WO2016127833A1 - 一种醋腈纤维及其制备方法 - Google Patents

一种醋腈纤维及其制备方法 Download PDF

Info

Publication number
WO2016127833A1
WO2016127833A1 PCT/CN2016/072777 CN2016072777W WO2016127833A1 WO 2016127833 A1 WO2016127833 A1 WO 2016127833A1 CN 2016072777 W CN2016072777 W CN 2016072777W WO 2016127833 A1 WO2016127833 A1 WO 2016127833A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
polyacrylonitrile
acetonitrile
cellulose acetate
temperature
Prior art date
Application number
PCT/CN2016/072777
Other languages
English (en)
French (fr)
Inventor
张海鸥
邵宝忠
杨立杰
陈卫
郝东文
刘海亮
郝朋林
段志国
国桂荣
宋德武
杨雪峰
刘明哲
白桦
Original Assignee
吉林奇峰化纤股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吉林奇峰化纤股份有限公司 filed Critical 吉林奇峰化纤股份有限公司
Priority to EP16748634.9A priority Critical patent/EP3257975B1/en
Publication of WO2016127833A1 publication Critical patent/WO2016127833A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/54Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polymers of unsaturated nitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/02Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from cellulose, cellulose derivatives, or proteins

Definitions

  • the present invention relates to a fibrous material, and more particularly to a acetonitrile fiber and a process for the preparation thereof.
  • Acrylic fiber is one of the main varieties of synthetic fiber in the world. It has soft handfeel, bright color, good strength and elasticity, and has the reputation of “artificial wool”. However, the acrylic fiber macromolecule has an irregular helical conformation and does not have a true crystalline structure. The fiber is much stronger than the natural fiber and the recycled fiber, has good acid resistance and good weather resistance; and is due to the raw material polyacrylonitrile (PAN). Containing a large number of hydrophobic groups, acrylic fibers have poor hygroscopicity and are highly prone to static electricity. Static electricity can cause filaments to entangle or block the machine, affecting the smooth progress of the weaving process; the accumulation of static charge on the garment can easily cause discomfort to the wearer, reducing the performance of the acrylic textile, thereby limiting its further development.
  • PAN polyacrylonitrile
  • Blending the antistatic agent with the acrylic spinning dope and then spinning into the fiber is an important method for antistatic modification of the acrylic fiber.
  • the commonly used blending antistatic agent is carbon black.
  • CN101805935A discloses a novel preparation method of antistatic acrylic fiber and antistatic acrylic fiber.
  • the acrylic fiber contains carbon nanotubes and carbon black, wherein the weight percentage of the carbon nanotubes is 1% to 15%, the weight percentage of the carbon black is 1% to 3%, and the weight percentage of the polyacrylonitrile ranges from 82% to 98%.
  • the fibers produced are black, their use is limited.
  • Acetate fiber has good hygroscopicity, moisture regain of 6%, can be dyed with disperse dyes, and has good wearing properties.
  • the silk has an elegant luster, soft handfeel, good drape, and resembles silk. It is suitable for making underwear, bathrobes, children's wear, women's clothing and interior fabrics, and can also be used as a cigarette filter. However, the strength of the acetate fiber is low and the taking property is poor.
  • DMAc N,N-dimethylacetamide
  • the method not only needs to add a pre-crosslinking agent and an initiator in the preparation of the copolyacrylonitrile, but also has a complicated preparation method, and requires aqueous phase precipitation polymerization, wet spinning, post-crosslinking and alkali hydrolysis multi-step reaction, and indicates "Hydraulysis is a necessary step in the preparation of polyacrylonitrile-based hydrophilic fibers.”
  • Hydraulysis is a necessary step in the preparation of polyacrylonitrile-based hydrophilic fibers.
  • the strength reached the maximum, only 1.4 cN/dtex, and then decreased as the cellulose acetate content increased.
  • a first object of the present invention is to provide a acetonitrile fiber for improving the defects of poor hygroscopicity and easy to generate static electricity of acrylic fibers, and at the same time improving the disadvantages of low strength and poor takeability of pure acetate fibers.
  • a second object of the present invention is to provide a method for preparing the acetonitrile fiber, which is simple and feasible, and the process is easy to control.
  • the present invention adopts the following technical solutions:
  • a acetonitrile fiber wherein the acetonitrile fiber is composed of polyacrylonitrile and cellulose acetate, wherein the mass ratio of cellulose acetate to polyacrylonitrile is any ratio, preferably 15 to 35 wt%: 65 ⁇ 85 wt%, more preferably 15 to 30 wt%: 70 to 85 wt%.
  • the acetonitrile fiber has a breaking strength of 2.3 to 3.0 CN/dtex, an elongation at break of 32 to 40%, a moisture regain of 2 to 3%, and a specific resistance of 9.0 ⁇ 10 8 to 4.8 ⁇ 10 9 ⁇ CM. .
  • the acetonitrile fiber is obtained by wet spinning from polyacrylonitrile and cellulose acetate by solvent dissolution.
  • the polyacrylonitrile is formed from acrylonitrile and vinyl acetate, wherein the mass ratio of acrylonitrile to vinyl acetate is 92 to 94 wt%: 6 to 8 wt%.
  • the mass ratio of the mass of the polyacrylonitrile to the cellulose acetate to the solvent is 20 to 25.5: 74.5 to 80.
  • the acetonitrile fiber provided by the invention has the advantages of light weight, good heat resistance, good weather resistance, good acid and alkali resistance, good drape, and no wrinkle, which not only fills the domestic blank, but also provides a new type of fiber for the textile industry. raw material.
  • the present invention adopts the following technical solutions:
  • a method for preparing an acetonitrile fiber according to the present invention comprising the steps of:
  • the spinning dope is subjected to temperature regulation, pressure filtration, and then spun, and is subjected to double diffusion molding by a coagulation bath, and then washed, drawn, oiled, dried, crimped, and shaped to obtain anacetonitrile fiber.
  • the aqueous suspension polymerization is carried out at a temperature of 58 to 62 ° C and a pH of 2.5 to 3.5.
  • the mass ratio of the cellulose acetate to the powdered polyacrylonitrile is an arbitrary ratio, preferably 15 to 35 wt%: 65 to 85 wt%, more preferably 15 to 30 wt%: 70 to 85 wt%.
  • the mass ratio of the mass of the powdered polyacrylonitrile to the cellulose acetate to the solvent is 20 to 25.5: 74.5 to 80; the solvent is dimethylacetamide, dimethyl sulfoxide, dimethyl ketone An amide or sodium thiocyanate; the temperature rise is to a temperature of 80 to 90 ° C; and the cooling is to a temperature of 70 to 80 ° C.
  • the spinning is carried out at a pressure of 0.7 to 0.9 MPa and a temperature of 80 to 97 ° C;
  • the coagulation bath is dimethylacetamide, dimethyl sulfoxide, dimethylformamide or
  • An aqueous solution of sodium thiocyanate having a concentration of 30 to 55 wt% and a temperature of 25 to 50 ° C;
  • the temperature regulation and pressure regulation is a temperature within a range of 80 to 97 ° C and a pressure of 0.7 to 0.9 MPa;
  • the drafting ratio is 4 to 10 times;
  • the stereotype is set by pressure of 200 to 330 KPa.
  • Ordinary polyacrylonitrile fibers have a poor hygroscopicity, low moisture regain, and antistatic properties. There is a certain intrinsic relationship between the moisture absorption and the antistatic property of the fiber, so that improving the water absorption and hygroscopicity of the polyacrylonitrile fiber can greatly improve other properties.
  • the prior art discloses a variety of hygroscopic fibers made from a blend of polyacrylonitrile and cellulose acetate, but many prior art techniques have shown that when the cellulose acetate content is 5%, the breaking strength is maximized, but only 1.4. cN/dtex then decreases as the cellulose acetate content increases.
  • the prior art considers its strength problem, and in the preparation of the acetonitrile fiber, the larger cellulose acetate mass ratio is generally not considered.
  • the invention firstly provides an acetonitrile fiber, wherein the acetonitrile fiber is composed of polyacrylonitrile and cellulose acetate, wherein the mass ratio of the cellulose acetate to the polyacrylonitrile is an arbitrary ratio, preferably 15 to 35 wt%: 65 to 85 wt%, more preferably 15 to 30 wt%: 70 to 85 wt%.
  • the acetonitrile fiber of the invention has good comprehensive performance, and the breaking strength is 2.3-3.0 CN/dtex, the elongation at break is 32-40%, the moisture regain is 2-3%, and the specific resistance is 9.0 ⁇ 10 8 ⁇ 4.8 ⁇ 10 9 ⁇ CM.
  • the breaking strength and the elongation at break are measured according to the provisions of GB/T 14337; the moisture regain is measured according to the provisions of GB/T6503; the specific resistance is determined according to the provisions of GB/T 14342-1993.
  • the acetonitrile fiber is obtained by wet spinning from polyacrylonitrile and cellulose acetate by solvent dissolution.
  • a blended fiber of polyacrylonitrile and cellulose acetate is generally obtained by post-crosslinking after wet spinning, and then subjected to alkali hydrolysis, and it is pointed out that "hydrolysis is a process for preparing a polyacrylonitrile system.
  • hydrolysis is a process for preparing a polyacrylonitrile system.
  • the necessary steps for hydrophilic fibers can be obtained by dissolving polyacrylonitrile and cellulose acetate in a solvent and then performing wet spinning, without cross-linking, post-crosslinking and alkali hydrolysis treatment.
  • the route is simple, which greatly simplifies the process steps, improves the work efficiency, is beneficial to mass production, and the physical index of the produced acetonitrile fiber is closer to the conventional acrylic fiber index.
  • the polyacrylonitrile is formed of acrylonitrile and vinyl acetate, wherein the mass ratio of acrylonitrile to vinyl acetate is 92 to 94 wt%: 6 to 8 wt%.
  • polyacrylonitrile is usually prepared from acrylonitrile, vinyl acetate and other components such as a pre-crosslinking agent, an initiator, a tri-auxiliary, an oxidizing agent, a reducing agent and the like.
  • the polyacrylonitrile is formed from acrylonitrile and vinyl acetate in a mass ratio of 92 to 94% by weight: 6 to 8 % by weight.
  • the mass ratio of the mass of the polyacrylonitrile to the cellulose acetate to the solvent is 20 to 25.5: 74.5 to 80.
  • the invention also provides a preparation method of the acetonitrile fiber, which is simple and feasible, and the process is easy to control.
  • the preparation method of the acetonitrile fiber provided by the invention comprises the following steps:
  • the spinning dope is subjected to temperature regulation, pressure filtration, and then spun, and is subjected to double diffusion molding by a coagulation bath, and then washed, drawn, oiled, dried, crimped, and shaped to obtain anacetonitrile fiber.
  • acrylonitrile AN
  • latent crosslinking agent (2-hydroxypropyl acrylate)
  • vinyl acetate VAc
  • sodium chlorate NaClO 3
  • the copolyacrylonitrile is prepared by phase precipitation polymerization.
  • CPAN copolyacrylonitrile
  • CA CPAN/cellulose acetate
  • the method not only needs to add a pre-crosslinking agent and an initiator in the preparation of the copolyacrylonitrile, but also has a complicated preparation method, and requires aqueous phase precipitation polymerization, wet spinning, post-crosslinking and alkali hydrolysis multi-step reaction. It is also emphasized that "hydrolysis is a necessary step in the preparation of polyacrylonitrile-based hydrophilic fibers". It can be seen that hydrolysis is generally considered to be a necessary step in the preparation of polyacrylonitrile-based hydrophilic fibers in the prior art.
  • the present invention adopts an acrylonitrile and vinyl acetate monomer by adjusting the process, the ratio, and the like, and obtains a polyacrylonitrile by aqueous suspension polymerization, and then wet-spinning with cellulose acetate to obtain anacetonitrile fiber.
  • Cross-linking, post-crosslinking and alkali hydrolysis treatment are required, and the process route is simple, thereby greatly simplifying the process steps, improving the working efficiency, facilitating mass production, and producing the physical index of the acetonitrile fiber closer to the conventional acrylic fiber index. .
  • the aqueous suspension polymerization is carried out at a temperature of 58 to 62 ° C and a pH of 2.5 to 3.5.
  • the mass ratio of the cellulose acetate to the powdered polyacrylonitrile is an arbitrary ratio, preferably 15 to 35 wt%: 65 to 85 wt%, more preferably 15 to 30 wt%: 70 to 85 wt%.
  • the mass ratio of the mass of the powdered polyacrylonitrile to the cellulose acetate to the solvent is 20 to 25.5: 74.5 to 80; the solvent is dimethylacetamide, dimethyl sulfoxide, dimethyl ketone An amide or sodium thiocyanate; the temperature rise is to a temperature of 80 to 90 ° C; and the cooling is to a temperature of 70 to 80 ° C.
  • the spinning is carried out at a pressure of 0.7 to 0.9 MPa and a temperature of 80 to 97 ° C;
  • the coagulation bath is dimethylacetamide, dimethyl sulfoxide, dimethylformamide or
  • An aqueous solution of sodium thiocyanate having a concentration of 30 to 55 wt% and a temperature of 25 to 50 ° C;
  • the temperature regulation and pressure regulation is a temperature within a range of 80 to 97 ° C and a pressure of 0.7 to 0.9 MPa;
  • the drafting ratio is 4 to 10 times;
  • the stereotype is set by pressure of 200 to 330 KPa.
  • the preparation method of the invention has simple and feasible process, and the prepared acetonitrile fiber has good comprehensive performance, and the breaking strength is 2.3-3.0 CN/dtex, the elongation at break is 32-40%, and the moisture regain is 2-3%.
  • the specific resistance was 9.0 ⁇ 10 8 to 4.8 ⁇ 10 9 ⁇ CM.
  • the present invention has the following advantages:
  • the acetonitrile fiber produced by the present invention has some characteristics of acrylic fiber, and improves the hygroscopic property of the acrylic fiber and the defect of being easy to generate static electricity.
  • the acetonitrile fiber provided by the present invention not only has an improved strength, but also has good properties in elongation, moisture regain and specific resistance.
  • the acetonitrile fiber produced by the invention also has some characteristics of acetate fiber, has good drape, is not easy to wrinkle, and has improved strength of acetate fiber, poor acid resistance and poor weather resistance.
  • the process of the invention is simple and feasible, easy to control, and is organized and produced by using existing equipment such as spinning, and does not have any influence on the continuity of downstream process production.
  • the spinning dope is then spun and adjusted at a pressure of 0.7 to 0.9 MPa and a temperature of 80 to 97 ° C.
  • the spinning dope is spun at a ratio of powdered polyacrylonitrile to cellulose acetate of 85 wt%: 15 wt%.
  • Silk double-diffusion molding through a coagulation bath (the coagulation bath is an aqueous solution of dimethylacetamide at a concentration of 30 to 55 wt% and a temperature of 25 to 50 ° C), washed, drawn, oiled, dried, and curled.
  • the draw ratio is 10 times, and the acetonitrile fiber is obtained by setting pressure at 200 KPa.
  • the spinning dope is subjected to temperature regulation, pressure filtration, and then spun at a pressure of 0.7 to 0.9 MPa and a temperature of 80 to 97 ° C.
  • the ratio of the powdered polyacrylonitrile to cellulose acetate is 80 wt%: 20 wt%.
  • Silk, double-diffusion molding through a coagulation bath (the coagulation bath is an aqueous solution of dimethylacetamide at a concentration of 30 to 55 wt% and a temperature of 25 to 50 ° C), washed, drawn, oiled, dried, and curled.
  • the draw ratio is 4 times, and the acetonitrile fiber is obtained by stereotyped pressure at 330 KPa.
  • the spinning dope is then spun and adjusted at a pressure of 0.7 to 0.9 MPa and a temperature of 80 to 97 ° C.
  • the spinning dope is spun at a ratio of powdered polyacrylonitrile to cellulose acetate of 75 wt%: 25 wt%.
  • Silk double-diffusion molding through a coagulation bath (the coagulation bath is an aqueous solution of dimethylacetamide at a concentration of 30 to 55 wt% and a temperature of 25 to 50 ° C), washed, drawn, oiled, dried, and curled.
  • the draw ratio is 8 times, and the acetonitrile fiber is obtained by setting pressure at 250 KPa.
  • the spinning dope is then spun and adjusted at a pressure of 0.7 to 0.9 MPa and a temperature of 80 to 97 ° C.
  • the spinning dope is spun at a ratio of powdered polyacrylonitrile to cellulose acetate of 70 wt%: 30 wt%.
  • Silk double-diffusion molding through a coagulation bath (the coagulation bath is an aqueous solution of dimethylacetamide at a concentration of 30 to 55 wt% and a temperature of 25 to 50 ° C), washed, drawn, oiled, dried, and curled.
  • the draw ratio is 6 times, and the acetonitrile fiber is obtained by setting pressure at 280 KPa.
  • the spinning dope is then spun and adjusted at a pressure of 0.7 to 0.9 MPa and a temperature of 80 to 97 ° C.
  • the spinning dope is spun at a ratio of powdered polyacrylonitrile to cellulose acetate of 65 wt%: 35 wt%.
  • Silk, double-diffusion molding through a coagulation bath (the coagulation bath is an aqueous solution of dimethylacetamide at a concentration of 30 to 55 wt% and a temperature of 25 to 50 ° C), washed, drawn, and dried. Oil, drying, and curling, the draw ratio is 7 times, and the acetonitrile fiber is obtained by stereotyped pressure of 300 KPa.
  • the acetonitrile fiber can be obtained by repeating the tests of Examples 1-5 by changing the solvent from dimethylacetamide to dimethyl sulfoxide, dimethylformamide or sodium thiocyanate.
  • Preparation of polyacrylonitrile by batch aqueous precipitation polymerization controlled temperature in a four-necked flask through a constant temperature circulating water bath at 45 ⁇ 2 ° C, nitrogen protection, and then a certain proportion of acrylonitrile (AN), vinyl acetate (VAc) , latent cross-linking agent (HQ), adjust the pH value of about 2, then add NaClO 3 -Na 2 SO 3 initiator to initiate polymerization, control the polymerization time for one and a half hours, add NaOH to stop the reaction, filter to dry to get white Powdered polyacrylonitrile.
  • AN acrylonitrile
  • VAc vinyl acetate
  • HQ latent cross-linking agent
  • the obtained white powdery polyacrylonitrile and cellulose acetate were blended at a mass ratio of 85/15, 80/20, 75/25, 70/30, 65/35, respectively, and the DMAc spinning solution was set at a concentration of 20%.
  • the mixture After being placed in a spinning kettle, the mixture is stirred and stirred at a certain speed to obtain a brown transparent uniform solution, vacuum defoaming at 60 ° C, using a wet spinning process, using a 40% concentration DMAc aqueous solution as a coagulation bath, and spinning.
  • the nascent fiber is solidified, stretched, relaxed, and dried to obtain a blended fiber.
  • the fibers obtained above are naturally air-dried, and then crosslinked in an oven at a temperature of 180 ° C for a suitable period of time to cause a dehydration-crosslinking reaction of the functional groups inside the fiber macromolecule to obtain a blended fiber having a crosslinked network structure.
  • the blended short fibers are placed in an alkali solution tank of different concentrations and different temperatures to control the hydrolysis time. After taking out, the residual alkali solution is neutralized on the surface of the fiber by hydrochloric acid, and then thoroughly washed with distilled water and naturally dried to obtain a hydrophilic property. Mixed fiber.
  • This test example examines the properties of fibers obtained by the method of the present invention and the prior art method in the case where the blend ratio of polyacrylonitrile and cellulose acetate is the same.
  • Test sample according to the method of Example 1 of the present invention, polyacrylonitrile and cellulose acetate were blended at a mass ratio of 85/15, 80/20, 75/25, 70/30, 65/35, respectively. Invented acetonitrile fiber.
  • Control sample according to the method of the comparative example, polyacrylonitrile and cellulose acetate were blended at a mass ratio of 85/15, 80/20, 75/25, 70/30, 65/35, respectively, to obtain a prior art Blend fiber.
  • the main technical specifications (specification 1.33 dtex) of the test sample and the control sample were tested by the measurement methods commonly used in the art, and the results are shown in Table 1 below. Among them, the determination of breaking strength and elongation at break is carried out according to the provisions of GB/T 14337; the moisture regain is determined according to the provisions of GB/T 6503; the determination of specific resistance is carried out according to the provisions of GB/T 14342-1993.
  • the blending ratio is w (polyacrylonitrile) / w (cellulose acetate)
  • the acetonitrile fiber obtained by the method of the present invention has a good overall performance in the case where the blend ratio of polyacrylonitrile and cellulose acetate is the same.
  • This test example investigates the effect of different ratios of polyacrylonitrile to cellulose acetate on the antistatic properties of the prepared acetonitrile fibers.
  • the acetonitrile fiber was prepared according to the method of Example 1 by using polyacrylonitrile and cellulose acetate in different ratios, and the moisture regain and specific resistance were examined. The results are shown in Table 4. The measurement was carried out in the same manner as in Test Example 1.
  • the mass ratio of cellulose acetate to polyacrylonitrile in the present invention is preferably 15 to 35 wt%: 65 to 85 wt%, more preferably 15 to 30 wt%: 70 to 85 wt%.

Abstract

本发明涉及一种纤维材料,具体地说,涉及一种醋腈纤维及其制备方法。所述的醋腈纤维由聚丙烯腈和醋酸纤维素组成,其中所述的醋酸纤维素与聚丙烯腈的质量比为任意比,优选15~35wt%:65~85wt%,更优选15~30wt%:70~85wt%。本发明所提供的醋腈纤维改善了腈纶纤维吸湿性差、易起静电的缺陷;改善纯醋酸纤维强度低、服用性差的缺点;同时本发明所提供的醋腈纤维的综合性能良好。

Description

一种醋腈纤维及其制备方法 技术领域
本发明涉及一种纤维材料,具体地说,涉及一种醋腈纤维及其制备方法。
背景技术
腈纶是世界合成纤维主要品种之一,它手感柔软,色泽鲜艳,强度和弹性都比较好,有“人造羊毛”的美誉。但腈纶纤维大分子呈不规则的螺旋构象,不具有真正的结晶结构,纤维的强力比天然纤维和再生纤维高得多,耐酸性好,耐候性好;而且由于原料聚丙烯腈(PAN)中含有大量的疏水性基团,腈纶的吸湿性较差,极易产生静电。静电会导致纤维缠绕或堵塞机件,影响织造过程的顺利进行;静电荷在服装上积聚容易使穿着者产生不适感,降低了腈纶纺织品的服用性能,从而限制了它的进一步发展。
将抗静电剂与腈纶纺丝原液共混,然后纺制成纤维是对腈纶进行抗静电改性的一种重要方法。目前常用的共混型抗静电剂为炭黑,如CN101805935A公开了一种新型抗静电腈纶及抗静电腈纶的制备方法。该腈纶含有碳纳米管和炭黑,其中碳纳米管的重量百分数是1%-15%,炭黑的重量百分数是1%-3%,聚丙烯腈的重量百分数范围为82%-98%。然而由于制得的纤维为黑色,其用途受到限制。
另外,适当的物理和化学方法也可以改善腈纶的抗静电性能,但存在不同程度的环境污染问题。博士论文《腈纶等离子体抗静电处理》提出了一种采用低温等离子体技术对腈纶进行表面改性来改善腈纶的抗静电性能的方法。低温等离子体技术作为一种环境友好的新技术,节水,节能,无污染,具有显著的经济及环保效应。然而该方法要求比较高,在实际推广应用中具有一定的难度。
醋酸纤维的吸湿性能良好,回潮率为6%,能用分散染料染色,并具良好的穿着性能。长丝光泽优雅,手感柔软,有良好的悬垂性,酷似真丝,适于制作内衣、浴衣、童装、妇女服装和室内装饰织物等,还可做香烟滤嘴。但醋酸纤维的强度低服用性差。
“吸湿腈纶纤维纺纱工艺研讨”《王佐武.吸湿腈纶纤维纺纱工艺研讨》公开了用聚丙烯腈和醋酸纤维素两种原料复合制成的吸湿腈纶纤维。然而复合纤维是在同一根纤维截面上存在两种或两种以上不相混合的聚合物。并且这种吸湿腈纶纤维由于本身回潮率低,在纺纱加工过程中,各工序飞花及静电现象严重,尤其在高速并条机上纺制,前罗拉输出须条纤维静电现象更为突出,极易缠绕罗拉、皮辊,不仅生活难做,并且导致条干严重恶化。
硕士论文《亲水性共聚丙烯腈纤维研究》以丙烯腈(AN)、潜交联剂(丙烯酸-2-羟丙酯)、醋酸乙烯酯(VAc)为单体,氯酸钠(NaClO3)为引发剂,采用水相沉淀聚合法制备共聚丙烯腈。以N,N-二甲基乙酰胺(DMAc)为溶剂,经湿法纺丝制得含潜交联剂的共聚丙烯腈 (CPAN)纤维和CPAN/醋酸纤维素(CA)共混纤维(CPAN—CA),再经后交联制备了具有交联结构的共聚丙烯腈系纤维,对纤维碱性水解,得到具有较强吸水、保水能力、无刺激性且有一定强力的共聚丙烯腈系纤维。然而,在共聚丙烯腈的制备中需要添加前交联剂和引发剂,并采用水相沉淀聚合法,其制备方法复杂;而且在用湿法纺丝制得含潜交联剂的共聚丙烯腈(CPAN)纤维和CPAN/醋酸纤维素(CA)共混纤维后,需要进一步进行后交联,并对纤维进行碱性水解才能得到具有较强吸水、保水能力、无刺激性且有一定强力的共混纤维。该方法不仅在共聚丙烯腈的制备中需要添加前交联剂和引发剂,且其制备方法复杂,需采用水相沉淀聚合、湿法纺丝、后交联和碱水解多步反应,并指出“水解是制备聚丙烯腈系亲水性纤维的必要步骤”。然而制得的共混纤维中当醋酸纤维素的含量为5%时强度达到最大,仅为1.4cN/dtex,随后随着醋酸纤维素含量的增加而下降。
当前我国纺织行业面临产品结构调整,为适应国内外市场竞争和提高企业经济效益,迫切需要开发一种既具有醋酸纤维优良特性又具有腈纶纤维优良特性、抗静电性能、强度等综合性能改善的纤维来满足市场需求,并需要提供一种相对简单的制备方法。
有鉴于此,特提出本发明。
发明内容
本发明的第一目的在于提供一种醋腈纤维,以改善腈纶纤维吸湿性差、易起静电的缺陷;同时改善纯醋酸纤维强度低、服用性差的缺点。
本发明的第二目的在于提供所述的醋腈纤维的制备方法,该方法简单可行,工艺容易控制。
为实现本发明的第一目的,本发明采用如下技术方案:
一种醋腈纤维,其中,所述的醋腈纤维由聚丙烯腈和醋酸纤维素组成,其中所述的醋酸纤维素与聚丙烯腈的质量比为任意比,优选15~35wt%:65~85wt%,更优选15~30wt%:70~85wt%。
所述的醋腈纤维的断裂强度为2.3~3.0CN/dtex,断裂伸长率为32~40%,回潮率为2~3%,比电阻为9.0×108~4.8×109Ω·CM。
所述的醋腈纤维是由聚丙烯腈和醋酸纤维素用溶剂进行溶解制胶后经湿法纺丝制得的。
所述的聚丙烯腈是由丙烯腈和醋酸乙烯形成的,其中丙烯腈和醋酸乙烯的质量比为92~94wt%:6~8wt%。
所述的聚丙烯腈与醋酸纤维素的质量之和与溶剂的质量比为20~25.5:74.5~80。
本发明所提供的醋腈纤维具有质轻保暖、耐候性好、耐酸碱性好、悬垂性好、不易起皱等优点,不但填补了国内空白,而且为纺织行业提供了一种新型的纤维原料。
为实现本发明的第二目的,本发明采用如下技术方案:
一种本发明所述的醋腈纤维的制备方法,该方法包括如下步骤:
1)将92~94wt%丙烯腈和6~8wt%醋酸乙烯两种单体混合,并将其混合后的浓度调至30~40wt%后连续进行水相悬浮聚合反应;反应后的聚合物经螯合反应终止,脱出未反应的单体,然后经水洗过滤、造粒成型、烘干,得到粉状聚丙烯腈;
2)将粉状聚丙烯腈、醋酸纤维素与溶剂混合,经升温、降温,过滤制得纺丝原液;
3)纺丝原液再经调温调压、过滤后进行纺丝,经凝固浴双扩散成型,然后经水洗、牵伸、上油、烘干、卷曲、定型,制得醋腈纤维。
上述制备方法中,其中,步骤1)中,所述的水相悬浮聚合反应是在温度58~62℃、pH值2.5~3.5下进行。
步骤2)中,所述的醋酸纤维素与粉状聚丙烯腈的质量比为任意比,优选15~35wt%:65~85wt%,更优选15~30wt%:70~85wt%。
所述的粉状聚丙烯腈与醋酸纤维素的质量之和与溶剂的质量比为20~25.5:74.5~80;所述溶剂为二甲基乙酰胺、二甲基亚砜、二甲基甲酰胺或者硫氰酸钠;所述的升温为升温至80~90℃;所述的降温为降温至70~80℃。
步骤3)中,所述的纺丝是在压力0.7~0.9MPa、温度80~97℃下进行;所述的凝固浴为二甲基乙酰胺、二甲基亚砜、二甲基甲酰胺或者硫氰酸钠的水溶液,其浓度为30~55wt%,温度为25~50℃;所述的调温调压为调节温度在80~97℃范围内、调节压力在0.7~0.9MPa范围内;所述的牵伸倍数为4~10倍;所述的定型为通过200~330KPa的压力定型。
以下对本发明的技术方案进行详细的描述:
普通聚丙烯腈纤维由于其吸水吸湿性差,回潮率低,抗静电性等特性制约了其应用范围。纤维的吸湿与抗静电性有一定的内在联系,因此提高聚丙烯腈纤维的吸水吸湿性可以大大改善其他性能。现有技术公开了多种由聚丙烯腈和醋酸纤维素共混制成的吸湿性纤维,但多篇现有技术表明当醋酸纤维素的含量为5%时断裂强度达到最大,但仅为1.4cN/dtex,随后随着醋酸纤维素含量的增加而下降。因此,现有技术考虑到其强度问题,在醋腈纤维的制备中一般也就不再考虑采用较大的醋酸纤维素质量比。当前迫切需要开发一种既具有醋酸纤维优良特性又具有腈纶纤维优良特性、抗静电性能、强度等综合性能改善的纤维来满足市场需求,而如何开发就成为最关键的问题。
本发明首先提供一种醋腈纤维,所述的醋腈纤维由聚丙烯腈和醋酸纤维素组成,其中所述的醋酸纤维素与聚丙烯腈的质量比为任意比,优选15~35wt%:65~85wt%,更优选15~30wt%:70~85wt%。
本发明人通过大量的试验,惊喜地发现采用较大的醋酸纤维素质量比,不仅提高了醋腈纤维的强度,而且其伸长、回潮率和比电阻也具有较好的性能,超出了预料的范围。
本发明所述的醋腈纤维的综合性能良好,其断裂强度为2.3~3.0CN/dtex,断裂伸长率为 32~40%,回潮率为2~3%,比电阻为9.0×108~4.8×109Ω·CM。
本发明中断裂强度和断裂伸长率的测定按GB/T 14337的规定进行;回潮率的测定按GB/T6503的规定进行;比电阻的测定按GB/T 14342-1993的规定进行。
具体地说,所述的醋腈纤维是由聚丙烯腈和醋酸纤维素用溶剂进行溶解制胶后经湿法纺丝制得的。
现有技术中,聚丙烯腈和醋酸纤维素的共混纤维一般是在湿法纺丝后进一步进行后交联,然后对其进行碱水解制得的,并且指出“水解是制备聚丙烯腈系亲水性纤维的必要步骤”。然而本发明所述的醋腈纤维只需将聚丙烯腈和醋酸纤维素用溶剂进行溶解制胶后进行湿法纺丝即可得到,不需要进行交联、后交联和碱水解处理,工艺路线简单,从而大大简化了工艺步骤,提高了工作效率,有利于批量生产,且生产出的醋腈纤维物理指标更接近于常规腈纶纤维指标。
进一步的,所述的聚丙烯腈是由丙烯腈和醋酸乙烯形成的,其中丙烯腈和醋酸乙烯的质量比为92~94wt%:6~8wt%。
现有技术中,聚丙烯腈通常是由丙烯腈、醋酸乙烯和其它组分如前交联剂、引发剂、三单助剂、氧化剂、还原剂等制得的。本发明中,所述的聚丙烯腈是由丙烯腈和醋酸乙烯以92~94wt%:6~8wt%的质量比形成的。
所述的聚丙烯腈与醋酸纤维素的质量之和与溶剂的质量比为20~25.5:74.5~80。
本发明还提供所述的醋腈纤维的制备方法,该方法简单可行,工艺容易控制。
本发明所提供的醋腈纤维的制备方法包括如下步骤:
1)将92~94wt%丙烯腈和6~8wt%醋酸乙烯两种单体混合,并将其混合后的浓度调至30~40wt%后连续进行水相悬浮聚合反应;反应后的聚合物经螯合反应终止,脱出未反应的单体,然后经水洗过滤、造粒成型、烘干,得到粉状聚丙烯腈;
2)将粉状聚丙烯腈、醋酸纤维素与溶剂混合,经升温、降温,过滤制得纺丝原液;
3)纺丝原液再经调温调压、过滤后进行纺丝,经凝固浴双扩散成型,然后经水洗、牵伸、上油、烘干、卷曲、定型,制得醋腈纤维。
现有技术中公开了以丙烯腈(AN)、潜交联剂(丙烯酸-2-羟丙酯)、醋酸乙烯酯(VAc)为单体,氯酸钠(NaClO3)为引发剂,采用水相沉淀聚合法制备共聚丙烯腈。然后以N,N-二甲基乙酰胺(DMAc)为溶剂,经湿法纺丝制得含潜交联剂的共聚丙烯腈(CPAN)纤维和CPAN/醋酸纤维素(CA)共混纤维(CPAN—CA),再经后交联制备了具有交联结构的共聚丙烯腈系纤维,对纤维碱性水解,得到具有较强吸水、保水能力且有一定强力的共聚丙烯腈系纤维。该方法不仅在共聚丙烯腈的制备中需要添加前交联剂和引发剂,而且其制备方法复杂,需采用水相沉淀聚合、湿法纺丝、后交联和碱水解多步反应。并且强调“水解是制备聚丙烯腈系亲水性纤维的必要步骤”。可见,现有技术中普遍认为水解是制备聚丙烯腈系亲水性纤维的 必要步骤。
而本发明通过调整工艺、配比等,仅采用丙烯腈和醋酸乙烯两种单体,通过水相悬浮聚合得到聚丙烯腈后再与醋酸纤维素湿法纺丝即可得到醋腈纤维,不需要进行交联、后交联和碱水解处理,工艺路线简单,从而大大简化了工艺步骤,提高了工作效率,有利于批量生产,且生产出的醋腈纤维物理指标更接近于常规腈纶纤维指标。
进一步的,上述制备方法中,其中,步骤1)中,所述的水相悬浮聚合反应是在温度58~62℃、pH值2.5~3.5下进行。
步骤2)中,所述的醋酸纤维素与粉状聚丙烯腈的质量比为任意比,优选15~35wt%:65~85wt%,更优选15~30wt%:70~85wt%。
所述的粉状聚丙烯腈与醋酸纤维素的质量之和与溶剂的质量比为20~25.5:74.5~80;所述溶剂为二甲基乙酰胺、二甲基亚砜、二甲基甲酰胺或者硫氰酸钠;所述的升温为升温至80~90℃;所述的降温为降温至70~80℃。
步骤3)中,所述的纺丝是在压力0.7~0.9MPa、温度80~97℃下进行;所述的凝固浴为二甲基乙酰胺、二甲基亚砜、二甲基甲酰胺或者硫氰酸钠的水溶液,其浓度为30~55wt%,温度为25~50℃;所述的调温调压为调节温度在80~97℃范围内、调节压力在0.7~0.9MPa范围内;所述的牵伸倍数为4~10倍;所述的定型为通过200~330KPa的压力定型。
本发明的制备方法工艺简单可行,且制得的醋腈纤维的综合性能好,其断裂强度为2.3~3.0CN/dtex,断裂伸长率为32~40%,回潮率为2~3%,比电阻为9.0×108~4.8×109Ω·CM。
与现有技术相比,本发明具有如下优点:
(1)本发明生产的醋腈纤维具有腈纶纤维的一些特性,并改善了腈纶纤维的吸湿性能和易起静电的缺陷。
(2)本发明所提供的醋腈纤维不仅强度得到了提高,而且其伸长、回潮率和比电阻也具有较好的性能。
(3)本发明生产的醋腈纤维还具有醋酸纤维一些特性,悬垂性好,不易起皱,并改善了醋酸纤维强度低,耐酸性差,耐候性差。
(4)本发明工艺简单可行,容易控制,利用现有纺丝等现有装置组织生产,对下游工序生产的连续性不会造成任何影响。
具体实施方式
以下为本发明的具体实施方式,所述的实施例是为了进一步描述本发明,而不是限制本发明。
实施例1、醋腈纤维的制备
1)聚合物的生产:将92wt%丙烯腈、8wt%醋酸乙烯两种单体混合,并将其混合后的浓 度调至30~40wt%,于58~62℃,pH为2.5~3.5下连续进行水相悬浮聚合反应;反应后的聚合物经螯合反应终止,用汽提塔脱出未反应的单体,然后经水洗过滤机除去盐分、水分,造粒成型后经烘干得到粉状聚丙烯腈;
2)将粉状聚丙烯腈、醋酸纤维素与溶剂二甲基乙酰胺按粉状聚丙烯腈与醋酸纤维素(85wt%:15wt%)之和与二甲基乙酰胺按质量20wt%:80wt%比例混合,经升温加热至80℃,使聚丙烯腈、醋酸纤维素完全溶解在溶剂二甲基乙酰胺中,再降温到70℃进行过滤制得纺丝原液;
3)纺丝原液再经调温调压、过滤后于0.7~0.9MPa压力、温度80~97℃下进行纺丝,按粉状聚丙烯腈与醋酸纤维素比例为85wt%:15wt%进行纺丝,经凝固浴(凝固浴为二甲基乙酰胺的水溶液,其浓度为30~55wt%,温度为25~50℃)双扩散成型,经水洗、牵伸、上油、烘干、卷曲,其牵伸倍数为10倍,通过200KPa定型压力定型,制得醋腈纤维。
实施例2、醋腈纤维的制备
1)聚合物的生产:将94wt%丙烯腈、6wt%醋酸乙烯两种单体混合,并将其混合后的浓度调至30~40wt%,于58~62℃,pH为2.5~3.5下连续进行水相悬浮聚合反应;反应后的聚合物经螯合反应终止,用汽提塔脱出未反应的单体,然后经水洗过滤机除去盐分、水分,造粒成型后经烘干得到粉状聚丙烯腈;
2)将粉状聚丙烯腈、醋酸纤维素与溶剂二甲基乙酰胺按粉状聚丙烯腈与醋酸纤维素(80wt%:20wt%)之和与二甲基乙酰胺按质量23wt%:77wt%比例混合,经升温加热至80℃,使聚丙烯腈、醋酸纤维素完全溶解在溶剂二甲基乙酰胺中,再降温到70℃进行过滤制得纺丝原液;
3)纺丝原液再经调温调压、过滤后于0.7~0.9MPa压力、温度80~97℃下进行纺丝,按粉状聚丙烯腈与醋酸纤维素比例为80wt%:20wt%进行纺丝,经凝固浴(凝固浴为二甲基乙酰胺的水溶液,其浓度为30~55wt%,温度为25~50℃)双扩散成型,经水洗、牵伸、上油、烘干、卷曲,其牵伸倍数为4倍,通过330KPa定型压力定型,制得醋腈纤维。
实施例3、醋腈纤维的制备
1)聚合物的生产:将93wt%丙烯腈、7wt%醋酸乙烯两种单体混合,并将其混合后的浓度调至30~40wt%,于58~62℃,pH为2.5~3.5下连续进行水相悬浮聚合反应;反应后的聚合物经螯合反应终止,用汽提塔脱出未反应的单体,然后经水洗过滤机除去盐分、水分,造粒成型后经烘干得到粉状聚丙烯腈;
2)将粉状聚丙烯腈、醋酸纤维素与溶剂二甲基乙酰胺按粉状聚合物与醋酸纤维素(75wt%:25wt%)之和与二甲基乙酰胺按质量25.5wt%:74.5wt%比例混合,经升温加热至 80℃,使聚丙烯腈、醋酸纤维素完全溶解在溶剂二甲基乙酰胺中,再降温到70℃进行过滤制得纺丝原液;
3)纺丝原液再经调温调压、过滤后于0.7~0.9MPa压力、温度80~97℃下进行纺丝,按粉状聚丙烯腈与醋酸纤维素比例为75wt%:25wt%进行纺丝,经凝固浴(凝固浴为二甲基乙酰胺的水溶液,其浓度为30~55wt%,温度为25~50℃)双扩散成型,经水洗、牵伸、上油、烘干、卷曲,其牵伸倍数为8倍,通过250KPa定型压力定型,制得醋腈纤维。
实施例4、醋腈纤维的制备
1)聚合物的生产:将93.5wt%丙烯腈、6.5wt%醋酸乙烯两种单体混合,并将其混合后的浓度调至30~40wt%,于58~62℃,pH为2.5~3.5下连续进行水相悬浮聚合反应;反应后的聚合物经螯合反应终止,用汽提塔脱出未反应的单体,然后经水洗过滤机除去盐分、水分,造粒成型后经烘干得到粉状聚丙烯腈;
2)将粉状聚丙烯腈、醋酸纤维素与溶剂二甲基乙酰胺按粉状聚丙烯腈与醋酸纤维素(70wt%:30wt%)之和与二甲基乙酰胺按质量25wt%:75wt%比例混合,经升温加热至80℃,使聚丙烯腈、醋酸纤维素完全溶解在溶剂二甲基乙酰胺中,再降温到70℃进行过滤制得纺丝原液;
3)纺丝原液再经调温调压、过滤后于0.7~0.9MPa压力、温度80~97℃下进行纺丝,按粉状聚丙烯腈与醋酸纤维素比例为70wt%:30wt%进行纺丝,经凝固浴(凝固浴为二甲基乙酰胺的水溶液,其浓度为30~55wt%,温度为25~50℃)双扩散成型,经水洗、牵伸、上油、烘干、卷曲,其牵伸倍数为6倍,通过280KPa定型压力定型,制得醋腈纤维。
实施例5、醋腈纤维的制备
1)聚合物的生产:将92.5wt%丙烯腈、7.5wt%醋酸乙烯两种单体混合,并将其混合后的浓度调至30~40wt%,于58~62℃,pH为2.5~3.5下连续进行水相悬浮聚合反应;反应后的聚合物经螯合反应终止,用汽提塔脱出未反应的单体,然后经水洗过滤机除去盐分、水分,造粒成型后经烘干得到粉状聚丙烯腈;
2)将粉状聚丙烯腈、醋酸纤维素与溶剂二甲基乙酰胺按粉状聚丙烯腈与醋酸纤维素(65wt%:35wt%)之和与二甲基乙酰胺按质量25wt%:75wt%比例混合,经升温加热至80℃,使聚丙烯腈、醋酸纤维素完全溶解在溶剂二甲基乙酰胺中,再降温到70℃进行过滤制得纺丝原液;
3)纺丝原液再经调温调压、过滤后于0.7~0.9MPa压力、温度80~97℃下进行纺丝,按粉状聚丙烯腈与醋酸纤维素比例为65wt%:35wt%进行纺丝,经凝固浴(凝固浴为二甲基乙酰胺的水溶液,其浓度为30~55wt%,温度为25~50℃)双扩散成型,经水洗、牵伸、上 油、烘干、卷曲,其牵伸倍数为7倍,通过300KPa定型压力定型,制得醋腈纤维。
实施例6、醋腈纤维的制备
将溶剂由二甲基乙酰胺改为二甲基亚砜、二甲基甲酰胺或者硫氰酸钠重复实施例1—5试验,均能制得醋腈纤维。
对比例、按照现有技术的方法制备醋腈纤维
采用间歇式水相沉淀聚合法制备聚丙烯腈:在四口烧瓶中通过恒温循环水浴控制温度在45±2℃,氮气保护,然后按一定比例投入丙烯腈(AN)、醋酸乙烯酯(VAc)、潜交联剂(HQ),调节pH值为2左右,再加入NaClO3-Na2SO3引发剂引发聚合反应,控制聚合时间一个半小时,加NaOH以终止反应,经过滤烘干得到白色粉末状聚丙烯腈。
将制得的白色粉末状聚丙烯腈和醋酸纤维素分别以85/15、80/20、75/25、70/30、65/35的质量比共混,按20%浓度配置DMAc纺丝溶液后放入纺丝釜中,以一定转速搅拌混匀,得到棕色透明的均匀溶液,60℃下抽真空脱泡,采用湿法纺丝工艺,以40%浓度的DMAc水溶液为凝固浴,纺制初生纤维,经凝固成型、拉伸、松弛、干燥后,得到共混纤维。
将上述制得的纤维自然风干后,放入180℃温度烘箱中交联,处理适当时间,使纤维大分子内部的官能团发生脱水交联反应,得到具备交联网状结构的共混纤维。
将共混短纤维放入不同浓度不同温度的碱液槽中,控制水解时间,取出后经盐酸中和纤维表面残留碱液,再经蒸馏水充分洗涤、自然晾干后得到具备亲水性能的共混纤维。
试验例1
本试验例考察了在聚丙烯腈和醋酸纤维素共混比相同的情况下,采用本发明的方法和现有技术的方法制得的纤维的性能。
试验样品:按照本发明实施例1的方法,将聚丙烯腈和醋酸纤维素分别以85/15、80/20、75/25、70/30、65/35的质量比共混,制得本发明的醋腈纤维。
对照样品:按照对比例的方法,将聚丙烯腈和醋酸纤维素分别以85/15、80/20、75/25、70/30、65/35的质量比共混,制得现有技术的共混纤维。
采用本领域常用的测定方法对试验样品和对照样品的主要技术指标(规格均为1.33dtex)进行了测试,结果见下表1。其中,断裂强度和断裂伸长率的测定按GB/T 14337的规定进行;回潮率的测定按GB/T 6503的规定进行;比电阻的测定按GB/T 14342-1993的规定进行。
表1
Figure PCTCN2016072777-appb-000001
注:其中共混比为w(聚丙烯腈)/w(醋酸纤维素)
从上述试验结果可以看出,在聚丙烯腈和醋酸纤维素共混比相同的情况下,采用本发明的方法制得的醋腈纤维的综合性能好。
试验例2
本试验例对本发明制得的醋腈纤维分别与常规的腈纶纤维和醋酸纤维的主要技术指标进行了测试,分别见下表2和表3。其测定规定同试验例1。
表2、本发明制得的醋腈纤维与常规腈纶纤维的主要技术指标
Figure PCTCN2016072777-appb-000002
表3、本发明制得的醋腈纤维与常规醋酸纤维的主要技术指标
Figure PCTCN2016072777-appb-000003
试验例3
该试验例考察了聚丙烯腈与醋酸纤维素的不同配比对所制得的醋腈纤维的抗静电性能的影响。
本试验例按照实施例1的方法,将聚丙烯腈与醋酸纤维素按不同配比制得醋腈纤维,并考察其回潮率和比电阻,结果见表4。其测定规定同试验例1。
表4、聚丙烯腈与醋酸纤维素不同配比对醋腈纤维回潮率和比电阻的影响
w(聚丙烯腈)/w(醋酸纤维素) 回潮率(%) 比电阻(Ω·CM)
100/0 0.89 1.12×1013
95/5 1.05 5.88×1011
90/10 1.47 8.91×1010
85/15 2.00 4.73×109
80/20 2.10 5.51×109
75/25 2.63 9.27×108
70/30 2.53 5.77×108
65/35 2.69 6.89×109
60/40 2.71 6.17×108
从上述试验结果可以看出,聚丙烯腈与醋酸纤维素采用不同的配比对制得的醋腈纤维的回潮率和比电阻具有一定的影响。随着醋酸纤维素含量的增大,醋腈纤维的回潮率增大,比电阻减小。但考虑到继续增大醋酸纤维素的含量,使得共混纤维孔洞增多,刻蚀程度相对加重,会导致纤维断裂强度下降。因此,本发明中醋酸纤维素与聚丙烯腈的质量比优选15~35wt%:65~85wt%,更优选15~30wt%:70~85wt%。

Claims (10)

  1. 一种醋腈纤维,其特征在于,所述的醋腈纤维由聚丙烯腈和醋酸纤维素组成,其中所述的醋酸纤维素与聚丙烯腈的质量比为任意比,优选15~35wt%:65~85wt%,更优选15~30wt%:70~85wt%。
  2. 根据权利要求1所述的醋腈纤维,其特征在于,所述的醋腈纤维的断裂强度为2.3~3.0CN/dtex,断裂伸长率为32~40%,回潮率为2~3%,比电阻为9.0×108~4.8×109Ω·CM。
  3. 根据权利要求1或2所述的醋腈纤维,其特征在于,所述的醋腈纤维是由聚丙烯腈和醋酸纤维素用溶剂进行溶解制胶后经湿法纺丝制得的。
  4. 根据权利要求3所述的醋腈纤维,其特征在于,所述的聚丙烯腈是由丙烯腈和醋酸乙烯形成的,其中丙烯腈和醋酸乙烯的质量比为92~94wt%:6~8wt%。
  5. 根据权利要求3或4所述的醋腈纤维,其特征在于,所述的聚丙烯腈与醋酸纤维素的质量之和与溶剂的质量比为20~25.5:74.5~80。
  6. 一种权利要求1-5任意一项所述的醋腈纤维的制备方法,其特征在于,所述的制备方法包括如下步骤:
    1)将92~94wt%丙烯腈和6~8wt%醋酸乙烯两种单体混合,并将其混合后的浓度调至30~40wt%后连续进行水相悬浮聚合反应;反应后的聚合物经螯合反应终止,脱出未反应的单体,然后经水洗过滤、造粒成型、烘干,得到粉状聚丙烯腈;
    2)将粉状聚丙烯腈、醋酸纤维素与溶剂混合,经升温、降温,过滤制得纺丝原液;
    3)纺丝原液再经调温调压、过滤后进行纺丝,经凝固浴双扩散成型,然后经水洗、牵伸、上油、烘干、卷曲、定型,制得醋腈纤维。
  7. 根据权利要求6所述的制备方法,其特征在于,步骤1)中,所述的水相悬浮聚合反应是在温度58~62℃、pH值2.5~3.5下进行。
  8. 根据权利要求6所述的制备方法,其特征在于,步骤2)中,所述的醋酸纤维素与粉状聚丙烯腈的质量比为任意比,优选15~35wt%:65~85wt%,更优选15~30wt%:70~85wt%。
  9. 根据权利要求8所述的制备方法,其特征在于,所述的粉状聚丙烯腈与醋酸纤维素的质量之和与溶剂的质量比为20~25.5:74.5~80;所述溶剂为二甲基乙酰胺、二甲基亚砜、二甲基甲酰胺或者硫氰酸钠;所述的升温为升温至80~90℃;所述的降温为降温至70~80℃。
  10. 根据权利要求6所述的制备方法,其特征在于,步骤3)中,所述的纺丝是在压力0.7~0.9MPa、温度80~97℃下进行;所述的凝固浴为二甲基乙酰胺、二甲基亚砜、二甲基甲酰胺或者硫氰酸钠的水溶液,其浓度为30~55wt%,温度为25~50℃;所述的调温调压为调节温度在80~97℃范围内、调节压力在0.7~0.9MPa范围内;所述的牵伸倍数为4~10倍;所述的定型为通过200~330KPa的压力定型。
PCT/CN2016/072777 2015-02-13 2016-01-29 一种醋腈纤维及其制备方法 WO2016127833A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16748634.9A EP3257975B1 (en) 2015-02-13 2016-01-29 Method of making a fiber of polyacrylonitrile - cellulose acetate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510079823.2 2015-02-13
CN201510079823.2A CN105002592B (zh) 2015-02-13 2015-02-13 一种醋腈纤维及其制备方法

Publications (1)

Publication Number Publication Date
WO2016127833A1 true WO2016127833A1 (zh) 2016-08-18

Family

ID=54375442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/072777 WO2016127833A1 (zh) 2015-02-13 2016-01-29 一种醋腈纤维及其制备方法

Country Status (4)

Country Link
EP (1) EP3257975B1 (zh)
CN (1) CN105002592B (zh)
TR (1) TR201909285T4 (zh)
WO (1) WO2016127833A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111220657A (zh) * 2020-03-27 2020-06-02 中简科技股份有限公司 一种聚丙烯腈碳纤维pH测试方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105002592B (zh) * 2015-02-13 2017-10-17 吉林奇峰化纤股份有限公司 一种醋腈纤维及其制备方法
CN107385591A (zh) * 2016-05-17 2017-11-24 句容市润龙纺织品有限公司 一种醋青纤维纱及其加工工艺
CN107541808B (zh) * 2016-06-29 2020-08-04 吉林富博纤维研究院有限公司 一种采用湿法纺丝工艺制备醋腈长丝的方法
CN106012076B (zh) * 2016-07-15 2018-06-19 吉林富博纤维研究院有限公司 一种醋酸纤维的湿法纺丝制备方法
CN107245770A (zh) * 2017-02-16 2017-10-13 王和军 一种可中和酸碱的新型纤维
CN110016728B (zh) * 2018-01-08 2022-04-22 吉林吉盟腈纶有限公司 一种聚丙烯腈石墨烯纤维的制备方法
CN110295437A (zh) * 2018-03-23 2019-10-01 上海水星家用纺织品股份有限公司 一种应用醋青纤维的家纺用面料
CN109371718B (zh) * 2018-10-29 2020-11-06 绍兴文理学院 一种小蘖碱对醋青纤维的染色方法
CN112080830A (zh) * 2020-08-20 2020-12-15 江苏瑞康安全装备有限公司 一种色丁布用弹性好手感柔软蓬松的腈纶丝
CN113373528A (zh) * 2021-06-09 2021-09-10 温州市名达服饰有限公司 一种保暖西裤及其保暖层

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1524137A (zh) * 2001-07-11 2004-08-25 三菱丽阳株式会社 丙烯腈系复合纤维及其制造方法和使用该纤维的纤维复合体
CN101070634A (zh) * 2007-06-12 2007-11-14 天津工业大学 亲水性共聚丙烯腈纤维的制备方法
CN103498208A (zh) * 2013-09-26 2014-01-08 吉林奇峰化纤股份有限公司 蓄热纤维及其制备方法
CN105002592A (zh) * 2015-02-13 2015-10-28 吉林奇峰化纤股份有限公司 一种醋腈纤维及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH432721A (fr) * 1964-01-25 1967-03-31 Rhodiaceta Procédé de préparation de mélanges filables de matières à poids moléculaire élevé
JPH0299609A (ja) * 1988-10-03 1990-04-11 Mitsubishi Rayon Co Ltd 新規なアクリル系合成繊維の製造方法
CN100535210C (zh) * 2007-07-31 2009-09-02 浙江杭州湾腈纶有限公司 一种建筑用腈纶制备方法
CN103882547B (zh) * 2014-02-27 2016-07-06 宁波中新腈纶有限公司 一种扁平腈纶纤维及其生产方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1524137A (zh) * 2001-07-11 2004-08-25 三菱丽阳株式会社 丙烯腈系复合纤维及其制造方法和使用该纤维的纤维复合体
CN101070634A (zh) * 2007-06-12 2007-11-14 天津工业大学 亲水性共聚丙烯腈纤维的制备方法
CN103498208A (zh) * 2013-09-26 2014-01-08 吉林奇峰化纤股份有限公司 蓄热纤维及其制备方法
CN105002592A (zh) * 2015-02-13 2015-10-28 吉林奇峰化纤股份有限公司 一种醋腈纤维及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YANG BINGCHAO: "SCIENCE -ENGINEERING (A), CHINA MASTER'S THESES FULL-TEXT DATABASE", STUDY ON HYDROPHILIC COPOLYACRYLONITRILE FIBERS, no. 2, 15 August 2007 (2007-08-15), XP009500260, ISSN: 1674-0246 *
YANG, BINGCHAO: "SCIENCE -ENGINEERING (A), CHINA MASTER'S THESES FULL-TEXT DATABASE", STUDY ON HYDROPHILIC COPOLYACRYLONITRILE FIBERS, no. 2, 15 August 2007 (2007-08-15), XP009500260, ISSN: 1674-0246 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111220657A (zh) * 2020-03-27 2020-06-02 中简科技股份有限公司 一种聚丙烯腈碳纤维pH测试方法

Also Published As

Publication number Publication date
EP3257975A1 (en) 2017-12-20
CN105002592A (zh) 2015-10-28
EP3257975B1 (en) 2019-04-03
CN105002592B (zh) 2017-10-17
TR201909285T4 (tr) 2019-07-22
EP3257975A4 (en) 2017-12-20

Similar Documents

Publication Publication Date Title
WO2016127833A1 (zh) 一种醋腈纤维及其制备方法
CN103266381B (zh) 一种吸湿发热聚丙烯腈纱线的制备方法
CN101240468A (zh) 一种聚丙烯腈-甲壳素复合纤维及其制造方法
CN109689951B (zh) 改性丙烯腈系纤维、该纤维的制造方法和含有该纤维的纤维结构体
WO2010007728A1 (ja) 制電性アクリル繊維およびその製造方法
CN107740201B (zh) 一种负氧离子保健功能涤纶纤维及其制备方法
CN105463607A (zh) 48k聚丙烯腈基碳纤维原丝的制造方法
CN111334880B (zh) 光致变色莱赛尔纤维及其制备方法
CN103184582A (zh) 一种pva复合高强度高模量纤维素纤维的制备方法
WO2020232876A1 (zh) 一种弹性复合纤维及其制造方法
CN107419351A (zh) 一种腈纶纤维的制备工艺
CN111235659A (zh) 具有蓄热保温功能的莱赛尔纤维及其制备方法
CN110468460B (zh) 一种再生腈纶的制备方法及再生腈纶产品
WO2022237722A1 (zh) 海藻纤维及其制备方法
JPS6021905A (ja) 高強度,高弾性率アクリル系繊維およびその製造法
CN110055601B (zh) 一种聚丙烯腈纤维的湿法纺丝方法及聚丙烯腈纤维
JP3364099B2 (ja) 分割性アクリル系合成繊維及びその製造方法
CN112941663B (zh) 一种防勾丝复合改性莱赛尔纤维及其制备方法
JPH05295615A (ja) 抗ピリング性アクリル系繊維及びその製造法
CN115074868B (zh) 一种预氧丝的制备方法及预氧丝
CN110230200B (zh) 一种提高氨纶长丝强力的方法
CN117535815A (zh) 一种提高干喷湿纺碳纤维原丝可牵伸性的方法
JPH0533212A (ja) 炭素繊維用アクリル系前駆体糸条の製造方法
CN117904743A (zh) 一种有色抗起球腈纶及其制备工艺
CN114045561A (zh) 一种用腈纶纤维制备碳纤维用异形截面原丝的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16748634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016748634

Country of ref document: EP