から、従来技術の液攪拌装置よる処理後の液と未処理の液と混合し陽イオン濃度を均一にする必要はなく、陽イオンおよび金属微粒子や異物微粒子の含有率の低い水溶性クーラント5を電解槽120から排出し、切削加工機や研削加工機等の加工機に供給できる。また、陰極板31、32と陽極板41の少なくともいずれか一方の電極板の両面を電解作用の対向面に使い、この両面が他方の電極板の対向面に対向するように配置することで、陽イオンの析出と剥離、金属微粒子の吸着と分離が効率よく行われる。結果、水溶性クーラント5の性能を長期間維持する水溶性クーラント浄化装置1を提供できる。   From the above, it is not necessary to mix the liquid after the treatment by the liquid agitator of the prior art and the untreated liquid to make the cation concentration uniform, and the water-soluble coolant 5 having a low content of cations, metal fine particles, and foreign fine particles. Can be discharged from the electrolytic cell 120 and supplied to a processing machine such as a cutting machine or a grinding machine. Moreover, by using both surfaces of at least one of the electrode plates of the cathode plates 31 and 32 and the anode plate 41 as opposing surfaces of the electrolysis action and disposing the both surfaces so as to oppose the opposing surfaces of the other electrode plate, Cation deposition and separation, and metal fine particle adsorption and separation are performed efficiently. As a result, the water-soluble coolant purifying apparatus 1 that maintains the performance of the water-soluble coolant 5 for a long period of time can be provided.

また、前述したように回収手段100により電解槽120の沈殿部122に集め回収し、排出手段50により沈殿部122に回収した物質を適時、容器4に排出する。陰極板31、32と陽極板41の表面は、析出物、吸着物の付着物が除去され元の金属地金が露出するので、陰極板31、32の対向面31a、32aと、陽極板41の対向面41a、41bとが短絡することなく適正な間隔を維持できる。結果、新しい陰極板31、32、陽極板41に交換することなく長期間、電極板31、32、41を使用できる水溶性クーラント浄化装置1を提供できる。   Further, as described above, the substance collected and collected in the precipitation part 122 of the electrolytic cell 120 by the collection means 100 and the substance collected in the precipitation part 122 by the discharge means 50 are discharged into the container 4 at appropriate times. On the surfaces of the cathode plates 31 and 32 and the anode plate 41, deposits and adhering substances are removed and the original metal bullion is exposed, so that the opposing surfaces 31a and 32a of the cathode plates 31 and 32 and the anode plate 41 are exposed. An appropriate distance can be maintained without short-circuiting the opposing surfaces 41a and 41b. As a result, it is possible to provide the water-soluble coolant purifying apparatus 1 that can use the electrode plates 31, 32, 41 for a long period of time without replacing with new cathode plates 31, 32, and anode plates 41.

さらには、供給ポンプ11により電解槽120に供給される水溶性クーラント5の略全流量は、固定具130の開口範囲Lに限定して流す。溶性クーラン5は、開口範囲Lに亘り、順次、流路138、貫通孔33、間隙流路139、貫通孔42、間隙流路140、流路141を通って、排出管14から排出される。水溶性クーラント5は各電極板31、32、41の略全面に亘り、陽イオンおよび金属微粒子や異物微粒子の含有率の高い未処理の水溶性クーラント5だけを各電極板31、32、41に略均一に接触させることができる。結果、対向する陰極板31、32と陽極板41との間に流れる電流密度は均一になり効率よく陽イオンおよび金属微粒子や異物微粒子を析出回収、吸着回収できる。   Furthermore, the substantially total flow rate of the water-soluble coolant 5 supplied to the electrolytic cell 120 by the supply pump 11 is limited to the opening range L of the fixture 130. Soluble Couran 5 is discharged from the discharge pipe 14 through the flow path 138, the through hole 33, the gap flow path 139, the through hole 42, the gap flow path 140, and the flow path 141 in order over the opening range L. The water-soluble coolant 5 extends over substantially the entire surface of each electrode plate 31, 32, 41, and only the untreated water-soluble coolant 5 having a high content of cations, metal fine particles, and foreign particles is applied to each electrode plate 31, 32, 41. The contact can be made substantially uniformly. As a result, the current density flowing between the opposing cathode plates 31 and 32 and the anode plate 41 becomes uniform, so that cations, metal fine particles, and foreign particles can be efficiently collected and adsorbed.

また、一般的に水溶性クーラントを介在して対向する陰極板と陽極板との間で電解作用を作動させると、電流は電極板の角部に集中する。陰極板31、32と陽極板41は、析出および吸着の性能を確保し、析出および吸着した物質による目詰しない口径の複数個の貫通孔33、34、42を設け、貫通孔33、34、42をそれぞれ各電極板31、32、41の全面に略均等に分布させている。従って、各電極板31、32、41の全面に略均等(電極板全面を巨視的に見て)に電流が流れ、全面に亘り効率良く陽イオンあるいは金属微粒子や異物微粒子が析出および吸着される。貫通孔33、34、42の口径は小さ過ぎると目詰まりを起こし、大き過ぎるとぬれ淵長さが少なくなり析出回収、吸着回収の効率低下を招く。後述する水溶性クーラント5の流量も考慮して、貫通孔33、34、42の口径の直径は、2mm〜10mmとするのが適切な範囲である。好適には直径2mm〜5mmにすると良い。また、貫通孔33、34、42は円形であるが、例えば十字形状の孔など、同じ開口面積に対しぬれ淵長さの長い形状が好ましい。   In general, when an electrolytic action is activated between a cathode plate and an anode plate facing each other with a water-soluble coolant interposed therebetween, current is concentrated at the corners of the electrode plate. The cathode plates 31 and 32 and the anode plate 41 are provided with a plurality of through-holes 33, 34, and 42 having a diameter not clogged by the deposited and adsorbed substances, ensuring the performance of deposition and adsorption. 42 are distributed substantially evenly on the entire surfaces of the electrode plates 31, 32, 41, respectively. Therefore, a current flows substantially evenly over the entire surface of each of the electrode plates 31, 32, 41 (when the entire surface of the electrode plate is viewed macroscopically), and positive ions, metal fine particles, and foreign particles are efficiently deposited and adsorbed over the entire surface. . If the diameters of the through holes 33, 34, and 42 are too small, clogging occurs, and if they are too large, the length of the wetting wrinkles decreases and the efficiency of precipitation recovery and adsorption recovery is reduced. Considering the flow rate of the water-soluble coolant 5 described later, the appropriate diameter of the through holes 33, 34, 42 is 2 mm to 10 mm. The diameter is preferably 2 mm to 5 mm. The through holes 33, 34, and 42 are circular, but a shape having a long wetting length with respect to the same opening area, such as a cross-shaped hole, is preferable.

また、水溶性クーラント5の電気伝導率は水溶性クーラント5に含まれる陽イオンの濃度や界面活性剤の濃度および種類によって刻々と変化する。水溶性クーラント5を介在した陰極板31、32と陽極板41との通電条件(電圧値と電流値)も刻々と変化し、また陰極板31、32と陽極板41との間隔によっても通電条件は変わる。従って、陰極板31、32と陽極板41の対向面は、析出および吸着の性能を確保し、析出および吸着した物質による陰極板31、32と陽極板41が短絡しない、所定の間隔で設置することによって、通電条件が一定の範囲に安定する。結果、直流電源22を大型化することなく、適正な容量の直流電源で析出回収と吸着回収の安定した水溶性クーラント浄化装置1を提供できる。   Moreover, the electrical conductivity of the water-soluble coolant 5 changes every moment depending on the concentration of the cation contained in the water-soluble coolant 5 and the concentration and type of the surfactant. The energization conditions (voltage value and current value) between the cathode plates 31 and 32 and the anode plate 41 with the water-soluble coolant 5 being changed constantly, and the energization conditions also depend on the distance between the cathode plates 31 and 32 and the anode plate 41. Will change. Accordingly, the opposing surfaces of the cathode plates 31 and 32 and the anode plate 41 are installed at predetermined intervals so as to ensure the performance of deposition and adsorption, and the cathode plates 31 and 32 and the anode plate 41 due to the deposited and adsorbed substances are not short-circuited. As a result, the energization conditions are stabilized within a certain range. As a result, it is possible to provide the water-soluble coolant purifying apparatus 1 with stable deposition recovery and adsorption recovery with a DC power source having an appropriate capacity without increasing the size of the DC power source 22.

析出および吸着の性能確保、且電極間の電気的短絡防止する電極間の間隙は、5mmから30mmの範囲であり、通電条件を限定することで直流電源22の容量は適正な容量になる。より好ましくは10mm〜20mmに設定すると良い。   The gap between the electrodes for ensuring the performance of deposition and adsorption and preventing the electrical short circuit between the electrodes is in the range of 5 mm to 30 mm, and the capacity of the DC power source 22 becomes an appropriate capacity by limiting the energization conditions. More preferably, it may be set to 10 mm to 20 mm.

また、電解作用の強さあるいはクーロン力は電流値に比例する。直流電源22は定電流直流電源であるので、水溶性クーラント5の陽イオンの濃度には依存せず、陰極板31、32と陽極板41の間に一定電流が流れ、析出回収と吸着回収の安定した水溶性クーラント浄化装置1を提供できる。尚、陰極板31、32と陽極板41の間の電圧値は、直流電源2の容量に合わせて限界値以上に上昇しないよう制御装置21で制御される。   Further, the strength of electrolysis or Coulomb force is proportional to the current value. Since the DC power source 22 is a constant current DC power source, a constant current flows between the cathode plates 31 and 32 and the anode plate 41 without depending on the cation concentration of the water-soluble coolant 5, and the precipitation recovery and adsorption recovery are performed. A stable water-soluble coolant purifying apparatus 1 can be provided. The voltage value between the cathode plates 31 and 32 and the anode plate 41 is controlled by the control device 21 so as not to exceed the limit value in accordance with the capacity of the DC power supply 2.

前述の各工程の設定条件について説明する。   The setting conditions of each process described above will be described.

付着工程の時間が長すぎると、析出物あるいは吸着物が多量に陰極板31、32と陽極板41に堆積する。堆積状態によっては電流値が、所定より低くなり析出あるいは吸着の効率が低下したり、陰極板31、32と陽極板41の間が電気的に短絡する。短過ぎると多くの陽イオンあるいは金属微粒子や異物微粒子を析出あるいは吸着できなくなり、水溶性クーラント浄化装置1が有効に活用されない。そこで現実の使用状況や水溶性クーラント5の特性から総合的に判断すると付着工程の時間は3分間〜120分間が好適な範囲である。   If the time for the attaching process is too long, a large amount of precipitates or adsorbed substances are deposited on the cathode plates 31 and 32 and the anode plate 41. Depending on the deposition state, the current value becomes lower than a predetermined value, the efficiency of precipitation or adsorption decreases, or the cathode plates 31 and 32 and the anode plate 41 are electrically short-circuited. If it is too short, it becomes impossible to deposit or adsorb many cations, metal particles or foreign particles, and the water-soluble coolant purifying apparatus 1 cannot be effectively used. Therefore, considering the actual use situation and the characteristics of the water-soluble coolant 5, the adhering process time is preferably in the range of 3 minutes to 120 minutes.

剥離工程の時間は、長過ぎると析出物、吸着物がすでに各電極板31、32、41から剥離、分離が終了しているにも拘らず通電することになり、無駄に電力を消費する。短過ぎると析出物、吸着物を多量に剥離あるいは分離できず、各電極板31、32、41の金属地金が露出せず均一な通電状態が出来なくなる。さらには、次のサイクル以降、各電極板31、32、41の付着量が増大して、陰極板31、32と陽極板41が電気的に短絡する。そこで現実の使用状況や水溶性クーラント5の特性から総合的に判断すると剥離工程の時間は3分間〜90分間が好適な範囲である。   If the time of the peeling process is too long, the precipitate and the adsorbed material are energized even though the separation and separation have already been completed from the electrode plates 31, 32, 41, and power is consumed wastefully. If it is too short, a large amount of precipitates and adsorbents cannot be peeled or separated, and the metal ingots of the electrode plates 31, 32, 41 are not exposed and a uniform energized state cannot be achieved. Furthermore, after the next cycle, the adhesion amount of each electrode plate 31, 32, 41 increases, and the cathode plates 31, 32 and the anode plate 41 are electrically short-circuited. Therefore, considering the actual use situation and the characteristics of the water-soluble coolant 5 as a whole, the preferable time for the peeling process is 3 minutes to 90 minutes.

