WO2016124756A1 - Procede de depot de nanoparticules et de microparticules carbonees oxydees - Google Patents

Procede de depot de nanoparticules et de microparticules carbonees oxydees Download PDF

Info

Publication number
WO2016124756A1
WO2016124756A1 PCT/EP2016/052541 EP2016052541W WO2016124756A1 WO 2016124756 A1 WO2016124756 A1 WO 2016124756A1 EP 2016052541 W EP2016052541 W EP 2016052541W WO 2016124756 A1 WO2016124756 A1 WO 2016124756A1
Authority
WO
WIPO (PCT)
Prior art keywords
nano
microparticles
substrate
carbon
deposit
Prior art date
Application number
PCT/EP2016/052541
Other languages
English (en)
Inventor
Paolo Bondavalli
Grégory POGNON
Christophe Galindo
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Priority to AU2016214292A priority Critical patent/AU2016214292A1/en
Priority to EP16706982.2A priority patent/EP3254292A1/fr
Priority to JP2017541337A priority patent/JP2018508992A/ja
Priority to CN201680013301.5A priority patent/CN107408462B/zh
Priority to KR1020177024642A priority patent/KR20170116066A/ko
Priority to US15/548,710 priority patent/US20180025853A1/en
Publication of WO2016124756A1 publication Critical patent/WO2016124756A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/007After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/23Oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/22Electronic properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the invention relates to components for energy storage, in particular capacitors.
  • the capacitors concerned are also called “supercapacitors”, characterized by a higher energy density than that of dielectric capacitors and a higher power density than that of batteries.
  • Supercapacitors generally comprise two porous electrodes impregnated with an electrolyte (an ionic salt in generally organic solution, a quaternary ammonium salt such as tetraethylammonium tetrafluoroborate in acetonitrile or propylene carbonate, for example). These electrodes are generally separated by an insulating and porous membrane allowing the circulation of the ions of the electrolyte.
  • an electrolyte an ionic salt in generally organic solution, a quaternary ammonium salt such as tetraethylammonium tetrafluoroborate in acetonitrile or propylene carbonate, for example.
  • the first supercapacitors known as “EDLC” (acronym for “Electrochemical Double Layer Capacitator”) are based on a principle equivalent to that of conventional capacitors with polarizable electrodes and an electrolyte acting as a dielectric. Their capacity comes from the organization of a double layer of ions and electrons at the electrolyte / electrode interface.
  • EDLC Electrochemical Double Layer Capacitator
  • supercapacitors combine, for the storage of energy, a capacitive component resulting from the electrostatic organization of ions near the electrodes and a pseudocapacitive component due to oxidation-reduction reactions in the capacitor.
  • the electrostatic component of the energy storage is effected by a non-homogeneous distribution of the electrolyte ions in the vicinity of the surface of each electrode, under the effect of the potential difference applied between the two electrodes.
  • the electrostatic component of the energy storage confers a potentially high specific power and a very good behavior along the charging and discharging cycles.
  • Supercapacitors could replace conventional capacitors for applications with high energy demands, including extreme temperatures, vibrations, high acceleration or high salinity. In these environments, the batteries can not operate without their life span being very limited (these conditions apply to radar, motorsport, electrical avionics and military applications for example). Supercapacitors can also be applied to systems that require energy peaks on short times, of the order of a minute, for acceleration phases of vehicles in land transport (automobiles, trams, buses, devices called “ stop and start "in which energy is recovered during deceleration).
  • Supercapacitors could also be useful for managing electricity in embedded systems, for securing electrical installations, securing the energy supply of sensitive systems (radio sets, surveillance systems, military field, radio control center). data), in autonomous sensor networks for surveillance applications of industrial sites, complex or sensitive (hospitals, avionics, offshore platform, oil prospecting, submarine applications) and finally in renewable energies (wind turbines, recovery of atmospheric electric energy).
  • sensitive systems radio sets, surveillance systems, military field, radio control center. data
  • autonomous sensor networks for surveillance applications of industrial sites, complex or sensitive (hospitals, avionics, offshore platform, oil prospecting, submarine applications) and finally in renewable energies (wind turbines, recovery of atmospheric electric energy).
  • the energy density and power of supercapacitors must be optimized.
  • the internal resistance of a supercapacitor is today too high and poorly controlled.
  • the usual supercapacitors consist of activated carbons with inhomogeneous and unoptimized pore size distributions and use a polymeric binder to ensure the mechanical strength of their structure. This binder
  • the present invention relates to a process for depositing nano- / microparticles, including at least graphene sheets, on a substrate, comprising the steps of:
  • said nanoparticles / microparticles are suspended in a said solution in which said solvent is composed of more than 95% water (H 2 0) by weight and preferably more than 99% by weight water.
  • a plurality of said suspensions are sprayed simultaneously on said substrate.
  • the nano- / microparticles of the deposition process are chosen from carbon nanotubes, carbon nanowires, carbon nanotypes, carbon nanocornes, carbon onions and a mixture of these nanoparticles / microparticles, in which said nano / microparticles are oxidized prior to spraying and wherein said deposition is annealed after said spraying at a temperature sufficient to deoxidize said nano / microparticles.
  • At least one said wet nanoparticle is oxidized with at least one element selected from sulfuric acid, acid and phosphoric acid, sodium nitrate, nitric acid, potassium permanganate and hydrogen peroxide.
  • a heating element placed in contact with a support heats said substrate and each said part of said sprayed suspension on said substrate.
  • said deposit is annealed at a temperature between 200 degrees Celsius and 400 degrees Celsius.
  • the invention also relates to a method for manufacturing an electrode comprising in superposition a deposition of nano- / microparticles and a substrate, said substrate comprising a current collector and said deposition of nano- / microparticles being obtained by a deposition method described. previously.
  • the present invention also relates to an electrode of which said nano- / microparticle deposition can be obtained by a method described above.
  • said deposition of the electrode comprises at least graphene and a type of said nano- / microparticles chosen from carbon nanotubes, carbon nanowires, carbon nanotubes, carbon nanocornes and carbon onions.
  • the present invention also relates to a supercapacitor comprising at least one said electrode described above.
  • nanoparticle is understood to mean particles of which at least the smallest of the dimensions is nanometric, that is to say between 0.1 nm and 100 nm.
  • microparticle is meant particles of which at least the smallest of the dimensions is micrometric, that is to say between 0.1 ⁇ and 100 ⁇ .
  • Nano- / microparticle geometries include nano- / microfilts, nano- / microtiges, nano- / microtubes, nano- / microcornes, nano- / micro onions, and monofilament-type nano- / microfeuilles comprising a layer. crystalline or multifile comprising several stacked leaflets.
  • a nano- / microtube is formed of one or more wound nano- / microfossils.
  • a nano- / microfil is a one-dimensional object full of massive material.
  • a nano- / microtige is a hollow one-dimensional object.
  • a sheet is designated by the term “graphene” and is in the form of a two-dimensional carbon crystal of monoatomic thickness and nano- / micrometric size.
  • the carbon nanotubes are known and formed of a sheet of graphene wound into a tube (designated by the acronym of "Single Wall Carbon NanoTube", SWCNT) or several stacked sheets of graphene wound into a tube (designated by the acronym for "Multi Wall Carbon NanoTube", MWCNT).
  • electrode an assembly comprising a deposition of nanoparticles / microparticles on a substrate (comprising a current collector which leads electrically and optionally a layer or a thick material for the mechanical strength of the electrode).
  • FIG. 1 is a schematic representation of an apparatus for producing nano- / microparticle deposition according to a method according to the invention
  • Figure 2 is a schematic representation of two deposits of nano- / microparticles and the electrolyte of a supercapacitor;
  • Figure 3 is a schematic representation illustrating a particular embodiment of a method according to the invention.
  • FIG. 4 is a photograph taken by a scanning electron microscope of the structure of the material of a nanoparticle / microparticle deposit produced by a method according to the invention
  • FIG. 5 is a photograph taken by a scanning electron microscope of the material structure of a nano- / microparticle deposit produced according to a process according to the invention.
  • FIG. 6 is a photograph taken by a scanning electron microscope of the structure of the material of a nano-microparticle deposit produced according to a method according to the invention.
  • FIG. 7 presents cyclic voltammograms obtained from deposits of nanoparticles / microparticles of different compositions
  • FIG. 8 illustrates the influence of the cycling rate on the nano- / microparticle deposit capacity of different compositions
  • FIG. 9 illustrates the value of the specific capacity and the energy density of an electrode as a function of the proportion of oxidized carbon nanotubes in the pulverized suspension.
  • Figure 1 is a schematic representation of an apparatus 3 for producing nano- / microparticle deposition according to a method according to the invention.
  • the apparatus 3 comprises a spray nozzle 4, a reservoir 5 containing a suspension of nano / microparticles and a source of spray gas 6.
  • the nano- / microparticles comprise oxidized graphene particles and may comprise, in particular embodiments of the invention, oxidized carbon nanotubes, oxidized carbon nanowires, nanotubes oxidized carbon, oxidized carbon nanocornes and oxidized carbon onions. Other nanoparticles are conceivable.
  • the solvent used for the suspension may advantageously be composed of more than 95% of water (H 2 O) and even more advantageously of more than 99% water (H 2 O).
  • the water may be mixed with other solvents, in proportions that allow them to remain miscible with water, such as methanol (CH 4 0), ethanol (C 2 H 6 O), ethylene chloride (DCE), dichlorobenzidine (DCB), N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), hexamethylphosphoramide (HMPA), cyclopentanone (C 5 H 8 O), tetramethylene sulfoxide (TMSO), ⁇ -caprolactone, 1,2-dichlorobenzene, 1,2-dimethylbenzene, bromobenzene, lodobenzene and toluene.
