WO2016132478A1 - 超音波探触子及びこれを接続する超音波診断装置 - Google Patents
超音波探触子及びこれを接続する超音波診断装置 Download PDFInfo
- Publication number
- WO2016132478A1 WO2016132478A1 PCT/JP2015/054433 JP2015054433W WO2016132478A1 WO 2016132478 A1 WO2016132478 A1 WO 2016132478A1 JP 2015054433 W JP2015054433 W JP 2015054433W WO 2016132478 A1 WO2016132478 A1 WO 2016132478A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circuit
- element channel
- switch
- array
- delay
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/13—Tomography
- A61B8/14—Echo-tomography
Definitions
- the present invention relates to an ultrasonic probe and an ultrasonic diagnostic apparatus, and more particularly to a delay circuit built in the ultrasonic probe.
- the ultrasonic diagnostic apparatus is composed of a probe and an apparatus main body, and images an internal structure of a living body using ultrasonic waves.
- the ultrasonic probe probe
- the ultrasonic probe includes a plurality of ultrasonic transducers (electroacoustic transducers), and transmits and receives ultrasonic signals.
- the ultrasonic transducer generates an ultrasonic wave by applying a voltage, and transmits the ultrasonic wave. When an ultrasonic wave is received, an electric signal is generated.
- An ultrasonic probe is usually arranged in an array in which transducers are individually divided into a number of channels. At the time of imaging, an ultrasonic beam focused on a certain point is created by appropriately giving a delay time to the transmission / reception signals of these channels.
- FIG. 14A shows a model for explaining the outline of transmission beam forming in the ultrasonic probe.
- the transducers 141 in the central vertical column among the transducers arranged in an array form in the ultrasonic probe 140 are shown as models. It shows a state in which an input signal 145 having a different delay time 143 is applied to each transducer 141 during transmission.
- a delay circuit (not shown) in the ultrasonic probe 140 gives a different delay time 143 to each channel of the ultrasonic transducer 141, thereby forming an ultrasonic beam 146 focused on the focus point 142. .
- FIG. 14B shows a model for explaining an outline of reception beam forming in the ultrasonic probe.
- FIG. 14B shows a state where the echo signal 147 is received by each transducer 141 in one vertical column.
- the reception time of the echo signal received by each channel of each transducer 141 differs depending on the distance from the focus point 142.
- a delay circuit (not shown) in the ultrasonic probe 140 gives a delay time 143 corresponding to the propagation time difference to the received signals of the respective channels to align the phases.
- Each signal having the same phase is added by an adder 144 in the ultrasonic probe, so that the received signal can be extracted as a signal focused on one point.
- a circuit that performs such processing is called a phasing circuit or the like, and when it includes up to addition processing, it is called a phasing addition circuit.
- the ultrasonic probe moves the focus point 142 by changing the delay time, and acquires the signal of the entire imaging region.
- the obtained signal is displayed as an image on the display of the ultrasonic diagnostic apparatus through various processes.
- the 2D array probe for ultrasonic diagnostic equipment consists of a 2D array transducer with multiple transducers arranged in a two-dimensional array in the probe and a 2D array IC ⁇ ⁇ ⁇ (Integrated Circuit) that drives the 2D array transducer. Composed.
- the 2D array probe employs a transducer array of several thousand to 10,000 elements in order to increase the resolution of the image of the ultrasonic diagnostic apparatus.
- the apparatus main body is usually provided with a transmission beamformer and a reception beamformer of several tens to 200 channels, and an ultrasonic probe (probe) of the ultrasonic diagnostic apparatus is provided by the user.
- the cable connecting the ultrasonic probe (probe) and the apparatus main body is composed of at most 200 wires.
- a 2D array IC that enables transmission and reception of all transducer arrays from about 200 signal terminals is essential.
- the 2D array IC controls the drive timing of each transducer and manipulates the transmission / reception direction of the ultrasonic beam.
- the individual transducers of the 2D array transducer and the transmission / reception circuit of the 2D array IC (hereinafter referred to as element channel circuit or ECh circuit) are connected on a one-to-one basis. Further, each wiring of the subchannel (hereinafter referred to as subchannel or SCh) in which M ECh circuits (M is a positive integer) are bundled and the transmission / reception signal input / output cable are connected one-to-one. The meaning of “bundle” will be explained later.
- the ECh circuit In order to focus the ultrasonic beam transmitted / received from each transducer of the 2D array transducer on any in-vivo diagnostic site, it is assumed that the in-vivo velocity of the ultrasound is uniform, the focus point The ECh circuit must provide a delay time that compensates for the propagation time difference proportional to the difference in distance between the 2D array transducer and each transducer. An oscillator closer to the focal point gives a larger delay, and a farther oscillator gives a smaller delay time.
- the resolution of the ultrasonic tomogram generated by processing the signal received from this 2D array probe depends on the size of one transducer, and for example, a size of 200 to 300 ⁇ m ⁇ is required. It also depends on the delay time resolution that can be set by the delay circuit of the ECh circuit. The viewing angle of the ultrasonic tomogram depends on the maximum delay time that can be set by the delay circuit of the ECh circuit.
- Patent Document 1 discloses a delay circuit in which filters are connected in cascade, a switch is inserted between each filter stage, and the total group delay time between the input unit and the switch selected by the mounted system is a delay time.
- Each filter can have a variable group delay time by a variable capacitance diode. A desired delay time is obtained by combining these.
- Patent Document 2 discloses a configuration that cycles through a finite number of sample and hold circuits.
- the phase difference between the write side and the read side is the delay time. By making the phase difference between the write side and the read side variable, it is possible to obtain a desired delay time.
- the delay circuit mounted on the 2D array probe must simultaneously realize a resolution of 1 to several tens of times of the ultrasonic period and a maximum delay time to achieve a wide viewing angle. is there.
- the 2D array probe requires one independent delay circuit for each transducer array of thousands to 10,000 elements.
- the prior art has the following problems. (1) Since it is necessary to secure the number of stages determined by the maximum delay time ⁇ delay time resolution in a small element circuit, if the delay time resolution is reduced and the resolution is increased, the maximum delay time cannot be secured in terms of area. The viewing angle is narrowed. (2) On the contrary, if the maximum delay time is secured and the delay time resolution is increased, the resolution deteriorates.
- An object of the present invention is to solve the above-described problems and provide a delay circuit suitable for mounting on a 2D array probe.
- the present invention comprises a 2D array transducer in which a plurality of transducers are arranged in a two-dimensional array of an ultrasound probe, and a 2D array IC that drives the 2D array transducer,
- the 2D array IC is configured by arranging a plurality of element channel circuits connected in a one-to-one relationship with the respective vibrators in a matrix, and each element channel circuit includes a capacitor, a write switch, and a read switch.
- the sample and hold circuit is configured to have a delay circuit configured by providing N stages.
- the plurality of element channel circuits arranged in a matrix are provided in each element channel circuit arranged in the same row.
- a control signal supplied from the write timing control circuit to the write switch and a control supplied from the read timing control circuit to the read switch is generated in the delay circuit of each element channel circuit in accordance with the timing difference from the signal, and the control for switching each sample-and-hold circuit having an N-stage configuration for each clock cycle is performed in a loop according to each control signal. Configured.
- each element channel circuit reads out the charges of the capacitors arranged in the N stages, and then completely removes the remaining charges.
- a discharge switch for discharging is installed in parallel with the readout switch, and after reading the charge of the capacitor of each stage, the discharge switch is turned on and discharged before charging the charge to the corresponding capacitor at the next timing. Configured to do.
- the 2D array IC is configured such that the plurality of element channel circuits are arranged in a matrix of horizontal K columns and vertical L rows.
- a group of A ⁇ B element channel circuits is formed as a single subchannel in a matrix of horizontal A columns and vertical B rows, and the subchannel is configured as the A ⁇ B.
- An adder for adding and outputting the outputs of the individual element channel circuits is provided.
- the input is not a voltage but a current
- the current is charged / discharged to the capacitor connected to the write-side SW that is turned on according to the timing of the write-side SW control signal.
- the read-side switch that is turned on reads the output signal of the current output amplifier connected to the write-side SW with a delay, reads it at the timing of the read-side SW control signal, and outputs it to the addition with the same phase To do.
- a transmission signal is input from the read-side switch and a signal is output from the write-side switch, giving an independent signal delay for each ECh and transmitting the desired signal delay performance with significantly less capacity Can provide.
- the present invention can increase the number of stages determined by the maximum delay time of the delay circuit / delay time resolution while suppressing the circuit size, improving the resolution and providing a 2D array probe with a wide viewing angle.
- FIG. 5 is a diagram illustrating a configuration example of a delay circuit in a reception mode in which a total of four element channel circuits ECh are bundled in two rows and two columns.
- FIG. 5 is a diagram showing simulation conditions in which a simulation is performed in which CLOCK is set to 40 MHz and a sine wave having the same amplitude is applied from the transducers TD0 to TD3 in FIG. It is a figure which shows the result of the phasing addition signal process at the time of implementing the simulation shown in FIG. In the delay circuit of FIG.
- FIG. 1 is a diagram for explaining connection of control circuits (Write timing controller 41, Read timing controller 42) for controlling>.
- 5 is a diagram illustrating an example of a timing chart of a control circuit of the delay circuit in FIG. 4 in Embodiment 1.
- FIG. 2 is a flowchart for explaining the operation of the delay circuit of FIG. 1 in the first embodiment.
- FIG. 6 is a diagram illustrating a configuration example of a delay circuit in a transmission mode in which a total of four element channel circuits ECh are bundled in two rows and two columns.
- Example 2 it is a figure which shows the example of the timing chart of the control circuit of the delay circuit of FIG. 9 is a flowchart for explaining the operation of the delay circuit of FIG. 7 in Embodiment 2.
- FIG. 11 is a diagram for explaining a configuration of a delay circuit according to a third embodiment in which the reception circuit according to the first embodiment and the transmission circuit according to the second embodiment are integrated and a total of four transmission / reception circuits ECh0 to 3 are bundled in two rows and two columns.
- FIG. 11 is a diagram for explaining a configuration of a delay circuit according to a third embodiment in which the reception circuit according to the first embodiment and the transmission circuit according to the second embodiment are integrated and a total of four transmission / reception circuits ECh0 to 3 are bundled in two rows and two columns.
- FIG. 6 is a diagram illustrating a configuration example in which delay circuits are equally arranged in each element channel circuit ECh0 to ECh0.
- FIG. 6 is a diagram for explaining SCh0 configured as a generalized SCh of Examples 1 to 4 into ECh groups of horizontal K columns and vertical L rows.
- FIG. 1 is a diagram for explaining an outline of an ultrasonic diagnostic apparatus in which the 2D array ICs of Examples 1 to 5 of the present invention are mounted on an ultrasonic probe.
- (b) It is a figure which shows the model for demonstrating the outline
- FIG. 1 shows an embodiment of the configuration of a delay circuit in a reception mode according to the present invention in which a total of four element channel circuits ECh in 2 rows and 2 columns are bundled, and each ECh output is phased and added to form one SCh.
- ECh element channel circuit
- ECh0 to 3 are element channel circuits
- TD0 to 3 are transducers
- gm0 to 3 are current output amplifiers
- W0 ⁇ 0> to W0 ⁇ 7> (when N 8)
- R0 ⁇ 0> to R0 ⁇ 7> (when N 8)
- C0 (0) to C0 (7) (when N 8)
- 100 is an adder
- 110 is a cable
- 120 is an amplifier is there.