沈殿工程の時間は、長過ぎると剥離、分離した物質が既に電解槽120の沈殿部122に沈殿し終わっているにも拘らず放置することになり時間を無駄に使う。短過ぎると剥離、分離した物質が、電解部121から沈殿部122へ移動中、次のサイクルの付着工程に移り、電解部121に残存している物質が再び各電極板31、32、41に析出あるいは吸着されることになる。結果、析出あるいは吸着の効率が低下する。そこで現実の使用状況や水溶性クーラント5の特性から総合的に判断すると沈殿工程の時間は3分間〜120分間が好適な範囲である。   If the time of the precipitation process is too long, the material separated and separated will be left in spite of having already precipitated in the precipitation part 122 of the electrolytic cell 120, and time is wasted. If it is too short, the separated and separated substance moves from the electrolysis unit 121 to the precipitation unit 122, and then moves to the attaching process of the next cycle, and the substance remaining in the electrolysis unit 121 is again applied to the electrode plates 31, 32, 41. It will be deposited or adsorbed. As a result, the efficiency of precipitation or adsorption decreases. Therefore, considering the actual use situation and the characteristics of the water-soluble coolant 5 comprehensively, the preferable time for the precipitation process is 3 minutes to 120 minutes.

次に電流値について説明する。エマルジョンタイプの水溶性クーラントでは、水溶性クーラントに陽イオンが混入すると、該陽イオンによって切削油と界面活性剤の結合が破壊され、油粒は粗大になり浮力が増し、油分は上層に、水分は下層に分離されて水溶性クーラントの本来の機能が失われる。水溶性クーラント5の本来の機能を維持するため、陰極板31、32と陽極板41に通電するが、電流が大き過ぎると強い電解作用により陽イオンの場合と同様に切削油と界面活性剤の結合が破壊され、水溶性クーラント5の本来の機能が失われる。電流が少な過ぎると本来必要な電解作用がなされず、水溶性クーラント5に混入した陽イオンを除去できない。そこで現実の使用状況や水溶性クーラント5の特性から総合的に判断すると、付着工程と剥離工程における陰極板31、32と陽極板41に通電する電流は0.2mA/cm〜2.5mA/cmが好適な範囲である。 Next, the current value will be described. In the emulsion-type water-soluble coolant, when cations are mixed in the water-soluble coolant, the cations break the bond between the cutting oil and the surfactant, the oil particles become coarse and the buoyancy increases, and the oil content is absorbed into the upper layer. Is separated into lower layers and the original function of the water-soluble coolant is lost. In order to maintain the original function of the water-soluble coolant 5, the cathode plates 31, 32 and the anode plate 41 are energized. The bond is broken and the original function of the water-soluble coolant 5 is lost. If the current is too small, the necessary electrolytic action is not performed and the cations mixed in the water-soluble coolant 5 cannot be removed. Therefore, comprehensively judging from the actual use situation and the characteristics of the water-soluble coolant 5, the current applied to the cathode plates 31, 32 and the anode plate 41 in the adhesion process and the peeling process is 0.2 mA / cm 2 to 2.5 mA / cm 2 is a preferred range.

水溶性クーラント5の流量は以下の通りである。水溶性クーラント5に混入した陽イオンを電解作用により除去する場合、電解作用の強さは通電する電気量(電流×時間)に比例する。長時間澱んだ状態で同じ水溶性クーラント5に通電し過ぎると多量の電気量によって切削油と界面活性剤の結合が破壊される。従って、供給流量を調整して長時間、同じ水溶性クーラント5に通電しないようにすることで、切削油と界面活性剤の破壊されることなく結合が維持される。   The flow rate of the water-soluble coolant 5 is as follows. When the cation mixed in the water-soluble coolant 5 is removed by electrolytic action, the strength of the electrolytic action is proportional to the amount of electricity (current × time) to be energized. If the same water-soluble coolant 5 is excessively energized while stagnating for a long time, the bond between the cutting oil and the surfactant is broken by a large amount of electricity. Accordingly, by adjusting the supply flow rate so that the same water-soluble coolant 5 is not energized for a long time, the coupling is maintained without breaking the cutting oil and the surfactant.

そこで現実の使用状況や水溶性クーラント5の特性から総合的に判断すると、付着工程において陰極板31、32と陽極板41に流す水溶性クーラント5の流量は毎分80リットル/m以上が好適である。適正な流量にすることにより、水溶性クーラント5の長寿命化が可能になる。結果、更液頻度が減少し、水溶性クーラント浄化装置1の稼働率の向上と液廃棄の頻度の低減が出来る。また、使用済みの廃液を社外の専門メーカで特殊な廃棄処理する頻度が減少し廃棄処理が安価になる。 Therefore, judging from the actual use situation and the characteristics of the water-soluble coolant 5, the flow rate of the water-soluble coolant 5 flowing through the cathode plates 31, 32 and the anode plate 41 in the adhesion process is preferably 80 liters / m 2 or more per minute. It is. The life of the water-soluble coolant 5 can be extended by setting an appropriate flow rate. As a result, the frequency of liquid renewal is reduced, and the operation rate of the water-soluble coolant purifying apparatus 1 can be improved and the frequency of liquid disposal can be reduced. In addition, the frequency of special disposal processing of used waste liquid by a specialized manufacturer outside the company decreases, and the disposal processing becomes inexpensive.

また、加工物に供給される水溶性クーラント5に含まれる金属微粒子や異物を除去できるので、加工品質が向上する。循環ポンプ16や加工機の摺動部の摩耗を低減できる。さらには、切削油と界面活性剤の長期間、結合が維持されるので、特殊な界面活性剤を使わずに済み、水溶性クーラント原液が安価になる。   Moreover, since metal fine particles and foreign substances contained in the water-soluble coolant 5 supplied to the workpiece can be removed, the processing quality is improved. Wear of the circulating pump 16 and the sliding part of the processing machine can be reduced. Furthermore, since the bonding between the cutting oil and the surfactant is maintained for a long period of time, it is not necessary to use a special surfactant, and the water-soluble coolant stock solution is inexpensive.

尚、図1では、陽極板41と陰極板31、陽極板41と陰極板32は直流電源22に対し電気的に並列に配線されているが、陽極板41、陰極板31、陰極板32の順次に電流を流す直流電源22に対し電気的に直列に配線しても良い。並列の場合は、電流が直列の場合の略2倍になるが、電圧は直列の場合の略半分になる。直流電源2の電流容量および電圧容量から並列接続、直列接続を決めれば良い。   In FIG. 1, the anode plate 41 and the cathode plate 31, and the anode plate 41 and the cathode plate 32 are electrically connected in parallel to the DC power supply 22. You may wire in series with respect to the direct-current power supply 22 which flows an electric current sequentially. In the parallel case, the current is approximately twice that in the series, but the voltage is approximately half that in the series. A parallel connection or a series connection may be determined from the current capacity and voltage capacity of the DC power supply 2.

(検証試験結果)
以下、本発明の実施形態に基づいてエマルジョンタイプの溶性クーラント中の陽イオンを除去した検証試験結果を説明する。図1〜図3に示される構成の水溶性クーラント浄化装置1を使用し、陰極板31、32と陽極板41にそれぞれ直径3mmの貫通孔33、33、42を規則的に配置した。試験時間は付着工程の通電時間を30分間と、剥離工程の通電時間を15分間と、沈殿工程の時間を30分間とする3つの工程を1サイクルとし、該サイクルを8サイクル、即ち70分間×8サイクル=560分間(9時間20分)連続稼動した。付着工程の陰極板31、32と陽極板41に通過させる水溶性クーラント5の流量を毎分100リットル/mとした。また実験の精度を上げるため、被試験溶液は純水を用いた。エマルジョンタイプの水溶性クーラントの原液がAタイプと、エマルジョンタイプのBタイプをそれぞれの純水に規定量投入したのち、表1および表2に示される各陽イオンを溶解させ、水溶性クーラントの原液Aタイプの陽イオン溶解液と、水溶性クーラントの原液Bタイプの陽イオン溶解液を作り、前述の試験条件の基で試験を実施した。
(Verification test results)
Hereinafter, a verification test result obtained by removing cations in the emulsion-type soluble coolant according to the embodiment of the present invention will be described. The water-soluble coolant purifying apparatus 1 having the configuration shown in FIGS. 1 to 3 was used, and through holes 33, 33, and 42 having a diameter of 3 mm were regularly arranged in the cathode plates 31, 32 and the anode plate 41, respectively. The test time was 30 minutes for the energizing process for the adhesion process, 15 minutes for the energizing time for the peeling process, and 30 minutes for the precipitating process. 8 cycles = continuous operation for 560 minutes (9 hours and 20 minutes). The flow rate of the water-soluble coolant 5 passing through the cathode plates 31 and 32 and the anode plate 41 in the attaching process was set to 100 liters / m 2 per minute. In order to increase the accuracy of the experiment, pure water was used as the solution to be tested. Emulsion type water-soluble coolant stock solution A type and emulsion type B type are added to each pure water, and then each cation shown in Table 1 and Table 2 is dissolved to obtain a stock solution of water-soluble coolant. A type cation solution and a water-soluble coolant stock solution B type cation solution were prepared, and the test was conducted based on the above test conditions.

表1は、エマルジョンタイプの水溶性クーラント原液がAタイプの検証試験結果を示す。また、表2は、エマルジョンタイプの水溶性クーラントの原液がBタイプの検証試験結果を示す。水溶性クーラント原液Aタイプでは、マグネシウムイオンと亜鉛イオンが良く低減され、アルミニウムイオン僅か低減されている。水溶性クーラント原液Bタイプでは、マグネシウムイオンと亜鉛イオンが良く低減され、アルミニウムイオンも比較的良く低減されている。以上により、エマルジョンタイプの水溶性クーラントを使い、本発明の効果が検証された。   Table 1 shows the verification test results of the emulsion type water-soluble coolant stock solution of type A. Table 2 shows the verification test result of the emulsion type water-soluble coolant B type. In the water-soluble coolant stock solution A type, magnesium ions and zinc ions are well reduced, and aluminum ions are slightly reduced. In the water-soluble coolant stock solution B type, magnesium ions and zinc ions are well reduced, and aluminum ions are also relatively well reduced. As described above, the effect of the present invention was verified using an emulsion type water-soluble coolant.

尚、マグネシウムイオン濃度は下水汚泥分析方法7.14.2(ICP法)またはJISK0102の51.3により計量し、またアルミニウムイオン濃度は下水汚泥分析方法7.1.2(ICP法)またはJISK0102の58により計量し、また亜鉛イオン濃度は下水汚泥分析方法7.1426.21ICP法)またはJISK0102の53により計量した。   The magnesium ion concentration is measured by sewage sludge analysis method 7.14.2 (ICP method) or 51.3 of JISK0102, and the aluminum ion concentration is determined by sewage sludge analysis method 7.1.2 (ICP method) or JISK0102. 58, and the zinc ion concentration was measured according to sewage sludge analysis method 7.1426.21 ICP method) or 53 of JISK0102.

水溶性クーラント浄化装置の説明図である。It is explanatory drawing of a water-soluble coolant purification apparatus. 図1の陰極板を矢印Bから見た部分拡大図である。FIG. 2 is a partially enlarged view of the cathode plate of FIG. 図1の固定具の斜視図である。It is a perspective view of the fixing tool of FIG. 図1のA矢視図である。It is A arrow directional view of FIG.

符号の説明Explanation of symbols

1 水溶性クーラント浄化装置
5 水溶性クーラント
10 供給手段
21 制御装置(極性変更手段)
22 直流電源
31、32 陰極板
31a、32a、41a、41b 対向面
33、34、42 貫通孔
41 陽極板
100 回収手段
110 弁(開閉手段)
120 電解槽
121 電解部
122 沈殿部
130 固定具
131 底板(仕切部材)
132 通路
DESCRIPTION OF SYMBOLS 1 Water-soluble coolant purification apparatus 5 Water-soluble coolant 10 Supply means 21 Control apparatus (polarity change means)
22 DC power source 31, 32 Cathode plate 31 a, 32 a, 41 a, 41 b Opposing surface 33, 34, 42 Through hole 41 Anode plate 100 Recovery means 110 Valve (opening / closing means)
DESCRIPTION OF SYMBOLS 120 Electrolysis tank 121 Electrolysis part 122 Precipitation part 130 Fixing tool 131 Bottom plate (partition member)
132 Passage

Claims (6)

水溶性クーラントに溶け込んだ陽イオンおよび混入した金属微粒子の少なくとも一つを除去する水溶性クーラント浄化装置であって、
前記水溶性クーラントに浸漬され、且つ直流電源の一方の極に接続される陰極板及び他方の極に接続される陽極板と、
前記陰極板と前記陽極板とを互いに対向して設置する固定具と、
供給手段によって供給される前記水溶性クーラントが、前記陰極板に設けた貫通孔と前記陽極板に設けた貫通孔とを通って排出される電解槽と、
前記陰極板と前記陽極板の極性を反転させる極性変更手段と、
前記陰極板と前記陽極板の表面に析出および吸着した物質の少なくともいずれか一つを剥離または分離させて前記電解槽の底側に沈殿させる回収手段と、を備える、ことを特徴とする水溶性クーラント浄化装置。
A water-soluble coolant purification device that removes at least one of cations and mixed metal fine particles dissolved in a water-soluble coolant,
A cathode plate immersed in the water-soluble coolant and connected to one pole of a DC power source and an anode plate connected to the other pole;
A fixture for installing the cathode plate and the anode plate opposite to each other;
An electrolytic cell in which the water-soluble coolant supplied by the supply means is discharged through a through hole provided in the cathode plate and a through hole provided in the anode plate;
Polarity changing means for inverting the polarity of the cathode plate and the anode plate;
And a recovery means for separating or separating at least one of the cathode plate and the substance deposited and adsorbed on the surface of the anode plate and precipitating it on the bottom side of the electrolytic cell. Coolant purification device.
前記回収手段は、前記陰極板及び前記陽極板を配備した前記水溶性クーラントが流れる電解部の下側に位置する沈殿部と、
前記電解槽を前記電解部と前記沈殿部とに区画し、前記物質が通過する通路を有する仕切部材と、
前記通路を開閉する開閉手段と、を備えることを特徴する請求項1に記載の水溶性クーラント浄化装置。
The collection means is a sedimentation part located below the electrolysis part through which the water-soluble coolant in which the cathode plate and the anode plate are arranged,
A partition member that divides the electrolytic cell into the electrolytic section and the precipitation section, and has a passage through which the substance passes;
The water-soluble coolant purifying device according to claim 1, further comprising an opening / closing means for opening / closing the passage.
前記陰極板と前記陽極板の少なくともいずれか一方の電極板の対向面が他方の電極板の対向面に対向して配置される、ことを特徴する請求項1又は2のいずれかに記載の水溶性クーラント浄化装置。 3. The water-soluble solution according to claim 1, wherein a facing surface of at least one of the cathode plate and the anode plate is disposed to face a facing surface of the other electrode plate. Coolant purification device. 前記陰極板と前記陽極板は、析出性能および吸着性能を確保し、前記物質による目詰まりしない大きさの複数個の前記貫通孔が設けられる、ことを特徴する請求項1乃至3のいずれか一項に記載の水溶性クーラント浄化装置。 The said negative electrode plate and the said positive electrode plate ensure the precipitation performance and adsorption | suction performance, and the said some through-hole of the magnitude | size which is not clogged with the said substance is provided, The any one of Claim 1 thru | or 3 characterized by the above-mentioned. The water-soluble coolant purifying apparatus according to the item. 前記陰極板と前記陽極板は、析出性能および吸着性能を確保し、前記物質による前記陰極板と前記陽極板とが短絡しない間隔で設置される、ことを特徴する請求項1乃至4のいずれか一項に記載の水溶性クーラント浄化装置。 The said cathode plate and the said anode plate ensure precipitation performance and adsorption | suction performance, and are installed in the space | interval which does not short-circuit the said cathode plate and the said anode plate by the said substance. The water-soluble coolant purifying apparatus according to one item. 前記直流電源は、定電流直流電源である、ことを特徴する請求項1乃至5のいずれか一項に記載の水溶性クーラント浄化装置。 The water-soluble coolant purifying apparatus according to claim 1, wherein the DC power source is a constant current DC power source.
JP2008006969A 2008-01-16 2008-01-16 Water-soluble coolant cleaning device Pending JP2009166176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008006969A JP2009166176A (en) 2008-01-16 2008-01-16 Water-soluble coolant cleaning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008006969A JP2009166176A (en) 2008-01-16 2008-01-16 Water-soluble coolant cleaning device

Publications (1)

Publication Number Publication Date
JP2009166176A true JP2009166176A (en) 2009-07-30

Family

ID=40967953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008006969A Pending JP2009166176A (en) 2008-01-16 2008-01-16 Water-soluble coolant cleaning device

Country Status (1)

Country Link
JP (1) JP2009166176A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011173190A (en) * 2010-02-23 2011-09-08 Iwate Univ Machining system
JP2016150298A (en) * 2015-02-17 2016-08-22 三菱重工環境・化学エンジニアリング株式会社 Electrolysis system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011173190A (en) * 2010-02-23 2011-09-08 Iwate Univ Machining system
JP2016150298A (en) * 2015-02-17 2016-08-22 三菱重工環境・化学エンジニアリング株式会社 Electrolysis system
KR101910262B1 (en) * 2015-02-17 2018-10-19 미츠비시 쥬코 칸쿄 카가쿠 엔지니어링 가부시키가이샤 Electrolysis system

Similar Documents

Publication Publication Date Title
US5928493A (en) Process and apparatus for electrocoagulative treatment of industrial waste water
US20050183947A1 (en) Electrolytic cell for removal of material from a solution
US6294061B1 (en) Process and apparatus for electrocoagulative treatment of industrial waste water
US5558755A (en) Method for removing contaminants from an aqueous medium
US20050279626A1 (en) Wastewater treatment equipment
WO2008018316A1 (en) Water softening method and water softener
US4105534A (en) Apparatus for removing impurities from electrolyte solutions
CN101367571B (en) Electric coagulation reactor and process for treating waste water
JP2009166176A (en) Water-soluble coolant cleaning device
CN113087263A (en) Zero release sewage treatment system
JP2000334462A (en) Packed bed type electrochemical water treating device and method therefor
KR102020795B1 (en) Apparatus of electro contaminant removal
KR101884400B1 (en) Non-ferrous metal electrolytic smelting system equipped with sludge treatment device under the electrolytic cell
KR101442143B1 (en) Equipment for electrolytic withdrawal of metal
AU2020378058A1 (en) Accelerated settlement of flocs after electrocoagulation/electrochemical process using ballasted flocculation
TWI342299B (en)
KR102021313B1 (en) Contaminant removal system for water
JP3469134B2 (en) Apparatus and method for removing fine metal particles in emulsion by electrochemical method
JP2738890B2 (en) Oil-water separator using electrolysis
JP2018034119A (en) Separation device for separating and recovering specific chemical substance from contaminated liquid contaminated by specific chemical substance
JP4420754B2 (en) Wastewater treatment by electrolysis
JP2006175360A (en) Method and device for controlling ph of solution
CN117966247A (en) Electrolytic polishing solution purifying device
JP2004066010A (en) Electrolysis type turbid water treatment apparatus
JPS61161190A (en) Device for flocculating impurity in liquid