  • Other compounds are conceivable.
  • the sputtering gas is, for example, air.
  • the nozzle 4 is supplied with suspension from the tank 5 and spray gas from the source 6.
  • the nozzle 4 is suitable for spraying the suspension, fed at low pressure, in microdroplets using the gas supplied at high pressure.
  • the nozzle 4 is of the airbrush type. The drops are created by hydrodynamic instability between the liquid phase, the gaseous phase and the nozzle 4, that is, in a particular embodiment of the invention, sprayed by the effect of the pressure imposed on water, air and water. geometry of the nozzle.
  • microdroplets drops of microscopic size, whose diameter is between about 1 and 100 microns.
  • the apparatus 3 comprises heating elements 7 of the support 8 in the form of resistive heating elements 9, connected to a power supply circuit (not shown) so that the elements Resistive heating elements 9 emit heat by the Joule effect when an electric current passes through them.
  • the apparatus 3 comprises heating elements 7 of the support 8 by induction, comprising for example a plate on which the support 8 is placed with inductors, to induce currents in the plate and generate heat.
  • the apparatus 3 comprises a temperature sensor 10 arranged to measure the temperature of the support 8.
  • the nozzle 4 In operation, the nozzle 4 generates a spray jet 1 1 formed of suspension microdroplets projected towards the surface 12 to be covered with substrate 15.
  • the spray jet 1 1 reaches the surface 12 to be covered in an impact zone 13, the shape and dimensions of which depend in particular on the geometry of the nozzle 4, the adjustment of the nozzle 4 and the position of the nozzle. the nozzle 4 relative to the surface 12 to be covered.
  • the shape and the dimensions of the impact zone 13 depend in particular on the angle ⁇ at the apex of the cone formed by the spray jet 1 1 at the outlet of the nozzle 4 and the distance between the outlet of the nozzle 4 and the nozzle. surface 12 of the substrate 15. They also depend on the pressure of the sputtering gas (related to the spraying gas flow rate) and the flow rate of each suspension.
  • the spray jet 1 1 is for example conical of revolution, so that it forms an impact zone 13 of generally circular shape.
  • the spray jet 1 1 could define an oblong impact zone 13, more elongated in a first direction than in a second direction perpendicular to the first.
  • Figure 2 is a schematic representation of two deposits of nano- / microparticles 1 and the electrolyte 2 of a supercapacitor.
  • the storage of the energy is carried out by a non-homogeneous distribution of the ions of the electrolyte 2 in the vicinity of the surface of each deposit of nano- / microparticles 1.
  • several ionic layers may be formed in the vicinity of the surface of the deposits of nano- / microparticles 1 and have a thickness of the order of a few nanometers, depending on the electrolyte 2 considered and its concentration.
  • the origin of these layers is electrostatic. This process does not involve electrochemical transformation of the material as in the case of accumulators.
  • Figure 2 illustrates the importance of developing materials with very large specific surfaces and having porosity adapted to ion storage at this scale to increase the storage capacity of supercapacitors.
  • the nano- / microparticles used to form a deposit 1 may be graphene sheets and single-walled carbon nanotubes (SWCNT).
  • Figure 3 is a schematic representation illustrating a particular embodiment of a method according to the invention. It illustrates the formation of one or more deposits of nanoparticles 1 made on a substrate 15 (having a current collector, conductive and optionally a thick layer for its mechanical strength) superimposed with the support.
  • the carbon nanoparticles / nanoparticles are oxidized.
  • the carbon nanoparticles / nanoparticles are, for example, SWCNTs.
  • SWCNTs are dispersed in an equal volume mixture of sulfuric acid and nitric acid for 30 minutes. The mixture is then refluxed for 3 hours. The SWCNTs are then oxidized. They can be recovered by vacuum filtering the mixture and washing with several hundred milliliters of water until a neutral pH of the filtrate. The product is dried under vacuum at 70 ° C for several days.
  • the graphene oxide particles can be obtained commercially.
  • a second step it is possible to prepare suspensions of each of the different particles in deionized water by sonication for one hour, at a concentration of between 5 ⁇ g.mL -1 and 50 mg ml -1 and preferably between 50 ⁇ g.mL "1 and 5 mg.mL " 1 .
  • the various suspensions can then be combined into a single suspension and the suspension sonicated for one hour.
  • the nano- / microparticles are deposited on the current collector of the substrate 15.
  • the deposition is carried out by spraying by hydrodynamic instability of the suspension, on a substrate 15 heated to a temperature preferably greater than 100 ° C. and preferentially less than or equal to 200 ° C, or even 150 ° C: the temperature must be sufficient to allow rapid evaporation of drops deposited by spraying and thus avoid the effect "coffee stain", that is to say, a surface distribution nano- / microparticles adsorbed non-homogeneous.
  • a temperature too high such as that presented in the method presented by Youn et al.
  • the method of Youn et al. requires the use of a high suspension volume for to compensate for the total evaporation induced by a high temperature of a high proportion of the pulverized suspension.
  • the deposit 1 is annealed at a temperature above 200 ° C to deploy the accessible surfaces of the electrolyte 2 in the deposition of nano- / microparticles 1, reduce or deoxidize graphene oxide and oxidized nanotubes and increase the conductivity of the deposition of nano- / microparticles 1.
  • This step is necessary because the deposition temperature is too low to reduce or deoxidize the nano- / microparticles of the deposit 1.
  • This step has two distinct advantages over the process presented by Youn et al .: on the one hand, annealing allows the nano / microparticles to be deoxidized at an effective temperature while keeping a lower temperature during the spraying (and the advantages which are linked to and presented in the previous paragraph).
  • annealing can be done in a controlled manner, for example by imposing an equal annealing time for all the particles deposited.
  • annealing time for all the particles deposited.
  • FIGS. 4, 5 and 6 are photographs taken by a scanning electron microscope of the material structure of a nano-microparticle deposit 1 made according to a method according to the invention. They illustrate the hierarchical structure whose production is described above: the nanotubes of oxidized carbons are interposed between the layers of oxidized graphene. The homogeneous distribution of the two structures is already potentially initiated in the suspension before spraying, via possible esterifications between the hydroxyl and carboxylic groups of each of the two oxidized carbonaceous structures. In a particular and different embodiment of the invention, other oxidized carbonaceous structures may be introduced into the suspension such as carbon nanowires, carbon nanotubes, carbon nanocornes and carbon onions.
  • FIG. 7 presents cyclic voltammograms obtained from nanoparticles / microparticle deposits 1 of different compositions.
  • the various measurements are carried out at a scanning speed of 20 mV.s -1 , in a three-electrode arrangement: the electrode comprising a nano-microparticle deposit 1, an Ag / AgCl electrode and a LiNO 3 to 3 electrode.
  • the curve (a) corresponds to a nano- / microparticle deposit obtained according to a process of the invention using oxidized graphene nanoparticles / microparticles.
  • the curve (b) corresponds to a nano-microparticle deposit 1 obtained.
  • the curve (c) corresponds to a deposition of nano- / microparticles 1 obtained using nanotubes
  • the curve (d) corresponds to a deposition of nano- / microparticles 1 obtained using nano- / microparticles of graphene and pulverized carbon nanotubes (unoxidized materials in the meadow). alable, suspended in an NMP solvent)
  • the curve (e) corresponds to a deposition of nano- / microparticles 1 made of disordered carpet or "bucky paper" of carbon nanotubes and graphene in mass proportion of 50% / 50% .
  • FIG. 7 The rectangular shape of the various cyclic voltammograms of FIG. 7 illustrates the capacitance of the different electrodes measured.
  • Figure 7 further illustrates an increase in measured current density when nano- / microparticle 1 deposits are made from oxidized nano- / microparticles (curves (a), (b) and (c)).
  • FIG. 8 illustrates the influence of the cycling speed on the specific capacitance of electrodes covered with a deposit of nano-microparticles 1 of different compositions.
  • Curve (f) corresponds to a deposition of nano-microparticles 1 obtained according to a process of the invention using oxidized graphene nanoparticles / microparticles and oxidized SWCNTs, in a mass proportion of 25% / 75% respectively and pulverized. on a substrate heated to 200 ° C. Heating the substrate at 170 ° C gives similar results.
  • Curve (g) corresponds to a deposition of nano- / microparticles 1 obtained according to a method of the invention using oxidized nano- / microparticles of graphene
  • curve (h) corresponds to a deposition of nano- / microparticles 1 obtained by spraying oxidized SWCNT
  • curve (i) corresponds to a deposit of nano- / microparticles 1 based on "bucky paper” with SWCNT
  • the curve (j) corresponds to a deposit of nano- / microparticles 1 made from activated carbon paste (as in conventional supercapacitors)
  • the curve (k) corresponds to a deposit of nano- / microparticles based on "bucky paper” with a mixture of oxidized nano- / microparticles of graphene and oxidized SWCNTs.
  • FIG. 8 illustrates that among the nanoparticle deposits 1 produced by sputtering, the specific capacitances of the electrodes obtained according to a method of the invention are higher than those of the electrode manufactured with deposits 1 of SWCNT. oxidized (alone).
  • curve (f) shows the interest of an interaction between oxidized nano- / microparticles of graphene and oxidized SWCNT to keep a high specific capacity even at high cycling speed.
  • curve (f) illustrates that the interaction between oxidized graphene nano- / microparticles and oxidized SWCNT makes it possible to keep relatively stationary specific capacitance values.
  • FIG. 9 illustrates the value of the specific capacitance and energy density of an electrode as a function of the proportion of oxidized SWCNTs in the pulverized suspension, when using an electrode obtained according to a method of FIG. using oxidized graphene nano- / microparticles and oxidized SWCNTs.
  • the specific capacity and the energy density are optimal for a mass proportion of SWCNT between 0 and 25%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

La présente invention se situe dans le domaine des composants pour le stockage de l'énergie et concerne un procédé de dépôt de nano-/microparticules, dont au moins des feuilles de graphène, sur un support (8), comprenant les étapes consistant à: oxyder au moins lesdites feuilles de graphène; suspendre lesdites nano-/microparticules dans au moins une solution comprenant au moins de l'eau comme solvant; pulvériser par instabilité hydrodynamique chaque suspension sur ledit substrat (15); chauffer ledit substrat (15), pendant chaque pulvérisation, de manière à promouvoir l'évaporation complète dudit solvant de chaque partie de chaque dite suspension pulvérisée sur ledit substrat (15) à une température inférieure ou égale à une fois et demie la température d'ébullition de chaque dite solution et inférieure ou égale à 200 degrés Celsius; recuire ledit dépôt (1) après la ou lesdites pulvérisations à une température suffisante pour désoxyder au moins le graphène oxydé présent dans ledit dépôt (1) et supérieure à la température dudit substrat (15) pendant l'étape de dépôt.

Description

Procédé de dépôt de nanoparticules et de microparticules carbonées oxydées
L'invention concerne les composants pour le stockage de l'énergie, en particulier les condensateurs. Les condensateurs concernés sont également appelés « supercondensateurs », caractérisés par une densité d'énergie plus importante que celle des condensateurs diélectriques et une densité de puissance plus élevée que celle des batteries.
Les supercondensateurs comprennent généralement deux électrodes poreuses imprégnées d'un électrolyte (un sel ionique en solution généralement organique, un sel d'ammonium quaternaire tel que le tétrafluoroborate de tétraéthylammonium dans l'acétonitrile ou le carbonate de propylène par exemple). Ces électrodes sont généralement séparées par une membrane isolante et poreuse permettant la circulation des ions de l'électrolyte.
Les premiers supercondensateurs, dits "EDLC" (acronyme d' « Electrochemical Double Layer Capacitator ») se basent sur un principe équivalent à celui des condensateurs conventionnels avec des électrodes polarisables et un électrolyte jouant le rôle de diélectrique. Leur capacité provient de l'organisation d'une double couche d'ions et d'électrons à l'interface électrolyte/électrode. Aujourd'hui, les supercondensateurs combinent, pour le stockage de l'énergie, une composante capacitive issue de l'organisation électrostatique des ions à proximité des électrodes et une composante pseudocapacitive due à des réactions d'oxydoréduction dans le condensateur.
La composante électrostatique du stockage de l'énergie s'effectue par une distribution non homogène des ions de l'électrolyte au voisinage de la surface de chaque électrode, sous l'effet de la différence de potentiel appliquée entre les deux électrodes. La composante électrostatique du stockage de l'énergie confère une puissance spécifique potentiellement élevée et une très bonne tenue le long des cycles de charge et de décharge.
Des matériaux à très grand rapport entre surface spécifique et volume, possédant une porosité adaptée au stockage ionique à cette échelle, ont été développés pour augmenter la capacité des supercondensateurs. Les méthodes de fabrication de ces matériaux se sont orientées vers l'utilisation de fullerènes, de nanotubes de carbone, du charbon actif, de nanofils de carbone ou CNF et du graphène, qui sont avantageusement légers, peu coûteux, et écologiquement propres.
Les supercondensateurs pourraient remplacer les condensateurs classiques pour des applications à forte demande en énergie, présentant notamment des températures extrêmes, des vibrations, des accélérations importantes ou une forte salinité. Dans ces milieux, les batteries ne peuvent pas fonctionner sans que leur durée de vie soit fortement limitée (ces conditions s'appliquent aux radars, au sport automobile, à l'avionique électrique et aux applications militaires par exemple). Les supercondensateurs peuvent également être appliqués aux systèmes qui requièrent des pics d'énergie sur des temps courts, de l'ordre de la minute, pour des phases d'accélération des véhicules dans le transport terrestre (automobiles, tramways, autobus, dispositifs dits « stop and start » dans lesquels l'énergie est récupérée au cours de la décélération).
Les supercondensateurs pourraient être également utiles pour la gestion de l'électricité dans les systèmes embarqués, pour la sécurisation des installations électriques, la sécurisation de l'alimentation en énergie de systèmes sensibles (postes de radio, systèmes de surveillance, domaine militaire, centre de données), dans les réseaux de capteurs autonomes pour des applications de surveillance de sites industriels, complexes ou sensibles (hôpitaux, avionique, plateforme off-shore, prospection pétrolière, applications sous-marines) et enfin dans les énergies renouvelables (éoliennes, récupération de l'énergie électrique atmosphérique). Pour permettre une application industrielle, la densité d'énergie et la puissance des supercondensateurs doivent être optimisées. De plus, la résistance interne d'un supercondensateur est aujourd'hui trop élevée et mal maîtrisée. Les supercondensateurs habituels sont constitués de carbones activés avec des distributions inhomogènes et non optimisées de la taille des pores et utilisent un liant polymérique pour assurer la tenue mécanique de leur structure. Ce liant augmente la résistance électrique interne du condensateur et augmente son poids désavantageusement. La porosité inadaptée impose également une résistance au transfert ionique au sein du matériau actif.
La publication de Bondavalli, P., Delfaure, C, Legagneux, P., Pribat, D., 2013, « Supercapacitor électrode based on mixtures of graphite and carbon nanotubes deposited using a dynamic air-brush déposition technique. », Journal of The Electrochemical Society, 160(4), A601 -A606, divulgue un procédé de dépôt de nano-/microparticules de graphène et de nanotubes de carbone par pulvérisation hydrodynamique d'une suspension sur un support. Ce procédé permet la fabrication de supercondensateurs atteignant de fortes densités d'énergie et de puissance, sans utiliser de liant polymérique, mais nécessite l'utilisation de solvants toxiques et polluants, telle que la N-méthyl-2-pyrrolidone (NMP) pour permettre la suspension des nano-/microparticules.
La publication de Youn, H. C, Bak, S. M., Park, S. H., Yoon, S. B., Roh, K. C, Kim, K. B.,2014 , « One-step préparation of reduced graphene oxide/carbon nanotube hybrid thin film by electrostatic spray déposition for supercapacitor applications », Metals and Materials International, 20(5), 975-981 , divulgue l'utilisation d'oxyde de graphène et de nanotubes de carbone oxydés pour une pulvérisation électrostatique d'une suspension sur un support pour la fabrication de supercondensateurs. Ce procédé utilise un chauffage à 300 degrés Celsius lors du dépôt, utile à la réduction ou à la désoxydation des structures carbonées présentes, mais limite la fabrication de couches épaisses car la solution s'évapore avant le dépôt. Ce procédé utilise de plus un mélange eau/éthanol comme solvant pour la suspension des particules oxydées. Cette caractéristique diminue la température de vaporisation du solvant ce qui favorise aussi une évaporation du solvant avant dépôt sur le substrat et empêche la fabrication d'une couche épaisse. Du plus, l'utilisation de l'éthanol dans le solvant est toxique et n'est pas écologiquement propre. La présente invention a pour objet un procédé de dépôt de nano- /microparticules, dont au moins des feuilles de graphène, sur un substrat, comprenant les étapes consistant à :
• oxyder au moins lesdites feuilles de graphène;
· suspendre lesdites nano-/microparticules dans au moins une solution comprenant au moins de l'eau comme solvant;
• pulvériser par instabilité hydrodynamique chaque suspension sur ledit substrat;
• chauffer ledit substrat, pendant chaque pulvérisation, de manière à promouvoir l'évaporation complète dudit solvant de chaque partie de chaque dite suspension pulvérisée sur ledit substrat à une température inférieure ou égale à une fois et demie la température d'ébullition de chaque dite solution et inférieure ou égale à 200 degrés Celsius;
• recuire ledit dépôt après la ou lesdites pulvérisations à une température suffisante pour désoxyder au moins le graphène oxydé présent dans ledit dépôt et supérieure à la température dudit substrat pendant l'étape de dépôt.
Avantageusement, on suspend lesdites nano-/microparticules dans une dite solution dont ledit solvant est composé à plus de 95% d'eau (H20) en masse et préférentiellement à plus de 99% d'eau en masse.
Avantageusement, on pulvérise de manière simultanée une pluralité de dites suspensions sur ledit substrat. Avantageusement, les nano-/microparticules du procédé de dépôt sont choisies parmi des nanotubes de carbone, des nanofils de carbone, des nanotiges de carbone, des nanocornes de carbone, des oignons de carbone et un mélange de ces nano-/microparticules, dans lequel on oxyde lesdites nano-/microparticules avant de les pulvériser et dans lequel on recuit ledit dépôt après ladite pulvérisation à une température suffisante pour désoxyder lesdites nano-/microparticules.
Avantageusement, on oxyde au moins une dite nano-/microparticule par voie humide avec au moins un élément choisi parmi de l'acide sulfurique, de l'acide phosphorique, du nitrate de sodium, de l'acide nitrique, du permanganate de potassium et du peroxyde d'hydrogène.
Avantageusement, un élément de chauffage mis en contact avec un support chauffe ledit substrat et chaque dite partie de dite suspension pulvérisée sur ledit substrat.
Avantageusement, on recuit ledit dépôt à une température comprise entre 200 degrés Celsius et 400 degrés Celsius.
L'invention concerne aussi un procédé de fabrication d'une électrode comportant en superposition un dépôt de nano-/microparticules et un substrat, ledit substrat comportant un collecteur de courant et ledit dépôt de nano-/microparticules étant obtenu par un procédé de dépôt décrit précédemment.
La présente invention concerne également une électrode dont ledit dépôt de nano-/microparticules est susceptible d'être obtenu par un procédé décrit précédemment. Avantageusement, ledit dépôt de l'électrode comporte au moins du graphène et un type de dites nano-/microparticules choisi parmi des nanotubes de carbone, des nanofils de carbone, des nanotiges de carbone, des nanocornes de carbone et des oignons de carbone. La présente invention concerne également un supercondensateur comportant au moins une dite électrode décrite précédemment.
La description suivante présente plusieurs exemples de réalisation du dispositif de l'invention : ces exemples sont non limitatifs de la portée de l'invention. Ces exemples de réalisation présentent à la fois les caractéristiques essentielles de l'invention ainsi que des caractéristiques additionnelles liées aux modes de réalisation considérés. Par souci de clarté, les mêmes éléments porteront les mêmes repères dans les différentes figures. Par « nanoparticule », on entend des particules dont au moins la plus petite des dimensions est nanométrique, c'est-à-dire comprise entre 0,1 nm et 100 nm. Par « microparticule », on entend des particules dont au moins la plus petite des dimensions est micrométrique, c'est-à-dire comprise entre 0,1 μηι et 100 μηι.
Les géométries de nano-/microparticules comprennent les nano- /microfils, les nano-/microtiges, les nano-/microtubes, les nano-/microcornes, les nano-/micro oignons et les nano-/microfeuilles du type monofeuillet comprenant une couche cristalline ou multifeuillet comprenant plusieurs feuillets empilés. Un nano- /microtube est formé d'une ou plusieurs nano-/microfeuilles enroulées. Un nano- /microfil est un objet unidimensionnel plein d'un matériau massif. Une nano- /microtige est un objet unidimensionnel creux.
Dans le cas du carbone, un feuillet est désigné par le terme « graphène » et se présente sous la forme d'un cristal bidimensionnel de carbone d'épaisseur monoatomique et de dimension nano-/micrométrique. Les nanotubes de carbone sont connus et formés d'un feuillet de graphène enroulé en un tube (désigné par l'acronyme de « Single Wall Carbone NanoTube », SWCNT) ou de plusieurs feuillets empilés de graphène enroulés en un tube (désigné par l'acronyme de « Multi Wall Carbone NanoTube », MWCNT).
Par « électrode » on entend un ensemble comportant un dépôt de nano- /microparticules sur un substrat (comportant un collecteur de courant qui conduit électriquement et optionnellement une couche ou un matériau épais pour la résistance mécanique de l'électrode).
L'invention sera mieux comprise et d'autres avantages, détails et caractéristiques de celle-ci apparaîtront au cours de la description explicative qui suit, faite à titre d'exemple en référence aux dessins annexés dans lesquels :
- la figure 1 est une représentation schématique d'un appareil pour la réalisation de dépôt de nano-/microparticules suivant un procédé conforme à l'invention ;
la figure 2 est une représentation schématique de deux dépôts de nano- /microparticules et de l'électrolyte d'un supercondensateur ; la figure 3 est une représentation schématique illustrant une réalisation particulière d'un procédé conforme à l'invention ;
la figure 4 est une photographie prise par un microscope électronique à balayage de la structure du matériau d'un dépôt de nano-/microparticules réalisé suivant un procédé conforme à l'invention ;
la figure 5 est une photographie prise par un microscope électronique à balayage de la structure du matériau d'un dépôt de nano-/microparticules réalisé suivant un procédé conforme à l'invention ;
la figure 6 est une photographie prise par un microscope électronique à balayage de la structure du matériau d'un dépôt de nano-/microparticules réalisé suivant un procédé conforme à l'invention ;
la figure 7 présente des voltampérogrammes cycliques obtenus à partir de dépôts de nano-/microparticules de différentes compositions ;
la figure 8 illustre l'influence de la vitesse de cyclage sur la capacité de dépôts de nano-/microparticules de différentes compositions et
la figure 9 illustre la valeur de la capacité spécifique et de la densité d'énergie d'une électrode en fonction de la proportion de nanotubes de carbone oxydés dans la suspension pulvérisée. La description suivante présente plusieurs exemples de réalisation du dispositif de l'invention : ces exemples sont non limitatifs de la portée de l'invention. Ces exemples de réalisation présentent à la fois les caractéristiques essentielles de l'invention ainsi que des caractéristiques additionnelles liées aux modes de réalisation considérés. Par souci de clarté, les mêmes éléments porteront les mêmes repères dans les différentes figures.
La figure 1 est une représentation schématique d'un appareil 3 pour la réalisation de dépôt de nano-/microparticules suivant un procédé conforme à l'invention.
L'appareil 3 comprend une buse de pulvérisation 4, un réservoir 5 contenant une suspension de nano-/microparticules et une source de gaz 6 de pulvérisation. Les nano-/microparticules comprennent des particules de graphène oxydées et peuvent comprendre, dans des réalisations particulières de l'invention, des nanotubes de carbone oxydés, des nanofils de carbone oxydés, des nanotiges de carbone oxydés, des nanocornes de carbone oxydés et des oignons de carbone oxydés. D'autres nanoparticules sont envisageables.
Le solvant utilisé pour la suspension peut être avantageusement composé à plus de 95% d'eau (H20) et encore plus avantageusement composé à plus de 99% d'eau (H20). Dans des réalisations particulières de l'invention, l'eau peut être mélangée à d'autres solvants, dans des proportions qui leur permettent de rester miscibles à l'eau, tel que le méthanol (CH40), l'éthanol (C2H60), le chlorure d'éthylène (DCE), la dichlorobenzidine (DCB), la N-méthyl-2-pyrrolidone (NMP), diméthylformamide (DMF), l'hexamethylphosphoramide (HMPA), la cyclopentanone (C5H80), le tetramethylène sulfoxide (TMSO), Γε-caprolactone, le 1 ,2- dichlorobenzène, le 1 ,2-dimethylbenzène, le bromobenzène, le lodobenzène et toluène. D'autres composés sont envisageables.
Le gaz de pulvérisation est par exemple de l'air.
La buse 4 est alimentée en suspension à partir du réservoir 5 et en gaz de pulvérisation à partir de la source 6. La buse 4 est propre à pulvériser la suspension, alimentée à basse pression, en microgouttes en utilisant le gaz alimenté à haute pression. La buse 4 est du type aérographe. Les gouttes sont créées par instabilité hydrodynamique entre la phase liquide, la phase gazeuse et la buse 4, soit, dans une réalisation particulière de l'invention, pulvérisées par effet de la pression imposée à l'eau, à l'air et à la géométrie de la buse.
Par "microgouttes", on entend des gouttes de taille d'ordre microscopique, dont le diamètre est compris entre environ 1 et 100 micromètres.
Dans une réalisation particulière de l'invention, l'appareil 3 comprend des éléments de chauffage 7 du support 8 sous la forme d'éléments de chauffage résistifs 9, reliés à un circuit d'alimentation électrique (non représenté) de sorte que les éléments de chauffage résistifs 9 émettent de la chaleur par effet Joule lorsqu'ils sont traversés par un courant électrique. En variante, l'appareil 3 comprend des éléments de chauffage 7 du support 8 par induction, comprenant par exemple une plaque sur laquelle le support 8 est posé avec des inducteurs, pour induire des courants dans la plaque et générer de la chaleur.
L'appareil 3 comprend un capteur de température 10 disposé de façon à mesurer la température du support 8.
En fonctionnement, la buse 4 génère un jet de pulvérisation 1 1 formé de microgouttes de suspension projetées en direction de la surface 12 à recouvrir du substrat 15. Le jet de pulvérisation 1 1 atteint la surface 12 à recouvrir dans une zone d'impact 13 dont la forme et les dimensions dépendent en particulier de la géométrie de la buse 4, du réglage de la buse 4 et de la position de la buse 4 par rapport à la surface 12 à recouvrir.
La forme et les dimensions de la zone d'impact 13 dépendent notamment de l'angle a au sommet du cône formé par le jet de pulvérisation 1 1 en sortie de la buse 4 et de la distance entre la sortie de la buse 4 et la surface 12 du substrat 15. Elles dépendent également de la pression du gaz de pulvérisation (lié au débit de gaz de pulvérisation) et du débit d'écoulement de chaque suspension.
Le jet de pulvérisation 1 1 est par exemple conique de révolution, de sorte qu'il forme une zone d'impact 13 de forme générale circulaire. En variante, le jet de pulvérisation 1 1 pourrait définir une zone d'impact 13 oblongue, plus allongée dans une première direction que dans une deuxième direction perpendiculaire à la première.
La figure 2 est une représentation schématique de deux dépôts de nano-/microparticules 1 et de l'électrolyte 2 d'un supercondensateur. Le stockage de l'énergie est effectué par une distribution non homogène des ions de l'électrolyte 2 au voisinage de la surface de chaque dépôt de nano-/microparticules 1 . Lors d'une polarisation des électrodes, plusieurs couches ioniques peuvent être formées au voisinage de la surface des dépôts de nano-/microparticules 1 et présentent une épaisseur de l'ordre de quelques nanomètres, selon l'électrolyte 2 considéré et sa concentration. L'origine de ces couches est électrostatique. Ce processus n'implique pas de transformation électrochimique de la matière comme dans le cas des accumulateurs.
La figure 2 illustre l'importance de développer des matériaux à très larges surfaces spécifiques et possédant une porosité adaptée au stockage ionique à cette échelle pour augmenter les capacités de stockage des supercondensateurs. Dans une réalisation particulière de l'invention, les nano-/microparticules utilisées pour former un dépôt 1 peuvent être des feuilles de graphène et des nanotubes de carbone à paroi simple (SWCNT). La figure 3 est une représentation schématique illustrant une réalisation particulière d'un procédé conforme à l'invention. Il illustre la formation d'un ou plusieurs dépôts de nano-/microparticules 1 fabriqués sur un substrat 15 (comportant un collecteur de courant, conducteur et optionnellement une couche épaisse pour sa résistance mécanique) en superposition avec le support.
Dans un premier temps, les nano-/microparticules carbonées sont oxydées. Les nano-/microparticules carbonées sont par exemple des SWCNT. On disperse des SWCNT dans un mélange à volume égal d'acide sulfurique et d'acide nitrique, pendant 30 minutes. Le mélange est ensuite mis à reflux pendant 3 heures. Les SWCNT sont alors oxydés. On peut les récupérer en filtrant sous vide le mélange et en les lavant avec plusieurs centaines de millilitres d'eau jusqu'à l'obtention d'un pH neutre du filtrat. Le produit est séché sous vide à 70°C pendant plusieurs jours.
Les particules d'oxyde de graphène peuvent être obtenues commercialement.
Dans un deuxième temps, on peut préparer des suspensions de chacune des différentes particules dans de l'eau déionisée par sonication pendant une heure, à une concentration comprise entre 5 μg.mL"1 et 50 mg.mL"1 et de préférence entre 50 μg.mL"1 et 5 mg.mL"1. On peut ensuite rassembler les différentes suspensions en une seule suspension et placer la suspension aux ultrasons pendant une heure.
