WO2016124064A1 - 红外线定位节点装置及系统 - Google Patents

红外线定位节点装置及系统 Download PDF

Info

Publication number
WO2016124064A1
WO2016124064A1 PCT/CN2016/070465 CN2016070465W WO2016124064A1 WO 2016124064 A1 WO2016124064 A1 WO 2016124064A1 CN 2016070465 W CN2016070465 W CN 2016070465W WO 2016124064 A1 WO2016124064 A1 WO 2016124064A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
positioning node
angle
reflective
light
Prior art date
Application number
PCT/CN2016/070465
Other languages
English (en)
French (fr)
Inventor
陈涛
潘传荣
卢海洋
Original Assignee
无锡知谷网络科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡知谷网络科技有限公司 filed Critical 无锡知谷网络科技有限公司
Priority to EP16746059.1A priority Critical patent/EP3255447A4/en
Priority to KR1020177022800A priority patent/KR20170105082A/ko
Priority to JP2017559751A priority patent/JP2018511810A/ja
Priority to US15/547,127 priority patent/US20180011166A1/en
Publication of WO2016124064A1 publication Critical patent/WO2016124064A1/zh
Priority to HK18107679.3A priority patent/HK1248318A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/16Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/70Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/70Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using electromagnetic waves other than radio waves
    • G01S1/703Details
    • G01S1/7032Transmitters
    • G01S1/7034Mounting or deployment thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/70Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using electromagnetic waves other than radio waves
    • G01S1/703Details
    • G01S1/7032Transmitters
    • G01S1/7038Signal details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S2201/00Indexing scheme relating to beacons or beacon systems transmitting signals capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters
    • G01S2201/01Indexing scheme relating to beacons or beacon systems transmitting signals capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters adapted for specific applications or environments