- the present invention is characterized in that the delay circuit is realized by configuring the sample and hold circuit including a capacitor, a write switch, and a read switch in multiple stages (N stages).
- FIG. 4 shows connections of control circuits (Write timing controller 41, Read timing controller 42) that control>.
- ECh0 and ECh2 share the write switch control signals W0 ⁇ 0> to W0 ⁇ 7> from the Write timing controller 41.
- ECh1 and ECh3 share the write switch control signals W1 ⁇ 0> to W1 ⁇ 7> from the Write timing controller 41.
- ECh0 and ECh1 share the reed switch control signals R0 ⁇ 0> to R0 ⁇ 7> from the Read timing controller 42.
- ECh2 and ECh3 share the reed switch control signals R1 ⁇ 0> to R1 ⁇ 7> from the Read timing controller 42.
- the 2D array probe is equipped with a transducer array of thousands to 10,000 elements, and each transducer and ECh circuit are connected on a one-to-one basis. Since it is difficult to wire a control signal, the shared mounting is performed in this way.
- FIG. 5 A timing chart for controlling the delay circuit shown in FIGS. 1 and 4 is shown in FIG. 5, and the operation of the delay circuit in FIG. 1 is shown in a flowchart in FIG. 6 in accordance with the timing chart in FIG.
- each ECh circuit sets a delay time that compensates for the propagation time difference proportional to the difference in distance from the focal point to the individual transducers TD0 to TD3 of the 2D array transducer. In other words, a larger delay is given to a transducer closer to the focal point, and a small delay time is given to a far transducer.
- ECh0 has a period of two clocks because the time difference between the time when the write switch W0 ⁇ a> is turned on and the time when the read switch R0 ⁇ a> of the same index a is turned on is a delay time.
- ECh1 has one clock cycle because the time difference between the time when the write switch W1 ⁇ b> is turned on and the time when the read switch R0 ⁇ b> of the same index b is turned on is a delay time.
- ECh2 has a cycle of 4 clocks because the time difference between the time when the write switch W0 ⁇ c> is turned on and the time when the read switch R1 ⁇ c> with the same index c is turned on is the delay time.
- ECh3 has a cycle of 3 clocks because the time difference between the time when the write switch W1 ⁇ d> is turned on and the time when the read switch R1 ⁇ d> with the same index d is turned on is a delay time. It can be seen that different delay times can be set for each ECh even if the write switch control signal and the read switch control signal are shared as shown in FIG.
- the current output amplifiers gm0 to gm3 have the same configuration and characteristics, and the light switches W0 ⁇ 0> to W0 ⁇ 7> and W1 ⁇ 0> to W1 ⁇ 7> have the same configuration and characteristics.
- Reed switches R0 ⁇ 0> to R0 ⁇ 7> and R1 ⁇ 0> to R1 ⁇ 7> have the same configuration and characteristics, respectively, and capacitors C0 (0) to C0 (7), C1 (0) to C1 (7) have the same capacitance.
- the ECh0-3 side is mounted in the 2D array probe, and the amplifier 120 side from the cable 110 is mounted on the ultrasonic diagnostic apparatus body.
- the ultrasonic signal received by the transducer TD0 is converted into a voltage and input to the current output amplifier gm0.
- the ultrasonic signals received by the transducers TD1 to TD3 are converted into voltages and input to the current output amplifiers gm1 to gm3.
- the input voltage change is converted into a current change, and the current change is output.
- the output current of the current output amplifier gm0 is charged to the capacitor C0 (a) with the same index a as the light switch W0 ⁇ a> turned on by the light switch control signal, and at the same time, the output current of the current output amplifier gm1 is the light switch
- the capacitor C0 (b) having the same index b as the light switch W1 ⁇ b> turned on by the control signal is charged.
- data is simultaneously written from the current output amplifiers gm0 and gm1.
- the output current of the current output amplifier gm2 is charged to the capacitor C1 (c) of the same index c as the light switch W0 ⁇ c> turned on by the light switch control signal, and at the same time, the output current of the current output amplifier gm3 is The capacitor C1 (d) having the same index d as the light switch W1 ⁇ d> turned on by the switch control signal is charged.
- data is simultaneously written from the current output amplifiers gm2 and gm3.
- each element channel circuit ECh0 to 3 flushes all the capacity in the circuit in the first step (in the element channel circuit of FIG. 1, ECh0 and 2 execute and ECh1 and 3 Is skipped because no capacity is allocated). Subsequently, each of the element channel circuits ECh0 to ECh0-3 repeats the step of sequentially turning on / off each light switch at the cycle of the CLOCK time according to the timing chart of FIG.
- the arrows indicate that the output currents of the current output amplifiers gm0 to 3 are charged in the capacitors C0 (•) and C1 (•) while the light switches are on. .
- the output currents of a plurality of element channel circuits are charged and added to the respective capacitors C0 (•), C1 (•), and after a delay time is given according to the timing chart, the reed switch is turned on and each capacitor C0 ( •), C1 (•) is discharged.
- the reed switch has two switches with the same index and is turned on at the same time. One reed switch is used to discharge the capacitors C0 (•) and C1 (•) with the same index. The reed switch is used to completely flush the capacitors C0 (•) and C1 (•) discharged before one clock cycle.
- the capacity C0 (e) of the same index e as the reed switch R0 ⁇ e> turned on by the reed switch control signal is turned on by the output of ECh0 + the output of ECh1, and (2) turned on by the reed switch control signal.
- the capacity C1 (f) having the same index f as that of the reed switch R1 ⁇ f> is input to the adder 100 as the output of ECh2 + output of ECh3 and added.
- the capacity C0 (e) is an arbitrary timing larger than e (e is a remainder modulo 8 in this case, so for example, if ⁇ value greater than e '' is 8, it is interpreted as 0, but for convenience of explanation. It is discharged as above).
- the capacity C1 (d) is an arbitrary timing greater than d (d is a remainder modulo 8 in this case, for example, if ⁇ a value greater than d '' is 8, it is interpreted as 0, but for convenience of explanation. Discharged with a value greater than d). The purpose of these discharges is to prevent the charges already charged by gm0 to gm3 from remaining in C0 (•) and C1 (•) and accumulation of phasing addition errors.
- the output signal of the adder 100 is input to the amplifier 120 mounted on the ultrasonic diagnostic apparatus side via the cable 110.
- the reflected ultrasonic beam passes through the propagation time difference proportional to the distance from the focal point to the individual transducers TD0 to 3 of the 2D array transducer.
- an independent delay time is set for ECh0 to 3, and proportional to the difference in distance from the focal point to the transducers TD0 to TD3 It is possible to compensate for the propagation time difference and add them with the same phase and send them to the ultrasonic diagnostic apparatus.
- CLOCK was set to 40 MHz, and a simulation was performed in which sine waves with the same amplitude were applied from the transducers TD0 to TD3 in FIG. As shown in FIG. 2, the conditions of this simulation are a sine wave, a delay time of 50 ns for the transducer TD0, a delay time of 75 ns for the transducer TD1, no delay (0 ns delay time) for the transducer TD2, A delay time of 25 ns is given to the resonator TD3. At this time, according to the timing setting in FIG.
- the delay time given to ECh0 to ECh3 is the largest for ECh2, 100ns (for 4 clocks), ECh3 for 75ns (for 3 clocks), ECh0 for 50ns ((for 2 clocks), ECh1 is 25 ns (for one clock), and the delay circuit outputs all have the same sine wave phase in Fig. 2. Also, the delay circuit outputs "Sum of ECh0 output and ECh1 output” and "ECh2 and ECh3" in Fig. 1 The sum of the outputs of the output signal has the same amplitude and the same phase, and the output of the adder is twice that. The simulation result is shown in Fig. 3. As shown in Fig. 3, the phasing addition signal processing is performed without any problem. Recognize.
- a transmission signal is branched and inputted from the ultrasonic diagnostic apparatus main body to a total of four element channel circuits ECh in two rows and two columns bundled in one SCh, and a desired signal is transmitted from each ECh to the signal.
- 1 shows a configuration of a delay circuit in a transmission mode of the present invention that gives and outputs a delay.
- ECh0 to 3 are element channels
- TD0 to 3 are vibrators
- HPA0 to 3 are high voltage output amplifiers
- W1 ⁇ 0> to W1 ⁇ 7> are light switches
- R0 ⁇ 0> to R0 ⁇ 7> and R1 ⁇ 0> to R1 ⁇ 7> are reed switches (reception switches shown in FIG. 1).
- C0 (0) to C0 (7), C1 (0) to C1 (7) are capacitors
- 110 is a cable
- 121 is an amplifier.
- FIG. 8 shows a timing chart for controlling the delay circuit of FIG. 7 and the control circuit of FIG. 4, and the operation of the delay circuit of FIG. 7 is shown in the flowchart of FIG. 9 according to the timing chart of FIG. Similar to FIG. 5, write switches W0 ⁇ 0> to W0 ⁇ 7>, W1 ⁇ 0> to W1 ⁇ 7>, reed switches R0 ⁇ 0> to R0 ⁇ 7>, R1 ⁇ 0> to R1 ⁇ in FIG. 7> is on at high level and off at low level.
- ECh0 has a cycle of two clocks because the time difference between the time when the read switch R0 ⁇ a> is turned on and the time when the write switch W0 ⁇ a> of the same index a is turned on is a delay time.
- ECh1 has a cycle of 4 clocks because the time difference between the time when the read switch R0 ⁇ b> is turned on and the time when the write switch W1 ⁇ b> with the same index b is turned on is a delay time.
- ECh2 has one clock cycle because the time difference between the time when the read switch R1 ⁇ c> is turned on and the time when the write switch W0 ⁇ c> with the same index c is turned on is the delay time.
- ECh3 has a period of 3 clocks because the time difference between the time when the read switch R1 ⁇ d> is turned on and the time when the write switch W1 ⁇ d> with the same index d is turned on is a delay time. It can be seen that even when the write switch control signal and the read switch control signal are shared as shown in FIG. 4, different delay times can be set for each ECh as in the first embodiment.
- the high voltage output amplifiers HPA0 to HPA3 have the same configuration and characteristics, and the light switches W0 ⁇ 0> to W0 ⁇ 7> and W1 ⁇ 0> to W1 ⁇ 7> have the same configuration, and Reed switches R0 ⁇ 0> to R0 ⁇ 7> and R1 ⁇ 0> to R1 ⁇ 7> are transistors with the same configuration and characteristics, and capacitors C0 (0) to C0 (7), C1 (0) to C1 (7) have the same capacitance.
- the ECh0-3 side is mounted in the 2D array probe, and the amplifier 121 side from the cable 110 is mounted in the ultrasonic diagnostic apparatus main body.
- the signal transmitted from the amplifier 121 is distributed and input to ECh0 to 3 via the cable 110.
- the signal input to the element channel circuit ECh0 is charged to the capacitor C0 (e) having the same index e as the reed switch R0 ⁇ e> turned on by the reed switch control signal.
- the signal input to the element channel circuit ECh2 is charged to the capacitor C1 (f) having the same index f as the reed switch R1 ⁇ f> turned on by the reed switch control signal.
- each element channel circuit ECh0-3 flushes all the capacity in the circuit in the first step (in the element channel circuit of FIG. 7, ECh0,2 executes and ECh1,3 Is skipped because no capacity is allocated). Subsequently, each of the element channel circuits ECh0 to ECh0-3 repeats a step of sequentially turning on / off each of the reed switches at a cycle of the CLOCK time according to the timing chart of FIG.
- arrows indicate that the signals transmitted from the amplifier 121 are charged in the capacitors C0 (•) and C1 (•) while the reed switches are on.
- Each capacitor C0 (•), C1 (•) is given a delay time according to the timing chart, and then the light switch is turned on to discharge each capacitor C0 (•), C1 (•) with an arrow. Show.
- the propagation time difference proportional to the difference in distance from the individual transducers TD0 to 3 of the 2D array transducer to this focal point was compensated within each ECh. HPA0-3 need to output signals.
- an independent delay time is set for ECh0 to 3
- the propagation time difference proportional to the difference in distance from the transducers TD0 to TD3 to the focal point is set as the delay time.
- the ultrasonic beam can be focused at this focal point.
- the 2D array probe of the present invention is operated by setting a suitable timing chart in the control circuit (Write timing controller 41, Read timing controller 42) every time the position of the focal point is changed.
- the input is not a voltage but a current
- the current is charged / discharged to the capacitor connected to the write-side SW that is turned on according to the timing of the write-side SW control signal.
- the read-side switch that is turned on reads the output signal of the current output amplifier connected to the write-side SW with a delay, reads it at the timing of the read-side SW control signal, and outputs it to the addition with the same phase To do.
- a transmission signal is input from the read-side switch and a signal is output from the write-side switch, giving an independent signal delay for each ECh and transmitting the desired signal delay performance with significantly less capacity Can provide.
- the connection of the control circuits (Write timing controller 41, Read timing controller 42) for controlling> is the same as in the first and second embodiments and is shown in FIG.
- Timing charts at the time of reception and transmission are the same as those in FIGS. 5 and 8 and the flowcharts in FIGS.
- SW0 to 3 are off when ECh0 to 3 are in transmission mode and on respectively in reception mode. This is because the current output amplifiers gm0 to gm3 are composed of low breakdown voltage transistors so that they are not destroyed when high voltage amplitude signals are output from the high voltage output amplifiers HPA0 to HPA3.
- the switch 300 is connected to the TX terminal side for transmission and to the RX terminal side for reception.
- the switch 320 is provided for the same purpose as the transmission / reception change-over switches SW0 to SW3 for the purpose of protecting the amplifier 120 composed of a low breakdown voltage transistor.
- FIG. 11 shows an embodiment realized with a small variation. Unlike FIGS. 1, 7, and 10 of the first to third embodiments, FIG. 11 of the fourth embodiment has the following four items. (1) Mount the reed switches R0 ⁇ 0> to R0 ⁇ 7> on ECh1. (2) Mount the reed switches R1 ⁇ 0> to R1 ⁇ 7> on ECh3. (3) Mount the capacitors C0 (0) / 2 to C0 (7) / 2, which are half the capacitances in FIGS. (4) Capacitances C1 (0) / 2 to C1 (7) / 2 which are half of the electrostatic capacities in FIGS. 1, 7, and 10 are mounted on ECh2 and ECh3.
- ECh0 and ECh2 are different from ECh1 and ECh3, but in FIG. 11, ECh0 to ECh3 can be realized by the same circuit.
- Mounting on an integrated circuit such as CMOS (Complementary Metal-Oxide Semiconductor) or BiCMOS (Bipolar Complementary Metal-Oxide Semiconductor) can be realized with less variation if the same circuits are arranged adjacent to each other.
- CMOS Complementary Metal-Oxide Semiconductor
- BiCMOS Bipolar Complementary Metal-Oxide Semiconductor
- FIG. 12 shows the configuration of the ECh group of horizontal K columns and vertical L rows, which is a generalization of the first to fourth embodiments described as one SCh by bundling a total of four transmission / reception circuits ECh in two rows and two columns.
- ECh (0,0) to ECh (K-1, L-1) are element channel circuits.
- a 2D array IC is composed of K ⁇ L ECh groups of horizontal K columns and vertical L rows.
- One ACh is formed by bundling A ⁇ B ECh groups in horizontal A column and vertical B row.
- the lower right A column and the vertical B row A ⁇ B ECh group of the ECh group in FIG. 12 are SCh0, and the same horizontal A column and vertical B row A ⁇ B ECh group are bundled.
- K ⁇ A and L ⁇ B are not divisible, SChs composed of different numbers of ECh groups are placed on the left and right ends, upper and lower ends, etc., or unused ECh groups are used as dummy.
- the capacity mounted on each ECh in FIG. 11 of the fourth embodiment is arranged in the horizontal direction in the same row as the capacity mounted on the ECh in FIGS. 1, 7, and 10 of the first to third embodiments.
- the capacity of each ECh is the same as the total capacity arranged together on one ECh, the total capacity is divided equally, or a capacity between them is possible. That is, (1) ECh0 and ECh1 have capacitances from about half of the capacitance in FIGS. 1, 7, and 10 to the same capacitance as in FIGS. 1, 7, and 10 ⁇ C0 (0) / 2 to C0 (7) / 2 ⁇ To ⁇ C0 (0) to C0 (7) ⁇ (2) From ECH2 and ECh3, about half of the capacitance in FIGS.
- ECh (0,1) to ECh (A-1,1) the electrostatic capacity is about 1 / A of the total capacity arranged on one ECh as in Examples 1 to 3.
- ECh (0, B-1) to ECh (A-1, B-1) have a capacitance 1 / of the total capacity arranged on one ECh as in Examples 1 to 3.
- Approximate light switch groups of different ECh groups constituting one SCh W 0 ⁇ 0> to W 0 ⁇ N-1>, W 1 ⁇ 0> to W 1 ⁇ N-1>, ..., W A- If a capacitor as small as 1 ⁇ 0> to W A-1 ⁇ N-1> (A) is mounted in each ECh, a 2D array IC with little variation can be obtained.
- FIG. 13 shows an outline of an ultrasonic diagnostic apparatus equipped with the 2D array ICs of Examples 1 to 5 of the present invention.
- the 2D array ICs of Examples 1 to 5 correspond to 1100 and 1101.
- the device 90 has two connector boxes 30 and 31, and two 2D array probes 10 and 11 are connected via the cables 20 and 21, but the number is not limited to two. Further, a conventional 1D array probe or the like can be connected to the connector boxes 30 and 31.
- the apparatus 90 can be freely moved on the floor surface by casters 1000 and 1001. In terms of circuitry, the 2D array probe 10 and the 2D array probe 11 are switched and used by the probe selector 40 and the probe changeover switch 311.
- 2D array ICs 1100 and 1101 are built in the 2D array probes 10 and 11, respectively.
- a 2D array transducer (not shown) is connected to the surface on which the external terminal connection portion of the 2D array IC 1100 is mounted. As described above, a transducer of thousands to 10,000 elements is mounted in an array on the 2D array probe.
- the 2D array transducer is equipped with a matching layer 200 that matches the acoustic impedance of the 2D array transducer and the living body and an acoustic lens 210 that converges the ultrasonic beam so that ultrasonic waves can be efficiently transmitted and received.
- a 2D array IC, a matching layer 201, and an acoustic lens 211 are mounted on the 2D array IC 1101.
- the amplifiers 120 and 121 and the switch 320 operate in the same manner as described in the first to fifth embodiments.
- the signal processing circuit 60 is a logic circuit, and inputs the signal of the amplifier 120 as a digital signal via the analog-digital converter 54 and performs signal processing.
- the signal processed signal is input to the amplifier 121 via the digital-analog converter 51, and the signal is sent to the 2D array probes 10 and 11 via the probe selector 40, the connector boxes 30 and 31, and the cables 20 and 21. Send.
- the apparatus 90 has various diagnostic modes, and the diagnostic mode is switched from the operation panel 70. Diagnostic modes include B (Brightness), PW (Pulsed Wave Doppler), CFM (Color Flow Mapping), and STCW (Steerable CW Doppler) modes.
- B mode is a mode that displays the received amplitude intensity of the ultrasonic waves reflected from the tissue in association with the brightness
- PW mode is a mode in which the ultrasonic waves are repeatedly transmitted toward a certain depth and the signal reflected from this part is repeated.
- CFM is also called color Doppler, and is a mode to visualize the blood flow rate by determining the autocorrelation of the received signal for each ultrasonic transmission.
- the STCW mode is also a mode for measuring blood flow velocity, which is suitable for fast blood flow velocity measurement.
- PW mode the blood flow rate at a specific position is known and can be displayed superimposed on the B-mode image.
- CFM mode the average velocity of the position at many points on the ultrasonic reception beam is known, and it is used to detect backflow.
- the signal processing circuit 60 processes the signal from the analog-digital converter 51 and obtains diagnostic images in the various modes described above. This image is displayed on the display 80.
- ECh0 to 3 ECh (0,0) to ECh (K-1, L-1) Element channel circuit (transmission / reception circuit) TD0-3 vibrator gm0-3 Current output amplifier HPA0 ⁇ 3 High voltage output amplifier SW0 to 3 switch W0 ⁇ 0> to W0 ⁇ 7>, W1 ⁇ 0> to W1 ⁇ 7>
- Light switch R0 ⁇ 0> to R0 ⁇ 7>, R1 ⁇ 0> to R1 ⁇ 7> Reed switch C0 (0) to C0 (7), C1 (0) to C1 (7) capacity 10, 11 2D array probe 20, 21 cable 30, 31 Connector box 40 Probe selector 41 Write timing controller 42 Read timing controller 51 Digital-to-analog converter 54 Analog to digital converter 60
- Signal processing circuit 70 Operation panel 80 displays 90 equipment 100 adder 110 cable 120 and 121 are amplifiers 140 Ultrasonic probe 141 ultrasonic transducer 142 Focus point 143 Delay time 144 Adder 145 Input signal 146 Ultrasonic beam 147 Echo signal 200, 201
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
超音波探触子を、2次元アレイ状に複数の振動子を配置した2Dアレイ振動子と、前記2Dアレイ振動子を駆動する2DアレイICとを備え、前記2DアレイICは、前記各振動子と1対1で接続される複数の素子チャネル回路がマトリクス状に配置されて構成され、前記各素子チャネル回路は、容量、書込みスイッチ、読出しスイッチから構成されるサンプルアンドホールド回路をN段設けて構成される遅延回路を有するように構成した。
Description
本発明は、超音波探触子と超音波診断装置に関し、特に超音波探触子に内蔵する遅延回路に関するものである。
超音波診断装置は、探触子と装置本体から構成され、超音波を用いて生体等の内部構造の画像化を行うものである。超音波探触子(プローブ)には、複数の超音波振動子(電気音響変換素子)が内蔵されており、超音波信号の送受信を行う。超音波振動子は、電圧を印加することにより超音波を発生させ、その超音波を送信する。また、超音波を受信すると電気信号を生成する。
超音波探触子は、通常、振動子が個々に多数のチャネルに区切られており、アレイ化されている。撮像する際には、これらの各チャンネルの送受信信号に適宜遅延時間を与えることで、ある点にフォーカスされた超音波ビームを作り出す。
図14(a)は、超音波探触子における送信ビームフォーミングの概要を説明するためのモデルを示す。図14(a)では、超音波探触子140内にアレイ状に配置されている振動子のうち、中央縦1列の振動子141のみをモデル化して示している。送信時において、各振動子141に各々異なる遅延時間143を付与した入力信号145を印加している様子を示している。
超音波探触子140内の遅延回路(図示していない)が、超音波振動子141の各チャネルに異なる遅延時間143を付与することにより、フォーカス点142に集束した超音波ビーム146を形成する。
超音波探触子140内の遅延回路(図示していない)が、超音波振動子141の各チャネルに異なる遅延時間143を付与することにより、フォーカス点142に集束した超音波ビーム146を形成する。
図14(b)は、超音波探触子における受信ビームフォーミングの概要を説明するためのモデルを示す。図14(b)では、縦1列の各振動子141においてエコー信号147を受信している様子が示されている。受信時において、各振動子141の各チャネルで受信するエコー信号は、フォーカス点142からの距離によって受信時間が異なる。超音波探触子140内の遅延回路(図示していない)が、各チャネルの受信信号に、伝搬時間差に応じた遅延時間143を与えて位相をそろえる。位相をそろえた各々の信号を、超音波探触子内の加算器144が加算することにより、受信信号は一点にフォーカスされた信号として取り出せる。このような処理を行う回路を整相回路などと呼び、加算処理まで含めた場合、整相加算回路と呼ばれる。
超音波探触子は、遅延時間を変えることでフォーカス点142を移動させ、撮像領域全体の信号を取得する。得られた信号は、各種処理を経て、超音波診断装置のディスプレイ上に画像として表示される。
超音波診断装置向け2Dアレイ探触子は、探触子内で2次元アレイ状に複数の振動子を配置した2Dアレイ振動子と、2Dアレイ振動子を駆動する2DアレイIC (Integrated Circuit)から構成される。2Dアレイ探触子には、超音波診断装置の画像の分解能を高めるため、数千から1万素子の振動子アレイが採用される。これに対して、装置本体には、通常、数10チャネル~200チャネルの送信ビームフォーマおよび受信ビームフォーマが備えらえており、また、超音波診断装置の超音波探触子(プローブ)をユーザが容易に可動させられるためには、超音波探触子(プローブ)と装置本体とを繋ぐケーブルは、高々200本の配線で構成されていることが望ましい。そのためには、約200本の信号端子から全ての振動子アレイの送受信を可能とする2DアレイICが必須である。2DアレイICは、各振動子の駆動タイミングを制御し、超音波ビームの送受信方向を操作する。
2Dアレイ振動子の個々の振動子と2DアレイICの送受信回路(以下、素子チャネル回路或いはECh回路と記す)は1対1で接続する。また、ECh回路M個(Mは正の整数)を束ねたサブチャネル(以下、サブチャネル或いはSChと記す)と送受信信号入出力ケーブルの各配線は1対1で接続する。「束ねる」の意味は後で説明する。
2Dアレイ振動子の個々の振動子から送受信される超音波ビームを任意の生体内診断部位に合焦するためには、超音波の生体内速度が均一であるとすると、合焦(フォーカス)点と2Dアレイ振動子の個々の振動子までの距離の差異に比例した伝搬時間差を補償する遅延時間をECh回路は付与しなければならない。合焦点に近い振動子ほど大きな遅延を与え、遠い振動子には小さな遅延時間を与える。
受信時には1つのSCh内の全てのECh回路出力信号を加算する。これを整相加算と呼ぶ。この加算信号をケーブルの1つの配線から超音波診断装置に出力する。送信時は超音波診断装置から送信された信号を1つのSCh内の全てのECh回路に分岐し、各ECh回路で信号に遅延を与え、各振動子から出力する。これが、「束ねる」の意味である。
この2Dアレイ探触子から受信された信号を処理し生成した超音波断層像の分解能は振動子1個の寸法に依存し、例えば200~300μm□の寸法が求められる。また、ECh回路の遅延回路が設定できる遅延時間分解能にも依存する。超音波断層像の視野角は、ECh回路の遅延回路が設定できる最大遅延時間に依存する。
遅延回路の実現手段として、特許文献1、特許文献2の回路が開示されている。
特許文献1にはフィルタを縦続接続し、各フィルタ段間にスイッチを入れ、その入力部と搭載システムが選択したスイッチ間のトータルの群遅延時間を遅延時間とする遅延回路が開示されている。各フィルタは可変容量ダイオードにより群遅延時間を可変にすることができる。これらの組み合わせにより所望の遅延時間を得る。
特許文献1にはフィルタを縦続接続し、各フィルタ段間にスイッチを入れ、その入力部と搭載システムが選択したスイッチ間のトータルの群遅延時間を遅延時間とする遅延回路が開示されている。各フィルタは可変容量ダイオードにより群遅延時間を可変にすることができる。これらの組み合わせにより所望の遅延時間を得る。
特許文献2には、有限個数のサンプルアンドホールド回路を巡回する構成が開示されている。ライト側とリード側の位相差が遅延時間となる。ライト側とリード側の位相差を可変にすることにより所望の遅延時間を得ることを可能としている。
2Dアレイ探触子に搭載する遅延回路は、超音波の周期の数分の1~数十分の1の遅延時間分解能と、広い視野角を実現するための最大遅延時間を同時に実現する必要がある。2Dアレイ探触子には数千から1万素子の振動子アレイ一つ一つにそれぞれ一つの独立な遅延回路が必要である。しかしながら、従来技術には次のような問題点があった。
(1) 最大遅延時間÷遅延時間分解能で決まる段数分を小さな素子回路内にそれぞれ確保することが必要なため、遅延時間分解能を小さくし分解能をあげると最大遅延時間が面積的に確保不能となり、視野角が狭くなる。
(2) その逆に最大遅延時間を確保し、遅延時間分解能を大きくすると分解能が悪くなる。
(1) 最大遅延時間÷遅延時間分解能で決まる段数分を小さな素子回路内にそれぞれ確保することが必要なため、遅延時間分解能を小さくし分解能をあげると最大遅延時間が面積的に確保不能となり、視野角が狭くなる。
(2) その逆に最大遅延時間を確保し、遅延時間分解能を大きくすると分解能が悪くなる。
本発明の目的は、上述した課題を解決し、2Dアレイ探触子への搭載に適した遅延回路を提供することにある。
上記課題を解決するために本発明では、超音波探触子を2次元アレイ状に複数の振動子を配置した2Dアレイ振動子と、前記2Dアレイ振動子を駆動する2DアレイICとを備え、前記2DアレイICは、前記各振動子と1対1で接続される複数の素子チャネル回路がマトリクス状に配置されて構成され、前記各素子チャネル回路は、容量、書込みスイッチ、読出しスイッチから構成されるサンプルアンドホールド回路をN段設けて構成される遅延回路を有するように構成した。
また、上記課題を解決するために本発明では、前記超音波探触子において、前記マトリクス状に配置された複数の素子チャネル回路に対して、同じ行に配置された各素子チャネル回路内に設けられた各読出しスイッチへ共通の制御信号を供給する読出しタイミング制御回路と、同じ列に配置された各素子チャネル回路内に設けられた各書込みスイッチへ共通の制御信号を供給する書込みタイミング制御回路とを更に備えるように構成した。
また、上記課題を解決するために本発明では、前記超音波探触子において、前記書込みタイミング制御回路が前記書込みスイッチへ供給する制御信号と、前記読出しタイミング制御回路が前記読出しスイッチへ供給する制御信号とのタイミング差に従って各素子チャネル回路の遅延回路に遅延時間を生成し、前記各制御信号に従って、N段の構成の各サンプルアンドホールド回路を1クロック周期毎に切り替える制御をループ状に行うように構成した。
また、上記課題を解決するために本発明では、前記超音波探触子において、前記各素子チャネル回路には、N段に配置された各容量の電荷を読み出した後、残った電荷を完全に放電させるための放電用スイッチを読出しスイッチと並列に設置して、各段の容量の電荷を読出し後、該当容量へ次のタイミングで電荷を充電する前に放電用スイッチをオンとして放電させる制御を行うように構成した。
また、上記課題を解決するために本発明では、前記超音波探触子において、前記2DアレイICは、横K列、縦L行のマトリクス状に、前記複数の素子チャネル回路が配置されて構成され、前記2DアレイIC内の横A列、縦B行のマトリクス状に、A×B個の素子チャネル回路の纏まりを一つのサブチャネルとして纏めて構成され、前記サブチャネルは、前記A×B個の素子チャネル回路の出力を加算して出力する加算器を備えるように構成した。
本発明の遅延回路は、受信時には入力を電圧ではなく電流とし、オンとなっているライト側SWに接続される容量にライト側SW制御信号のタイミングにより、電流が充放電される。オンとなっているリード側スイッチは、ライト側SWに接続される電流出力アンプの出力信号に遅延を与えて充電したものを、リード側SW制御信号のタイミングで読み出して位相をそろえた加算へ出力する。送信時はリード側スイッチから送信信号を入力し、ライト側スイッチから信号を出力することで、ECh毎に独立な信号遅延を与えて送信することにより大幅に少ない容量の数で所望の信号遅延性能を提供できる。
本発明により回路サイズを抑えながら、遅延回路の最大遅延時間÷遅延時間分解能で決まる段数を大きくすることができ、分解能の向上や、広い視野角の2Dアレイ探触子を提供できる。
以下、各実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の部材には原則として同一の符号または関連する符号を付し、その繰り返しの説明は省略する。また、以下の実施の形態では、特に必要なとき以外は同一または同様な部分の説明を原則として繰り返さない。
図1に、2行2列で合計4個の素子チャネル回路EChを束ね、各々のECh出力を整相加算し1つのSChとする本発明の受信モードの遅延回路の構成の実施例を示す。
図1において、ECh0~3は素子チャネル回路、TD0~3は振動子、gm0~3は電流出力アンプ、W0<0>~W0<7>(N=8の場合)、W1<0>~W1<7>(N=8の場合)はライトスイッチ、R0<0>~R0<7>(N=8の場合)、R1<0>~R1<7>(N=8の場合)はリードスイッチ、C0(0)~C0(7) (N=8の場合)、C1(0)~C1(7) (N=8の場合)は容量、100は加算器、110はケーブル、120は増幅器である。
図1において、ECh0~3は素子チャネル回路、TD0~3は振動子、gm0~3は電流出力アンプ、W0<0>~W0<7>(N=8の場合)、W1<0>~W1<7>(N=8の場合)はライトスイッチ、R0<0>~R0<7>(N=8の場合)、R1<0>~R1<7>(N=8の場合)はリードスイッチ、C0(0)~C0(7) (N=8の場合)、C1(0)~C1(7) (N=8の場合)は容量、100は加算器、110はケーブル、120は増幅器である。
本発明は、遅延回路を容量、ライトスイッチ、リードスイッチから構成されるサンプルアンドホールド回路を多段(N段)に構成して実現しているところに特徴がある。
図1の遅延回路において、ライトスイッチW0<0>~W0<7>、W1<0>~W1<7>と、リードスイッチR0<0>~R0<7>、R1<0>~R1<7>を制御する制御回路(Write timing controller 41、Read timing controller 42)の接続を図4に示す。
図4に示すように、
(1) ECh0とECh2は、Write timing controller 41からのライトスイッチ制御信号W0<0>~W0<7>を共用する。
(2) ECh1とECh3は、Write timing controller 41からのライトスイッチ制御信号W1<0>~W1<7>を共用する。
(3) ECh0とECh1は、Read timing controller 42からのリードスイッチ制御信号R0<0>~R0<7>を共用する。
(4) ECh2とECh3は、Read timing controller 42からのリードスイッチ制御信号R1<0>~R1<7>を共用する。
(1) ECh0とECh2は、Write timing controller 41からのライトスイッチ制御信号W0<0>~W0<7>を共用する。
(2) ECh1とECh3は、Write timing controller 41からのライトスイッチ制御信号W1<0>~W1<7>を共用する。
(3) ECh0とECh1は、Read timing controller 42からのリードスイッチ制御信号R0<0>~R0<7>を共用する。
(4) ECh2とECh3は、Read timing controller 42からのリードスイッチ制御信号R1<0>~R1<7>を共用する。
2Dアレイ探触子には、数千から1万素子の振動子アレイを設け、個々の振動子とECh回路とは1対1で接続するため、ECh毎に独立にライトスイッチ制御信号、リードスイッチ制御信号を配線するのは困難であるため、このように共用実装する。
図1、図4に示す遅延回路を制御するタイミングチャートを図5に、図5のタイミングチャートに従って、図1の遅延回路の動作を図6のフローチャートに示す。
ライトスイッチW0<0>~W0<7>、W1<0>~W1<7>、リードスイッチR0<0>~R0<7>、R1<0>~R1<7>はハイレベルでオン、ローレベルでオフとする。背景技術の欄で説明したように、2Dアレイ振動子の個々の振動子TD0~3から送受信される超音波ビームはある生体内診断部位に合焦するが、超音波の生体内速度が均一であるとすると、この合焦点から2Dアレイ振動子の個々の振動子TD0~3までの距離の差異に比例した伝搬時間差を補償する遅延時間を各ECh回路は設定する。すなわち、合焦点に近い振動子ほど大きな遅延を与え、遠い振動子には小さな遅延時間を与える。
図5において、
(1) ECh0は、ライトスイッチW0<a>がオンとなる時間と、同じインデックスaのリードスイッチR0<a>がオンとなる時間差が遅延時間となるので、2クロック周期となる。
(2) ECh1は、ライトスイッチW1<b>がオンとなる時間と、同じインデックスbのリードスイッチR0<b>がオンとなる時間差が遅延時間となるので、1クロック周期となる。
(3) ECh2は、ライトスイッチW0<c>がオンとなる時間と、同じインデックスcのリードスイッチR1<c>がオンとなる時間差が遅延時間となるので、4クロック周期となる。
(4) ECh3は、ライトスイッチW1<d>がオンとなる時間と、同じインデックスdのリードスイッチR1<d>がオンとなる時間差が遅延時間となるので、3クロック周期となる。
図4のようにライトスイッチ制御信号、リードスイッチ制御信号を共用しても各EChに異なる遅延時間を設定可能であることがわかる。
(1) ECh0は、ライトスイッチW0<a>がオンとなる時間と、同じインデックスaのリードスイッチR0<a>がオンとなる時間差が遅延時間となるので、2クロック周期となる。
(2) ECh1は、ライトスイッチW1<b>がオンとなる時間と、同じインデックスbのリードスイッチR0<b>がオンとなる時間差が遅延時間となるので、1クロック周期となる。
(3) ECh2は、ライトスイッチW0<c>がオンとなる時間と、同じインデックスcのリードスイッチR1<c>がオンとなる時間差が遅延時間となるので、4クロック周期となる。
(4) ECh3は、ライトスイッチW1<d>がオンとなる時間と、同じインデックスdのリードスイッチR1<d>がオンとなる時間差が遅延時間となるので、3クロック周期となる。
図4のようにライトスイッチ制御信号、リードスイッチ制御信号を共用しても各EChに異なる遅延時間を設定可能であることがわかる。
図1に示す遅延回路の構成、および動作の説明に戻る。図1において、電流出力アンプgm0~3はそれぞれ同じ構成、および特性の回路であり、ライトスイッチW0<0>~W0<7>、W1<0>~W1<7>はそれぞれ同じ構成、および特性のトランジスタであり、リードスイッチR0<0>~R0<7>、R1<0>~R1<7>はそれぞれ同じ構成、および特性のトランジスタであり、容量C0(0)~C0(7)、C1(0)~C1(7)はそれぞれ同じ静電容量である。
また、ケーブル110を境界として、ECh0~3側は2Dアレイ探触子内に実装され、ケーブル110より増幅器120側は超音波診断装置本体に実装される。
また、ケーブル110を境界として、ECh0~3側は2Dアレイ探触子内に実装され、ケーブル110より増幅器120側は超音波診断装置本体に実装される。
素子チャネルECh0では、振動子TD0で受波した超音波信号が電圧に変換され、電流出力アンプgm0へ入力される。同様に、素子チャネルECh1~3ではそれぞれ、振動子TD1~3で受波した超音波信号が電圧に変換され、電流出力アンプgm1~3へ入力される。電流出力アンプgm0~3では、入力された電圧変化が電流変化に変換されて、電流変化が出力される。
電流出力アンプgm0の出力電流は、ライトスイッチ制御信号でオンとなったライトスイッチW0<a>と同じインデックスaの容量C0(a)へ充電され、同時に電流出力アンプgm1の出力電流は、ライトスイッチ制御信号でオンとなったライトスイッチW1<b>と同じインデックスbの容量C0(b)へ充電される。ここで、a,bは0以上7以下の整数である。電流出力アンプgm0,gm1の出力は電流なので、a=bでも問題ない。
図6のフローチャートの容量C0(・)の左側矢印が示すように、同時に電流出力アンプgm0とgm1から書き込まれる。
図6のフローチャートの容量C0(・)の左側矢印が示すように、同時に電流出力アンプgm0とgm1から書き込まれる。
同様に、電流出力アンプgm2の出力電流はライトスイッチ制御信号でオンとなったライトスイッチW0<c>と同じインデックスcの容量C1(c)へ充電され、同時に電流出力アンプgm3の出力電流はライトスイッチ制御信号でオンとなったライトスイッチW1<d>と同じインデックスdの容量C1(d)へ充電される。ここで、c,dも0以上7以下の整数である。電流出力アンプgm2,gm3の出力は電流なので、c=dでも問題ない。
図6のフローチャートの容量C1(・)の左側矢印が示すように、同時に電流出力アンプgm2とgm3から書き込まれる。
図6のフローチャートの容量C1(・)の左側矢印が示すように、同時に電流出力アンプgm2とgm3から書き込まれる。
図6のフローチャートにて、遅延回路の動作の例を説明する。受信モードに切り替わると、各素子チャネル回路ECh0~3は、第1のステップで回路内の全ての容量をフラッシュする (図1の素子チャネル回路では、ECh0,2が実行して、ECh1,3には容量は配置されていないのでスキップする)。続いて、各素子チャネル回路ECh0~3は、図5のタイミングチャートに従って、各ライトスイッチを順次、CLOCKタイムの周期でオン・オフするステップを繰り返す。
図6のフローチャートでは、各容量C0(・),C1(・)に、各ライトスイッチがオンとなっている間に、各電流出力アンプgm0~3の出力電流が充電されることを矢印で示す。
各容量C0(・),C1(・)には複数の素子チャネル回路の出力電流が充電されて加算され、タイミングチャートに従って遅延時間が付与された後、リードスイッチがオンとなって各容量C0(・),C1(・)が放電される。リードスイッチは同じインデックスが付いたスイッチがそれぞれ2個あって同時にオンとなり、一方のリードスイッチは同じインデックスが付いた容量C0(・),C1(・)の放電のために使用され、もう一方のリードスイッチは、1クロック周期前に放電された容量C0(・),C1(・)を完全にフラッシュさせるために使用される。
各容量C0(・),C1(・)には複数の素子チャネル回路の出力電流が充電されて加算され、タイミングチャートに従って遅延時間が付与された後、リードスイッチがオンとなって各容量C0(・),C1(・)が放電される。リードスイッチは同じインデックスが付いたスイッチがそれぞれ2個あって同時にオンとなり、一方のリードスイッチは同じインデックスが付いた容量C0(・),C1(・)の放電のために使用され、もう一方のリードスイッチは、1クロック周期前に放電された容量C0(・),C1(・)を完全にフラッシュさせるために使用される。
次に、(1) リードスイッチ制御信号でオンとなったリードスイッチR0<e>と同じインデックスeの容量C0(e)がECh0の出力+ECh1の出力、及び(2) リードスイッチ制御信号でオンとなったリードスイッチR1<f>と同じインデックスfの容量C1(f)がECh2の出力+ECh3の出力として、加算器100に入力され、加算される。ここで、容量C0(e)はeより大きい任意のタイミング(eはこの場合8を法とする剰余なので、例えば「eより大きな値」が8であれば、0と解釈するが、説明の都合上eより大きいと表現)で放電される。同様に、容量C1(d)はdより大きい任意のタイミング(dはこの場合8を法とする剰余なので、例えば「dより大きな値」が8であれば、0と解釈するが、説明の都合上dより大きいと表現)で放電される。これら放電の目的はgm0~gm3により既に充電済みの電荷がC0(・),C1(・)に残留し、整相加算誤差が蓄積するのを防ぐためである。
加算器100の出力信号はケーブル110を介して超音波診断装置側に実装される増幅器120に入力される。
ある生体内診断部位に合焦し、反射した超音波ビームがこの合焦点から2Dアレイ振動子の個々の振動子TD0~3までの距離の差異に比例した伝搬時間差を経て振動子TD0~3で受波されるが、これまでの説明のように、図1の遅延回路を用いて、ECh0~3に独立した遅延時間を設定し、合焦点から振動子TD0~3までの距離の差異に比例した伝搬時間差を補償して同じ位相で加算し、超音波診断装置へ送ることができる。
図5のタイミングチャートを用い、CLOCKを40MHzに設定し、図1の振動子TD0~3から、同じ振幅の正弦波を印加するシミュレーションを実施した。このシミュレーションの条件は、図2に示すように正弦波に、振動子TD0には50nsの遅延時間、振動子TD1には75nsの遅延時間、振動子TD2には遅延なし(0nsの遅延時間)、振動子TD3には25nsの遅延時間を与える。このとき、図5のタイミング設定によると、ECh0~ECh3に与える遅延時間は、ECh2が最も大きく100ns(4クロック分)、ECh3が75ns(3クロック分)、ECh0が50ns((2クロック分)、ECh1が25ns(1クロック分)となり、遅延回路出力では、図2の正弦波の位相は全て一致する。また、図1の遅延回路の出力「ECh0出力とECh1出力の和」と「ECh2とECh3の出力の和」は同振幅同位相となり、加算器出力はその2倍となる。シミュレーション結果を図3に示す。図3に示すように整相加算信号処理が問題なく行われていることがわかる。
図7に、1つのSChに束ねられた2行2列で合計4個の素子チャネル回路EChへ超音波診断装置本体から送信信号を分岐して入力し、各EChから前記信号にそれぞれ所望の信号遅延を与え、出力する本発明の送信モードの遅延回路の構成を示す。