Dans un troisième temps, on dépose les nano-/microparticules sur le collecteur de courant du substrat 15. Le dépôt est réalisé par pulvérisation par instabilité hydrodynamique de la suspension, sur un substrat 15 chauffé à une température préférentiellement supérieure à 100°C et préférentiellement inférieure ou égale à 200°C, voire 150°C: la température doit être suffisante pour permettre une évaporation rapide des gouttes déposées par pulvérisation et ainsi éviter l'effet « tâche de café », c'est-à-dire une distribution surfacique de nano-/microparticules adsorbées non homogène. En revanche, une température trop élevée, comme celle présentée dans le procédé présenté par Youn et al. provoquerait une évaporation totale des gouttes pendant leur trajet entre la buse 4 et le support 8, empêchant ainsi une adsorption ou un attachement contrôlé et efficace. A minima, le procédé de Youn et al. nécessite l'utilisation d'un volume de suspension élevé pour compenser l'évaporation totale induite par une température élevée d'une proportion forte de la suspension pulvérisée.
Dans un quatrième temps, le dépôt 1 est recuit à une température supérieure à 200°C pour déployer les surfaces accessibles par l'électrolyte 2 dans le dépôt de nano-/microparticules 1 , réduire ou désoxyder l'oxyde de graphène et les nanotubes oxydés et augmenter la conductivité du dépôt de nano- /microparticules 1 . Cette étape est nécessaire car la température de dépôt est trop faible pour réduire ou désoxyder les nano-/microparticules du dépôt 1 . Cette étape présente deux avantages distincts par rapport au procédé présenté par Youn et al.: d'une part le recuit permet de désoxyder les nano-/microparticules à une température efficace tout en gardant une température plus basse pendant la pulvérisation (et les avantages qui y sont liés et présentés au paragraphe précédent). D'autre part le recuit peut se faire de manière contrôlée, en imposant par exemple un temps de recuit égal pour l'ensemble des particules déposées. Désavantageusement, dans le procédé présenté par Youn et al., les particules déposées au début de la pulvérisation subiront un temps de recuit différent des particules déposées à la fin de la pulvérisation.
Lors de cette réalisation du procédé conforme à l'invention, une hiérarchisation des deux types de structures carbonées s'opère lors du dépôt par pulvérisation sur le substrat 15 chauffé par le support 8, qui permet de vaporiser l'eau de manière instantanée. Cette hiérarchisation est illustrée par la figure 4, la figure 5 et la figure 6.
Les figures 4, 5 et 6 sont des photographies prises par un microscope électronique à balayage de la structure du matériau d'un dépôt de nano- /microparticules 1 réalisé suivant un procédé conforme à l'invention. Elles illustrent la structure hiérarchisée dont l'obtention est décrite précédemment : les nanotubes de carbones oxydés s'intercalent entre les feuillets de graphène oxydés. La répartition homogène des deux structures est déjà potentiellement initiée dans la suspension avant pulvérisation, via de possibles estérifications entre les groupements hydroxyles et carboxyliques de chacune des deux structures carbonées oxydées. Dans une réalisation particulière et différente de l'invention, d'autres structures carbonées oxydées peuvent être introduites dans la suspension pulvérisée, telles que des nanofils de carbone, des nanotiges de carbone, des nanocornes de carbone et des oignons de carbone.
La figure 7 présente des voltampérogrammes cycliques obtenus à partir de dépôts de nano-/microparticules 1 de différentes compositions. Les différentes mesures sont effectuées à une vitesse de balayage de 20 mV.s"1 , dans un montage à trois électrodes : l'électrode comprenant un dépôt de nano-/microparticules 1 , une électrode Ag/AgCI et une électrode LiN03 à 3 molaires. La courbe (a) correspond à un dépôt de nano-/microparticules obtenu suivant un procédé de l'invention utilisant des nano-/microparticules de graphène oxydées. La courbe (b) correspond à un dépôt de nano-/microparticules 1 obtenu suivant un procédé de l'invention utilisant des nano-/microparticules de graphène oxydées et des nanotubes de carbone oxydés mélangés dans des proportions égales en masse. La courbe (c) correspond à un dépôt de nano-/microparticules 1 obtenu en utilisant des nanotubes de carbone oxydés pulvérisés. La courbe (d) correspond à un dépôt de nano-/microparticules 1 obtenu en utilisant des nano-/microparticules de graphène et des nanotubes de carbone pulvérisés (matériaux non-oxydés au préalable, suspendus dans un solvant NMP). Finalement, la courbe (e) correspond à un dépôt de nano-/microparticules 1 fabriqué en tapis désordonné ou « bucky paper » de nanotubes de carbone et graphène en proportion massique de 50%/50%.
La forme rectangulaire des différents voltampérogrammes cycliques de la figure 7 illustre le caractère capacitif des différentes électrodes mesurées. La figure 7 illustre de plus une augmentation de la densité de courant mesurée lorsque que les dépôts de nano-/microparticules 1 sont fabriqués à partir de nano- /microparticules oxydées (courbes (a), (b) et (c)).
La figure 8 illustre l'influence de la vitesse de cyclage sur la capacité spécifique d'électrodes couvertes d'un dépôt de nano-/microparticules 1 de différentes compositions. La courbe (f) correspond à un dépôt de nano- /microparticules 1 obtenu suivant un procédé de l'invention utilisant des nano- /microparticules de graphène oxydées et de SWCNT oxydés, dans une proportion massique respectivement de 25%/75% et pulvérisées sur un substrat 15 chauffé à 200°C. Le chauffage du substrat 15 à 170°C donne des résultats similaires. La courbe (g) correspond à un dépôt de nano-/microparticules 1 obtenu suivant un procédé de l'invention utilisant des nano-/microparticules de graphène oxydées, la courbe (h) correspond à un dépôt de nano-/microparticules 1 obtenu en pulvérisant des SWCNT oxydés, la courbe (i) correspond à un dépôt de nano-/microparticules 1 à base de « bucky paper » avec des SWCNT, la courbe (j) correspond à un dépôt de nano-/microparticules 1 fabriqué à partir de pâte de carbone activé (tel que dans les supercondensateurs classiques) et la courbe (k) correspond à un dépôt de nano- /microparticules à base de « bucky paper » avec un mélange de nano- /microparticules de graphène oxydées et de SWCNT oxydés.
Pour l'ensemble des vitesses de cyclage, la figure 8 montre que les capacités spécifiques sont plus élevées dans le cas des électrodes dont les dépôts de nano-/microparticules sont fabriqués via la méthode de pulvérisation par rapport aux méthodes de fabrication utilisant du « bucky paper » et de la pâte de carbone activé. De plus, la figure 8 illustre que parmi les dépôts de nano-/microparticules 1 fabriqués par pulvérisation, les capacités spécifiques des électrodes obtenues suivant un procédé de l'invention sont plus élevées que celles de l'électrode fabriquée avec des dépôts 1 de SWCNT oxydés (seuls).
Le croisement des courbe (f) et (g) montre l'intérêt d'une interaction entre nano-/microparticules de graphène oxydées et SWCNT oxydés pour garder une capacité spécifique élevée même à forte vitesse de cyclage. De plus, la courbe (f) illustre que l'interaction entre nano-/microparticules de graphène oxydées et SWCNT oxydés permet de garder des valeurs de capacité spécifique relativement stationnaires.
La figure 9 illustre la valeur de la capacité spécifique et de la densité d'énergie d'une électrode en fonction de la proportion de SWCNT oxydés dans la suspension pulvérisée, lors de l'utilisation d'une électrode obtenue suivant un procédé de l'invention utilisant des nano-/microparticules de graphène oxydées et de SWCNT oxydés. La capacité spécifique et la densité d'énergie sont optimales pour une proportion de SWCNT en masse entre 0 et 25 %.

Claims

REVENDICATIONS
Procédé de dépôt de nano-/microparticules, dont au moins des feuilles de graphène, sur un substrat (15), comprenant les étapes consistant à :
• oxyder au moins lesdites feuilles de graphène;
• suspendre lesdites nano-/microparticules dans au moins une solution comprenant au moins de l'eau comme solvant;
• pulvériser par instabilité hydrodynamique chaque suspension sur ledit substrat (15);
• chauffer ledit substrat (15), pendant chaque pulvérisation, de manière à promouvoir l'évaporation complète dudit solvant de chaque partie de chaque dite suspension pulvérisée sur ledit substrat (15) à une température inférieure ou égale à une fois et demie la température d'ébullition de chaque dite solution et inférieure ou égale à 200 degrés Celsius;
• recuire ledit dépôt (1 ) après la ou lesdites pulvérisations à une température suffisante pour désoxyder au moins le graphène oxydé présent dans ledit dépôt (1 ) et supérieure à la température dudit substrat (15) pendant l'étape de dépôt.
Procédé de dépôt selon la revendication précédente dans lequel on suspend lesdites nano-/microparticules dans une dite solution dont ledit solvant est composé à plus de 95% d'eau (H20) en masse et préférentiellement à plus de 99% d'eau en masse.
Procédé de dépôt selon les revendications précédentes dans lequel on pulvérise de manière simultanée une pluralité de dites suspensions sur ledit substrat (15).
Procédé de dépôt selon l'une des revendications précédentes dont lesdites nano-/microparticules sont choisies parmi des nanotubes de carbone, des nanofils de carbone, des nanotiges de carbone, des nanocornes de carbone, des oignons de carbone et un mélange de ces nano-/microparticules, dans lequel on oxyde lesdites nano-/microparticules avant de les pulvériser et dans lequel on recuit ledit dépôt (1 ) après ladite pulvérisation à une température suffisante pour désoxyder lesdites nano-/microparticules.
5. Procédé selon l'une des revendications précédentes dans lequel on oxyde au moins une dite nano-/microparticule par voie humide avec au moins un élément choisi parmi de l'acide sulfurique, de l'acide phosphorique, du nitrate de sodium, de l'acide nitrique, du permanganate de potassium et du peroxyde d'hydrogène.
6. Procédé de dépôt selon l'une des revendications précédentes dans lequel un élément de chauffage mis en contact avec un support (8) chauffe ledit substrat (15) et chaque dite partie de dite suspension pulvérisée sur ledit substrat (15).
7. Procédé de dépôt selon l'une des revendications précédentes dans lequel on recuit ledit dépôt (1 ) à une température comprise entre 200 degrés Celsius et 400 degrés Celsius.
8. Procédé de fabrication d'une électrode, comportant en superposition un dépôt de nano-/microparticules (1 ) et un substrat (15), ledit substrat (15) comportant un collecteur de courant, ledit dépôt de nano-/microparticules (1 ) étant obtenu par un procédé selon l'une des revendications précédentes.
9. Electrode dont ledit dépôt de nano-/microparticules (1 ) est susceptible d'être obtenu par un procédé selon l'une des revendications 1 à 7.
10. Electrode selon la revendication précédente dans laquelle ledit dépôt comporte au moins du graphène et un type de dites nano-/microparticules (1 ) choisi parmi des nanotubes de carbone, des nanofils de carbone, des nanotiges de carbone, des nanocornes de carbone et des oignons de carbone. Supercondensateur comportant au moins une dite électrode selon l'une des revendications 9 à 10.
PCT/EP2016/052541 2015-02-06 2016-02-05 Procede de depot de nanoparticules et de microparticules carbonees oxydees WO2016124756A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2016214292A AU2016214292A1 (en) 2015-02-06 2016-02-05 Method of depositing oxidized carbon-based microparticles and nanoparticles
EP16706982.2A EP3254292A1 (fr) 2015-02-06 2016-02-05 Procede de depot de nanoparticules et de microparticules carbonees oxydees
JP2017541337A JP2018508992A (ja) 2015-02-06 2016-02-05 酸化させた炭素系マイクロ粒子およびナノ粒子の堆積方法
CN201680013301.5A CN107408462B (zh) 2015-02-06 2016-02-05 沉积氧化的碳基微颗粒和纳米颗粒的方法
KR1020177024642A KR20170116066A (ko) 2015-02-06 2016-02-05 산화된 탄소 기반 마이크로입자들 및 나노입자들을 퇴적하는 방법
US15/548,710 US20180025853A1 (en) 2015-02-06 2016-02-05 Method of depositing oxidized carbon-based microparticles and nanoparticles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1500231A FR3032362B1 (fr) 2015-02-06 2015-02-06 Procede de depot de nanoparticules et de microparticules carbonees oxydees
FR1500231 2015-02-06

Publications (1)

Publication Number Publication Date
WO2016124756A1 true WO2016124756A1 (fr) 2016-08-11

Family

ID=53673980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/052541 WO2016124756A1 (fr) 2015-02-06 2016-02-05 Procede de depot de nanoparticules et de microparticules carbonees oxydees

Country Status (8)

Country Link
US (1) US20180025853A1 (fr)
EP (1) EP3254292A1 (fr)
JP (1) JP2018508992A (fr)
KR (1) KR20170116066A (fr)
CN (1) CN107408462B (fr)
AU (1) AU2016214292A1 (fr)
FR (1) FR3032362B1 (fr)
WO (1) WO2016124756A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2644579C1 (ru) * 2016-12-13 2018-02-13 Сергей Иванович Жебелев Способ сборки наноматериалов из графена
KR20200005612A (ko) * 2017-05-09 2020-01-15 어플라이드 그래핀 머티리얼즈 유케이 리미티드 복합 성형 재료
FR3110281A1 (fr) 2020-05-14 2021-11-19 Thales Electrode nanostructurée pour supercondensateur

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102655394B1 (ko) * 2019-04-02 2024-04-09 삼성디스플레이 주식회사 표시 장치의 제조 장치 및 표시 장치의 제조 방법
CN110090605B (zh) * 2019-05-14 2024-05-10 黄琛 一种功能性纳米微球的制备设备
CN113244931B (zh) * 2020-02-11 2022-05-03 中国石油化工股份有限公司 催化剂以及含不饱和烃气体的催化氧化脱氧方法
CN113649252B (zh) * 2021-08-18 2022-12-27 中国科学院重庆绿色智能技术研究院 喷涂制备微纳多级自补偿结构及其柔性压力传感器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100221531A1 (en) * 2007-10-12 2010-09-02 Sang Keun Oh Carbon nanotube conductive layer using spray coating and preparing method thereof
US20130059195A1 (en) * 2011-09-02 2013-03-07 Semiconductor Energy Laboratory Co., Ltd. Electrode for power storage device and power storage device
US20130133925A1 (en) * 2011-10-24 2013-05-30 Samsung Electro-Mechanics Co., Ltd. Graphene transparent electrode and method for manufacturing the same
US20140242293A1 (en) * 2013-02-26 2014-08-28 Quantumscape Corporation Inorganic films using a cascaded source for battery devices

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013100382A1 (fr) * 2011-12-31 2013-07-04 제일모직주식회사 Procédé de préparation d'un composite graphène-nanotubes de carbone à l'aide de pyrolyse par pulvérisation et composite graphène-nanotubes de carbone préparé par ce procédé
US9530531B2 (en) * 2013-02-21 2016-12-27 Nanotek Instruments, Inc. Process for producing highly conducting and transparent films from graphene oxide-metal nanowire hybrid materials
US20140272199A1 (en) * 2013-03-14 2014-09-18 Yi-Jun Lin Ultrasonic spray coating of conducting and transparent films from combined graphene and conductive nano filaments
US8871296B2 (en) * 2013-03-14 2014-10-28 Nanotek Instruments, Inc. Method for producing conducting and transparent films from combined graphene and conductive nano filaments
TW201504363A (zh) * 2013-07-16 2015-02-01 Enerage Inc 石墨烯油墨及石墨烯線路的製作方法
CN103400632B (zh) * 2013-07-17 2016-05-11 常州二维碳素科技股份有限公司 一种石墨烯掺杂材料及其应用
CN103396573B (zh) * 2013-08-22 2015-07-22 电子科技大学 一种复合纳米薄膜的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100221531A1 (en) * 2007-10-12 2010-09-02 Sang Keun Oh Carbon nanotube conductive layer using spray coating and preparing method thereof
US20130059195A1 (en) * 2011-09-02 2013-03-07 Semiconductor Energy Laboratory Co., Ltd. Electrode for power storage device and power storage device
US20130133925A1 (en) * 2011-10-24 2013-05-30 Samsung Electro-Mechanics Co., Ltd. Graphene transparent electrode and method for manufacturing the same
US20140242293A1 (en) * 2013-02-26 2014-08-28 Quantumscape Corporation Inorganic films using a cascaded source for battery devices

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BONDAVALLI, P.; DELFAURE, C.; LEGAGNEUX, P.; PRIBAT, D.: "Supercapacitor electrode based on mixtures of graphite and carbon nanotubes deposited using a dynamic air-brush deposition technique.", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 160, no. 4, 2013, pages A601 - A606
YOUN, H. C.; BAK, S. M.; PARK, S. H.; YOON, S. B.; ROH, K. C.; KIM, K. B: "One-step preparation of reduced graphene oxide/carbon nanotube hybrid thin film by electrostatic spray deposition for supercapacitor applications", METALS AND MATERIALS INTERNATIONAL, vol. 20, no. 5, 2014, pages 975 - 981

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2644579C1 (ru) * 2016-12-13 2018-02-13 Сергей Иванович Жебелев Способ сборки наноматериалов из графена
WO2018111157A1 (fr) * 2016-12-13 2018-06-21 Сергей Иванович ЖЕБЕЛЕВ Procédé d'assemblage de nano-matériaux à partir de graphène
KR20200005612A (ko) * 2017-05-09 2020-01-15 어플라이드 그래핀 머티리얼즈 유케이 리미티드 복합 성형 재료
KR102196307B1 (ko) 2017-05-09 2020-12-30 어플라이드 그래핀 머티리얼즈 유케이 리미티드 복합 성형 재료
FR3110281A1 (fr) 2020-05-14 2021-11-19 Thales Electrode nanostructurée pour supercondensateur

Also Published As

Publication number Publication date
FR3032362A1 (fr) 2016-08-12
KR20170116066A (ko) 2017-10-18
AU2016214292A1 (en) 2017-08-31
JP2018508992A (ja) 2018-03-29
US20180025853A1 (en) 2018-01-25
CN107408462B (zh) 2021-03-23
FR3032362B1 (fr) 2020-05-29
EP3254292A1 (fr) 2017-12-13
CN107408462A (zh) 2017-11-28

Similar Documents

Publication Publication Date Title
EP3254292A1 (fr) Procede de depot de nanoparticules et de microparticules carbonees oxydees
Korenblit et al. In situ studies of ion transport in microporous supercapacitor electrodes at ultralow temperatures
Portet et al. High power density electrodes for carbon supercapacitor applications
Fan et al. High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support
US20140120453A1 (en) Patterned graphite oxide films and methods to make and use same
US8699207B2 (en) Electrodes synthesized from carbon nanostructures coated with a smooth and conformal metal adlayer
KR101995465B1 (ko) 롤 형태를 갖는 전극 구조체, 이를 채용한 전극 및 전기소자, 및 상기 전극 구조체의 제조방법
Brousse et al. Laser-scribed Ru organometallic complex for the preparation of RuO2 micro-supercapacitor electrodes on flexible substrate
Jang et al. Activated carbon nanocomposite electrodes for high performance supercapacitors
KR20100095628A (ko) 금속 내포 수상 탄소 나노 구조물, 탄소 나노 구조체, 금속 내포 수상 탄소 나노 구조물의 제작방법, 탄소 나노 구조체의 제작방법, 및 캐패시터
Du et al. A Three‐Layer All‐In‐One Flexible Graphene Film Used as an Integrated Supercapacitor
Soam et al. Controlling the shell microstructure in a low-temperature-grown SiNWs and correlating it to the performance of the SiNWs-based micro-supercapacitor
Kim et al. Maximizing volumetric energy density of all-graphene-oxide-supercapacitors and their potential applications for energy harvest
US10804043B2 (en) Method of preparing core-shell structure nanoparticle using structure-guided combustion waves
Boulanger et al. Spray deposition of supercapacitor electrodes using environmentally friendly aqueous activated graphene and activated carbon dispersions for industrial implementation
EP3459095B1 (fr) Procede de fabrication de supercondensateur
FR2901156A1 (fr) Composite catalytique a base de charbon actif catalytique et nanotubes de carbone, procede de fabrication, electrode et supercondensateur comprenant le composite catalytique
JP2023511783A (ja) 炭素の安定な水性分散液
Kim et al. Stacking‐Controlled Assembly of Cabbage‐Like Graphene Microsphere for Charge Storage Applications
KR101940795B1 (ko) 롤 형태를 갖는 전극 구조체, 이를 채용한 전극 및 전기소자, 및 상기 전극 구조체의 제조방법
US9472354B2 (en) Electrodes for capacitors from mixed carbon compositions
EP2769395B1 (fr) Assemblage collecteur-électrode apte à être intégré dans un dispositif de stockage d'énergie électrique
KR20170004075A (ko) 그래핀-금속을 포함하는 3 차원 전극 구조체, 이의 제조 방법, 및 이를 포함하는 3 차원 캐패시터용 전극
Haro From cluster design to energy storage device engineering
FR3110281A1 (fr) Electrode nanostructurée pour supercondensateur

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16706982

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016706982

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15548710

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017541337

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016214292

Country of ref document: AU

Date of ref document: 20160205

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177024642

Country of ref document: KR

Kind code of ref document: A