Definitions

  • the present invention relates to a wireless signal transmitting apparatus and system, and more particularly to an infrared positioning node apparatus and system.
  • the indoor positioning is usually performed by using a positioning node device to transmit a wireless signal to identify the target object.
  • the ideal state is that a positioning node device corresponds to an ID.
  • Node positioning devices that are widely used today generally include a signal transmitting tube and a circuit board. For example, the ID identification device described in Patent No.
  • FIG. 1 is a schematic view of an infrared projection area of a conventional infrared positioning node device.
  • the positioning node devices A and B are suspended from the ceiling, and each of them forms a conical infrared projection area.
  • a signal dead zone of a larger area is formed between the infrared projection areas of the positioning nodes A and B.
  • an infrared positioning node device comprising:
  • An infrared emission tube for cooperating with the reflector the infrared emission tube being positioned such that a range of an angle m formed by the light emitted by the infrared emission tube is reflected by a partially reflective side of the plurality of sides It is 0 ° ⁇ m ⁇ 180 °.
  • an infrared positioning node system including a plurality of Infrared positioning node device, wherein a part of the infrared positioning node device and another part of the infrared positioning node device are arranged such that the infrared emission directions of the two are perpendicular to each other.
  • the invention makes the range of the infrared emission signal controllable in the range of 0° to 180°, so that the transmitted signal is stable and the intensity is uniform.
  • the illumination utilization rate of the infrared transmitting tube is improved, and the power consumption of the node device is reduced. Uniform projection of infrared light is realized, which effectively avoids signal interference between a blind spot of a single node and adjacent nodes.
  • FIG. 1 is a schematic view of an infrared projection area of a conventional infrared positioning node device
  • FIG. 2 is a schematic structural diagram of an infrared positioning node device according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural view of a reflector according to an embodiment of the present invention.
  • FIG. 4 is a schematic view showing vertical installation of an infrared positioning node device according to an embodiment of the present invention.
  • FIG. 5 is a schematic perspective view showing vertical installation of an infrared positioning node system according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing horizontal installation of an infrared positioning node device according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of vertical and horizontal hybrid installation of an infrared positioning node device according to an embodiment of the present invention.
  • Fig. 2 is a view schematically showing an infrared positioning node device of an embodiment of the present invention.
  • the apparatus includes a reflector 1 (with its body structure within the outer casing 6), an infrared emitter tube 2, a central control point 3, a housing 4, a power supply interface 5, and an upgrade interface 6.
  • the central control point 3 may be a circuit board that integrates a power source, a microprocessor, a wireless module, and a light sensitive element. It can be used to provide power, receive signals, signal processing, transmit signals (eg, infrared signals), etc. to the infrared positioning node device described above.
  • the power source can be connected to the power supply interface 5.
  • the power supply is used to supply power to the infrared positioning node device.
  • the microprocessor can be connected to the upgrade interface 6.
  • the microprocessor is used to process the received signals and can upgrade the program. Thereby, the infrared signals can communicate with each other and the data can be upgraded. This increases the practical performance, convenience and functionality of the device.
  • the central control point 3 is provided with a light-transmitting hole for providing illumination to the photosensitive element, and the photosensitive element senses ambient light through the light-transmitting hole, and automatically adjusts the intensity of the infrared-emitting tube 2 to emit infrared rays, thereby improving infrared emission.
  • the light utilization rate of the tube reduces the power consumption of the infrared positioning node device.
  • the outer casing 4 may be in a box type (other shapes suitable for processing) for accommodating the reflector 1, the infrared transmitting tube 2 and the central control point 3, and the power supply interface 5 and the upgrade interface 6 are left thereon. Matching grooves, and rectangular openings that match the reflector 1.
  • the outer casing 4 is provided There are slots or small holes for the reflector 1 to be installed at different angles.
  • the reflector 1 has a function of reflecting infrared rays, and its unique structure enables the reflected infrared rays to be uniformly projected in a space of 0° ⁇ X ⁇ 180°.
  • Fig. 3 schematically shows a structural view of a reflector 1 according to an embodiment of the present invention.
  • the shape of the reflector 1 is a straight parallelepiped (a parallelepiped whose side edges are perpendicular to the bottom surface), and the hexahedron includes an upper bottom surface 15, a lower bottom surface 16, a first reflective side surface 11, and a second reflective side surface 12, The three light transmitting sides 13, the fourth side 14 and the infrared emitting tube 2.
  • the upper bottom surface 15 may be a parallelogram.
  • the lower bottom surface 16 can also be a parallelogram.
  • the adjacent first reflective side 11 and second reflective side 12 may form a first angle ⁇ .
  • the shape of the third light-transmissive side 13 may be a rectangle that may face the first reflective side 11 and abut the second reflective side 12.
  • the shape of the fourth side 14 may be rectangular, which may abut the first reflective side 11 and the third light transmissive side 13, respectively.
  • the illumination range of the infrared emission tube 2 for cooperating with the reflector 1 is determined by a second angle ⁇ formed by the first edge ray and the second edge ray, the infrared emission tube 2 being positioned such that: the first An edge ray illuminates the first reflective side 11 and forms a first angle of incidence ⁇ 1 , the second edge illuminates the second reflective side 12 and forms a second angle of incidence ⁇ 2 , the ⁇ 2 being 180°+ ⁇ 1 - ⁇ - ⁇ ; between the first reflected ray reflected by the first reflective side and the second reflected ray reflected by the second reflective side by the second reflective ray
  • the reflection angle m is 360°-2 ⁇ - ⁇ , wherein
  • the reflection angle is 0° ⁇ m ⁇ 180°
  • the reflected infrared rays are uniformly projected in a space of 0° ⁇ X ⁇ 180° by the method of mounting the bottom of the reflector cup disclosed above and the infrared emitting tube.
  • the reflected infrared rays can be uniformly projected in a space of 90° to form a rectangular parallelepiped infrared beam.
  • the first angle ⁇ is 112.5°
  • the second angle ⁇ is 45°
  • the first incident angle ⁇ 1 is 45°
  • the second incident angle is 67.5°.
  • Manner 2 The first angle ⁇ is 90°, the second angle ⁇ is 90°, the first incident angle ⁇ 1 is 67.5°, and the second incident angle is 67.5°.
  • the angles of the first and second reflection lines formed by the first and second edge rays are reflected by the first and second reflective sides It is a 90° cuboid infrared light column.
  • the structure of the infrared positioning node device is such that the projected infrared light column is a rectangular parallelepiped, which reduces the signal dead zone and makes the signal intensity uniform and stable.
  • an infrared emitting tube is used in this embodiment to schematically reflect the light refraction effect.
  • it may be disposed in the outer casing.
  • the infrared emitting tube may be specifically disposed on the upper part, the lower part of the reflective cup or inside the reflective cup.
  • the direction of the infrared emission signal is controllable, so that the signal is stable and the intensity is uniform, the illumination utilization rate of the infrared emission tube is improved, and the power consumption of the node device is reduced.
  • the uniform projection of infrared light is realized, and the signal interference between the blind spot of the single node and the adjacent nodes is effectively avoided.
  • the shape of the reflector 1 is a straight parallelepiped, and the hexahedron includes a parallelogram upper bottom surface 15, a parallelogram lower bottom surface 16, and a rectangular fourth side surface 14, respectively. Adjacent to the first reflective side surface 11 and the third light transmissive side surface 13. This design is simple in design and easy to process.
  • the upper bottom surface 15, the lower bottom surface 16, and the fourth side surface 14 are coated with a light absorbing material, on the fourth side surface 14, or on the lower bottom surface 16 adjacent the fourth side surface 14, At least one hole for accommodating the infrared emitting tube is provided.
  • the bulb of the infrared emission tube is mounted in a hole that matches its size and number.
  • the structure of the infrared positioning node device is such that the infrared emitting tube directly faces the reflecting surface, the infrared scattering loss is small, and the reflection effect is good.
  • the infrared emitting tube and the reflector have a plurality of fitting manners: the upper bottom surface 15 and the fourth side surface 14 are light absorbing surfaces, and the lower bottom surface 16 is a light transmitting surface, and the reflective cup
  • the outer side is a central control point, and the infrared emitting tube is connected to the central control point and below the lower bottom surface 16.
  • the upper bottom surface 15 and the lower bottom surface 16 are light absorbing surfaces
  • the fourth side surface 14 is a light transmitting surface
  • the infrared emitting tube is connected to the central control point and located outside the fourth side surface.
  • the body of the reflector is a solid structure made of a light transmissive material.
  • This structure facilitates the application of light absorbing or reflective materials on each side as needed, not only making the process simple. Single and reliable quality.
  • the infrared emitting tube can be mounted on the outside of the reflector cup, for example, on the outer side of the upper, lower or fourth side of the reflector cup, and only needs to change the side of the light absorbing material or the light transmissive material.
  • the infrared incident surface of the infrared ray emitting tube and the third transparent light transmitting side 13 of the infrared ray that is reflected and emitted from the reflective cup are made of a light transmissive material, and the first reflective surface 11 and the second reflective surface 12 are reflective materials. Other surface peripheral light absorbing materials can be used.
  • the infrared positioning node device of the present invention is designed in the shape of a box, and the shape is more convenient to install.
  • the infrared positioning node system composed of a plurality of the above-mentioned infrared positioning node devices brings different technical effects through different mounting methods when it is installed.
  • a part of the infrared ray positioning node device and another part of the infrared ray positioning node device are configured such that the infrared emission directions of both are perpendicular to each other, or the distance between each of the infrared ray positioning node devices in a part of the infrared ray positioning node devices is set such that each The illumination areas of the infrared positioning node devices do not overlap, and the distance between the other partial infrared positioning node devices is set such that the illumination areas of the respective infrared positioning node devices do not overlap.
  • the hexahedral reflector cup exemplified above only schematically reflects the effect of infrared incident and reflection, and the angles are relatively simple to calculate.
  • the shape of the reflector cup can be variously changed.
  • the upper bottom surface and the lower bottom surface are disposed in a trapezoidal shape, a pentagon shape, or the like, and the side surfaces may be disposed in plurality, and only need to meet the following requirements: the light emitted by the infrared emitting tube passes through the middle portion of the plurality of side surfaces.
  • the angle m formed after the reflection side reflection is in the range of 0° ⁇ m ⁇ 180°.
  • the plurality of sides of the reflector may include: an adjacent first reflective side and a second reflective side forming a first angle ⁇ ; and facing the first reflective side and a third light transmissive side of the rectangle adjacent to the second reflective side.
  • FIGS 4 through 7 schematically illustrate some typical mounting arrangements for an infrared positioning node device (or system).
  • FIG. 5 is a perspective view showing the installation of the method of FIG. 4.
  • the infrared positioning node system (including the infrared positioning node devices A, B) is installed on a wall in a room (for example, an airport waiting room).
  • the infrared positioning nodes A and B can also exchange information through the microprocessor and the wireless module therein, so that the device is more powerful and more convenient to use.
  • large-span positioning recognition can be achieved by installing several nodes. That is to say, the projection width d in the illustration is controlled by changing the number of nodes.
  • the infrared positioning node devices A and B are arranged in parallel, and this arrangement can save the number of infrared positioning node devices.
  • a part of the infrared positioning node device and another part of the infrared positioning node device may be arranged such that the infrared emission directions of the two are perpendicular to each other.
  • the distance between each of the infrared ray positioning node devices in the portion of the infrared ray positioning node device is set such that the illumination regions of the respective infrared ray positioning node devices do not overlap, and the distance between the other portions of the infrared ray positioning node devices is set such that the respective infrared rays
  • the illumination areas of the positioning node devices do not overlap.
  • the infrared positioning node device and system disclosed by the invention wherein the reflector has a function of reflecting infrared rays, and the unique structure thereof enables the emitted infrared light to be uniformly projected in space, and the node housing has a slot with an optimal installation angle of the reflector .
  • the infrared light emitted from the node has a rectangular cross section, that is, infrared light having a horizontal forward and a vertical downward range, the intensity is uniform, and the reception is stable and reliable, so that the signal is received. There is no blind spot in the launch range.
  • the photosensitive element in the node can automatically adjust the intensity of the infrared light emission by sensing the ambient light.
  • Figure 6 shows the installation of the infrared positioning node device on a horizontal reference surface. For example, install it on the ceiling or on the ground in an airport lounge. Because of the special design of the reflector cup and the illuminating port of the infrared locating node device of the invention, the infrared ray emitted in the cross section is rectangular, that is, the infrared light is irradiated in the horizontal forward and vertical downward directions, the intensity is uniform, and the receiving is stable and reliable, so that The blind zone of the signal is minimized in the range of infrared radiation emission.
  • Figure 7 shows the hybrid installation method according to the two installation modes of Figure 4 and Figure 6, that is, the vertical and horizontal hybrid installation.
  • the signal has almost no blind spot on the basis of the signal receiving effect of the single external line positioning node device, and the infrared projection area with uniform infrared intensity covered by the rectangular cross section is formed again.
  • the signal dead zone is completely eliminated in this projection zone.

Abstract

一种红外线定位节点装置及系统,该装置包括:具有多个侧面的反光杯(1);用于与所述反光杯(1)配合的红外线发射管(2),所述红外线发射管(2)定位成使得:所述红外线发射管(2)所发出的光线通过所述多个侧面中部分反光侧面(11,12)反射后形成的夹角m的范围为0°≤m<180°。使红外线发射信号的方向可以在0°至180°范围内可控,信号稳定且强度均匀,提高了红外发射管的光照利用率,降低了节点装置的耗电量,实现了红外光的均匀投射,有效的避免了单个节点的发射盲区和相邻节点间的信号干扰。

Description

红外线定位节点装置及系统 技术领域
本发明涉及一种无线信号发射装置及系统,特别涉及一种红外线定位节点装置及系统。
背景技术
随着无线网络技术的发展,人们希望借助于无线信号来识别物体并进行准确的定位。例如,在机场这样旅客比较集中且陌生的环境中,对方便、准确的定位的需求变得尤为迫切。现有技术中的室内定位,通常是运用定位节点装置发射无线信号对目标物体进行ID标识。理想状态是:一个定位节点装置对应一个ID。当一个接收端经过一个定位节点装置的投射区时,只会收到一个信号ID;当其经过另外一个定位节点装置时,就会收到另外一个定位节点装置的ID。目前广泛应用的节点定位装置通常包括信号发射管和电路板。例如专利号为200820049054.7所描述的ID标识装置,其发射的信号不受限制的向四周发射。当该装置被悬挂时,其发射的信号投射区域就会呈现如图1所示圆锥形。图1为传统的红外线定位节点装置的红外线投射区示意图。其中,定位节点装置A和B均悬挂在天花板上,它们各自形成一个圆锥形的红外线投射区。如图1可见,定位节点A和B的红外线投射区之间形成了较大区域的信号盲区。可以预见的是,当缩小A和B之间的距离,其间的信号盲区虽然会缩小,但定位节点A和B之间形成的圆锥形的红外线投射区会进行重叠,这样就形成了信号盲区和信号强弱不均匀的区域。为了准确的识别物体并进行精确定位,需要对红外线信号投射区域进行限定,从而解决信号弱、强度不均匀和信号方向性差的缺陷。
发明内容
本发明的目的是提供一种信号稳定、强度均匀且信号方向性好的红外线定位节点装置和系统。
根据本发明的一个方面,提供了一种红外线定位节点装置,包括:
具有多个侧面的反光杯,
用于与所述反光杯配合的红外线发射管,所述红外线发射管定位成使得:所述红外线发射管所发出的光线通过所述多个侧面中部分反光侧面反射后形成的夹角m的范围为0°≤m<180°。
根据本发明的一个方面,提供了一种红外线定位节点系统,包括多个 红外线定位节点装置,其中一部分红外线定位节点装置与另一部分红外线定位节点装置配置成两者的红外线发射方向彼此垂直。
本发明使红外线发射信号的范围在0°至180°范围内可控,使得发射的信号稳定且强度均匀。提高了红外发射管的光照利用率,降低了节点装置的耗电量。实现了红外光的均匀投射,有效的避免了单个节点的发射盲区和相邻节点间的信号干扰。
附图说明
图1为传统的红外线定位节点装置红外线投射区示意图;
图2为本发明一实施方式的红外线定位节点装置结构示意图;
图3为本发明一实施方式的反光杯结构示意图;
图4为本发明一实施方式的红外线定位节点装置垂直安装示意图;
图5为本发明一实施方式的红外线定位节点系统垂直安装立体示意图;
图6为本发明一实施方式的红外线定位节点装置水平安装示意图;
图7为本发明一实施方式的红外线定位节点装置垂直和水平混合安装示意图。
具体实施方式
下面结合附图对本发明作进一步详细的说明。
图2示意性地显示了本发明的一种实施方式的红外线定位节点装置图。如图所示,该装置包括反光杯1(其主体结构在外壳6内)、红外线发射管2、中心控点3、外壳4、供电接口5和升级接口6。
在本实施方式中,中心控点3可以是集成了包括电源、微处理器、无线模块和光敏元件的电路板。其可用于向上述红外线定位节点装置提供电源、接收信号、信号处理、发送信号(例如红外信号)等。具体的,电源可以与供电接口5连接。电源用于向红外线定位节点装置供电。微处理器可以与升级接口6连接。微处理器用于处理接收到的信号并可以对程序进行升级。由此,红外信号可以相互通信,且可以数据升级。这增加了该装置的实用性能、便利性和功能性。
该中心控点3上设有向所述光敏元件提供光照的透光孔,光敏元件通过上述透光孔对周围环境光进行感应,自动调节红外线发射管2发射红外线的强弱,提高了红外发射管的光照利用率,降低了红外线定位节点装置的耗电量。另外,外壳4可以呈盒型(也可以为其它适于加工的形状),用于容纳反光杯1、红外线发射管2和中心控点3,其上并留有与供电接口5和升级接口6匹配的凹槽,和与反光杯1相匹配的矩形开口。外壳4上设 有供反光杯1安装不同角度的槽位或者小孔。反光杯1具有反射红外线的功能,其独特结构能够使反射的红外线在0°≤X<180°的空间上均匀投射。
图3示意性地显示了本发明一种实施方式的反光杯1的结构图。如图所示,反光杯1的形状为直平行六面体(侧棱垂直于底面的平行六面体),所述六面体包括上底面15、下底面16、第一反光侧面11、第二反光侧面12、第三透光侧面13、第四侧面14和红外线发射管2。其中:上底面15可以是平行四边形。下底面16也可以是平行四边形。邻接的第一反光侧面11和第二反光侧面12可以形成第一夹角β。第三透光侧面13的形状可以是矩形,其可以与第一反光侧面11面对且与第二反光侧面12邻接。第四侧面14的形状可以是矩形的,其可以分别与第一反光侧面11和第三透光侧面13邻接。用于与所述反光杯1配合的红外线发射管2的照射范围由第一边缘光线和第二边缘光线形成的第二夹角γ确定,所述红外线发射管2定位成使得:所述第一边缘光线照射所述第一反光侧面11并形成第一入射角α1,所述第二边缘光线照射所述第二反光侧面12并形成第二入射角α2,所述α2为180°+α1-β-γ;所述第一边缘光线经所述第一反光侧面反射出的第一反射光线与所述第二边缘光线经所述第二反光侧面反射出的第二反射光线之间的反射夹角m为360°-2β-γ,其中,
所述第一入射角α1<90°;
所述第二入射角α2<90°;
所述反射夹角0°≤m<180°;
根据平面图形的基本特性(例如三角形的三个角之和为180°,四边形的四个角之和为360°)可推导出下列各角度的表达式:
m=180°-(180°-γ-180°-2α1)-[180°-2*(360°-γ-(180°-α1)-β]=360°-2β-γ
m=180°-(180°-2α2)-[180°-γ-(180°-2α1)]=2(α21)+γ
β=360°-α2-γ-(180°-α1)=180°-α2-γ+α1
α2=360°-β-γ-(180°-α1)=180°+α1-β-γ
通过上述公开的反光杯底部与红外线发射管配合安装方法,使反射的红外线在0°≤X<180°的空间上均匀投射。
通过实验和计算,对反光杯进行如下两种方式的特殊设置时,可以使得反射的红外线在90°的空间上均匀投射,形成了长方体红外线光柱。
方式一:上述第一夹角β为112.5°,上述第二夹角γ为45°,上述第一入 射角α1为45°,上述第二入射角为67.5°。
方式二:上述第一夹角β为90°,所述第二夹角γ为90°,所述第一入射角α1为67.5°,所述第二入射角为67.5°。
按上述方式设置反光杯时,所述第一边缘光线和第二边缘光线经所述第一反光侧面和第二反光侧面反射后形成的所述第一反射线和第二反射线的形成的角度为90°的长方体红外线光柱。上述红外线定位节点装置结构,使得投射的红外线光柱为长方体,减少了信号盲区,使得信号强度均匀、稳定。
另外,需要说明的是,本实施例中采用了一根红外线发射管,是为了示意性的反映光线折射效果,对本领域的技术人员来说,为了增加红外红信号强度,可以在外壳内设置多个红外线发射管,具体可以设于反光杯的上部、下部或者设于反光杯的内部。
由此,通过在上述红外线定位节点装置中独特设置反光杯,使红外线发射信号的方向可控,使得信号稳定且强度均匀,提高了红外发射管的光照利用率,降低了节点装置的耗电量,实现了红外光的均匀投射,有效的避免了单个节点的发射盲区和相邻节点间的信号干扰。
在一些实施方式中,所述反光杯1的形状为直平行六面体,所述六面体包括平行四边形的上底面15、平行四边形的下底面16和矩形的第四侧面14,所述第四侧面14分别与所述第一反光侧面11和第三透光侧面13邻接。这种设计方式设计简单,加工方便。
在一些实施方式中,所述上底面15、下底面16和第四侧面14涂覆有吸光材料,在所述第四侧面14上,或者在邻近所述第四侧面14的下底面16上,设有至少一个用于容纳所述红外线发射管的孔。所述红外线发射管的灯泡安装在与其大小和数量匹配的孔内。上述红外线定位节点装置结构,使得红外线发射管直接射向反射面,红外线散射损耗小,反射效果好。
在一些实施方式中,通过所述红外线发射管和反光杯有多种配合安装的方式:所述上底面15和第四侧面14均为吸光面,所述下底面16为透光面,反光杯外侧为中心控点,所述红外线发射管与所述中心控点连接且位于所述下底面16的下方。或者将所述上底面15、下底面16均为吸光面,所述第四侧面14为透光面,所述红外线发射管与所述中心控点连接且位于所述第四侧面外侧。上述两种红外线定位节点装置结构,使得红外线发射管安装在反射杯的外部,无需在反光杯上打孔,不仅工艺简单,还便于安装。
在一些实施方式中,所述反光杯的主体为透光材料制成的实体结构。此种结构便于在各个侧面按需要涂覆吸光或者反射材料,不仅使得工艺简 单,而且质量可靠。对本领域的技术人员来说,可以对红外线发射管安装在反射杯的外部,例如安装在反射杯的上部、下部或者第四侧面的外侧,只需相应的改变侧面的吸光材质或者透光材质,使得所述红外线发射管发射的红外线入射面和红外线经过反射后射出反射杯的矩形的第三透光侧面13为透光材质,第一反射面11和所述第二反射面12为反光材质,其它的面外围吸光材质即可。
本发明红外线定位节点装置设计成盒体形状,这种形状更加便于安装。由多个上述红外线定位节点装置构成的红外线定位节点系统,在其安装时,通过不同的安装方式带来了不同的技术效果。
例如,将其中一部分红外线定位节点装置与另一部分红外线定位节点装置配置成两者的红外线发射方向彼此垂直,或者将一部分红外线定位节点装置中的每个红外线定位节点装置之间的距离设置成使得各个红外线定位节点装置的照射区域没有重叠,所述另一部分红外线定位节点装置之间的距离设置成使得各个红外线定位节点装置的照射区域没有重叠。
上面所例举的六面体的反射杯,只是示意性地反应红外线入射和反射的效果,同时各个角度计算起来也相对简单,对本领域的技术人员来说,可以将反射杯的形状做各种变化,例如,将上底面和下底面设置为梯形、五边形等形状,侧面可以设置为多个,只需符合如下要求即可:所述红外线发射管所发出的光线通过所述多个侧面中部分反光侧面反射后形成的夹角m的范围为0°≤m<180°。
在一些实施方式中,所述反光杯的多个侧面可以包括:形成第一夹角β的邻接的第一反光侧面和第二反光侧面;以及与所述第一反光侧面面对且与所述第二反光侧面邻接的矩形的第三透光侧面。
图4至图7示意性的显示了红外线定位节点装置(或系统)一些典型的安装方式。
图4显示的是将红外线定位节点装置安装在垂直的基准面上。图5显示的是图4方式安装的立体示意图。如图5所示,红外线定位节点系统(包括红外线定位节点装置A、B)安装在室内(例如机场候机室内)的墙壁上。
在使用时,它们分别在机场候机室内形成了立体的红外线信号投射区,该立体的红外线信号投射区在墙壁和地面分别形成了矩形的投射截面。红外线定位节点A、B还可以通过其内的微处理器和无线模块来进行互通信息,使得该装置功能更加强大、使用更加方便。另外,可以通过安装若干个节点来实现大跨度的定位识别。也就是说通过变更节点的个数来将图示中的投射宽度d进行控制。通过这种典型的批量安装方式,可以实现信号强度均匀,接收稳定可靠,使得在发射范围内大幅度的减少了信号的盲区。
在本实施方式中,红外线定位节点装置A、B平行设置,这种设置方式可以节省红外线定位节点装置的个数。
为了进一步减少了信号的盲区,还可以将一部分红外线定位节点装置与另一部分红外线定位节点装置配置成两者的红外线发射方向彼此垂直。所述一部分红外线定位节点装置中的每个红外线定位节点装置之间的距离设置成使得各个红外线定位节点装置的照射区域没有重叠,所述另一部分红外线定位节点装置之间的距离设置成使得各个红外线定位节点装置的照射区域没有重叠。
本发明公开的红外线定位节点装置和系统,其中反光杯具有反射红外线的功能,其独特结构能够使发射的红外光在空间上均匀投射,所述节点壳体具有反光杯最佳安装角度的槽位。
所述节点正常安装时,从节点内发射出来的红外光,其截面呈矩形,即具有水平向前和竖直向下范围内的红外光照射,强度均匀,接收稳定可靠,从而使得信号接收在发射范围内无死角盲区。同时节点内的光敏元件可以通过对周围环境光的感应,自动调节红外光发射的强弱。
图6显示的是将红外线定位节点装置安装在水平的基准面上。例如,将其安装在机场候机室的天花板或者地面上。因为本发明红外线定位节点装置的反光杯和发光口的特殊设计,使得发出的红外线截面呈矩形,即具有水平向前和竖直向下范围内的红外光照射,强度均匀,接收稳定可靠,使得在红外辐射发射范围内最大程度的减少了信号的盲区。
图7显示的是根据图4和图6这两种安装方式混合安装方式,即,垂直和水平混合安装方式。如图7所示,通过这种垂直和水平混合安装方式,在单个外线定位节点装置信号接收效果非常好的基础上信号几乎没有盲区,再次形成了矩形截面覆盖的红外线强度均匀的红外线投射区,在此投射区内完全消除了信号盲区。
以上所述的仅是本发明的一些实施方式。对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (13)

  1. 一种红外线定位节点装置,其特征在于,包括:
    具有多个侧面的反光杯,
    用于与所述反光杯配合的红外线发射管,所述红外线发射管定位成使得:所述红外线发射管所发出的光线通过所述多个侧面中部分反光侧面反射后形成的夹角m的范围为0°≤m<180°。
  2. 根据权利要求1所述的装置,其特征在于:所述反光杯的多个侧面包括:
    形成第一夹角β的邻接的第一反光侧面和第二反光侧面;以及
    与所述第一反光侧面面对且与所述第二反光侧面邻接的矩形的第三透光侧面。
  3. 根据权利要求2所述的装置,其特征在于:
    所述红外线发射管的照射范围由第一边缘光线和第二边缘光线形成的第二夹角γ确定,所述第一边缘光线以第一入射角α1照射所述第一反光侧面,所述第二边缘光线以第二入射角α2照射所述第二反光侧面,α2=180°+α1-β-γ;所述第一边缘光线经所述第一反光侧面反射出的第一反射光线与所述第二边缘光线经所述第二反光侧面反射出的第二反射光线之间的反射夹角m=360°-2β-γ,
    其中,
    所述第一入射角α1<90°;
    所述第二入射角α2<90°。
  4. 根据权利要求2所述的装置,其特征在于:所述第一夹角β为112.5°,所述第二夹角γ为45°,所述第一入射角α1为45°,所述第二入射角为67.5°。
  5. 根据权利要求2所述的装置,其特征在于:所述第一夹角β为90°,所述第二夹角γ为90°,所述第一入射角α1为67.5°,所述第二入射角67.5°。
  6. 根据权利要求1-5中任一项所述的装置,其特征在于:所述反光杯的形状为直平行六面体,所述六面体包括平行四边形的上底面、平行四边形的下底面和矩形的第四侧面,所述第四侧面分别与所述第一反光侧面和第三透光侧面邻接。
  7. 根据权利要求6所述的装置,其特征在于:所述上底面、下底面和第四侧面涂覆有吸光材料,在所述第四侧面上,或者在邻近所述第四侧面的下底面上,设有至少一个用于容纳所述红外线发射管的孔。
  8. 根据权利要求6所述的装置,其特征在于:所述上底面和第四侧面均为吸光面,所述下底面为透光面,所述装置还包括位于所述反光杯外侧的中心控点,所述红外线发射管与所述中心控点连接且位于所述下底面的下方。
  9. 根据权利要求6所述的装置,其特征在于:所述上底面、下底面均为吸光面,所述第四侧面为透光面,所述装置还包括位于所述反光杯外侧的中心控点,所述红外线发射管与所述中心控点连接且位于所述第四侧面外侧。
  10. 根据权利要求7-9中任一项权利要求所述的装置,其特征在于:所述反光杯的主体为透光材料制成的实体结构。
  11. 根据权利要求7-9中任一项权利要求所述的装置,其特征在于:所述反光杯的形状为箱型。
  12. 一种用于红外线定位节点系统,其特征在于,包括多个如权利要求1-11中任一项所述的红外线定位节点装置,其中一部分红外线定位节点装置与另一部分红外线定位节点装置配置成两者的红外线发射方向彼此垂直。
  13. 根据权利要求12所述的系统,其特征在于,所述一部分红外线定位节点装置中的每个红外线定位节点装置之间的距离设置成使得各个红外线定位节点装置的照射区域没有重叠,所述另一部分红外线定位节点装置之间的距离设置成使得各个红外线定位节点装置的照射区域没有重叠。
PCT/CN2016/070465 2015-02-06 2016-01-08 红外线定位节点装置及系统 WO2016124064A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16746059.1A EP3255447A4 (en) 2015-02-06 2016-01-08 Infrared ray positioning node device and system
KR1020177022800A KR20170105082A (ko) 2015-02-06 2016-01-08 적외선 위치 측정 노드 장치 및 시스템
JP2017559751A JP2018511810A (ja) 2015-02-06 2016-01-08 赤外線測位ノード装置および赤外線測位ノードシステム
US15/547,127 US20180011166A1 (en) 2015-02-06 2016-01-08 Infrared ray positining node device and system
HK18107679.3A HK1248318A1 (zh) 2015-02-06 2018-06-13 紅外線定位節點裝置及系統

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201520086232.3U CN204462375U (zh) 2015-02-06 2015-02-06 红外线定位节点装置及系统
CN201520086232.3 2015-02-06

Publications (1)

Publication Number Publication Date
WO2016124064A1 true WO2016124064A1 (zh) 2016-08-11

Family

ID=53669243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070465 WO2016124064A1 (zh) 2015-02-06 2016-01-08 红外线定位节点装置及系统

Country Status (7)

Country Link
US (1) US20180011166A1 (zh)
EP (1) EP3255447A4 (zh)
JP (1) JP2018511810A (zh)
KR (1) KR20170105082A (zh)
CN (1) CN204462375U (zh)
HK (1) HK1248318A1 (zh)
WO (1) WO2016124064A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204462375U (zh) * 2015-02-06 2015-07-08 无锡知谷网络科技有限公司 红外线定位节点装置及系统
CN108594174B (zh) * 2018-01-09 2022-02-01 河南大学 基于红外光色散的波长编码室内定位系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100321919A1 (en) * 2009-06-18 2010-12-23 Intematix Corporation Led based lamp and light emitting signage
CN202153315U (zh) * 2011-07-22 2012-02-29 无锡知谷网络科技有限公司 一种室内定位节点装置
CN202361136U (zh) * 2011-08-02 2012-08-01 吉永科技股份有限公司 照明装置
WO2013105046A1 (en) * 2012-01-13 2013-07-18 Koninklijke Philips N.V. Led-based direct-view luminaire with uniform lit appearance
CN104007412A (zh) * 2014-06-05 2014-08-27 重庆广建装饰股份有限公司 基于led灯的室内定位系统
CN204462375U (zh) * 2015-02-06 2015-07-08 无锡知谷网络科技有限公司 红外线定位节点装置及系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990826A (en) * 1997-10-07 1999-11-23 Rockwell Science Center, Inc. Interbuilding and urban canyon extension solution for global positioning systems
JP4170844B2 (ja) * 2002-11-29 2008-10-22 サンクス株式会社 除電装置
US7204630B2 (en) * 2004-06-30 2007-04-17 3M Innovative Properties Company Phosphor based illumination system having a plurality of light guides and an interference reflector
ATE454636T1 (de) * 2004-11-15 2010-01-15 Saab Ab Sendeeinheit
US8403530B2 (en) * 2010-09-21 2013-03-26 Honeywell International Inc. LED spotlight including elliptical and parabolic reflectors
US20140062774A1 (en) * 2012-08-28 2014-03-06 Disney Enterprises, Inc. Performing seamless positioning using various location techniques
US10231782B2 (en) * 2012-09-06 2019-03-19 Covidien Lp Medical devices and methods incorporating frustrated total internal reflection for energy-efficient sealing and cutting of tissue using light energy
US9683710B2 (en) * 2013-03-07 2017-06-20 Quarkstar Llc Illumination device with multi-color light-emitting elements
US9410680B2 (en) * 2013-04-19 2016-08-09 Quarkstar Llc Illumination devices with adjustable optical elements

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100321919A1 (en) * 2009-06-18 2010-12-23 Intematix Corporation Led based lamp and light emitting signage
CN202153315U (zh) * 2011-07-22 2012-02-29 无锡知谷网络科技有限公司 一种室内定位节点装置
CN202361136U (zh) * 2011-08-02 2012-08-01 吉永科技股份有限公司 照明装置
WO2013105046A1 (en) * 2012-01-13 2013-07-18 Koninklijke Philips N.V. Led-based direct-view luminaire with uniform lit appearance
CN104007412A (zh) * 2014-06-05 2014-08-27 重庆广建装饰股份有限公司 基于led灯的室内定位系统
CN204462375U (zh) * 2015-02-06 2015-07-08 无锡知谷网络科技有限公司 红外线定位节点装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3255447A4 *

Also Published As

Publication number Publication date
HK1248318A1 (zh) 2018-10-12
JP2018511810A (ja) 2018-04-26
US20180011166A1 (en) 2018-01-11
KR20170105082A (ko) 2017-09-18
EP3255447A4 (en) 2018-10-17
CN204462375U (zh) 2015-07-08
EP3255447A1 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
US10153667B2 (en) Antenna configurations for wireless power and communication, and supplemental visual signals
KR100256477B1 (ko) 광 데이타 모듈 및 컴퓨터 시스템과, 무선 데이타 통신용 송수신기
EA007378B1 (ru) Осветительный прибор с оптическим преобразованием, обеспечивающий заданное угловое распределение интенсивности света
WO2019120223A1 (en) Speaker light
JP6695059B2 (ja) 照明器具
CN106886008B (zh) 基于单个图像传感器的室内可见光定位方法及系统
JP2009302646A (ja) 棒状導光体および画像読取装置
WO2019154063A1 (zh) 检测系统和环境管理系统及其应用
WO2016124064A1 (zh) 红外线定位节点装置及系统
CN104160367A (zh) 侧光显示器照明装置
US20220390603A1 (en) Lidar, method for controlling the same, and apparatus including lidar
US20200119593A1 (en) Antenna Configurations For Wireless Power And Communication, And Supplemental Visual Signals
CN103511935A (zh) 照明装置
CN105096576B (zh) 信号接收模块与显示装置
JP6883779B2 (ja) 照明器具
JP3911958B2 (ja) 無線伝送方法および無線伝送システム
JP2020123797A (ja) 光照射装置とワイヤレスマイクロホン
JPS58142303A (ja) 光導波路
CN209744088U (zh) 一种挡蓝光的ld激光光源模组
CN111734987A (zh) 一种控光装置及其设计方法、照明系统
JP6757264B2 (ja) 光束制御部材、発光装置、面光源装置および表示装置
JP2013088943A (ja) 情報取得装置、情報取得方法、及びタグ装置
CN216383797U (zh) 照明装置及灯具
CN216744046U (zh) 照明装置及灯具
US11949452B2 (en) Computing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746059

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15547127

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017559751

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177022800

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016746059

Country of ref document: EP