図7において、ECh0~3は素子チャネル、TD0~3は振動子、HPA0~3は高電圧出力アンプ、W0<0>~W0<7>、W1<0>~W1<7>はライトスイッチ(図1に示す受信モードの遅延回路とは用途が異なるが、同じ名称とする)、R0<0>~R0<7>、R1<0>~R1<7>はリードスイッチ(図1に示す受信モードの遅延回路とは用途が異なるが、同じ名称とする)、C0(0)~C0(7)、C1(0)~C1(7)は容量、110はケーブル、121は増幅器である。
図7の遅延回路において、ライトスイッチW0<0>~W0<7>、W1<0>~W1<7>と、リードスイッチR0<0>~R0<7>、R1<0>~R1<7>を制御する制御回路(Write timing controller 41、Read timing controller 42)の接続は実施例1と同様であり図4に示す。説明も省略する。
図7の遅延回路、図4の制御回路を制御するタイミングチャートを図8に、図8のタイミングチャートに従って、図7の遅延回路の動作を図9のフローチャートに示す。図5と同様、図8においてもライトスイッチW0<0>~W0<7>、W1<0>~W1<7>、リードスイッチR0<0>~R0<7>、R1<0>~R1<7>はハイレベルでオン、ローレベルでオフとする。
実施例1と大きく異なる点は、リードスイッチが遅延回路への書込み、ライトスイッチが遅延回路からの読出し動作となるものとする(送信モード、または受信モードの切替えに応じて、前記容量への電荷の充電、または前記容量からの電荷の読出しと役割りが逆転する。)。従って、図8において、
(1) ECh0は、リードスイッチR0<a>がオンとなる時間と、同じインデックスaのライトスイッチW0<a>がオンとなる時間差が遅延時間となるので、2クロック周期となる。
(2) ECh1は、リードスイッチR0<b>がオンとなる時間と、同じインデックスbのライトスイッチW1<b>がオンとなる時間差が遅延時間となるので、4クロック周期となる。
(3) ECh2は、リードスイッチR1<c>がオンとなる時間と、同じインデックスcのライトスイッチW0<c>がオンとなる時間差が遅延時間となるので、1クロック周期となる。
(4) ECh3は、リードスイッチR1<d>がオンとなる時間と、同じインデックスdのライトスイッチW1<d>がオンとなる時間差が遅延時間となるので、3クロック周期となる。
図4のようにライトスイッチ制御信号、リードスイッチ制御信号を共用しても実施例1と同様、各EChに異なる遅延時間を設定可能であることがわかる。
(1) ECh0は、リードスイッチR0<a>がオンとなる時間と、同じインデックスaのライトスイッチW0<a>がオンとなる時間差が遅延時間となるので、2クロック周期となる。
(2) ECh1は、リードスイッチR0<b>がオンとなる時間と、同じインデックスbのライトスイッチW1<b>がオンとなる時間差が遅延時間となるので、4クロック周期となる。
(3) ECh2は、リードスイッチR1<c>がオンとなる時間と、同じインデックスcのライトスイッチW0<c>がオンとなる時間差が遅延時間となるので、1クロック周期となる。
(4) ECh3は、リードスイッチR1<d>がオンとなる時間と、同じインデックスdのライトスイッチW1<d>がオンとなる時間差が遅延時間となるので、3クロック周期となる。
図4のようにライトスイッチ制御信号、リードスイッチ制御信号を共用しても実施例1と同様、各EChに異なる遅延時間を設定可能であることがわかる。
図7に示す遅延回路の構成、および動作の説明に戻る。図7において、高電圧出力アンプHPA0~3はそれぞれ同じ構成、および特性の回路であり、ライトスイッチW0<0>~W0<7>、W1<0>~W1<7>はそれぞれ同じ構成、および特性のトランジスタであり、リードスイッチR0<0>~R0<7>、R1<0>~R1<7>はそれぞれ同じ構成、および特性のトランジスタであり、容量C0(0)~C0(7)、C1(0)~C1(7)はそれぞれ同じ静電容量である。
また、ケーブル110を境界として、ECh0~3側は2Dアレイ探触子内に実装され、ケーブル110より増幅器121側は超音波診断装置本体に実装される。
また、ケーブル110を境界として、ECh0~3側は2Dアレイ探触子内に実装され、ケーブル110より増幅器121側は超音波診断装置本体に実装される。
増幅器121から送信された信号は、ケーブル110を介して、ECh0~3へ分配入力される。素子チャネル回路ECh0に入力された信号は、リードスイッチ制御信号でオンとなったリードスイッチR0<e>と同じインデックスeの容量C0(e)へ充電される。素子チャネル回路ECh2に入力された信号は、リードスイッチ制御信号でオンとなったリードスイッチR1<f>と同じインデックスfの容量C1(f)へ充電される。ここで、e,fは0以上7以下の整数(N=8の場合)である。
次に、
(1) ライトスイッチ制御信号でオンとなったライトスイッチW0<g>と同じインデックスの容量C0(g)の電荷が高電圧出力アンプHPA0へ入力され、
(2) ライトスイッチ制御信号でオンとなったライトスイッチW1<g>と同じインデックスの容量C0(g) の電荷が高電圧出力アンプHPA1へ入力され、
(3) ライトスイッチ制御信号でオンとなったライトスイッチW0<h>と同じインデックスの容量C1(h) の電荷が高電圧出力アンプHPA2へ入力され、
(4) ライトスイッチ制御信号でオンとなったライトスイッチW1<h>と同じインデックスの容量C1(h) の電荷が高電圧出力アンプHPA3へ入力され、
高電圧出力がそれぞれ振動子TD0~3へ入力され、超音波を発生させる。
ここで、 g,hは0以上7以下の整数(N=8の場合)である。
(1) ライトスイッチ制御信号でオンとなったライトスイッチW0<g>と同じインデックスの容量C0(g)の電荷が高電圧出力アンプHPA0へ入力され、
(2) ライトスイッチ制御信号でオンとなったライトスイッチW1<g>と同じインデックスの容量C0(g) の電荷が高電圧出力アンプHPA1へ入力され、
(3) ライトスイッチ制御信号でオンとなったライトスイッチW0<h>と同じインデックスの容量C1(h) の電荷が高電圧出力アンプHPA2へ入力され、
(4) ライトスイッチ制御信号でオンとなったライトスイッチW1<h>と同じインデックスの容量C1(h) の電荷が高電圧出力アンプHPA3へ入力され、
高電圧出力がそれぞれ振動子TD0~3へ入力され、超音波を発生させる。
ここで、 g,hは0以上7以下の整数(N=8の場合)である。
図9のフローチャートにて、遅延回路の動作の例を説明する。送信モードに切り替わると、各素子チャネル回路ECh0~3は、第1のステップで回路内の全ての容量をフラッシュする (図7の素子チャネル回路では、ECh0,2が実行して、ECh1,3には容量は配置されていないのでスキップする)。続いて、各素子チャネル回路ECh0~3は、図8のタイミングチャートに従って、各リードスイッチを順次、CLOCKタイムの周期でオン・オフするステップを繰り返す。
図9のフローチャートでは、各容量C0(・),C1(・)に、各リードスイッチがオンとなっている間に、増幅器121から送信された信号が充電されることを矢印で示す。
各容量C0(・),C1(・)にはタイミングチャートに従って遅延時間が付与された後、ライトスイッチがオンとなって各容量C0(・),C1(・)が放電されることを矢印で示す。
各容量C0(・),C1(・)にはタイミングチャートに従って遅延時間が付与された後、ライトスイッチがオンとなって各容量C0(・),C1(・)が放電されることを矢印で示す。
ある生体内診断部位に超音波ビームを合焦させるためには、2Dアレイ振動子の個々の振動子TD0~3からこの合焦点までの距離の差異に比例した伝搬時間差を各ECh内で補償した信号をHPA0~3は出力する必要がある。これまでの説明のように、図7の遅延回路を用いて、ECh0~3に独立した遅延時間を設定し、振動子TD0~3から合焦点までの距離の差異に比例した伝搬時間差を遅延時間で補償し、この合焦点に超音波ビームを合焦させることができる。
本発明の2Dアレイ探触子は、合焦点の位置を変えるごとに、適合するタイミングチャートを制御回路(Write timing controller 41、Read timing controller 42)内に設定し直して稼働される。
本発明の遅延回路は、受信時には入力を電圧ではなく電流とし、オンとなっているライト側SWに接続される容量にライト側SW制御信号のタイミングにより、電流が充放電される。オンとなっているリード側スイッチは、ライト側SWに接続される電流出力アンプの出力信号に遅延を与えて充電したものを、リード側SW制御信号のタイミングで読み出して位相をそろえた加算へ出力する。送信時はリード側スイッチから送信信号を入力し、ライト側スイッチから信号を出力することで、ECh毎に独立な信号遅延を与えて送信することにより大幅に少ない容量の数で所望の信号遅延性能を提供できる。
実施例1の受信回路と実施例2の送信回路を統合して、2行2列で合計4個の送受信回路ECh0~3を束ねた1つのSChにおいて、各振動子TD0~3から超音波信号を送受信可能な遅延回路の構成を図10で説明する。 図10において、SW0~3は送受切替スイッチ、300,320はスイッチである。
図10の回路においても、ライトスイッチW0<0>~W0<7>、W1<0>~W1<7>と、リードスイッチR0<0>~R0<7>、R1<0>~R1<7>を制御する制御回路(Write timing controller 41、Read timing controller 42)の接続は実施例1,2と同様であり図4に示す。受信時、送信時のタイミングチャートはそれぞれ図5、図8、フローチャートもそれぞれ、図6、図9と同様であり、説明は省略する。
SW0~3は、それぞれECh0~3が送信モード時にオフ、受信モード時にオンとなる。これは、電流出力アンプgm0~3は低耐圧のトランジスタで構成されるため、高電圧出力アンプHPA0~3から高電圧振幅の信号を出力した際に破壊されないようにするためである。
スイッチ300は送信時はTX端子側、受信時はRX端子側に接続される。スイッチ320も送受切替スイッチSW0~3と同じ目的で、低耐圧のトランジスタで構成される増幅器120を保護する目的で設ける。
容量C0(・),C1(・)の放電のために使用されるリードスイッチは、受信モードの場合にのみ使用されるので(スイッチ300がRX端子側に接続される場合)、R0<・>&RX、R1<・>&RXと記載する。
実施例1~3に記載のECh0~3には、遅延回路の配置に偏りがある。しかし、理想的には、各素子チャネル回路ECh0~3はできるだけ同じ特性で実現する必要がある。少ないばらつきで実現する実施例を図11に示す。 実施例1~3の図1,7,10と異なり、本実施例4の図11には以下の4項目の違いを有する。
(1) ECh1にリードスイッチR0<0>~R0<7>を実装する。
(2) ECh3にリードスイッチR1<0>~R1<7>を実装する。
(3) ECh0とECh1に図1,7,10における静電容量の半分である容量C0(0)/2~C0(7)/2を実装する。
(4) ECh2とECh3に図1,7,10における静電容量の半分である容量C1(0)/2~C1(7)/2を実装する。
(1) ECh1にリードスイッチR0<0>~R0<7>を実装する。
(2) ECh3にリードスイッチR1<0>~R1<7>を実装する。
(3) ECh0とECh1に図1,7,10における静電容量の半分である容量C0(0)/2~C0(7)/2を実装する。
(4) ECh2とECh3に図1,7,10における静電容量の半分である容量C1(0)/2~C1(7)/2を実装する。
このように、図10では、ECh0,ECh2とECh1,ECh3が異なる回路であったが、図11は、ECh0~3を同じ回路で実現できる。CMOS(Complementary Metal-Oxide Semiconductor)、BiCMOS(Bipolar Complementary Metal-Oxide Semiconductor)等の集積回路での実装には同じ回路が隣接して配置した方が少ないばらつきで実現できる。
尚、図11では、
(1) ECh0とECh1に図1,7,10における静電容量の半分である容量C0(0)/2~C0(7)/2を実装する。
(2) ECh2とECh3に図1,7,10における静電容量の半分である容量C1(0)/2~C1(7)/2を実装する。
としたが、
(1) ECh0とECh1に図1,7,10における静電容量の半分程度から図1,7,10における静電容量と同程度の容量{C0(0)/2~C0(7)/2}~{C0(0)~C0(7)}を実装する。
(2) ECh2とECh3に図1,7,10における静電容量の半分程度から図1,7,10における静電容量と同程度の容量{C1(0)/2~C1(7)/2}~{C1(0)~C1(7)}を実装する。
としてよい。これは、2行2列で合計4個のEChの場合であり、更に異なる数のEChを束ねて1つのSChとする場合は、実施例4における「半分程度」の解釈は異なる。実施例5で一般解を説明する。
