WO2016132461A1 - 発光装置 - Google Patents

発光装置 Download PDF

Info

Publication number
WO2016132461A1
WO2016132461A1 PCT/JP2015/054342 JP2015054342W WO2016132461A1 WO 2016132461 A1 WO2016132461 A1 WO 2016132461A1 JP 2015054342 W JP2015054342 W JP 2015054342W WO 2016132461 A1 WO2016132461 A1 WO 2016132461A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
light emitting
electrode
layer
laminated film
Prior art date
Application number
PCT/JP2015/054342
Other languages
English (en)
French (fr)
Inventor
修一 関
田中 信介
Original Assignee
パイオニア株式会社
東北パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, 東北パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2015/054342 priority Critical patent/WO2016132461A1/ja
Publication of WO2016132461A1 publication Critical patent/WO2016132461A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8428Vertical spacers, e.g. arranged between the sealing arrangement and the OLED
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity

Definitions

  • the present invention relates to a light emitting device.
  • the organic EL element has a configuration in which an organic layer is sandwiched between a first electrode and a second electrode. Since the organic layer is vulnerable to moisture and oxygen, the light emitting portion needs to be sealed.
  • One method for sealing the light emitting portion is to use a sealing substrate. In this method, a sealing substrate is disposed on a substrate on which a light emitting unit is formed, and a space between the two substrates is sealed with a sealing material.
  • Patent Document 1 discloses a gas barrier film in which an inorganic film and a stress relaxation film are stacked. The stress relaxation film is formed by the atmospheric pressure plasma method. Furthermore, Patent Document 1 describes that a sealing film for sealing an organic EL element is also formed by the same method as this gas barrier film.
  • the light emitting device after sealing can be made flexible.
  • An example of a problem to be solved by the present invention is to use a resin-containing substrate as both the substrate for forming the light emitting portion and the sealing substrate.
  • the invention according to claim 1 is a first substrate containing a resin material; A second substrate facing the first substrate and containing a resin material; A light emitting unit located between the first substrate and the second substrate and including an organic layer; A first laminated film having a plurality of layers formed on each of a surface of the first substrate facing the light emitting unit and a surface of the second substrate facing the light emitting unit; It is a light-emitting device provided with.
  • FIG. 7 is a cross-sectional view taken along the line AA in FIG. 6.
  • 6 is a plan view of a light emitting device according to Example 2.
  • FIG. It is the figure which removed the partition, the 2nd electrode, the organic layer, and the insulating layer from FIG.
  • FIG. 11 is a sectional view taken along line BB in FIG. 10. It is CC sectional drawing of FIG. It is DD sectional drawing of FIG. It is an equivalent circuit diagram of a light-emitting device.
  • FIG. 1 is a cross-sectional view showing a configuration of a light emitting device 10 according to an embodiment.
  • the light emitting device 10 includes a first substrate 100, a second substrate 101, a light emitting unit 140, and a first stacked film 210.
  • the first substrate 100 and the second substrate 101 both contain a resin material and face each other.
  • the light emitting unit 140 is located between the first substrate 100 and the second substrate 101 and includes an organic layer.
  • the first stacked film 210 is formed on each of the surface of the first substrate 100 that faces the light emitting unit 140 and the surface of the second substrate 101 that faces the light emitting unit 140, and has a plurality of layers. Yes. Details will be described below.
  • the first substrate 100 contains a resin material and transmits visible light.
  • the first substrate 100 is, for example, a resin substrate, and the thickness thereof is, for example, not less than 10 ⁇ m and not more than 1000 ⁇ m.
  • the resin used for the first substrate 100 is, for example, PEN (polyethylene naphthalate), PES (polyethersulfone), PET (polyethylene terephthalate), or polyimide.
  • the first laminated film 210 is formed on the first surface 102 of the first substrate 100.
  • the first laminated film 210 is formed to suppress moisture from permeating the first substrate 100 and has a configuration in which a plurality of layers are laminated. And all these layers are formed using ALD method or CVD method.
  • the first laminated film 210 is made of, for example, an inorganic film.
  • the light emitting unit 140 On the first laminated film 210 of the first substrate 100, the light emitting unit 140 is formed.
  • the light emitting unit 140 has a configuration in which a first electrode, an organic layer, and a second electrode are stacked in this order.
  • the first electrode is a transparent electrode having optical transparency.
  • the material of the transparent electrode is a metal-containing material, for example, a metal oxide such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), IWZO (Indium Tungsten Zinc Oxide), or ZnO (Zinc Oxide).
  • the thickness of the first electrode is, for example, not less than 10 nm and not more than 500 nm.
  • the first electrode is formed using, for example, a sputtering method or a vapor deposition method.
  • the first electrode may be formed using a conductive organic material such as a carbon nanotube or PEDOT / PSS.
  • the organic layer has a light emitting layer.
  • the organic layer has, for example, a configuration in which a hole injection layer, a light emitting layer, and an electron injection layer are stacked in this order.
  • a hole transport layer may be formed between the hole injection layer and the light emitting layer.
  • an electron transport layer may be formed between the light emitting layer and the electron injection layer.
  • the organic layer may be formed by a vapor deposition method.
  • at least one of the organic layers, for example, a layer in contact with the first electrode may be formed by a coating method such as an inkjet method, a printing method, or a spray method. In this case, the remaining layers of the organic layer are formed by vapor deposition. Further, all layers of the organic layer may be formed using a coating method.
  • the second electrode is, for example, a metal selected from the first group consisting of Al, Au, Ag (which may be Ag ink or Ag nanowire), Pt, Mg, Sn, Zn, and In, or the first electrode. It includes a metal layer made of a metal alloy selected from a group. In this case, the second electrode has a light shielding property.
  • the thickness of the second electrode is, for example, not less than 10 nm and not more than 500 nm.
  • the second electrode may be formed using the material exemplified as the material of the first electrode.
  • the second electrode is formed using, for example, a sputtering method or a vapor deposition method.
  • the light emitting unit 140 is sealed using the second substrate 101.
  • the second substrate 101 is disposed above the first surface 102 of the first substrate 100.
  • the light emitting unit 140 is positioned between the first substrate 100 and the second substrate 101.
  • the top surface of the light emitting unit 140 faces (may be in contact with) the second substrate 101.
  • a sealing member 300 is disposed around the light emitting unit 140 in a space sandwiched between the first substrate 100 and the second substrate 101. Therefore, the light emitting unit 140 is located in a space sealed with the first substrate 100, the second substrate 101, and the seal member 300.
  • the seal member 300 is formed using, for example, an epoxy resin.
  • the space sealed with the first substrate 100, the second substrate 101, and the seal member 300 is filled with a filler 310.
  • the filler 310 is made of, for example, a rubber material or a liquid material.
  • a desiccant may be mixed into the filler 310, or a material having a drying function may be used as the filler 310. Further, a desiccant may be separately provided in the vicinity of the filler 310.
  • the second substrate 101 contains a resin material and transmits visible light.
  • the second substrate 101 is, for example, a resin substrate, and the thickness thereof is, for example, not less than 10 ⁇ m and not more than 1000 ⁇ m.
  • the resin used for the second substrate 101 is, for example, PEN (polyethylene naphthalate), PES (polyethersulfone), PET (polyethylene terephthalate), or polyimide.
  • first laminated film 210 is formed on the surface of the second substrate 101 facing the light emitting unit 140 in the same manner as the first substrate 100. For this reason, the sealing capability of the second substrate 101 is improved.
  • the second substrate 101 is formed in the same process as the first substrate 100.
  • the first substrate 100 and the second substrate 101 have the same structure. If it does in this way, the manufacturing cost of the light-emitting device 10 can be made low.
  • the surface on which the first laminated film 210 is formed faces the light emitting unit 140.
  • a planarization layer (for example, an organic layer) may be provided between the first surface 102 of the first substrate 100 and the first stacked film 210.
  • the above-described planarization layer may be formed between the first surface 102 of the second substrate 101 and the first stacked film 210.
  • FIG. 2 is a cross-sectional view showing the configuration of the first laminated film 210.
  • the first stacked film 210 has a first layer 212 and a second layer 214.
  • the first layer 212 and the second layer 214 are, for example, metal oxide films.
  • the first layer 212 is formed using aluminum oxide (Al 2 O 3 )
  • the second layer 214 is formed using titanium oxide (TiO 2 ).
  • the thicknesses of the first layer 212 and the second layer 214 are both 3 nm or more and 10 nm or less. However, the thickness of each of these layers is not limited to this range.
  • the first laminated film 210 may have a configuration in which the first layer 212 and the second layer 214 are repeatedly laminated in this order.
  • the first laminated film 210 may be a laminated film in which three layers having different materials are laminated once or a plurality of times.
  • FIG. 3 is a diagram showing a first modification of the configuration of the first laminated film 210.
  • the first laminated film 210 has a configuration in which a first layer 212 and a second layer 214 are repeatedly laminated in this order.
  • One of the layers of the first laminated film 210 is thicker than the other layers constituting the first laminated film 210.
  • the uppermost layer (that is, the layer facing the light emitting unit 140) of the first stacked film 210 is thicker than the other layers constituting the first stacked film 210.
  • the thickness of the uppermost first layer 212 is four times or more the thickness of the thickest layer among the other layers.
  • the thickness of the first layer 212 is, for example, 20% to 80% of the thickness of the first stacked film 210.
  • FIG. 4 is a cross-sectional view showing a second modification of the first laminated film 210.
  • the first laminated film 210 according to the present modified example is different from the first laminated film 210 except that the second and higher layers counted from the light emitting unit 140 side are thicker than the other layers of the first laminated film 210.
  • the configuration is the same as that of the first laminated film 210 shown in FIG.
  • FIG. 15 is an equivalent circuit diagram of the light-emitting device 10.
  • the light emitting device 10 has a first terminal 112 and a second terminal 132.
  • the first terminal 112 is connected to the first electrode of the light emitting unit 140 via the lead wire 114
  • the second terminal 132 is connected to the second electrode of the light emitting unit 140 via the lead wire 134.
  • the first laminated film 210 is in contact with the lead wiring 114 and the lead wiring 134.
  • the first laminated film 210 has a configuration in which a plurality of layers are laminated. Therefore, when viewed in an equivalent circuit, the first stacked film 210 has a configuration in which a capacitor and a resistor are connected in series between the lead-out wiring 114 and the lead-out wiring 134. For this reason, a certain amount of current flows through the first laminated film 210, and as a result, charges are accumulated in the first laminated film 210 when the light emitting unit 140 emits light.
  • This electric charge flows into the light emitting unit 140 when a voltage is no longer applied between the extraction wiring 114 and the extraction wiring 134. As a result, the response speed when turning off the light emitting unit 140 decreases. Further, when the light emitting unit 140 is turned on, a part of the current flows through the first laminated film 210. For this reason, the response speed when the light emitting unit 140 is turned on also decreases.
  • the lead-out wiring 114 and the lead-out wiring 134 at least a part of the layer of the first laminated film 210 is thicker than the other layers. For this reason, the magnitude of the resistance in the equivalent circuit diagram of FIG. 15 increases. Therefore, it is difficult for current to flow through the first laminated film 210, and as a result, the response speed of the light emitting unit 140 is unlikely to decrease.
  • the layer closest to the light emitting unit 140 in the first stacked film 210 is thicker than the other layers, current does not easily flow through the first stacked film 210 in particular.
  • substrates to be the first substrate 100 and the second substrate 101 are prepared.
  • a plurality of inorganic layers are formed on the first surface 102 of the substrate using the ALD method.
  • the first laminated film 210 is formed on the first surface 102.
  • this substrate is divided into a first substrate 100 and a second substrate 101. In this step, a plurality of first substrates 100 and a plurality of second substrates 101 may be formed at the same time.
  • the first electrode, the organic layer, and the second electrode of the light emitting unit 140 are formed in this order on the first stacked film 210 of the first substrate 100. Thereby, the light emission part 140 is formed. In this step, the terminal of the light emitting unit 140 is also formed.
  • the seal member 300 is formed on the first surface 102 of the first substrate 100, and the region surrounded by the seal member 300 is filled with the filler 310. Thereafter, the light emitting unit 140 is sealed with the second substrate 101 by fixing the second substrate 101 to the upper surface of the seal member 300.
  • the light emitting unit 140 is located between the first substrate 100 and the second substrate 101. Since both the first substrate 100 and the second substrate 101 contain a resin, the first substrate 100 and the second substrate 101 transmit moisture.
  • the first laminated film 210 is formed on each of the surface of the first substrate 100 facing the light emitting unit 140 and the surface of the second substrate 101 facing the light emitting unit 140. For this reason, the first substrate 100 and the second substrate 101 are less likely to transmit moisture and the like. Accordingly, the light emitting unit 140 is sufficiently sealed by the first substrate 100 and the second substrate 101.
  • FIG. 5 is a cross-sectional view illustrating a configuration of the light emitting device 10 according to the second embodiment.
  • the light emitting device 10 according to the present embodiment is the first except that the second stacked film 220 is formed on each of the second surface 104 of the first substrate 100 and the second surface 104 of the second substrate 101.
  • the configuration is the same as that of the light emitting device 10 according to the embodiment.
  • the second laminated film 220 is formed by using the ALD method or the CVD method similarly to the first laminated film 210, and has the same structure as the first laminated film 210.
  • the number of layers constituting the first laminated film 210 and the number of layers constituting the second laminated film 220 may be the same or different from each other.
  • the second stacked film 220 may be formed in the same process as the first stacked film 210. Specifically, when the first stacked film 210 is formed using the ALD method, the atoms or molecules that become the film also reach the second surface 104 of the substrate. In the ALD method, a uniform film can be obtained by flowing a material to be formed in a reactor in a gas phase and causing a reaction to form a film on the entire surface facing the air flow. Therefore, the second laminated film 220 can be formed on the second surface 104 when the first laminated film 210 is formed by airflow control. For this reason, when forming the 1st laminated film 210, the 2nd laminated film 220 is formed in the 2nd surface 104 of a board
  • the number of layers of the second laminated film 220 is the same as the number of layers of the first laminated film 210, and each of the plurality of layers constituting the second laminated film 220 is counted from the substrate 100 side.
  • the material is the same as the material of the layer located in the corresponding lamination order in the first laminated film 210.
  • the second laminated film 220 may have the same structure as the first laminated film 210 including the thickness of each layer.
  • the light emitting unit 140 is sufficiently sealed by the first substrate 100 and the second substrate 101.
  • a second stacked film 220 is formed on each of the second surface 104 of the first substrate 100 and the second surface 104 of the second substrate 101. Accordingly, the moisture is less likely to reach the light emitting unit 140.
  • FIG. 6 is a plan view illustrating the configuration of the light emitting device 10 according to the first embodiment.
  • the second substrate 101 is shown by dotted lines in FIG. 6, and the sealing member 300 is not shown.
  • FIG. 7 is a view in which the second electrode 130 and the second substrate 101 are removed from FIG. 6.
  • FIG. 8 is a diagram in which the organic layer 120 and the insulating layer 150 are removed from FIG.
  • FIG. 9 is a cross-sectional view taken along the line AA in FIG. In FIG. 9, the filler 310 is omitted.
  • the light emitting device 10 is a lighting device, and includes a first substrate 100 and a light emitting unit 140.
  • the light emitting unit 140 includes a first electrode 110, an organic layer 120, and a second electrode 130.
  • the configurations of the first electrode 110, the organic layer 120, and the second electrode 130 are the same as in the embodiment.
  • the edge of the first electrode 110 is covered with an insulating layer 150.
  • the insulating layer 150 is made of, for example, a photosensitive resin material such as polyimide, and surrounds a portion of the first electrode 110 that becomes a light emitting region of the light emitting unit 140. By providing the insulating layer 150, it is possible to suppress a short circuit between the first electrode 110 and the second electrode 130 at the edge of the first electrode 110.
  • the insulating layer 150 is formed by applying a resin material to be the insulating layer 150 and then exposing and developing the resin material.
  • the light emitting device 10 has a first terminal 112 and a second terminal 132.
  • the first terminal 112 is connected to the first electrode 110
  • the second terminal 132 is connected to the second electrode 130.
  • the first terminal 112 and the second terminal 132 include a layer formed of the same material as that of the first electrode 110.
  • a lead wiring may be provided between the first terminal 112 and the first electrode 110.
  • a lead wiring may be provided between the second terminal 132 and the second electrode 130.
  • the light emitting device 10 includes the second substrate 101 and the first laminated film 210.
  • the configuration of these and the first substrate 100 is as in the embodiment.
  • the second stacked film 220 shown in FIG. 5 is formed on the second surface 104 of the first substrate 100 and the second surface 104 of the second substrate 101.
  • the second stacked film 220 may not be formed.
  • the first stacked film 210 and the second stacked film 220 are formed on the substrates to be the first substrate 100 and the second substrate 101.
  • This substrate is divided into a first substrate 100 and a second substrate 101.
  • the first electrode 110 is formed on the first stacked film 210 of the first substrate 100.
  • the first terminal 112 and the second terminal 132 are also formed.
  • the insulating layer 150, the organic layer 120, and the second electrode 130 are formed in this order.
  • the sealing member 300 is formed, and the light emitting unit 140 is sealed using the second substrate 101.
  • the light emitting unit 140 can be sealed using the second substrate 101.
  • FIG. 10 is a plan view of the light emitting device 10 according to the second embodiment.
  • the second substrate 101 is shown by dotted lines in FIG. 10, and the seal member 300 and the filler 310 are omitted.
  • 11 is a view in which the partition 170, the second electrode 130, the organic layer 120, and the insulating layer 150 are removed from FIG. 12 is a cross-sectional view taken along line BB in FIG. 10,
  • FIG. 13 is a cross-sectional view taken along line CC in FIG. 10
  • FIG. 14 is a cross-sectional view taken along line DD in FIG.
  • the filler 310 is omitted.
  • the light emitting device 10 is a display, and includes a first substrate 100, a first electrode 110, a light emitting unit 140, an insulating layer 150, a plurality of openings 152, a plurality of openings 154, a plurality of lead wires 114, and an organic layer 120.
  • the first electrode 110 extends in a line shape in the first direction (Y direction in FIG. 10). The end portion of the first electrode 110 is connected to the lead wiring 114.
  • the lead wiring 114 is a wiring that connects the first electrode 110 to the first terminal 112.
  • one end side of the lead wiring 114 is connected to the first electrode 110, and the other end side of the lead wiring 114 is the first terminal 112.
  • the first electrode 110 and the lead-out wiring 114 are integrated.
  • a conductor layer 160 is formed on the lead wiring 114.
  • a conductor layer 160 is formed.
  • the conductor layer 160 is formed using a material having a resistance lower than that of the first electrode 110, for example, Al.
  • the conductor layer 160 may have a multilayer structure.
  • a part of the lead wiring 114 is covered with an insulating layer 150.
  • the insulating layer 150 is formed on and between the plurality of first electrodes 110 as shown in FIGS. 10 and 12 to 14.
  • a plurality of openings 152 and a plurality of openings 154 are formed in the insulating layer 150.
  • the plurality of second electrodes 130 extend in parallel to each other in a direction intersecting the first electrode 110 (for example, a direction orthogonal to the X direction in FIG. 10).
  • a partition wall 170 which will be described in detail later, extends between the plurality of second electrodes 130.
  • the opening 152 is located at the intersection of the first electrode 110 and the second electrode 130 in plan view. Specifically, the plurality of openings 152 are arranged in the direction in which the first electrode 110 extends (Y direction in FIG. 10). The plurality of openings 152 are also arranged in the extending direction of the second electrode 130 (X direction in FIG. 10). For this reason, the plurality of openings 152 are arranged to form a matrix.
  • the opening 154 is located in a region overlapping with one end side of each of the plurality of second electrodes 130 in plan view.
  • the openings 154 are arranged along one side of the matrix formed by the openings 152. When viewed in a direction along this one side (for example, the Y direction in FIG. 10, ie, the direction along the first electrode 110), the openings 154 are arranged at a predetermined interval. A part of the lead wiring 134 is exposed from the opening 154.
  • the lead wiring 134 is connected to the second electrode 130 through the opening 154.
  • the lead wiring 134 is a wiring that connects the second electrode 130 to the second terminal 132, and has a layer made of the same material as the first electrode 110. One end side of the lead wiring 134 is located below the opening 154, and the other end side of the lead wiring 134 is led out of the insulating layer 150. In the example shown in the figure, the other end side of the lead-out wiring 134 is the second terminal 132. A conductor layer 160 is formed on the lead wiring 134. A part of the lead wiring 134 is covered with an insulating layer 150.
  • the organic layer 120 is formed.
  • the hole injection layer of the organic layer 120 is in contact with the first electrode 110, and the electron injection layer of the organic layer 120 is in contact with the second electrode 130. For this reason, the light emitting part 140 is located in each of the regions overlapping with the opening 152.
  • each layer constituting the organic layer 120 is shown to protrude to the outside of the opening 152.
  • the organic layer 120 may be continuously formed between the adjacent openings 152 in the direction in which the partition 170 extends, or may not be formed continuously. Good.
  • the organic layer 120 is not formed in the opening 154.
  • the second electrode 130 extends in a second direction (X direction in FIG. 10) intersecting the first direction, as shown in FIGS. 10 and 12 to 14.
  • a partition wall 170 is formed between the adjacent second electrodes 130.
  • the partition wall 170 extends in parallel to the second electrode 130, that is, in the second direction.
  • the base of the partition 170 is, for example, the insulating layer 150.
  • the partition 170 is, for example, a photosensitive resin such as a polyimide resin, and is formed in a desired pattern by being exposed and developed.
  • the partition wall 170 may be made of a resin other than a polyimide resin, for example, an inorganic material such as an epoxy resin, an acrylic resin, or silicon dioxide.
  • the partition wall 170 has a trapezoidal cross-sectional shape (reverse trapezoid). That is, the width of the upper surface of the partition wall 170 is larger than the width of the lower surface of the partition wall 170. Therefore, if the partition wall 170 is formed before the second electrode 130, the second electrode 130 is formed on the one surface side of the first substrate 100 by using an evaporation method or a sputtering method, so that the plurality of second electrodes 130 are formed. The electrodes 130 can be formed in a lump.
  • the partition wall 170 also has a function of dividing the organic layer 120.
  • the light emitting unit 140 is sealed using the second substrate 101.
  • a first stacked film 210 is formed on the first surface 102 of the first substrate 100 and the first surface 102 of the second substrate 101.
  • the second stacked film 220 shown in FIG. 5 is formed on the second surface 104 of the first substrate 100 and the second surface 104 of the second substrate 101.
  • the second stacked film 220 may not be formed.
  • the first stacked film 210 is formed on the substrates to be the first substrate 100 and the second substrate 101. This substrate is divided into a first substrate 100 and a second substrate 101.
  • the first electrode 110 and the lead wires 114 and 134 are formed on the first surface 102 of the first substrate 100.
  • the conductor layer 160 is formed on the lead wiring 114 and the lead wiring 134.
  • the insulating layer 150 is formed, and further the partition 170 is formed.
  • the organic layer 120 and the second electrode 130 are formed. These forming methods are the same as those in Example 1.
  • the sealing member 300 is formed, and the light emitting unit 140 is sealed using the second substrate 101. These steps are as described in the first embodiment.
  • the light emitting unit 140 can be sealed using the second substrate 101.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 発光装置(10)は、第1基板(100)、第2基板(101)、発光部(140)、及び第1積層膜(210)を備えている。第1基板(100)及び第2基板(101)は、いずれも樹脂材料を含んでいる。発光部(140)は第1基板(100)と第2基板(101)の間に位置しており、有機層を含んでいる。第1積層膜(210)は、第1基板(100)のうち発光部(140)に対向する面、及び第2基板(101)のうち発光部(140)に対向する面のそれぞれに形成されており、複数の層を有している。

Description

発光装置
 本発明は、発光装置に関する。
 近年は、発光部に有機EL(Organic Electroluminescence)素子を有する発光装置の開発が進んでいる。有機EL素子は、有機層を、第1電極及び第2電極で挟んだ構成を有している。有機層は水分や酸素に弱いため、発光部は封止される必要がある。発光部を封止する方法の一つに、封止用の基板を用いる方法がある。この方法は、発光部が形成された基板の上に封止用の基板を配置し、これら2つの基板の間の空間をシール材で封止するものである。
 一方、有機EL素子の基板として樹脂基板を用いることが検討されている。樹脂基板を用いると、発光装置に可撓性を持たせることができる。ただし、樹脂材料は水分を透過してしまう。有機EL素子の有機層に水分が到達すると、この水分に起因して有機層が劣化してしまう。これに対して、樹脂基板にガスバリア膜を形成することが検討されている。例えば特許文献1には、無機膜と応力緩和膜を積層したガスバリア膜が開示されている。応力緩和膜は、大気圧プラズマ法によって形成されている。さらに特許文献1には、有機EL素子を封止する封止膜も、このガスバリア膜と同じ方法で形成することが記載されている。
国際公開第2006/067952号公報
 発光部を形成する基板及び封止基板の双方に樹脂基板を用いると、封止後の発光装置に可撓性を持たせることができる。本発明が解決しようとする課題としては、発光部を形成する基板及び封止基板の双方を、樹脂を含む基板にすることが一例として挙げられる。
 請求項1に記載の発明は、樹脂材料を含む第1基板と、
 前記第1基板に対向し、樹脂材料を含む第2基板と、
 前記第1基板と前記第2基板の間に位置し、有機層を含む発光部と、
 前記第1基板のうち前記発光部に対向する面、及び前記第2基板のうち前記発光部に対向する面のそれぞれに形成され、複数の層を有する第1積層膜と、
を備える発光装置である。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
実施形態に係る発光装置の構成を示す断面図である。 第1積層膜の構成を示す断面図である。 第1積層膜の構成の第1の変形例を示す図である。 第1積層膜の第2の変形例を示す断面図である。 第2の実施形態に係る発光装置の構成を示す断面図である。 実施例1に係る発光装置の構成を示す平面図である。 図6から第2電極及び第2基板を取り除いた図である。 図7から有機層及び絶縁層を取り除いた図である。 図6のA-A断面図である。 実施例2に係る発光装置の平面図である。 図10から隔壁、第2電極、有機層、及び絶縁層を取り除いた図である。 図10のB-B断面図である。 図10のC-C断面図である。 図10のD-D断面図である。 発光装置の等価回路図である。
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
 図1は、実施形態に係る発光装置10の構成を示す断面図である。実施形態に係る発光装置10は、第1基板100、第2基板101、発光部140、及び第1積層膜210を備えている。第1基板100及び第2基板101は、いずれも樹脂材料を含んでおり、互いに対向している。発光部140は第1基板100と第2基板101の間に位置しており、有機層を含んでいる。第1積層膜210は、第1基板100のうち発光部140に対向する面、及び第2基板101のうち発光部140に対向する面のそれぞれに形成されており、複数の層を有している。以下、詳細に説明する。
 第1基板100は、樹脂材料を含んでおり、可視光を透過する。第1基板100は、例えば樹脂基板であり、その厚さは、例えば10μm以上1000μm以下である。第1基板100に用いられる樹脂は、例えばPEN(ポリエチレンナフタレート)、PES(ポリエーテルサルホン)、PET(ポリエチレンテレフタラート)、又はポリイミドである。
 第1基板100の第1面102には第1積層膜210が形成されている。第1積層膜210は、水分が第1基板100を透過することを抑制するために形成されており、複数の層を積層した構成を有している。そして、これらのいずれの層も、ALD法やCVD法を用いて形成されている。第1積層膜210は、例えば無機膜で形成されている。
 第1基板100の第1積層膜210の上には、発光部140が形成されている。発光部140は、第1電極、有機層、及び第2電極をこの順に積層させた構成を有している。
 第1電極は、光透過性を有する透明電極である。透明電極の材料は、金属を含む材料、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、IWZO(Indium Tungsten Zinc Oxide)、ZnO(Zinc Oxide)等の金属酸化物である。第1電極の厚さは、例えば10nm以上500nm以下である。第1電極は、例えばスパッタリング法又は蒸着法を用いて形成される。なお、第1電極は、カーボンナノチューブ、PEDOT/PSSなどの導電性有機材料を用いて形成されていてもよい。
 有機層は発光層を有している。有機層は、例えば、正孔注入層、発光層、及び電子注入層をこの順に積層させた構成を有している。正孔注入層と発光層との間には正孔輸送層が形成されていてもよい。また、発光層と電子注入層との間には電子輸送層が形成されていてもよい。有機層は蒸着法で形成されてもよい。また、有機層のうち少なくとも一つの層、例えば第1電極と接触する層は、インクジェット法、印刷法、又はスプレー法などの塗布法によって形成されてもよい。なお、この場合、有機層の残りの層は、蒸着法によって形成されている。また、有機層のすべての層が、塗布法を用いて形成されていてもよい。
 第2電極は、例えば、Al、Au、Ag(AgインクやAgナノワイヤの場合もある)、Pt、Mg、Sn、Zn、及びInからなる第1群の中から選択される金属、又はこの第1群から選択される金属の合金からなる金属層を含んでいる。この場合、第2電極は遮光性を有している。第2電極の厚さは、例えば10nm以上500nm以下である。ただし、第2電極は、第1電極の材料として例示した材料を用いて形成されていてもよい。第2電極は、例えばスパッタリング法又は蒸着法を用いて形成される。
 発光部140は、第2基板101を用いて封止されている。詳細には、第2基板101は、第1基板100の第1面102の上方に配置されている。このため、発光部140は第1基板100と第2基板101の間に位置することになる。そして、発光部140の上面は、第2基板101に面している(接している場合もある)。また、第1基板100と第2基板101の間に挟まれた空間のうち、発光部140の周囲にはシール部材300が配置されている。そのため、発光部140は、第1基板100、第2基板101、及びシール部材300で封止された空間の中に位置している。シール部材300は、例えばエポキシ樹脂を用いて形成されている。
 なお、第1基板100、第2基板101、及びシール部材300で封止された空間の中には、充填剤310が充填されている。充填剤310は、例えばゴム系の材料又は液体系の材料によって形成されている。ここで、充填剤310に乾燥剤を混入させたり、充填剤310として乾燥機能性を有する材料を用いてもよい。また、乾燥剤を充填剤310の近傍に別途配置してもよい。
 第2基板101は、樹脂材料を含んでおり、可視光を透過する。第2基板101は、例えば樹脂基板であり、その厚さは、例えば10μm以上1000μm以下である。第2基板101に用いられる樹脂は、例えばPEN(ポリエチレンナフタレート)、PES(ポリエーテルサルホン)、PET(ポリエチレンテレフタラート)、又はポリイミドである。
 また、第2基板101のうち発光部140に対向する面には、第1基板100と同様に第1積層膜210が形成されている。このため、第2基板101の封止能力は向上する。
 本実施形態では、第2基板101は第1基板100と同一の工程で形成されている。言い換えると、第1基板100と第2基板101は同一の構造を有している。このようにすると、発光装置10の製造コストを低くすることができる。そして、第1基板100及び第2基板101の双方において、第1積層膜210が形成されている面(第1面102)が発光部140に対向している。
 なお、第1基板100の第1面102と第1積層膜210の間には、平坦化層(例えば有機層)が設けられていてもよい。また、第2基板101の第1面102と第1積層膜210の間にも、上記した平坦化層が形成されていてもよい。
 図2は、第1積層膜210の構成を示す断面図である。第1積層膜210は、第1層212及び第2層214を有している。第1層212及び第2層214は、例えば酸化金属膜である。具体的には、第1層212は酸化アルミニウム(Al)を用いて形成されており、第2層214は酸化チタン(TiO)を用いて形成されている。第1層212及び第2層214の厚さは、いずれも3nm以上10nm以下である。ただし、これら各層の厚さはこの範囲に限定されない。また、第1積層膜210は、第1層212及び第2層214をこの順に繰り返し積層した構成を有していてもよい。また、第1積層膜210は、互いに異なる材料を有する3つの層を1回または複数回積層した積層膜であってもよい。
 図3は、第1積層膜210の構成の第1の変形例を示す図である。本図に示す例において、第1積層膜210は、第1層212及び第2層214をこの順に繰り返し積層した構成を有している。そして、第1積層膜210のいずれかの層は、第1積層膜210を構成する他の層と比較して厚くなっている。本図に示す例では、第1積層膜210のうち最も上の層(すなわち発光部140に面する層)が、第1積層膜210を構成する他の層と比較して厚くなっている。例えば最も上の第1層212の厚さは、それ以外の層のうち最も厚い層の厚さの4倍以上である。またこの第1層212の厚さは、例えば、第1積層膜210の厚さの20%以上80%以下である。
 図4は、第1積層膜210の第2の変形例を示す断面図である。本変形例に係る第1積層膜210は、発光部140側から数えて2層目以上に位置する層が、第1積層膜210の他の層と比較して厚くなっている点を除いて、図4に示した第1積層膜210と同様の構成である。
 図15は、発光装置10の等価回路図である。本図に示す例において、発光装置10は、第1端子112及び第2端子132を有している。第1端子112は、引出配線114を介して発光部140の第1電極に接続しており、第2端子132は、引出配線134を介して発光部140の第2電極に接続している。
 発光装置10の発光部140を発光させるとき、引出配線114と引出配線134の間には電圧が印加される。また、第1積層膜210は引出配線114と引出配線134に接している。また、第1積層膜210は複数の層を積層した構成を有している。このため、等価回路で見た場合、第1積層膜210は、引出配線114と引出配線134の間に、容量と抵抗とを直列に接続した構成となる。このため、第1積層膜210にある程度電流が流れ、その結果、発光部140が発光するときに第1積層膜210に電荷が蓄積されてしまう。この電荷は、引出配線114と引出配線134の間に電圧が印加されなくなったとき、発光部140に流れる。これにより、発光部140のオフにするときの応答速度は低下してしまう。また、発光部140を点灯させるとき、電流の一部は第1積層膜210に流れてしまう。このため、発光部140を点灯させるときの応答速度も低下してしまう。
 これに対して本実施形態によれば、引出配線114と引出配線134の間において、第1積層膜210の少なくとも一部の層は、他の層よりも厚くなっている。このため、図15の等価回路図における抵抗の大きさは、大きくなる。従って、第1積層膜210に電流は流れにくくなり、その結果、発光部140の応答速度は低下しにくくなる。第1積層膜210のうち発光部140に最も近い層を他の層より厚くすると、特に第1積層膜210に電流は流れにくくなる。
 次に、発光装置10の製造方法について説明する。まず、第1基板100及び第2基板101となる基板を準備する。次いで、ALD法を用いて、この基板の第1面102に複数の無機層を形成する。これにより、第1面102には第1積層膜210が形成される。次いで、この基板を第1基板100及び第2基板101に分割する。なお、この工程において、複数の第1基板100及び複数の第2基板101を同時に形成してもよい。
 次いで、第1基板100の第1積層膜210上に、発光部140の第1電極、有機層、及び第2電極をこの順に形成する。これにより、発光部140が形成される。なお、この工程において、発光部140の端子も形成される。
 次いで、第1基板100の第1面102にシール部材300を形成し、シール部材300で囲まれた領域に充填剤310を充填する。その後、シール部材300の上面に第2基板101を固定することにより、発光部140を第2基板101で封止する。
 以上、本実施形態によれば、発光部140は、第1基板100と第2基板101の間に位置している。第1基板100及び第2基板101は、いずれも樹脂を含んでいるため、水分を透過してしまう。これに対して、第1基板100のうち発光部140に対向する面、及び第2基板101のうち発光部140に対向する面のそれぞれに、第1積層膜210が形成されている。このため、第1基板100及び第2基板101は水分等を透過しにくくなる。従って、発光部140は、第1基板100及び第2基板101によって十分に封止される。
(第2の実施形態)
 図5は、第2の実施形態に係る発光装置10の構成を示す断面図である。本実施形態に係る発光装置10は、第1基板100の第2面104及び第2基板101の第2面104のそれぞれに、第2積層膜220が形成されている点を除いて、第1の実施形態に係る発光装置10と同様の構成である。
 第2積層膜220は、第1積層膜210と同様に、ALD法やCVD法を用いて形成されており、第1積層膜210と同様の構造を有している。ただし、第1積層膜210を構成する層の数と、第2積層膜220を構成する層の数は、同一であってもよいし、互いに異なっていてもよい。
 なお、第2積層膜220は、第1積層膜210と同一の工程で形成されていてもよい。具体的には、ALD法を用いて第1積層膜210を形成する場合、膜となる原子または分子は基板の第2面104にも到達する。ALD法では反応器内に成膜する材料を気相で流し、その気流に対向する表面全てで膜化する反応が起きることで均一な膜を得ることができる。従って、気流制御により、第1積層膜210を形成する際に、第2面104に第2積層膜220を形成することができる。このため、第1積層膜210を形成する際に、基板の第2面104には第2積層膜220が形成される。
 この場合、第2積層膜220の層数は第1積層膜210の層数と同じであり、かつ、基板100側から数えた場合において、第2積層膜220を構成する複数の層のそれぞれの材料は、第1積層膜210のうち対応する積層順に位置する層の材料と同一である。さらに、製造条件によっては、第2積層膜220は、各層の厚さも含めて第1積層膜210と同一の構造を有していることもある。
 本実施形態によれば、第1の実施形態と同様に、発光部140は、第1基板100及び第2基板101によって十分に封止される。また、第1基板100の第2面104及び第2基板101の第2面104には、いずれも第2積層膜220が形成されている。従って、水分は、さらに発光部140に到達しにくくなる。
(実施例1)
 図6は、実施例1に係る発光装置10の構成を示す平面図である。説明のため、図6において第2基板101は点線で示されており、また、シール部材300は図示を省略されている。図7は、図6から第2電極130及び第2基板101を取り除いた図である。図8は図7から有機層120及び絶縁層150を取り除いた図である。図9は図6のA-A断面図である。なお、図9において充填剤310は省略されている。
 本実施例において、発光装置10は照明装置であり、第1基板100、及び発光部140を備えている。発光部140は、第1電極110、有機層120、及び第2電極130を有している。第1電極110、有機層120、及び第2電極130の構成は、実施形態の通りである。
 第1電極110の縁は、絶縁層150によって覆われている。絶縁層150は例えばポリイミドなどの感光性の樹脂材料によって形成されており、第1電極110のうち発光部140の発光領域となる部分を囲んでいる。絶縁層150を設けることにより、第1電極110の縁において第1電極110と第2電極130が短絡することを抑制できる。絶縁層150は、絶縁層150となる樹脂材料を塗布した後、この樹脂材料を露光及び現像することにより、形成される。
 また、発光装置10は、第1端子112及び第2端子132を有している。第1端子112は第1電極110に接続しており、第2端子132は第2電極130に接続している。第1端子112及び第2端子132は、例えば、第1電極110と同一の材料で形成された層を有している。なお、第1端子112と第1電極110の間には引出配線が設けられていてもよい。また、第2端子132と第2電極130の間にも引出配線が設けられていてもよい。
 また、発光装置10は、第2基板101及び第1積層膜210を有している。これら及び第1基板100の構成は、実施形態の通りである。なお、本実施例において、第1基板100の第2面104及び第2基板101の第2面104には、図5に示した第2積層膜220が形成されている。ただし、第2積層膜220は形成されていなくてもよい。
 次に、発光装置10の製造方法を説明する。まず、第1基板100及び第2基板101となる基板に、第1積層膜210及び第2積層膜220を形成する。この基板を第1基板100及び第2基板101に分割する。次いで、第1基板100の第1積層膜210上に、第1電極110を形成する。この工程において、第1端子112及び第2端子132も形成される。次いで、絶縁層150、有機層120、及び第2電極130をこの順に形成する。次いで、シール部材300を形成し、さらに、第2基板101を用いて発光部140を封止する。これらの工程は、第1の実施形態に示したとおりである。
 本実施例によれば、実施形態と同様に、発光部140を用いた照明装置において、第2基板101を用いて発光部140を封止することができる。
(実施例2)
 図10は、実施例2に係る発光装置10の平面図である。説明のため、図10において第2基板101は点線で示されており、シール部材300及び充填剤310は省略されている。図11は、図10から隔壁170、第2電極130、有機層120、及び絶縁層150を取り除いた図である。図12は図10のB-B断面図であり、図13は図10のC-C断面図であり、図14は図10のD-D断面図である。なお、図12~図14において、充填剤310は省略されている。
 本実施例に係る発光装置10はディスプレイであり、第1基板100、第1電極110、発光部140、絶縁層150、複数の開口152、複数の開口154、複数の引出配線114、有機層120、第2電極130、複数の引出配線134、及び複数の隔壁170を有している。
 第1電極110は、第1方向(図10におけるY方向)にライン状に延在している。そして第1電極110の端部は、引出配線114に接続している。
 引出配線114は、第1電極110を第1端子112に接続する配線である。本図に示す例では、引出配線114の一端側は第1電極110に接続しており、引出配線114の他端側は第1端子112となっている。本図に示す例において、第1電極110及び引出配線114は一体になっている。そして引出配線114の上には、導体層160が形成されている。導体層160が形成されている。導体層160は、第1電極110よりも抵抗が低い材料、例えばAlを用いて形成されている。なお、導体層160は、多層構造を有していてもよい。引出配線114の一部は絶縁層150によって覆われている。
 絶縁層150は、図10、及び図12~図14に示すように、複数の第1電極110上及びその間の領域に形成されている。絶縁層150には、複数の開口152及び複数の開口154が形成されている。複数の第2電極130は、第1電極110と交差する方向(例えば直交する方向:図10におけるX方向)に互いに平行に延在している。そして、複数の第2電極130の間には、詳細を後述する隔壁170が延在している。開口152は、平面視で第1電極110と第2電極130の交点に位置している。具体的には、複数の開口152は、第1電極110が延在する方向(図10におけるY方向)に並んでいる。また、複数の開口152は、第2電極130の延在方向(図10におけるX方向)にも並んでいる。このため、複数の開口152はマトリクスを構成するように配置されていることになる。
 開口154は、平面視で複数の第2電極130のそれぞれの一端側と重なる領域に位置している。また開口154は、開口152が構成するマトリクスの一辺に沿って配置されている。そしてこの一辺に沿う方向(例えば図10におけるY方向、すなわち第1電極110に沿う方向)で見た場合、開口154は、所定の間隔で配置されている。開口154からは、引出配線134の一部分が露出している。そして、引出配線134は、開口154を介して第2電極130に接続している。
 引出配線134は、第2電極130を第2端子132に接続する配線であり、第1電極110と同一の材料からなる層を有している。引出配線134の一端側は開口154の下に位置しており、引出配線134の他端側は、絶縁層150の外部に引き出されている。そして本図に示す例では、引出配線134の他端側が第2端子132となっている。そして引出配線134の上には、導体層160が形成されている。引出配線134の一部は絶縁層150によって覆われている。
 開口152と重なる領域には、有機層120が形成されている。有機層120の正孔注入層は第1電極110に接しており、有機層120の電子注入層は第2電極130に接している。このため、発光部140は、開口152と重なる領域それぞれに位置していることになる。
 なお、図12及び図13に示す例では、有機層120を構成する各層は、いずれも開口152の外側まではみ出している場合を示している。そして図10に示すように、有機層120は、隔壁170が延在する方向において、隣り合う開口152の間にも連続して形成されていてもよいし、連続して形成していなくてもよい。ただし、図14に示すように、有機層120は、開口154には形成されていない。
 第2電極130は、図10、図12~図14に示すように、第1方向と交わる第2方向(図10におけるX方向)に延在している。そして隣り合う第2電極130の間には、隔壁170が形成されている。隔壁170は、第2電極130と平行すなわち第2方向に延在している。隔壁170の下地は、例えば絶縁層150である。隔壁170は、例えばポリイミド系樹脂などの感光性の樹脂であり、露光及び現像されることによって、所望のパターンに形成されている。なお、隔壁170はポリイミド系樹脂以外の樹脂、例えばエポキシ系樹脂やアクリル系樹脂、二酸化珪素等の無機材料で構成されていても良い。
 隔壁170は、断面が台形の上下を逆にした形状(逆台形)になっている。すなわち隔壁170の上面の幅は、隔壁170の下面の幅よりも大きい。このため、隔壁170を第2電極130より前に形成しておくと、蒸着法やスパッタリング法を用いて、第2電極130を第1基板100の一面側に形成することで、複数の第2電極130を一括で形成することができる。また、隔壁170は、有機層120を分断する機能も有している。
 そして本実施例においても、発光部140は第2基板101を用いて封止されている。また、第1基板100の第1面102及び第2基板101の第1面102には、第1積層膜210が形成されている。なお、本実施例において、第1基板100の第2面104及び第2基板101の第2面104には、図5に示した第2積層膜220が形成されている。ただし、第2積層膜220は形成されていなくてもよい。
 次に、本実施例における発光装置10の製造方法を説明する。まず、第1基板100及び第2基板101となる基板に、第1積層膜210を形成する。この基板を第1基板100及び第2基板101に分割する。
 次いで、第1基板100の第1面102に第1電極110、及び引出配線114,134を形成する。次いで、引出配線114上及び引出配線134上に、導体層160を形成する。次いで、絶縁層150を形成し、さらに隔壁170を形成する。次いで、有機層120及び第2電極130を形成する。これらの形成方法は、実施例1と同様である。次いで、シール部材300を形成し、さらに、第2基板101を用いて発光部140を封止する。これらの工程は、第1の実施形態に示したとおりである。
 本実施例によれば、実施形態と同様に、発光部140を用いたディスプレイにおいて、第2基板101を用いて発光部140を封止することができる。
 以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。

Claims (5)

  1.  樹脂材料を含む第1基板と、
     前記第1基板に対向し、樹脂材料を含む第2基板と、
     前記第1基板と前記第2基板の間に位置し、有機層を含む発光部と、
     前記第1基板のうち前記発光部に対向する面、及び前記第2基板のうち前記発光部に対向する面のそれぞれに形成され、複数の層を有する第1積層膜と、
    を備える発光装置。
  2.  請求項1に記載の発光装置において、
     前記第1基板のうち前記発光部とは逆側の面、及び前記第2基板のうち前記発光部とは逆側の面のそれぞれに形成され、複数の層を有する第2積層膜を備える発光装置。
  3.  請求項1又は2に記載の発光装置において、
     前記第1積層膜のいずれかの層は、前記第1積層膜の他の層よりも厚い発光装置。
  4.  請求項3に記載の発光装置において、
     前記第1積層膜のうち前記発光部に面する層は、前記第1積層膜の他の層よりも厚い発光装置。
  5.  請求項1~4のいずれか一項に記載の発光装置において、
     前記第1積層膜は無機膜である発光装置。
PCT/JP2015/054342 2015-02-17 2015-02-17 発光装置 WO2016132461A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/054342 WO2016132461A1 (ja) 2015-02-17 2015-02-17 発光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/054342 WO2016132461A1 (ja) 2015-02-17 2015-02-17 発光装置

Publications (1)

Publication Number Publication Date
WO2016132461A1 true WO2016132461A1 (ja) 2016-08-25

Family

ID=56692048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054342 WO2016132461A1 (ja) 2015-02-17 2015-02-17 発光装置

Country Status (1)

Country Link
WO (1) WO2016132461A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008056967A (ja) * 2006-08-30 2008-03-13 Konica Minolta Holdings Inc ガスバリア性樹脂基材および有機エレクトロルミネッセンスデバイス
JP2012084357A (ja) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd 電子デバイス

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008056967A (ja) * 2006-08-30 2008-03-13 Konica Minolta Holdings Inc ガスバリア性樹脂基材および有機エレクトロルミネッセンスデバイス
JP2012084357A (ja) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd 電子デバイス

Similar Documents

Publication Publication Date Title
US10790469B2 (en) Light-emitting device with a sealing film
JP6404361B2 (ja) 発光装置
WO2016132461A1 (ja) 発光装置
WO2016151820A1 (ja) 発光装置
JP6661373B2 (ja) 発光装置
JP6499876B2 (ja) 発光装置
JP6785354B2 (ja) 発光装置
JP6580336B2 (ja) 発光装置
JP2019195001A (ja) 発光装置
JP7373625B2 (ja) 発光装置
JP2023181383A (ja) 発光装置
JP2019117808A (ja) 発光装置
WO2017163331A1 (ja) 発光装置、電子装置および発光装置の製造方法
JP2019192662A (ja) 発光装置
JP2022060478A (ja) 発光装置
JP2016152132A (ja) 発光装置
JP2016103443A (ja) 発光装置
JP6953151B2 (ja) 発光装置
JP2021144959A (ja) 発光装置
JP2016149226A (ja) 発光装置
WO2016129114A1 (ja) 発光装置及び発光装置の製造方法
WO2017119069A1 (ja) 発光装置
WO2016151819A1 (ja) 発光装置
JP2016149315A (ja) 発光装置の製造方法
WO2016129113A1 (ja) 発光装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15882565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP