WO2016129523A1 - 流動仮焼炉 - Google Patents

流動仮焼炉 Download PDF

Info

Publication number
WO2016129523A1
WO2016129523A1 PCT/JP2016/053524 JP2016053524W WO2016129523A1 WO 2016129523 A1 WO2016129523 A1 WO 2016129523A1 JP 2016053524 W JP2016053524 W JP 2016053524W WO 2016129523 A1 WO2016129523 A1 WO 2016129523A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace body
air
central axis
raw material
fuel
Prior art date
Application number
PCT/JP2016/053524
Other languages
English (en)
French (fr)
Inventor
俊柱 王
佳典 ▲高▼山
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to KR1020177024464A priority Critical patent/KR20170115563A/ko
Priority claimed from JP2016020448A external-priority patent/JP6642059B2/ja
Publication of WO2016129523A1 publication Critical patent/WO2016129523A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/43Heat treatment, e.g. precalcining, burning, melting; Cooling
    • C04B7/44Burning; Melting
    • C04B7/45Burning; Melting in fluidised beds, e.g. spouted beds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/16Introducing a fluid jet or current into the charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/18Charging particulate material using a fluid carrier

Definitions

  • the present invention relates to a fluid calciner capable of improving the combustibility of pulverized coal and increasing the decarboxylation rate of raw materials.
  • Patent Document 1 a cylindrical furnace body whose cylinder axis direction is the vertical direction, an air dispersion plate provided substantially horizontally at the bottom of the furnace body, and an air chamber below the air dispersion plate
  • a raw material supply chute for supplying the raw material to the upper side of the air dispersion plate
  • a fuel supply nozzle for supplying solid fuel to the fluidized bed on the upper side of the air dispersion plate
  • secondary air bleed air
  • a cement raw material calcining furnace having a secondary air duct to be fed, wherein the fuel supply nozzle is deflected to a tangential side from the centripetal direction with a downward slope of 20 ° or more with respect to a horizontal plane and the furnace It has been proposed to connect to the body.
  • the fluidized calcining furnace for cement raw material described in Patent Document 1 calcines the raw material by burning fuel, but depending on the arrangement of the bleed conduit (secondary air duct), the outlet of the bleed conduit may be located above the outlet. Since the flow velocity in the furnace axial direction is increased and the circumferential flow velocity is decreased, it is difficult to uniformly disperse the coal and the raw material in the fluid calciner. For this reason, oxygen is insufficient in a zone having a high coal concentration, and oxygen is excessive in a zone having a low coal concentration. In addition, since the raw materials are dispersed non-uniformly in the furnace, the gas temperature is biased due to heat absorption due to the decarboxylation of the raw materials, and sufficient calcining cannot be performed. Furthermore, when coal or oil coke with poor flammability is used as fuel, there is a problem such as blockage of the pipe due to an increase in the unburned rate of char and the temperature of the exhaust gas pipe and preheater rising.
  • An object of the present invention is to provide a fluid calcining furnace capable of performing sufficient calcining while preventing clogging.
  • the fluid calcining furnace of the present invention is formed in a cylindrical shape having a central axis along the vertical direction, and has a fluidized air inlet at the bottom for injecting fluidized air therein, and a side portion of the furnace body.
  • a fuel injection line for injecting fuel into the furnace body connected to a side portion of the furnace body, a raw material chute for introducing cement raw material into the furnace body, and connected to a side portion of the furnace body
  • An extraction conduit for introducing extraction air into the furnace body, and an extension line of the central axis of the extraction conduit is deviated from a diameter line of the furnace body in a cross section orthogonal to the central axis of the furnace body,
  • the ratio (S / R) of the distance S from the diameter line of the furnace body parallel to the central axis of the conduit to the innermost wall surface of the bleed conduit and the inner radius R of the furnace body is 0. It is set to 50 or more and 0.91 or less.
  • the extension line of the central axis of the extraction conduit connected to the furnace body is arranged in parallel to the circumferential tangential direction of the furnace body so that the extension line of the central axis of the extraction body is not perpendicular to the center axis of the furnace body, It flows along the wall and swirls in the furnace.
  • the fuel can be agitated by the swirling extracted air, and the extracted air (oxygen) can be sufficiently brought into contact with the fuel. Thereby, while improving the combustibility of a fuel, the decarboxylation rate of a cement raw material can be improved.
  • the unburned rate at the outlet of the fluid calciner can be reduced, even when poorly flammable coal or oil coke is used as the fuel, the temperature in the preheater is kept low and the cyclone or raw chute is used. It is possible to prevent clogging with a preheater due to deposits, and perform sufficient calcining and good operation.
  • the extraction air is introduced at a position closer to the inner wall surface of the furnace body, so that the swirling effect of the extraction air increases.
  • coal particles can be dispersed to promote combustibility and improve the decarbonation rate of the cement raw material, but the friction caused by contact of the extracted air, cement raw material and fuel with the inner wall surface of the furnace body is large.
  • the extraction pressure loss pressure difference between the extraction conduit inlet and the calciner outlet
  • the ratio (S / R) is set to 0.91 or less, the swirling effect of the extracted air can be obtained while suppressing the extraction pressure loss.
  • the ratio (S / R) when the ratio (S / R) is reduced, the extraction air is introduced toward the vicinity of the center of the furnace body, so that the swirling extraction air is concentrated at the center of the furnace body, and the swirling effect of the extraction air is obtained. It becomes difficult. Thereby, dispersion
  • the ratio (S / R) is preferably 0.58 or more and 0.91 or less.
  • a plurality of the extraction conduits may be provided in the circumferential direction of the furnace body.
  • the extraction air can be smoothly swirled in the furnace.
  • the extraction air can be swirled in the furnace body so that the extraction air and the fuel can be sufficiently brought into contact with each other. Even when inferior coal or oil coke is used, the temperature inside the preheater can be kept low to prevent the preheater from being blocked by deposits on the cyclone or the raw chute.
  • FIG. 1A is the front view of a fluid calcining furnace lower part
  • FIG. 1B is the top view
  • FIG. 2 is a schematic view showing a fluid calcining furnace of Examples 1 to 5 and Comparative Examples 1 to 3
  • FIG. 2A is a front view of the lower part of the fluid calcining furnace
  • FIG. 2B is a top view thereof.
  • FIG. 3A is sectional drawing which follows the AA line of a fluid calcining furnace
  • FIG. 3B is the top view.
  • FIG. 7A is a simulation result comparing the flow velocity distribution of the cross section of the furnace body depending on the connection position between the extraction conduit and the furnace body in the fluid calciner
  • FIG. 7A is the fluid calciner of Comparative Example 3
  • FIGS. 7B to 7F are the main results.
  • FIG. 7G shows the results of the fluidized calciners of Examples 1 to 5 according to the invention
  • FIG. 7G shows the results of the fluidized calciners of Examples 1 to 5 according to the invention
  • the fluid calcining furnace 10 of the present embodiment is used in a cement manufacturing process, and is provided between a preheater for preheating a cement raw material and a cement kiln for firing the cement raw material preheated by the preheater, It induces the calcination (decarboxylation) reaction of cement raw materials.
  • the fluidized calciner 10 is formed in a cylindrical shape having a central axis O along the vertical direction, and a fluidized air blowing port 15 for blowing fluidized air into the inside is arranged at the bottom.
  • a furnace body 11 provided, a fuel injection line 12 that is connected to a side portion of the furnace body 11 and blows pulverized coal as fuel into the furnace body 11, and is connected to a side portion of the furnace body 11 to enter the furnace body 11.
  • a raw material chute 13 for feeding cement raw material and a plurality (four in the figure) of extraction pipes 14a to 14d connected to the side of the furnace body 11 and introducing the extraction air into the furnace body 11 are provided.
  • the inner diameter of the furnace body 11 is 4.0 to 6.5 m and the height is 14 m to 33 m.
  • each extraction pipe is opened so as to open at a position opposed to the radial direction of the furnace body 11 with respect to each extraction conduit 14a, 14b arranged to open on both sides of the raw material chute 13.
  • Conduits 14c and 14d are arranged.
  • the fluidizing air blowing port 15 high-pressure air is blown into the furnace body 11 through, for example, an air chamber and an air dispersion plate nozzle.
  • an air dispersion plate nozzle including a dispersion plate arranged in parallel (that is, substantially horizontally) in the radial direction of the furnace body 11 is provided. .
  • the blowing speed from the fluidized air blowing port 15 is determined by the density and particle size distribution of the cement raw material, and is set to 0.5 to 2.0 m / s for a normal cement raw material.
  • Two fuel injection lines 12 through which pulverized coal, for example, coal or coke, is injected into the furnace body 11 are provided on the side of the furnace body 11, and each injection port is on the same circumference of the furnace body 11.
  • the extraction pipes 14a and 14b on both sides of the raw material chute 13 are arranged in the radial direction (that is, substantially horizontal at substantially the same height and the center line intersects the central axis O of the furnace body 11). It arrange
  • the carrier air speed of the fuel injection line 12 is an adjustment item in operation, but is usually set in the range of 10 to 20 m / s.
  • the raw material chute 13 is connected to the side of the furnace body 11 in a descending gradient, and the connection port is disposed between the extraction conduit 14a and the extraction conduit 14b.
  • the angle of the raw material chute 13 with respect to the horizontal plane is determined empirically by the friction coefficient and angle of repose of the cement raw material particles, and is set to about 50 ° to 70 ° in the case of a normal cement raw material.
  • the diameter of the raw material chute 13 is designed to match the raw material input amount.
  • the connection port between the raw material chute 13 and the furnace body 11 varies in cross-sectional size and height depending on the production capacity of the fluid calciner.
  • the four bleed conduits 14a to 14d are provided with the blowing direction in the tangential direction of the inner peripheral surface at the connection port with the furnace body 11, and the center of each connection port is the same circle. It is arrange
  • the extension line of the central axis C of each extraction conduit 14a-14d is shifted from the diameter line D of the furnace body 11 (in other words, each extraction conduit 14a-14d).
  • the central axis C and the central axis O of the furnace body 11 do not intersect), and the most distant positions of the extraction conduits 14a to 14d from the diameter lines D of the furnace body 11 parallel to the central axes C of the extraction conduits 14a to 14d
  • the ratio (S / R) between the distance S to the inner wall surface and the inner radius R of the furnace body 11 is set to 0.50 or more and 0.91 or less.
  • a straight line passing through the central axis O is called a diameter line D.
  • the gas flow rate of the bleed conduits 14a to 14d is set to approximately 13.0 to 18.0 m / s.
  • the fluid calcining furnace 10 according to the present invention is suitable for each member based on a simulation of combustion and calcining conditions in a fluid calcining furnace by computational fluid dynamics calculation (CFD) performed by the present inventors. It is constructed by finding a proper positional relationship.
  • CFD computational fluid dynamics calculation
  • the computational fluid dynamics calculation method and model are as follows. (1) Computational fluid dynamics software code: RFLOW (R-flow, Inc.) (2) Turbulence model: k- ⁇ Model (3) Fluid: Incompressible ideal gas (4) Pressure-velocity coupling: SIMPLE (5) Discretization scheme: Finite Volume Method (6) Momentum: Second Order Upwind (7) Turbulent kinetic energy: First Order Upwind (8) Turbulent dissipation rate: First Order Upwind (9) Energy: Second Order Upwind (10) Particle analysis: Discrete Element Method (11) Particle fluid coupling: Two Way Coupling (12) Pulverized coal combustion: H 2 + O 2 —H 2 O, CH 4 + O 2 —H 2 O + CO 2 , CO + O 2 —CO 2 , C + O 2 —CO 2 (13) Raw material decarboxylation model: CaCO 3 -CaO + CO 2
  • (2) to (11) are used when performing numerical fluid analysis on gas flow, (12) when performing combustion analysis, and (13) when analyzing decarboxylation reaction of limestone. Is also a model widely used in numerical analysis.
  • the pulverized coal feed amount may be adjusted so that becomes constant.
  • the average raw material decarboxylation rate (%) is a weighted average of the decarboxylation rate of each cement raw material particle at the outlet of the fluid calciner according to the mass before calcining.
  • the average char reaction rate (%) is a weighted average of the char reaction rate for each particle of pulverized coal (fuel) at the outlet of the fluid calciner according to the mass of char before reacting.
  • the extraction pressure loss (Pa) is the difference between the average pressure value at the inlet cross section of the extraction conduit and the average pressure value at the outlet cross section of the fluid calciner.
  • the dispersion plate nozzle of the fluidized air blowing port 15A is parallel to the radial direction of the furnace body 11A (ie, substantially Horizontally) and the centers of the connection ports of the four extraction conduits 14A and the furnace body 11A are evenly on the same line in the circumferential direction of the furnace body 11A (that is, at substantially the same height and at approximately equal intervals) It arrange
  • positioned upwards from the fluidization air blowing inlet 15A (lower end of the furnace body 11A) at the height of h0 1.6m.
  • the angle formed with the horizontal plane of the raw material chute 13A was set to 55 °.
  • the two fuel injection lines 12A are arranged below the extraction conduit 14A with the injection direction directed toward the center of the furnace body 11 (radial direction), and the center of the injection port is above the fluidized air injection port 15A. It arrange
  • positioned at the height of h1 0.55m.
  • the extraction conduit 14B is connected at a downward slope at the side of the furnace body 11B, and the angle formed between the central axis C of the extraction conduit 14B and the horizontal plane is 65 °. Arranged.
  • the conditions (configuration) of the fuel injection line 12B, the raw material chute 13B, the fluidized air injection port 15B, etc. are the same as the models of Examples 1 to 5 and Comparative Examples 1 to 3 shown in FIGS. 2A and 2B. Same as above.
  • the average raw material decarboxylation rate (%), the average char reaction rate (%), and the extraction pressure loss (Pa) are calculated for each model of the conventional example configured as described above, Examples 1 to 5 and Comparative Examples 1 to 3. did.
  • the calculation results are shown in FIGS.
  • the results of a model (conventional example) formed based on the shape of a conventional actual furnace are indicated by solid lines L in the graphs shown in FIGS. 7A to 7G, the connection between the extraction pipe and the furnace body for each model of Comparative Example 1 (FIG. 7A), Examples 1 to 5 (FIGS. 7B to 7F), and the conventional example (FIG. 7G).
  • An example of the simulation result which visualized the flow velocity distribution of a position cross section is shown.
  • the ratio (S / R) is in the range of 0.58 to 0.91, particularly high pulverized coal combustibility and decarboxylation rate of the cement raw material while keeping the extraction pressure loss relatively low. It can be seen that
  • the ratio (S / R) of the connection position of the extraction conduit 14A to the furnace body 11A in the fluid calciner shown in the above embodiment is 0.50 or more and 0.00.
  • the unburned rate at the outlet of the fluid calciner can be reduced, even when coal or oil coke with poor flammability is used as the fuel, the temperature inside the preheater is kept low so that cyclones and raw chute can be used. Therefore, it is possible to prevent clogging with the preheater due to the deposits, and perform sufficient calcination to perform good operation.
  • the ratio (S / R) is increased, the extracted air is introduced along the outer peripheral side of the furnace body 11A. Therefore, as shown in FIG. 7A, the ratio (S / R) is 1.0.
  • the swirl effect is increased, but friction due to contact between the extracted air and the cement raw material powder with the inner wall surface of the furnace body increases, and the extraction pressure loss increases. Therefore, as shown in FIGS. 7B to 7F, by setting the ratio (S / R) to 0.91 or less, the swirling effect of the extracted air can be obtained while suppressing the extraction pressure loss.
  • FIG. 7G shows a conventional fluid calcining furnace in which the bleed conduit 14B is provided toward the center of the furnace body 11B, that is, the ratio S / R is not only 0, but is inclined from the horizontal direction. It is a simulation result of flow velocity distribution.
  • the extraction air can be swirled in the furnace body so that the extraction air and the fuel can be sufficiently brought into contact with each other, the unburned rate at the outlet of the fluid calciner can be reduced, and the coal or oil having poor flammability can be used as the fuel. Even when coke is used, the temperature in the preheater can be kept low to prevent the preheater from being blocked by deposits on the cyclone or the raw material chute.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

 流動仮焼炉出口における未燃焼率を低減させることができ、燃料に燃焼性の悪い石炭やオイルコークスを使用してもプレヒータでの閉塞を防止しつつ十分な仮焼を行うことが可能な流動仮焼炉を提供する。 流動仮焼炉は、上下方向に沿う中心軸を有する筒状に形成され、流動化空気を内部に吹き込むための流動化空気吹込口を底部に有する炉体と、炉体の側部に接続され、炉体内に燃料を吹き込む燃料吹込ラインと、炉体の側部に接続され、セメント原料を投入する原料シュートと、炉体の側部に接続され、炉体内に抽気空気を導入する抽気導管とを備え、炉体の中心軸と直交する横断面において、抽気導管の中心軸の延長線が、炉体の直径線からずれており、抽気導管の中心軸に平行な炉体の直径線から抽気導管の最も離れた位置の内壁面までの距離Sと炉体11の内半径Rとの比率(S/R)が0.50以上0.91以下に設定されている。

Description

流動仮焼炉
 本発明は、微粉炭の燃焼性の向上、及び原料の脱炭酸率の増加を可能とする流動仮焼炉に関する。
 本願は、2015年2月12日に出願された特願2015-025225号および2016年2月5日に出願された特願2016-020448号に基づき優先権を主張し、その内容をここに援用する。
 流動仮焼炉において、セメント原料を仮焼する燃料として、石炭などの固形燃料を用いることが一般的である。その中でも、燃焼性の高い瀝青炭を微粉末に粉砕した微粉炭が使用されているが、資源を有効利用するために、燃焼性の悪い石炭やオイルコークスといった幅広い種類の燃料の使用が求められている。
 しかし、燃料として燃焼性の悪い石炭やオイルコークスなどを使用した場合、流動仮焼炉出口での未燃率が高く、微粉炭がサスペンションプレヒータ内で燃焼する。その結果、プレヒータ内の温度が高くなり、サイクロンや原料シュートにおいて付着物が生成されることにより、プレヒータ内での閉塞が多発し、運転の支障となるといった問題がある。また、流動仮焼炉内は、高温かつダスト濃度が非常に高いため、燃焼状態の把握が困難であった。
 そこで、特許文献1においては、筒軸心方向を上下方向とした筒状の炉体と、この炉体の底部に略水平に設けられた空気分散板及びこの空気分散板の下側のエアチャンバと、空気分散板の上側に原料を供給する原料供給シュートと、空気分散板の上側の流動層に固形燃料を供給する燃料供給ノズルと、空気分散板の上側に2次空気(抽気空気)を供給する2次空気ダクトと、を有するセメント原料の流動仮焼炉において、その燃料供給ノズルを、水平面に対して20°以上の下り勾配にて、かつ求心方向よりもタンゼンシャル側に偏向して炉体に接続することが提案されている。
特開平8-231254号公報
 この特許文献1に記載のセメント原料の流動仮焼炉は、燃料の燃焼により原料を仮焼させるものであるが、抽気導管(2次空気ダクト)の配置によっては、その抽気導管の出口上部の炉軸方向の流速が大きくなり、円周方向の流速が小さくなることから、流動仮焼炉内において石炭および原料を均一に分散することが難しくなる。このため、石炭濃度の高いゾーンでは酸素が不足し、石炭濃度の低いゾーンでは酸素が過剰となる。また、炉内において原料が不均一に分散されることにより、原料の脱炭酸による吸熱でガス温度の偏りが生じ、十分な仮焼が行えない。さらに、燃料に燃焼性の悪い石炭やオイルコークスを使用した際に、チャーの未燃率が高くなり、排ガス導管やプレヒータの温度が上昇することによる導管閉塞等の問題がある。
 本発明は、このような事情に鑑みてなされたもので、流動仮焼炉出口における未燃焼率を低減させることができ、燃料に燃焼性の悪い石炭やオイルコークスを使用しても、プレヒータでの閉塞を防止しつつ、十分な仮焼を行うことが可能な流動仮焼炉を提供することを目的とする。
 本発明の流動仮焼炉は、上下方向に沿う中心軸を有する筒状に形成され内部に流動化空気を吹き込むための流動化空気吹込口を底部に有する炉体と、前記炉体の側部に接続されて前記炉体内に燃料を吹き込む燃料吹込ラインと、前記炉体の側部に接続されて前記炉体内にセメント原料を投入する原料シュートと、前記炉体の側部に接続されて前記炉体内に抽気空気を導入する抽気導管とを備え、前記炉体の中心軸と直交する横断面において、前記抽気導管の中心軸の延長線は前記炉体の直径線からずれており、前記抽気導管の前記中心軸に平行な前記炉体の前記直径線から前記抽気導管の最も離れた位置の内壁面までの距離Sと前記炉体の内半径Rとの比率(S/R)が0.50以上0.91以下に設定される。
 炉体に接続された抽気導管の中心軸の延長線が炉体の中心軸に直交しないように、炉体の円周接線方向と平行に配置されていることにより、抽気空気が炉体の内壁面に沿って流れ、炉体内で旋回する。この旋回する抽気空気により燃料を撹拌させ、抽気空気(酸素)と燃料とを十分に接触させることができる。これにより、燃料の燃焼性を向上させるとともに、セメント原料の脱炭酸率を向上させることができる。
 したがって、流動仮焼炉出口における未燃焼率を低下させることができるので、燃料に燃焼性の悪い石炭やオイルコークスを使用した場合においても、プレヒータ内の温度を低く抑えてサイクロンや原料シュートでの付着物によるプレヒータでの閉塞を防止でき、十分な仮焼を行い良好な運転を行うことができる。
 比率(S/R)を大きくする程、炉体の内壁面に近い位置で抽気空気が導入されることから、抽気空気の旋回効果が大きくなる。これにより、石炭粒子を分散させて燃焼性を促進させ、セメント原料の脱炭酸率を向上させることができるが、抽気空気、セメント原料や燃料が炉体の内壁面と接触することによる摩擦が大きくなり、抽気圧力損失(抽気導管入口と仮焼炉出口との圧力差)が大きくなる。抽気圧力損失が大きくなると、キルン抽気誘引ファンの動力コストの増加、又は抽気量の減少による生産量の低減が引き起こされる。このため、比率(S/R)は0.91以下とすることで、抽気圧力損失を抑えながら、抽気空気の旋回効果を得ることができる。
 一方、比率(S/R)が小さくなると、炉体の中心付近に向けて抽気空気が導入されることから、旋回する抽気空気が炉体の中心部に集中し、抽気空気の旋回効果を得ることが難しくなる。これにより、抽気空気、燃料、セメント原料の粒子の分散が悪くなり、石炭の燃焼性やセメント原料の脱炭酸率を向上させることが難しくなる。このため、比率(S/R)は0.50以上とすることで、抽気空気の旋回効果を確実に得ることができる。
 本発明の流動仮焼炉において、前記比率(S/R)を0.58以上0.91以下とするとよい。
 比率(S/R)を、特に0.58以上0.91以下の範囲とすることで、抽気圧力損失を比較的低く抑えながら、高い燃料の燃焼性やセメント原料の脱炭酸率を得ることができる。
 本発明の流動仮焼炉において、前記抽気導管は、前記炉体の周方向に複数設けられているとよい。
 抽気導管を複数設けることにより、炉体内で抽気空気を円滑に旋回させることができる。
 本発明によれば、抽気空気を炉体内で旋回させて、抽気空気と燃料とを十分に接触させることができるので、流動仮焼炉出口における未燃焼率を低下させることができ、燃料に燃焼性の悪い石炭やオイルコークスを使用した場合においても、プレヒータ内の温度を低く抑えてサイクロンや原料シュートでの付着物によるプレヒータでの閉塞を防止できる。
本発明の流動仮焼炉の実施形態を示す概略図であり、図1Aが流動仮焼炉下部の正面図、図1Bがその上面図である。 実施例1~5及び比較例1~3の流動仮焼炉を示す概略図であり、図2Aが流動仮焼炉下部の正面図、図2Bがその上面図である。 従来例の流動仮焼炉を示す概略図であり、図3Aが流動仮焼炉のA‐A線に沿う断面図、図3Bがその上面図である。 比率(S/R)と平均チャー反応率との関係を示すグラフである。 比率(S/R)と平均原料脱炭酸率との関係を示すグラフである。 比率(S/R)と抽気圧力損失との関係を示すグラフである。 流動仮焼炉における抽気導管と炉体との接続位置の違いによる炉体断面の流速分布を比較するシミュレーション結果であり、図7Aが比較例3の流動仮焼炉、図7B~図7Fが本発明に係る実施例1~5の流動仮焼炉、図7Gが従来例の流動仮焼炉の結果を示す。
 以下、本発明に係る流動仮焼炉の実施形態を、図面を参照しながら説明する。
 本実施形態の流動仮焼炉10は、セメント製造工程に用いられるものであり、セメント原料を予熱するプレヒータと、プレヒータによって予熱されたセメント原料を焼成するためのセメントキルンとの間に設けられ、セメント原料の仮焼(脱炭酸)反応を誘導するものである。
 流動仮焼炉10は、図1Aおよび図1Bに示すように、上下方向に沿う中心軸Oを有する筒状に形成され流動化空気を内部に吹き込むための流動化空気吹込口15が底部に配設された炉体11と、この炉体11の側部に接続され炉体11内に燃料である微粉炭を吹き込む燃料吹込ライン12と、炉体11の側部に接続され炉体11内にセメント原料を投入する原料シュート13と、炉体11の側部に接続され炉体11内に抽気空気を導入する複数(図では4つ)の抽気導管14a~14dとを備えている。炉体11の内径は4.0~6.5m、高さは14m~33mとされる。
 抽気導管14a~14dは、図1Bに示すように炉体11の周方向に間隔を空けて複数(本実施形態では4つ)配置され、図1Aに示すようにそれぞれ原料シュート13とほぼ同じ高さに開口するように設けられている。また、図1Bに示すように、原料シュート13の両側に開口するように配置された各抽気導管14a,14bに対して、炉体11の径方向に対向する位置にそれぞれ開口するように各抽気導管14c,14dが配置されている。
 流動化空気吹込口15において、例えばエアチャンバ及び空気分散板ノズルを通じて高圧空気が炉体11内に吹き込まれる。本実施形態の流動仮焼炉10の流動化空気吹込口15として、炉体11の径方向に平行に(すなわち略水平に)配設された分散板を備える空気分散板ノズルが設けられている。この流動化空気吹込口15からの吹込み速度は、セメント原料の密度や粒度分布により決定され、通常のセメント原料では0.5~2.0m/sに設定される。
 燃料である微粉炭、例えば石炭やコークスが炉体11内に吹き込まれる燃料吹込ライン12は、炉体11の側部に2つ設けられており、各吹込口が炉体11の同一円周上に径方向に向けて(すなわち略同一高さに略水平かつ中心線が炉体11の中心軸Oに交差するように)配設されるとともに、原料シュート13の両側の抽気導管14a,14bの各開口部に対して径方向に対向する位置に開口する各抽気導管14c,14dの近傍、吹き出し方向前方に配置される。各燃料吹込ライン12は、抽気導管14a~14dの下方であり、かつ流動化空気吹込口15(炉体11の下端)から上方にh1=0.3~1.0mの範囲に接続されている。燃料吹込ライン12の搬送空気速度は、運転上の調整項目であるが、通常10~20m/sの範囲に設定される。
 原料シュート13は、炉体11の側部に下り勾配に接続され、その接続口が抽気導管14aと抽気導管14bとの間に配置される。この原料シュート13の水平面との角度は、セメント原料の粒子の摩擦係数や安息角によって経験的に決められ、通常のセメント原料の場合においては概ね50°~70°に設定される。原料シュート13の直径は、原料投入量に見合うように設計される。原料シュート13と炉体11との接続口の中心は、流動化空気吹込口15(炉体11の下端)から上方にh2=1.5~3.0mの範囲に配置される。なお、原料シュート13と炉体11との接続口は、流動仮焼炉の生産能力によって断面サイズや高さ位置が異なる。
 4つの抽気導管14a~14dは、図1Bに示すように、炉体11との接続口における内周面接線方向に吹き出し方向を向けて設けられているとともに、各々の接続口の中心が同一円周上(すなわち略同一高さ)に配置されている。炉体11の中心軸Oと直交する横断面において、各抽気導管14a~14dの中心軸Cの延長線は炉体11の直径線Dからずれており(換言すると、抽気導管14a~14dの各中心軸Cと炉体11の中心軸Oとは交差しない)、抽気導管14a~14dの各中心軸Cに平行な炉体11の各直径線Dから各抽気導管14a~14dの最も離れた位置の内壁面までの距離Sと炉体11の内半径Rとの比率(S/R)が0.50以上0.91以下に設定される。
 ここで、炉体11の中心軸Oと直交する横断面において、中心軸Oを通過する直線を直径線Dと呼んでいる。
 各抽気導管14a~14dと炉体11との接続口の中心は、流動化空気吹込口15(炉体11の下端)から上方にh0=1.5~2.5mの高さ範囲に配置され、抽気導管14a~14dのガス流速は概ね13.0~18.0m/sに設定される。なお、抽気導管は、炉体11内に均等に空気を供給する観点から、円周方向に略等間隔を置いた位置に複数本を配置することが望ましいが、図1Bに示すように等間隔ではない配置であってもよい。
 本発明にかかる流動仮焼炉10は、本発明者らが行った数値流体力学計算CFD(Computational Fluid Dynamics)による流動仮焼炉内の燃焼および仮焼状況のシミュレーションに基づいて、各部材の好適な位置関係を見出して構成される。
 数値流体力学計算は、実際の流動仮焼炉の形状、及び操業条件を数値化し、ガス流れ、粒子移動、化学反応、伝熱を数値計算し、コンピュータグラフィックを用いて、実測では困難である流動仮焼炉内での燃焼および仮焼の状況を把握するものである。以下、この数値流体力学計算による流動仮焼炉の最適化について説明する。
 数値流体力学計算の方法、モデルは下記のとおりである。
(1)数値流体力学計算ソフトコード:RFLOW(株式会社アールフロー)
(2)乱流モデル:k‐ε Model
(3)流体:非圧縮性理想気体
(4)圧力‐速度カップリング:SIMPLE
(5)離散化スキーム:Finite Volume Method
(6)運動量:Second Order Upwind
(7)乱流運動エネルギー:First Order Upwind
(8)乱流散逸率:First Order Upwind
(9)エネルギー:Second Order Upwind
(10)粒子解析:Discrete Element Method
(11)粒子流体連成:Two Way Coupling
(12)微粉炭燃焼:H+O-HO、CH+O-HO+CO、CO+O-CO、C+O-CO
(13)原料脱炭酸モデル:CaCO-CaO+CO
 (2)~(11)は、ガスの流れ等についての数値流体解析を行う際に、(12)は燃焼解析を行う際に、(13)は石灰石の脱炭酸反応を解析する際に、いずれも数値解析において広く用いられているモデルである。
 燃料として用いる石炭の組成は、下記の表1に示す瀝青炭の工業分析値を想定した。
Figure JPOXMLDOC01-appb-T000001
 燃料(微粉炭)の種類に変更があった場合には、変更された燃料に対応する表1の組成(発熱量と工業分析値)を用い、流動仮焼炉へ投入する燃料の総発熱量が一定となるように、微粉炭フィード量の調整を行えばよい。
 この数値流体力学計算による評価は、図2Aおよび図2Bに示すように、4つの抽気導管14Aの炉体11Aへの接続位置を比率(S/R)を変更した実施例1(S/R=0.91),実施例2(S/R=0.66),実施例3(S/R=0.61),実施例4(S/R=0.58)、実施例5(S/R=0.50)及び比較例1(S/R=1.0),比較例2(S/R=0.41),比較例3(S/R=0.15)のモデルと、抽気導管の構成が異なる流動仮焼炉による従来例(抽気導管の中心軸延長線と炉体中心軸とが交わる。S/R=0)のモデルとを形成し、これらの各モデルについて、平均チャー反応率(%)(図4参照)、平均原料脱炭酸率(%)(図5参照)、抽気圧力損失(Pa)(図6参照)を算出することにより行った。
 平均原料脱炭酸率(%)は、流動仮焼炉の出口におけるセメント原料の粒子ごとの脱炭酸率を、仮焼される前の質量に応じて加重平均したものである。平均チャー反応率(%)は、流動仮焼炉の出口における微粉炭(燃料)の粒子ごとのチャー反応率を、反応する前のチャーの質量に応じて加重平均したものである。抽気圧力損失(Pa)は、抽気導管の入口断面の平均圧力値と流動仮焼炉の出口断面の平均圧力値との差である。
 実施例1~5及び比較例1~3の各モデルとしては、図2Aおよび図2Bに示すように、流動化空気吹込口15Aの分散板ノズルを炉体11Aの径方向に平行に(すなわち略水平に)配設し、4つの抽気導管14Aと炉体11Aとの接続口の中心を、炉体11Aの円周方向の同一線上に均等に(すなわち略同一高さに略等間隔で)、流動化空気吹込口15A(炉体11Aの下端)から上方にh0=1.6mの高さに配置した。原料シュート13Aと炉体11Aとの接続口を隣接する抽気導管14Aの間に配置し、その接続口の中心を、流動化空気吹込口15Aの上方にh2=2.1mの高さに配置し、この原料シュート13Aの水平面となす角度を55°に設定した。2つの燃料吹込ライン12Aは、吹込方向を炉体11の中心に向けて(径方向)、抽気導管14Aの下方に配設し、その吹込口の中心を、流動化空気吹込口15Aの上方にh1=0.55mの高さに配置した。
 従来例のモデルとして、図3Aおよび図3Bに示すように、抽気導管14Bを炉体11Bの側部にて下り勾配で接続し、抽気導管14Bの中心軸Cと水平面とのなす角度を65°に配置した。抽気導管14B以外、燃料吹込ライン12B,原料シュート13B,流動化空気吹込口15Bなどの条件(構成)は、図2Aおよび図2Bに示す実施例1~5及び比較例1~3の各モデルと同様とした。抽気導管14Bと炉体11Bとの接続口の中心位置についても、図2Aおよび図2Bに示す実施例1~5及び比較例1~3の各モデルと同様に、炉体11Bの円周方向の同一線上に均等に(すなわち、略同一高さで略等間隔に)、流動化空気吹込口15B(炉体11Bの下端)から上方にh0=2.0mの高さに配置した。
 セメント原料の投入量、風速、温度などの操業条件は、下記のデータを使用した。
 ・炉体11A,11B
  炉内径=5.1m
  炉長=14.0m
 ・燃料吹込ライン12A,12B
  微粉炭(燃料)のフィード量=9.1t/h(燃料吹込ライン1基当たりのフィード量4.05t/h)
  搬送空気流速=11m/s
  温度=50℃
 ・原料シュート13A,13B
  セメント原料の投入量=272t/h
  温度=740℃
  搬送空気流速=0.5m/s
 ・抽気導管14A,14B
  抽気空気の温度=880℃
  抽気空気の流速=16.8m/s
 ・流動化空気吹込口15A,15B
  流動化空気の温度=800℃
  流動化空気の流速1.64m/s
 このように構成される従来例、実施例1~5および比較例1~3の各モデルについて、平均原料脱炭酸率(%)、平均チャー反応率(%)、抽気圧力損失(Pa)を算出した。演算結果を図4から図6に示す。図4から図6に示す各グラフに、従来の実炉の形状に基づいて形成したモデル(従来例)の結果を実線Lで示した。また、図7A~図7Gに、比較例1(図7A)、実施例1~5(図7B~図7F)、及び従来例(図7G)の各モデルについて、抽気導管と炉体との接続位置断面の流速分布を可視化したシミュレーション結果の一例を示す。
 図4から図6に見られるように、比率(S/R)が0.50以上0.91以下のモデル(実施例1~5)では、実線Lで示される従来例に比較して抽気圧力損失がやや増大したが(図6)、チャー反応率(図4)及び原料脱炭酸率(図5)が従来例より大きく向上したことがわかる。
 一方、比率(S/R)が0.15の比較例3では、実線Lで示される従来例に比較して抽気圧力損失はほぼ同等であったが(図6)、チャー反応率(図4)及び原料脱炭酸率(図5)が大きく低下した。また、比率(S/R)が0.41の比較例2では、実線Lで示される従来例に比較して、チャー反応率(図4)および原料脱炭酸率(図5)が向上しなかったが、抽気圧力損失(図6)がやや増大した。また、比率(S/R)が1.0の比較例1では旋回効果がさらに大きく得られるため、チャー反応率および原料脱炭酸率は良好であったが、抽気圧力損失が急激に大きくなってしまった。
 したがって、比率(S/R)を0.50以上0.91以下に設定することにより、抽気圧力損失を比較的低く抑えながら、微粉炭(燃料)の燃焼性とセメント原料の脱炭酸率とを向上させることができ、最適化された流動仮焼炉を形成できる。また、比率(S/R)が特に0.58以上0.91以下の範囲にある場合には、抽気圧力損失を比較的低く抑えながら、特に高い微粉炭の燃焼性やセメント原料の脱炭酸率を得られることがわかる。
 以上の数値流体力学計算の結果に見られるように、上記実施形態に示した流動仮焼炉において炉体11Aへの抽気導管14Aの接続位置を比率(S/R)が0.50以上0.91以下となるように設定して、炉体11Aの円周接線方向と平行に(すなわち略水平に)抽気導管14Aを配置することにより、抽気空気を炉体11A内で好適に旋回させることができる。この旋回する抽気空気により燃料の微粉炭を撹拌(分散)させ、抽気空気(酸素)と微粉炭とを十分に接触させることができる。これにより、微粉炭の燃焼性を向上させることができるとともに、セメント原料の脱炭酸率を向上させることができる。
 したがって、流動仮焼炉の出口における未燃焼率を低下させることができるので、燃料に燃焼性の悪い石炭やオイルコークスを使用した場合においても、プレヒータ内の温度を低く抑えてサイクロンや原料シュートでの付着物によるプレヒータでの閉塞を防止でき、十分な仮焼を行い良好な運転を行うことができる。
 なお、比率(S/R)を大きくする程、炉体11Aの外周側に沿って抽気空気が導入されることから、図7Aに示すように、比率(S/R)が1.0の比較例1の場合では、旋回効果が大きくなるが、抽気空気やセメント原料粉が炉体の内壁面と接触することによる摩擦が大きくなり、抽気圧力損失が大きくなる。このため、図7B~図7Fに示すように、比率(S/R)を0.91以下とすることで、抽気圧力損失を抑えながら、抽気空気の旋回効果を得ることができる。
 一方、比率(S/R)が小さくなると、炉体11Aの中心付近に向けて抽気空気が導入されることから、抽気空気の旋回効果を得ることが難しくなる。このため、比率(S/R)は0.50以上とすることで、抽気空気の旋回効果を確実に得ることができる。図7Gは、抽気導管14Bが炉体11Bの中心に向けて設けられている、すなわち比率S/Rが0であるだけでなく、水平方向から傾斜して設けられた従来の流動仮焼炉における流速分布のシミュレーション結果である。
 なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 抽気空気を炉体内で旋回させて、抽気空気と燃料とを十分に接触させることができるので、流動仮焼炉出口における未燃焼率を低下させることができ、燃料に燃焼性の悪い石炭やオイルコークスを使用した場合においても、プレヒータ内の温度を低く抑えてサイクロンや原料シュートでの付着物によるプレヒータでの閉塞を防止できる。
10 流動仮焼炉
11,11A,11B 炉体
12,12A,12B 燃料吹込ライン
13,13A,13B 原料シュート
14a~14d,14A,14B 抽気導管
15,15A,15B 流動化空気吹込口

 

Claims (3)

  1.  上下方向に沿う中心軸を有する筒状に形成され、流動化空気を内部に吹き込むための流動化空気吹込口を底部に有する炉体と、
     前記炉体の側部に接続されており、前記炉体内に燃料を吹き込む燃料吹込ラインと、
     前記炉体の側部に接続されており、前記炉体内にセメント原料を投入する原料シュートと、
     前記炉体の側部に接続されており、前記炉体内に抽気空気を導入する抽気導管と
    を備え、
     前記炉体の前記中心軸と直交する横断面において、前記抽気導管の中心軸の延長線は前記炉体の直径線からずれており、前記抽気導管の前記中心軸に平行な前記炉体の前記直径線から前記抽気導管の最も離れた位置の内壁面までの距離Sと前記炉体の内半径Rとの比率(S/R)が0.50以上0.91以下に設定される流動仮焼炉。
  2.  前記比率(S/R)が0.58以上0.91以下である請求項1記載の流動仮焼炉。
  3.  前記抽気導管は、前記炉体の周方向に複数設けられている請求項1記載の流動仮焼炉。

     
PCT/JP2016/053524 2015-02-12 2016-02-05 流動仮焼炉 WO2016129523A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020177024464A KR20170115563A (ko) 2015-02-12 2016-02-05 유동 하소로

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015025225 2015-02-12
JP2015-025225 2015-02-12
JP2016-020448 2016-02-05
JP2016020448A JP6642059B2 (ja) 2015-02-12 2016-02-05 流動仮焼炉

Publications (1)

Publication Number Publication Date
WO2016129523A1 true WO2016129523A1 (ja) 2016-08-18

Family

ID=56614551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053524 WO2016129523A1 (ja) 2015-02-12 2016-02-05 流動仮焼炉

Country Status (1)

Country Link
WO (1) WO2016129523A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113828A (ja) * 1974-06-18 1976-02-03 Smidth & Co As F L
JPS5263931A (en) * 1975-11-21 1977-05-26 Sumitomo Heavy Industries Apparatus for baking powdery materials with waste heat of one body selffstanding type
JPS61136944A (ja) * 1984-12-04 1986-06-24 川崎重工業株式会社 セメントクリンカの焼成方法および装置
JPH08231254A (ja) * 1995-02-27 1996-09-10 Mitsubishi Materials Corp セメント原料の流動仮焼炉

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113828A (ja) * 1974-06-18 1976-02-03 Smidth & Co As F L
JPS5263931A (en) * 1975-11-21 1977-05-26 Sumitomo Heavy Industries Apparatus for baking powdery materials with waste heat of one body selffstanding type
JPS61136944A (ja) * 1984-12-04 1986-06-24 川崎重工業株式会社 セメントクリンカの焼成方法および装置
JPH08231254A (ja) * 1995-02-27 1996-09-10 Mitsubishi Materials Corp セメント原料の流動仮焼炉

Similar Documents

Publication Publication Date Title
CN106241826B (zh) 一种处理高铁低铝煤系高岭土的流态化煅烧装置及方法
WO2015128910A1 (ja) 流動仮焼炉
JP6642059B2 (ja) 流動仮焼炉
CN206156759U (zh) 一种处理高铁低铝煤系高岭土的流态化煅烧装置
JP6393981B2 (ja) 流動仮焼炉
JP5541406B2 (ja) セメント製造装置
JP5560469B2 (ja) セメント製造装置
WO2016129523A1 (ja) 流動仮焼炉
JP2018118861A (ja) セメントの製造方法
KR20140134317A (ko) 시멘트 제조 장치
CN205678659U (zh) 一种控氧流化燃烧炉
JPH08231254A (ja) セメント原料の流動仮焼炉
KR20140134318A (ko) 시멘트 제조 장치
Abbas et al. Reducing pressure drop in pyro-processing
CN208108070U (zh) 应用高温高效旋风分离器的烟气再循环系统
CA3181072A1 (en) A powder-gas heat exchanger and applications thereof
Kirchain et al. ENERGY EFFICIENT FLUIDIZED BED SYSTEMS
CN105889908A (zh) 一种控氧流化燃烧炉
JP2000329470A (ja) 仮焼方法及び仮焼設備
JPH11322382A (ja) 仮焼設備
JPS594393B2 (ja) セメントクリンカの焼成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16749167

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177024464

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16749167

Country of ref document: EP

Kind code of ref document: A1