(1) ECh0とECh1に図1,7,10における静電容量の半分である容量C0(0)/2~C0(7)/2を実装する。
(2) ECh2とECh3に図1,7,10における静電容量の半分である容量C1(0)/2~C1(7)/2を実装する。
としたが、
(1) ECh0とECh1に図1,7,10における静電容量の半分程度から図1,7,10における静電容量と同程度の容量{C0(0)/2~C0(7)/2}~{C0(0)~C0(7)}を実装する。
(2) ECh2とECh3に図1,7,10における静電容量の半分程度から図1,7,10における静電容量と同程度の容量{C1(0)/2~C1(7)/2}~{C1(0)~C1(7)}を実装する。
としてよい。これは、2行2列で合計4個のEChの場合であり、更に異なる数のEChを束ねて1つのSChとする場合は、実施例4における「半分程度」の解釈は異なる。実施例5で一般解を説明する。
2行2列で合計4個の送受信回路EChを束ねて1つのSChと説明した実施例1~4をより一般化して、横K列、縦L行のECh群とした構成を図12に示す。
図12において、ECh(0,0)~ECh(K-1,L-1)は素子チャネル回路である。
図12において、ECh(0,0)~ECh(K-1,L-1)は素子チャネル回路である。
図12では、
(1) 横K列、縦L行のK × L個のECh群で2DアレイICを構成する。
(2) 横A列、縦B行のA × B個のECh群を束ね1つのSChを構成する。
図12のECh群の右下の横A列、縦B行のA × B個のECh群がSCh0であり、これと同じ横A列、縦B行のA × B個のECh群が束ねられたSChがマトリクス状に配置される。図12の全てのECh群は横K列、縦L行なので、G=K÷A個のSChが横に並び、H=L÷B個のSCh群が縦に並ぶので、G × H個のSCh分の2DアレイICとなる。K÷AやL÷Bが割り切れない場合は、それぞれ左右端や上下端などに異なる数のECh群で構成されるSChを配置したり、ダミーとして未使用のECh群としたりする。
(1) 横K列、縦L行のK × L個のECh群で2DアレイICを構成する。
(2) 横A列、縦B行のA × B個のECh群を束ね1つのSChを構成する。
図12のECh群の右下の横A列、縦B行のA × B個のECh群がSCh0であり、これと同じ横A列、縦B行のA × B個のECh群が束ねられたSChがマトリクス状に配置される。図12の全てのECh群は横K列、縦L行なので、G=K÷A個のSChが横に並び、H=L÷B個のSCh群が縦に並ぶので、G × H個のSCh分の2DアレイICとなる。K÷AやL÷Bが割り切れない場合は、それぞれ左右端や上下端などに異なる数のECh群で構成されるSChを配置したり、ダミーとして未使用のECh群としたりする。
ライトスイッチ制御信号、リードスイッチ制御信号の動作は実施例1~4の説明と同じである。
実施例4の図11の各EChに実装される容量の大きさは、実施例1~3の図1,7,10におけるEChに実装される容量のように、同じ行に横方向に配置される各EChの容量を1つのECh上に纏めて配置する総容量と同じにするか、総容量を等分に分けるか、またはそれらの間の容量を可能とする説明であった。すなわち、
(1) ECh0とECh1に図1,7,10における静電容量の半分程度から図1,7,10における静電容量と同程度の容量{C0(0)/2~C0(7)/2}~{C0(0)~C0(7)}を実装、
(2) ECh2とECh3に図1,7,10における静電容量の半分程度から図1,7,10における静電容量と同程度の容量{C1(0)/2~C1(7)/2}~{C1(0)~C1(7)}を実装、
としていたが、
本実施例5の図12では、1つのSCh内に横にA個のEChが並ぶので、
(1) ECh(0,0)~ECh1(A-1,0)に、静電容量が実施例1~3のように1つのECh上に纏めて配置する総容量の1/A程度から前記総容量と同程度の容量{C0(0)/A~C0(N-1)/A}~{C0(0)~C0(N-1)}を実装、
(2) ECh(0,1)~ECh(A-1,1)に、静電容量が実施例1~3のように1つのECh上に纏めて配置する総容量の1/A程度から前記総容量と同程度の容量{C1(0)/A~C1(N-1)/A}~{C1(0)~C1(N-1)}を実装、
・・・
(B) ECh(0,B-1)~ECh(A-1,B-1)に、静電容量が実施例1~3のように1つのECh上に纏めて配置する総容量の1/A程度から前記総容量と同程度の容量{CB(0)/A~CB(N-1)/A}~{CB(0)~CB(N-1)}を実装、
となる。
(1) ECh0とECh1に図1,7,10における静電容量の半分程度から図1,7,10における静電容量と同程度の容量{C0(0)/2~C0(7)/2}~{C0(0)~C0(7)}を実装、
(2) ECh2とECh3に図1,7,10における静電容量の半分程度から図1,7,10における静電容量と同程度の容量{C1(0)/2~C1(7)/2}~{C1(0)~C1(7)}を実装、
としていたが、
本実施例5の図12では、1つのSCh内に横にA個のEChが並ぶので、
(1) ECh(0,0)~ECh1(A-1,0)に、静電容量が実施例1~3のように1つのECh上に纏めて配置する総容量の1/A程度から前記総容量と同程度の容量{C0(0)/A~C0(N-1)/A}~{C0(0)~C0(N-1)}を実装、
(2) ECh(0,1)~ECh(A-1,1)に、静電容量が実施例1~3のように1つのECh上に纏めて配置する総容量の1/A程度から前記総容量と同程度の容量{C1(0)/A~C1(N-1)/A}~{C1(0)~C1(N-1)}を実装、
・・・
(B) ECh(0,B-1)~ECh(A-1,B-1)に、静電容量が実施例1~3のように1つのECh上に纏めて配置する総容量の1/A程度から前記総容量と同程度の容量{CB(0)/A~CB(N-1)/A}~{CB(0)~CB(N-1)}を実装、
となる。
おおよそ、1つのSChを構成するECh群の異なるライトスイッチ群W0<0>~W0<N-1>、W1<0>~W1<N-1>、・・・、WA-1<0>~WA-1<N-1>の数(A)だけ小さい容量を各ECh内に実装すれば、ばらつきの少ない2DアレイICとすることができる。
本発明の実施例1~5の2DアレイICを搭載した超音波診断装置の概要を図13に示す。
実施例1~5の2DアレイICは1100,1101が相当している。装置90には2つのコネクタボックス30,31があり、ケーブル20,21を介して2つの2Dアレイ探触子10,11が接続されるが、2本に限定されることはない。また、コネクタボックス30,31には従来の1Dアレイ探触子等も接続可能である。また、ドプラ専用などの特殊な探触子を接続するためのコネクタボックス接続端子を設けた装置もある。装置90はキャスター1000,1001により床面上を自在に移動可能である。
回路的にはプローブセレクタ40、プローブ切替スイッチ311で2Dアレイ探触子10と2Dアレイ探触子11を切り替えて使用する。
実施例1~5の2DアレイICは1100,1101が相当している。装置90には2つのコネクタボックス30,31があり、ケーブル20,21を介して2つの2Dアレイ探触子10,11が接続されるが、2本に限定されることはない。また、コネクタボックス30,31には従来の1Dアレイ探触子等も接続可能である。また、ドプラ専用などの特殊な探触子を接続するためのコネクタボックス接続端子を設けた装置もある。装置90はキャスター1000,1001により床面上を自在に移動可能である。
回路的にはプローブセレクタ40、プローブ切替スイッチ311で2Dアレイ探触子10と2Dアレイ探触子11を切り替えて使用する。
2Dアレイ探触子10,11の内部には2DアレイIC 1100,1101がそれぞれ内蔵される。2DアレイIC 1100の外部端子接続部が実装される面には図示しない2Dアレイ振動子が接続されている。先に説明したように2Dアレイ探触子には、数千から1万素子の振動子がアレイ状に実装されたものである。2Dアレイ振動子には効率よく超音波の送受信が可能なように2Dアレイ振動子と生体の音響インピーダンスを整合する整合層200、超音波ビームを収束させる音響レンズ210が実装される。2DアレイIC 1101にも同様に2Dアレイ振動子、整合層201、音響レンズ211が実装される。
増幅器120,121、スイッチ320は実施例1~5における説明と同じ動作である。信号処理回路60は論理回路であり、増幅器120の信号をアナログデジタル変換器54を介してデジタル信号として入力し、信号処理を行う。また、信号処理を行った信号をデジタルアナログ変換器51を介して増幅器121へ入力し、2Dアレイ探触子10,11へプローブセレクタ40、コネクタボックス30,31、ケーブル20,21を経て信号を送信する。
患者の体内のどの部位を見るかなど装置90の様々な操作は操作パネル70から行う。また、装置90は様々な診断モードを備えており、診断モードの切替も操作パネル70から行う。診断モードにはB(Brightness)、PW(Pulsed Wave Doppler)、CFM(Color Flow Mapping)、STCW(Steerable CW Doppler)モードなどがある。Bモードは組織から反射された超音波の受信振幅強度を明るさに対応付けて表示するモード、PWモードは、超音波をある深さに向けて繰り返し送信し、この部位から反射した信号の繰り返し送信毎の周波数偏移を測定することにより、血流速を求めるモード、CFMはカラードプラとも呼ばれ、超音波送信毎の受信信号の自己相関を求めることにより血流速を可視化するモードである。STCWモードも血流速を測定するモードであるが、これは速い血流速測定に適している。PWモードでは特定の位置の血流速がわかり、Bモード画像に重ねて表示できる。CFMモードでは超音波の受信ビーム上の多数のポイントにおける位置の平均速度がわかり、逆流などの発見に用いられる。
信号処理回路60はアナログデジタル変換器51からの信号を処理し、上記様々なモードの診断画像を得る。この画像はディスプレイ80に表示する。
ECh0~3、ECh(0,0)~ECh(K-1,L-1) 素子チャネル回路(送受信回路)
TD0~3 振動子
gm0~3 電流出力アンプ
HPA0~3 高電圧出力アンプ
SW0~3 送受切替スイッチ
W0<0>~W0<7>、W1<0>~W1<7> ライトスイッチ
R0<0>~R0<7>、R1<0>~R1<7> リードスイッチ
C0(0)~C0(7)、C1(0)~C1(7) 容量
10,11 2Dアレイ探触子
20,21 ケーブル
30,31 コネクタボックス
40 プローブセレクタ
41 Write timing controller
42 Read timing controller
51 デジタルアナログ変換器
54 アナログデジタル変換器
60 信号処理回路
70 操作パネル
80 ディスプレイ
90 装置
100 加算器
110 ケーブル
120,121が増幅器
140 超音波探触子
141 超音波振動子
142 フォーカス点
143 遅延時間
144 加算器
145 入力信号
146 超音波ビーム
147 エコー信号
200,201 整合層
210,211 音響レンズ
300,320 スイッチ
311 プローブ切替スイッチ
1000,1001 キャスター
1100,1101 2DアレイIC
TD0~3 振動子
gm0~3 電流出力アンプ
HPA0~3 高電圧出力アンプ
SW0~3 送受切替スイッチ
W0<0>~W0<7>、W1<0>~W1<7> ライトスイッチ
R0<0>~R0<7>、R1<0>~R1<7> リードスイッチ
C0(0)~C0(7)、C1(0)~C1(7) 容量
10,11 2Dアレイ探触子
20,21 ケーブル
30,31 コネクタボックス
40 プローブセレクタ
41 Write timing controller
42 Read timing controller
51 デジタルアナログ変換器
54 アナログデジタル変換器
60 信号処理回路
70 操作パネル
80 ディスプレイ
90 装置
100 加算器
110 ケーブル
120,121が増幅器
140 超音波探触子
141 超音波振動子
142 フォーカス点
143 遅延時間
144 加算器
145 入力信号
146 超音波ビーム
147 エコー信号
200,201 整合層
210,211 音響レンズ
300,320 スイッチ
311 プローブ切替スイッチ
1000,1001 キャスター
1100,1101 2DアレイIC
Claims (11)
- 2次元アレイ状に複数の振動子を配置した2Dアレイ振動子と、前記2Dアレイ振動子を駆動する2DアレイICとを備え、
前記2DアレイICは、前記各振動子と1対1で接続される複数の素子チャネル回路がマトリクス状に配置されて構成され、
前記各素子チャネル回路は、容量、書込みスイッチ、読出しスイッチから構成されるサンプルアンドホールド回路をN段設けて構成される遅延回路を有することを特徴とする超音波探触子。 - 前記マトリクス状に配置された複数の素子チャネル回路に対して、同じ行に配置された各素子チャネル回路内に設けられた各読出しスイッチへ共通の制御信号を供給する読出しタイミング制御回路と、
同じ列に配置された各素子チャネル回路内に設けられた各書込みスイッチへ共通の制御信号を供給する書込みタイミング制御回路とを更に備えることを特徴とする請求項1に記載の超音波探触子。 - 前記書込みタイミング制御回路が前記書込みスイッチへ供給する制御信号と、前記読出しタイミング制御回路が前記読出しスイッチへ供給する制御信号とのタイミング差に従って各素子チャネル回路の遅延回路に遅延時間を生成し、
前記各制御信号に従って、N段の構成の各サンプルアンドホールド回路を1クロック周期毎に切り替える制御をループ状に行うことを特徴とする請求項2に記載の超音波探触子。 - 前記各素子チャネル回路には、N段に配置された各容量の電荷を読み出した後、残った電荷を完全に放電させるための放電用スイッチを読出しスイッチと並列に設置して、各段の容量の電荷を読出し後、該当容量へ次のタイミングで電荷を充電する前に放電用スイッチをオンとして放電させる制御を行うことを特徴とする請求項1に記載の超音波探触子。
- 前記各素子チャネル回路内に、接続された振動子が受波した超音波信号を電圧に変換し、該電圧を電流に変換する電流出力アンプが設置され、前記電流出力アンプの出力電流を容量へ充電することを特徴とする請求項1に記載の超音波探触子。
- 前記各素子チャネル回路内に、送信信号を充電した容量の電荷を入力として、接続された振動子から超音波を発生させる高電圧を出力する高電圧出力アンプが設置されることを特徴とする請求項1に記載の超音波探触子。
- 前記各素子チャネル回路内に配置された前記書込みスイッチ、および前記読出しスイッチは、前記素子チャネル回路の送信モード、または受信モードの切替えに応じて、前記容量への電荷の充電、または前記容量からの電荷の読出しと用途が逆転することを特徴とする請求項1に記載の超音波探触子。
- 前記2DアレイICは、横K列、縦L行のマトリクス状に、前記複数の素子チャネル回路が配置されて構成され、
前記2DアレイIC内の横A列、縦B行のマトリクス状に、A×B個の素子チャネル回路の纏まりを一つのサブチャネルとして纏めて構成され、
前記サブチャネルは、前記A×B個の素子チャネル回路の出力を加算して出力する加算器を備えることを特徴とする請求項1に記載の超音波探触子。 - 前記サブチャネル内の横A列、縦B行のマトリクス状に配置された素子チャネル回路において、同じ行内の横A列に配置された各素子チャネル回路の遅延回路の容量を、横A列の遅延回路のいずれか1つのみに纏めて設け、その他の素子チャネル回路の遅延回路にはスイッチのみを配置することを特徴とする請求項8に記載の超音波探触子。
- 前記同じ行内の横A列に配置された各素子チャネル回路の遅延回路の容量を、横A列の素子チャネル回路の遅延回路のいずれか1つのみに纏めて設けた場合の該当容量の静電容量をCx(y)と表すと、前記横A列の各素子チャネル回路の遅延回路に均等に容量を配置して、及び各容量の静電容量は、Cx(y)/A以上、かつCx(y)以下の範囲の値としたことを特徴とする請求項9に記載の超音波探触子。
- 請求項1乃至10のいずれか1項に記載の超音波探触子を有することを特徴とする超音波診断装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/054433 WO2016132478A1 (ja) | 2015-02-18 | 2015-02-18 | 超音波探触子及びこれを接続する超音波診断装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/054433 WO2016132478A1 (ja) | 2015-02-18 | 2015-02-18 | 超音波探触子及びこれを接続する超音波診断装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016132478A1 true WO2016132478A1 (ja) | 2016-08-25 |
Family
ID=56692579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/054433 WO2016132478A1 (ja) | 2015-02-18 | 2015-02-18 | 超音波探触子及びこれを接続する超音波診断装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016132478A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111610254A (zh) * | 2020-05-18 | 2020-09-01 | 武汉大学 | 一种基于高速振镜协同的激光超声全聚焦成像检测装置及方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6152864A (ja) * | 1984-08-24 | 1986-03-15 | 株式会社日立製作所 | 超音波受波整相回路 |
JPH04332888A (ja) * | 1991-05-09 | 1992-11-19 | Hitachi Medical Corp | 並列サンプリングオフセット補償回路 |
US5483963A (en) * | 1994-07-22 | 1996-01-16 | Loral Infrared & Imaging Systems, Inc. | Two dimensional transducer integrated circuit |
JP2004275265A (ja) * | 2003-03-13 | 2004-10-07 | Fuji Photo Film Co Ltd | 超音波診断装置 |
JP2010142639A (ja) * | 2008-12-17 | 2010-07-01 | General Electric Co <Ge> | 2次元トランスジューサアレイを動作させるためのシステム及び方法 |
JP2013063159A (ja) * | 2011-09-16 | 2013-04-11 | Fujifilm Corp | 超音波診断装置および超音波画像生成方法 |
US20140055003A1 (en) * | 2012-08-21 | 2014-02-27 | Texas Instruments Incorporated | Ultrasound Transmitter |
-
2015
- 2015-02-18 WO PCT/JP2015/054433 patent/WO2016132478A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6152864A (ja) * | 1984-08-24 | 1986-03-15 | 株式会社日立製作所 | 超音波受波整相回路 |
JPH04332888A (ja) * | 1991-05-09 | 1992-11-19 | Hitachi Medical Corp | 並列サンプリングオフセット補償回路 |
US5483963A (en) * | 1994-07-22 | 1996-01-16 | Loral Infrared & Imaging Systems, Inc. | Two dimensional transducer integrated circuit |
JP2004275265A (ja) * | 2003-03-13 | 2004-10-07 | Fuji Photo Film Co Ltd | 超音波診断装置 |
JP2010142639A (ja) * | 2008-12-17 | 2010-07-01 | General Electric Co <Ge> | 2次元トランスジューサアレイを動作させるためのシステム及び方法 |
JP2013063159A (ja) * | 2011-09-16 | 2013-04-11 | Fujifilm Corp | 超音波診断装置および超音波画像生成方法 |
US20140055003A1 (en) * | 2012-08-21 | 2014-02-27 | Texas Instruments Incorporated | Ultrasound Transmitter |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111610254A (zh) * | 2020-05-18 | 2020-09-01 | 武汉大学 | 一种基于高速振镜协同的激光超声全聚焦成像检测装置及方法 |
CN111610254B (zh) * | 2020-05-18 | 2021-08-17 | 武汉大学 | 一种基于高速振镜协同的激光超声全聚焦成像检测装置及方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1762182B1 (en) | Electrostatic capacity type ultrasonic probe device | |
JP6552599B2 (ja) | 単一基板超音波撮像装置の構造、関連装置、及び方法 | |
US6126602A (en) | Phased array acoustic systems with intra-group processors | |
EP1491913B1 (en) | Ultrasound diagnosis apparatus comprising a 2D transducer with variable subarrays | |
US6102863A (en) | Ultrasonic diagnostic imaging system with thin cable ultrasonic probes | |
US8133182B2 (en) | Multi-dimensional transducer array and beamforming for ultrasound imaging | |
KR101792590B1 (ko) | 빔포밍 방법, 이를 수행하는 장치 및 의료영상시스템 | |
JP3977827B2 (ja) | 超音波診断装置 | |
AU2018288656A1 (en) | Mesh-based digital microbeamforming for ultrasound applications | |
US20120190986A1 (en) | Ultrasound probe and ultrasound diagnostic apparatus | |
JP2011000426A (ja) | 超音波診断装置及び超音波プローブ | |
US9007872B2 (en) | Ultrasonic diagnostic apparatus and method thereof | |
JP6983165B2 (ja) | 超音波イメージングシステム及び方法 | |
US10226229B2 (en) | Ultrasound diagnosis apparatus | |
JP6423543B2 (ja) | 超音波探触子および超音波診断装置 | |
JP4557575B2 (ja) | 超音波診断装置 | |
WO2016132478A1 (ja) | 超音波探触子及びこれを接続する超音波診断装置 | |
Chen et al. | A column-row-parallel ultrasound imaging architecture for 3d plane-wave imaging and Tx 2nd-order harmonic distortion (HD2) reduction | |
JP2005052342A (ja) | 超音波診断装置 | |
US11808849B2 (en) | Ultrasonic matrix imaging device | |
Kruizinga et al. | Towards 3D ultrasound imaging of the carotid artery using a programmable and tileable matrix array | |
WO2017026019A1 (ja) | 超音波撮像装置、および、超音波探触子 | |
JP2018121807A (ja) | 超音波振動子を用いた送受信方法、超音波探触子および超音波診断装置 | |
JPH04297243A (ja) | 超音波診断装置 | |
WO2016151705A1 (ja) | 超音波信号受信回路、装置、および、超音波撮像装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15882581 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15882581 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |