WO2016122107A1 - 2,3-부탄다이올 또는 아세토인 생산능을 갖는 유전적으로 조작된 효모 세포 및 그를 사용하여 2,3-부탄다이올 또는 아세토인을 생산하는 방법 - Google Patents

2,3-부탄다이올 또는 아세토인 생산능을 갖는 유전적으로 조작된 효모 세포 및 그를 사용하여 2,3-부탄다이올 또는 아세토인을 생산하는 방법 Download PDF

Info

Publication number
WO2016122107A1
WO2016122107A1 PCT/KR2015/013553 KR2015013553W WO2016122107A1 WO 2016122107 A1 WO2016122107 A1 WO 2016122107A1 KR 2015013553 W KR2015013553 W KR 2015013553W WO 2016122107 A1 WO2016122107 A1 WO 2016122107A1
Authority
WO
WIPO (PCT)
Prior art keywords
butanediol
yeast cell
acetoin
gene
dehydrogenase
Prior art date
Application number
PCT/KR2015/013553
Other languages
English (en)
French (fr)
Inventor
한지숙
김수진
Original Assignee
서울대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150014601A external-priority patent/KR101773123B1/ko
Priority claimed from KR1020150171436A external-priority patent/KR101819189B1/ko
Application filed by 서울대학교 산학협력단 filed Critical 서울대학교 산학협력단
Publication of WO2016122107A1 publication Critical patent/WO2016122107A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/16Butanols
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • a genetically engineered yeast cell capable of producing 2,3-butanediol or acetoin, and a method for producing 2,3-butanediol or acetoin using the same.
  • 2,3-butanediol is a chemical with high industrial utility and can be converted into methyl ethyl ketone, 1,3-butadiene, and other industrial solvents and plasticizers. , Medicines and food additives.
  • Acetoin is a buttery fragrance that is widely used in foods, cosmetics, tobacco, or detergents, and can also be used as an insect repellent by acting as a pest attractant. Due to the wide variety of uses and potential mass production of acetoin, acetoin is included in 30 platform chemicals that can be produced from biomass as determined by the US Department of Energy.
  • Microorganisms that effectively produce 2,3-butanediol include Klebsiella pneumonia and Klebsiella oxytoca ) and Enterobacter aerogenea , but these bacteria are difficult to apply industrially because safety is not secured. Recently, many researches based on microbial strain development have been conducted based on bacteria, but most of them have a pathogenicity or lack of resistance to acidic conditions, osmotic pressure or high concentration of glucose, and thus are limited to industrial scale. Accordingly, there is a need for a method for producing 2,3-butanediol or acetoin with high efficiency and high yield using microorganisms generally considered to be generally Recognized As Safe (GRAS).
  • GRAS Recognized As Safe
  • One aspect provides genetically engineered yeast cells that can effectively produce 2,3-butanediol.
  • Another aspect provides a method of producing 2,3-butanediol using genetically engineered yeast cells.
  • Another aspect provides genetically engineered yeast cells that can effectively produce acetoin.
  • Another aspect provides a method of producing acetoin using genetically engineered yeast cells.
  • One aspect provides genetically engineered yeast cells with 2,3-butanediol production capacity.
  • the yeast cells have increased activity of acetolactate synthase, acetolactate decarboxylase, and 2,3-butanediol dehydrogenase compared to parent cells. It provides a genetically engineered yeast cell having a 2,3-butanediol production capacity.
  • parent cell may refer to an original cell, eg, a cell that is genetically unengineered of the same type relative to the engineered microorganism.
  • the parent cell is a cell without a specific genetic modification, but may be the same for other matters.
  • the parental cells of the present invention can be cells used as starting materials or starting materials to produce genetically engineered microorganisms with increased activity of a given protein.
  • genetic engineering or “genetically engineered” in the present invention refers to the act of introducing one or more genetic modifications to a cell or to a cell made thereby. .
  • the term "increase in activity”, or “increased activity” refers to the activity of an endogenous protein or enzyme that is not or has a given genetically unengineered parental cell (eg, wild type). In comparison, it may mean that the activity of the same type of protein or enzyme has a higher activity.
  • Cells with increased activity of proteins or enzymes can be identified using any method known in the art. The cells or microorganisms with increased activity may have genetic modifications that increase the activity of one or more enzymes or polypeptides as compared to cells or microorganisms without genetic modifications.
  • 2,3-butanediol is a compound having a molecular formula of C 4 H 10 O 2 and may mean one of the constitutional isomers of butanediol. And 2R and 3R stereoisomers of 2,3-butanediol.
  • acetolactate synthase (ALS)
  • AHAS acetohydroxy acid synthase
  • ALS acetolactate synthase
  • AHAS acetohydroxy acid synthase
  • ALS acetolactate synthase
  • AHAS acetohydroxy acid synthase
  • Acetolactate synthase encoded by alsS derived acetolactate synthase I encoded by ilvB or ilvN from E. coli, acetolactate synthase II encoded by ilvGMEDA from E. coli, or ilvI from E. coli Or acetolactate synthase III encoded by ilvH. Further, in addition to, E.
  • coli Saccharomyces as MY process three jiae Levy, anthrax (Bacillus anthracis), by a brush Russ influenza (Haemophilus influenzae), Salmonella typhimurium (Salmonella Typhimurium), Thermo Tagawa Thermotoga maritima (Thermotoga maritima ), Corynebacterium glutamicum , Mycobacterium tuberculosis , or Streptomyces cinnamonesis cinnamonensis ) acetolactate synthase. Additional plant origins include Arabidopsis thaliana and Gossypium.
  • hirsutum Bluetooth should not patronize nuwooseu (Helianthus annuus), or Brassica or crispus (Brassica napus ) acetolactate synthase.
  • the acetolactate synthase is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 92%, at least about 95% with the amino acid sequence of SEQ ID NO: 2. , At least about 97%, at least about 98%, or at least about 99% sequence homology.
  • homology refers to the degree of agreement with a given polynucleotide sequence and can be expressed as a percentage.
  • homologous sequences thereof having the same or similar activity as a given polynucleotide sequence are denoted as "% homology”.
  • % homology For example, using standard software that calculates parameters such as score, identity and similarity, in particular BLAST 2.0, or by hybridization experiments used under defined stringent conditions Can be identified by comparison of and the appropriate hybridization conditions defined can be determined by methods well known to those skilled in the art.
  • acetolactate decarboxylase may refer to an enzyme that produces acetoin by removing carbon dioxide from acetolactate.
  • the acetolactate dicarboxylase may include enzymes having similar activity even if the enzymes have different names (eg, isoenzymes or homologs), for example, Bacillus subtilis. the origin of the scan alsD, Lactobacillus del Brewer key (Lactobacillus delbrueckii subsp.
  • lactis derived aldB, Breda ratio Bacillus brevis (Brevibacillus brevis ), Enterobacter aerogenes aerogenes ), Leuconostoc lactis , Saccharomyces cerevisiae.
  • Acetolactate dicarboxylase from Staphylococcus aureus.
  • the acetolactate dicarboxylase is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 92%, and at least about 95% with the amino acid sequence of SEQ ID NO. At least about 97%, at least about 98%, or at least about 99%.
  • 2,3-butnaediol dehydrogense is based on acetoin, NADH, and H + , 2,3-butanediol and NAD + It can mean an enzyme that produces, belongs to the family oxidoreductase (oxidoreductase).
  • the 2,3-butanediol dehydrogenase may include an enzyme having a similar activity (for example, an isoenzyme or homolog) even if the enzyme has a different name.
  • BDH1 derived from Saccharomyces cerevisiae, Paenibacillus BDH99 :: 67 from polymyxa ), Bacillus subtilis, Enterococcus faecium Enterococcus durans 2,3-derived from Mycobacterium sp . Lactobacillus lactis Butanediol dehydrogenase.
  • the 2,3-butanediol dehydrogenase is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 92% with the amino acid sequence of SEQ ID NO: 6, A polypeptide having at least about 95%, at least about 97%, at least about 98%, or at least about 99% sequence homology.
  • the yeast cell may be a yeast cell in which the activity of NADH oxidase is further increased.
  • NADH oxidase may refer to an enzyme that mediates the reaction of producing water and NAD + using oxygen and NADH as a substrate.
  • the NADH oxidase may include an enzyme having a similar activity (for example, an isoenzyme or homolog) even if the enzyme has a different name.
  • nox1, nox3, nox4 May comprise noxE from Lactococcus lactis, in addition to the genus Enterococcus, Lactobacillus, Desulfovibrio sp . ), Clostridium genus (Clostridium sp.) May be an NADH oxidase derived from genus of Streptococcus.
  • NADH oxidase is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 92%, at least about 95% A polypeptide having at least 97%, at least about 98%, or at least about 99% sequence homology.
  • the yeast cell is an exogenous gene encoding acetolactate synthase, an exogenous gene encoding acetolactate dicarboxylase, an exogenous gene encoding 2,3-butanediol dehydrogenase, and NADH oxidase It may be to include any one of the exogenous gene encoding.
  • exogenous may mean that the referenced molecule or the referenced activity has been introduced into a host cell.
  • Molecules can be introduced, for example, by introduction of encoding nucleic acid into a host genetic material, such as by insertion into a host chromosome, or as a non-chromosomal genetic material, such as a plasmid.
  • the term “exogenous” refers to the introduction of the coding nucleic acid in an expressible form into an individual.
  • the term “exogenous” refers to the activity introduced into host parental cells.
  • the source may be, for example, a homologous or heterologous coding nucleic acid which expresses the mentioned activity after introduction into the host parental cell. Therefore, the term “endogenous” refers to the mentioned molecule or activity present in the host cell.
  • the term “endogenous” refers to the expression of a coding nucleic acid contained within an individual.
  • heterologous refers to a molecule or activity from a source other than the species mentioned and the term “homologous” refers to a molecule or activity from a host parental cell.
  • exogenous expression of a coding nucleic acid can utilize either or both heterologous or homologous coding nucleic acids.
  • the exogenous gene may be expressed in an amount sufficient to increase the activity of the enzyme mentioned in the yeast cell compared to the parent cell.
  • a gene may refer to a gene encoding a protein derived from different microorganisms but showing similar activity to the protein they encode.
  • the exogenous gene encoding the acetolactate synthase, the exogenous gene encoding the acetolactate dicarboxylase, the exogenous gene encoding the 2,3-butanediol dehydrogenase, and the exogenous gene encoding the NADH oxidase respectively At least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 92%, at least about 95%, and about the amino acid sequence of SEQ ID NOs: 2, 4, 6, and 30 And may encode an amino acid sequence having at least 97%, at least about 98%, or at least about 99% sequence homology.
  • exogenous gene encoding the acetolactate synthase, the exogenous gene encoding the acetolactate dicarboxylase, the exogenous gene encoding the 2,3-butanediol dehydrogenase, and the exogenous gene encoding the NADH oxidase respectively At least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 92%, at least about 95%, about nucleotide sequences of SEQ ID NOs: 1, 3, 5, and 29 At least 97%, at least about 98%, or at least about 99% sequence homology.
  • exogenous genes may be altered to sequences with codons suitable for expression in a microorganism, sequences with optimized codons. This codon alteration can be made suitably within the range which does not change the amino acid sequence of a protein.
  • the exogenous gene may be introduced into the parent cell through an expression vector.
  • the exogenous gene may be introduced into the parent cell in the form of a linear polynucleotide.
  • the exogenous gene may be expressed from an expression vector (eg, plasmid) in a cell.
  • the exogenous gene may be inserted into the genetic material (eg, chromosome) in the cell for stable expression.
  • the vector may include an origin of replication, a promoter, a polynucleotide encoding the enzyme, and a terminator.
  • the replication initiation point may comprise a yeast autonomous replication sequence (ARS).
  • the yeast self-replicating sequence may be stabilized by a yeast centrometric sequence (CEN).
  • the promoter may be selected from the group consisting of TDH3 promoter, TEF promoter, TPI1 promoter, and FBA1 promoter.
  • the TDH3 promoter, TEF promoter, TPI1 promoter, and FBA1 promoter may each have nucleotide sequences of SEQ ID NOs: 13, 14, 15, and 33.
  • the terminator may be selected from the group consisting of PYK1, GPM1, TPI1, and FBA1.
  • the PYK1, GPM1, TPI1 and FBA1 terminators may have nucleotide sequences of SEQ ID NOs: 16, 17, 18, and 34, respectively.
  • the vector may further comprise a selection marker.
  • the yeast cell may comprise a single gene, a plurality of genes, for example 2 to 10 copy numbers.
  • the yeast cells are, for example, 1 to 10, 1 to 8, 1 to 7, 1 to 6, 1 to 5, 1 to 4, 1 to 3, 2 to 10, 2 to 8, 2 to 7, 2 To 6, 2 to 5, 2 to 4, or 2 to 3 copies of the enzyme encoding the enzyme.
  • each gene may comprise a copy of the same gene or two or more different genes. Multiple copies of the exogenous gene may be included in the same locus, or multiple loci within the genome of the host cell.
  • homolog refers to the original enzyme of the first family or species by functional, structural or genomic analysis. Or a separate enzyme or gene of a second family or species that is determined to be an enzyme or gene of a second family or species corresponding to the gene. Homologs can have functional, structural or genomic similarities. Techniques for easily cloning enzymes or homologues of genes using gene probes and PCR are known. Identification of the cloned sequences as homologues can be confirmed using functional assays and / or by genomic mapping of the genes.
  • polynucleotides can be understood to include “genes” and nucleic acid molecules as used herein to include “vectors” or “plasmids.”
  • gene also called “structural gene” thus refers to a polynucleotide encoding a particular sequence of amino acids, which includes all or part of one or more proteins or enzymes, and for example, the gene is expressed.
  • Regulatory (non-transcribed) DNA sequences such as promoter sequences, that determine the conditions under which they are produced.
  • the transcribed region of a gene can include not only coding sequences but also untranslated regions, including introns, 5'-untranslated regions (UTRs), and 3'-UTRs.
  • yeast cells may be yeast cells in which the activity of alcohol dehydrogenase or glycerol-3-phosphate dehydrogenase is further reduced compared to the parent cells.
  • the term “decrease in activity” or “decreased activity” refers to a cell having a lower activity of an enzyme or polypeptide than that measured in a parent cell (e.g., a genetically unengineered cell). Indicates. In addition, “decrease in activity” or “decreased activity” refers to an isolated enzyme or polypeptide having a lower activity than that of the original or wild-type enzyme or polypeptide. Indicates. Reduced or reduced activity includes lack of activity, such as inactivation. The cells with reduced activity may be those with genetic modifications that reduce the activity of one or more enzymes or polypeptides as compared to cells without genetic modifications.
  • the microorganism having reduced activity of the alcohol dehydrogenase or glycerol-3-phosphate dehydrogenase may be one in which the endogenous gene encoding the protein is removed or disrupted.
  • the term “deletion” or “disruption” refers to genetic modifications that result in reduced expression of a gene. Such disruption may include "inactivation" of a gene or "attenuation” of a gene. The inactivation includes not only the functional product of the gene is expressed but also the expressed but not the functional product of the gene. The attenuation involves a decrease in the amount of expression of the functional product of the gene.
  • the attenuation may include a decrease in the expression level of the functional product even if the net expression level of the gene is increased.
  • the functional product of the gene herein refers to having the biochemical or physiological function (eg, enzyme activity) of the product (eg, enzyme) of the gene in the parent cell or wild-type cell.
  • the removal or destruction includes functional deletion or functional disruption of the gene.
  • the removing or destroying may include 1) deletion of part or all of the gene encoding the protein, 2) modification of expression control sequences to reduce expression of the gene, 3) the gene on the chromosome so that the activity of the protein is weakened. Modification of the sequence or 4) combinations thereof, and the like.
  • the method of deleting part or all of the polynucleotide encoding the protein can be carried out, for example, by using a Cre / loxP recombination system to transform a cassette for gene deletion into the parent cell, and a vector for chromosome insertion in yeast.
  • the term "some" may vary depending on the type of polynucleotide, but may be, for example, 1 to 700, 1 to 500, 1 to 300, 1 to 100, or 1 to 50.
  • the method of modifying the expression control sequence to reduce the expression of the nucleotides is a mutation on the expression control sequence by deletion, insertion, non-conservative or conservative substitution or a combination thereof to further weaken the activity of the expression control sequence. Can be performed by inducing or by replacing with a nucleic acid sequence having weaker activity.
  • the expression control sequences include promoters, operator sequences, sequences encoding ribosomal binding sites, and sequences that control the termination of transcription and translation.
  • a method of modifying a polynucleotide sequence on a chromosome that encodes the protein induces mutations in the sequence by deleting, inserting, non-conservative or conservative substitutions, or a combination thereof, to further weaken the activity of the protein. Or by replacing with a polynucleotide sequence modified to have weaker activity.
  • alcohol dehydrogenase in the present invention may refer to an enzyme that promotes the interconversion between alcohol and aldehyde or ketone by reduction of NAD + .
  • the alcohol dehydrogenase may include enzymes having similar activities, even if the enzymes have different names, for example, ADH1, ADH2, ADH3, ADH4, ADH5, ADH6, ADH7 or SFA1.
  • the alcohol dehydrogenase is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 92 amino acids with the amino acid sequence of SEQ ID NO: 40, 42, 44, 46, or 48 At least about 95%, at least about 97%, at least about 98%, or at least about 99%.
  • the alcohol dehydrogenase gene comprises at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 92 nucleotides of SEQ ID NO: 39, 41, 43, 45, 47, or 49 At least about 95%, at least about 97%, at least about 98%, or at least about 99% sequence homology.
  • glycerol-3-phosphate dehydrogenase may refer to an enzyme that promotes conversion of dihydroxyacetone phosphate (DHAP) to glycerol-3-phosphate (G3P).
  • DHAP dihydroxyacetone phosphate
  • G3P glycerol-3-phosphate
  • the glycerol-3-phosphate dehydrogenase may include an enzyme having a similar activity, even if the name of the enzyme is different, for example, may include GPD1 or GPD2.
  • the glycerol-3-phosphate dehydrogenase is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 92% with the amino acid sequence of SEQ ID NO: 50 or 52, A polypeptide having at least about 95%, at least about 97%, at least about 98%, or at least about 99% sequence homology.
  • the glycerol-3-phosphate dehydrogenase gene is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 92%, at least about nucleotide sequence of SEQ ID NO: 49 or 51 At least 95%, at least about 97%, at least about 98%, or at least about 99%.
  • the deactivation of alcohol dehydrogenase and glycerol-3-phosphate dehydrogenase or the removal or destruction of the gene encoding the enzyme can be performed simultaneously or separately.
  • the preparation of genetically engineered yeast cells removes genes encoding alcohol dehydrogenase, glycerol-3-phosphate dehydrogenase, or combinations thereof from the parent cell, followed by acetolactate synthase, acetolactate dicarboxyl. It may be to introduce a gene encoding a raise, 2,3-butanediol dehydrogenase, NADH oxidase or a combination thereof.
  • FIG. 1 is a diagram illustrating a 2,3-butanediol production route and a competitive route according to one embodiment.
  • yeast cells according to one embodiment have increased activity of acetolactate synthase, acetolactate dicarboxylase, and 2,3-butanediol dehydrogenase compared to parental cells 2,3.
  • -Butanediol can be produced effectively.
  • the yeast cells in order to suppress the production of by-products and to further enhance the production of 2,3-butanediol, the yeast cells are produced by the production of 2,3-butanediol.
  • the competitive target path may be additionally blocked.
  • the competitive metabolic pathway can be an ethanol and glycerol synthetic metabolic pathway, as shown in FIG.
  • NADH + / NADH the imbalance of cofactors
  • One aspect provides genetically engineered yeast cells with acetoin production capacity.
  • the yeast cells may have increased activity of acetolactate synthase, and acetolactate decarboxylase compared to parent cells.
  • acetoin is used interchangeably with 3-hydroxybutanone or acetyl methyl carbinol and uses the molecular formula of C 4 H 8 O 2 . It may mean a compound having.
  • the acetoin may comprise (R) -acetoin.
  • the yeast cell may be a yeast cell in which the activity of NADH oxidase is further increased.
  • the yeast cell comprises any one or more selected from the group consisting of an exogenous gene encoding acetolactate synthase, an exogenous gene encoding acetolactate dicarboxylase, and an exogenous gene encoding NADH oxidase. It may be.
  • yeast cells are alcohol dehydrogenase, glycerol-3-phosphate dehydrogenase or 2,3-butanediol dehydrogenase compared to the parental cells. It may be a yeast cell whose activity is reduced.
  • microorganisms having reduced activity of the alcohol dehydrogenase, glycerol-3-phosphate dehydrogenase or 2,3-butanediol dehydrogenase may be the ones in which the endogenous gene encoding the protein is removed or disrupted. .
  • alcohol dehydrogenation Decreased activity of enzymes, glycerol-3-phosphate dehydrogenase or 2,3-butanediol dehydrogenase or removal or destruction of genes encoding such enzymes can be performed simultaneously or separately.
  • the production of genetically engineered yeast cells involves removing acetos genes encoding alcohol dehydrogenase, glycerol-3-phosphate dehydrogenase, 2,3-butanediol dehydrogenase, or a combination thereof. It may be to introduce a gene encoding lactate synthase, acetolactate dicarboxylase, NADH oxidase or a combination thereof.
  • FIG. 10 is a diagram schematically illustrating acetoin production pathways and competition pathways according to one embodiment.
  • yeast cells according to one embodiment have increased activity of acetolactate synthase and acetolactate dicarboxylase compared to blast cells, thereby effectively producing acetoin.
  • the yeast cells in order to further suppress the production of by-products and to further enhance the production of acetoin, the yeast cells may be additionally blocked by a competitive metabolic pathway of the production pathway of acetoin.
  • the competitive metabolic pathway can be an ethanol and glycerol synthetic metabolic pathway, as shown in FIG. 10, which can be achieved by reducing the activity of alcohol dehydrogenase or glycerol-3-phosphate dehydrogenase.
  • acetoin it is also possible to further increase the production of acetoin by eliminating metabolic pathways that convert acetoin to 2,3-butanediol.
  • a procedure for reducing cofactor imbalance can be further performed.
  • the cells consume two molecules of NAD + to produce two molecules of NADH while producing two molecules of pyruvic acid from glucose through glycolysis. Accordingly, NADH (excess) and NAD + (lack) may occur in the acetoin synthesis pathway.
  • NADH + / NADH the imbalance of cofactors
  • the yeast cell may belong to the genus Saccharomyces .
  • the yeast cell is a strain belonging to the genus Saccharomyces as MY access (Saccharomyces), inclusive Vero My process (Kluyveromyces), Pichia (Pichia), Hanse Cronulla (Hansenula), my process to Xi Kosaka (Zygosaccharomyce s) or Candida (Candida) It may be.
  • Saccharomyces Saccharomyces
  • Saccharomyces may be a strain belonging to the Saccharomyces sensustricto aggregates.
  • Saccharomyces Saccharomyces strains belonging to the sensustricto) aggregate for example, saccharose as MY process three Levy jiae (S. cerevisiae), saccharose in my process bar Janus (S. bayanus), saccharose in my process parameter reading switch (S. paradoxus), Saccharomyces romayi process may be non-catheter (S. mikatae), or a saccharide as MY-ku laundry process Havre lots (S. kudriavzevii).
  • Another aspect includes the steps of culturing genetically engineered yeast cells having 2,3-butanediol producing ability relative to parental cells; and 2,3 comprising separating 2,3-butanediol from the culture.
  • Another aspect provides a method of producing acetoin comprising culturing a genetically engineered yeast cell having acetoin production capacity relative to a parent cell; and isolating acetoin from the culture.
  • the term "culture” may refer to a series of activities in which the cells are grown under appropriately artificially controlled environmental conditions to produce 2,3-butanediol or acetoin from the yeast cells. .
  • the method of culturing the cells in the present invention can be carried out using a method well known in the art. Specifically, the culture may be continuously cultured in a batch process or an injection batch or repeated fed batch process.
  • the medium used for the culturing may be 2,3-butanediol or one or more substrates which can be metabolized to acetoin, for example, a conventional carbon source containing a suitable carbon source, nitrogen source, amino acids, vitamins and the like.
  • carbon sources examples include glucose as the main carbon source, sugars and carbohydrates such as xylose, sucrose, lactose, fructose, maltose, starch, cellulose, soybean oil, sunflower oil, castor oil, coconut oil, etc. Oils such as oils and fatty acids such as palmitic acid, stearic acid, linoleic acid, alcohols such as glycerol, ethanol, and organic acids such as acetic acid may be included. These materials can be used individually or as a mixture.
  • Nitrogen sources that can be used include inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, anmonium carbonate, and ammonium nitrate; Amino acids such as glutamic acid, methionine, glutamine and organic nitrogen sources such as peptone, NZ-amine, meat extract, yeast extract, malt extract, corn steep liquor, casein hydrolyzate, fish or its degradation product, skim soy cake or its degradation product Can be. These nitrogen sources may be used alone or in combination.
  • the medium may include, as personnel, monopotassium phosphate, dipotassium phosphate and corresponding sodium-containing salts.
  • Personnel that may be used include potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts.
  • potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts include potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts.
  • sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate and calcium carbonate may be used.
  • essential growth substances such as amino acids and vitamins can be used.
  • the cells can be grown in a suitable medium at a temperature ranging from about 20 ° C to about 37 ° C.
  • the growth medium in the present invention is, for example, a broth or most of Saccharomyces cerevisiae strains comprising yeast nitrogen base, ammonium sulfate, and dextrose as a carbon / energy source. It may be a commercially prepared conventional medium such as YPD medium blended peptone, yeast extract and dextrose at the optimum ratio for growth. Other defined or synthesized growth media may also be used and suitable media for the growth of certain microorganisms are known to those skilled in the art of microbiology or fermentation science.
  • the separation may be to separate from the culture, for example, cells, culture medium or both.
  • Biologically produced 2,3-butanediol, or acetoin can be isolated from the culture medium using methods known in the art. Such separation methods can be centrifugation, filtration, ion exchange chromatography or crystallization. For example, the supernatant obtained by removing the biomass by centrifugation of the culture at low speed can be separated by ion exchange chromatography.
  • acetoin can be produced with high efficiency and high yield.
  • 1 is a diagram illustrating a 2,3-butanediol production route and a competitive route according to one embodiment.
  • FIG. 2 is a diagram showing a cleavage diagram of a vector for expression of 2,3-butanediol synthetic gene according to one embodiment.
  • Figure 3 is a view showing the production of the metabolite of S. cerevisiae strain increased 2,3-butanediol production capacity according to one embodiment.
  • Figure 4 is a view showing the production of metabolites of S. cerevisiae strain increased 2,3-butanediol production capacity according to one embodiment.
  • 5 is a view showing the production amount of the metabolite of S. cerevisiae strain increased 2,3-butanediol production capacity according to one embodiment.
  • 6 is S. cerevisiae having increased 2,3-butanediol production capacity according to one embodiment. It is a figure which shows the production amount of the metabolite of a strain.
  • FIG. 7 is a view showing the production amount of the metabolite of S. cerevisiae strain increased 2,3-butanediol production capacity according to one embodiment.
  • FIG. 8 is a view showing the production of the metabolite of S. cerevisiae strain increased 2,3-butanediol production capacity according to one embodiment.
  • FIG. 9 is a view showing the production of the metabolite of S. cerevisiae strain increased 2,3-butanediol production capacity according to one embodiment.
  • FIG. 10 is a diagram schematically illustrating acetoin production pathways and competition pathways according to one embodiment.
  • FIG. 11 is a diagram showing a cleavage diagram of a vector for expressing acetoin synthetic gene according to one embodiment.
  • FIG. 12 is a view showing the production of metabolites of S. cerevisiae strains with increased acetoin production capacity according to one embodiment.
  • Figure 13 is a view showing the production of the metabolite of S. cerevisiae strain with increased acetoin production capacity according to one embodiment.
  • FIG. 14 is a view showing the production amount of the metabolite of S. cerevisiae strain increased acetoin production capacity according to one embodiment.
  • 15 is a view showing the production of the metabolite of S. cerevisiae strain with increased acetoin production capacity according to one embodiment.
  • 16 is a view showing the production of metabolites in fed-batch culture of S. cerevisiae strain with increased acetoin production capacity according to one embodiment.
  • Example 1 2 , 3- Butanediol (2,3- butanediol ) Production capacity Increased S. cerevisiae Construction of the strain
  • Acetolactate synthase is Bacilus subtilis subtilis ) alsS (nucleotide sequence of SEQ ID NO: 1, amino acid sequence of SEQ ID NO: 2) and acetolactate dicarboxylase include Bacilus subtilis ( Bacilus) subtilis ) alsD (nucleotide sequence of SEQ ID NO: 3, amino acid sequence of SEQ ID NO: 4), and 2,3-butanediol dehydrogenase as Saccharomyces BDH1 (nucleotide sequence of SEQ ID NO: 5, amino acid sequence of SEQ ID NO: 6) derived from cerevisiae ) was used, respectively.
  • alsS gene and alsD were obtained through PCR (primary primer set of alsD gene: SEQ ID NOS: 7 and 8, primer set of alsD gene: SEQ ID NO: 9 and 10) as a template using Bacillus subtilis genomic DNA.
  • BHD1 gene was obtained by PCR (primer sets of SEQ ID NOs: 11 and 12) using Saccharomyces cerevisiae genomic DNA as a template.
  • TDH3 SEQ ID NO: 13
  • TEF1 SEQ ID NO: 14
  • TPI1 SEQ ID NO: 15
  • PYK1 SEQ ID NO: 16
  • GPM1 GPM1
  • promoters and terminators were PCR (PYK1 terminators: primer sets of SEQ ID NOs: 19 and 20, GPM1 terminators: primer sets of SEQ ID NOs: 21 and 22, TPI1 promoters) using the Saccharomyces cerevisiae genomic DNA as a template. Primer sets of SEQ ID NOs: 23 and 24, TPI1 terminator: primer sets of SEQ ID NOs: 25 and 26).
  • the obtained promoter fragment was cloned using SacI, SpeI restriction enzyme, and the terminator fragment was cloned using XhoI, KpnI restriction enzyme.
  • alsS, alsD, and BDH1 were cloned using BamHI, XhoI restriction enzyme, and the resulting vector was p414_P TDH3 - alsS -T PYK1 , p414_P TEF1 - alsD -T GPM1 , and p414_P TPI1 - BDH1 -T TPI1, respectively. Named.
  • PCR products having a 'promoter-gene-terminator' using primer sets of SEQ ID NOs: 27 and 28, respectively, as the templates of the three types of previously cloned vectors, respectively Got.
  • This PCR product has a MluI restriction enzyme sequence at the 5 'end and an AscI-NotI-MluI sequence at the 3' end. It was cloned by treating the alsD -T GPM1 a MluI restriction enzyme - p413GPD plasmid vector (HIS3, P TDH3, T CYC1 ) (. Mumberg et al, 1995) the treatment with restriction enzyme BssHII, and PCR product of P TEF1.
  • NADH + / NADH the imbalance of cofactors
  • NADH oxidase is Lactococcus noxE (nucleotide sequence of SEQ ID NO: 29, amino acid sequence of SEQ ID NO: 30) derived from lactis ) was used.
  • the noxE gene was obtained by PCR (a primer set of SEQ ID NOs: 31 and 32) as a template of genomic DNA of Lactococcus lactis.
  • a promoter of the FBA1 gene (SEQ ID NO: 33) and a terminator of the FBA1 gene (SEQ ID NO: 34) were used.
  • FBA1 promoters and terminators were obtained by PCR (promoter: primer sets of promoters SEQ ID NOs: 35 and 36, terminator: primer sets of terminators: 37 and 38) using Saccharomyces cerevisiae genomic DNA as a template.
  • FIG. 2 is a diagram showing a cleavage diagram of a vector for expression of 2,3-butanediol synthetic gene according to one embodiment.
  • S. cerevisiae strain CEN.PK2-1C (MATa trp1 ura3 -52 -289 leu2 -3,112 his3 ⁇ 1 MAL2-8C SUC2) (Euroscarf, Germany) alsS, alsD, and in order to overexpress the gene BDH1, of Example 1 (1.1 P413-SDB vector prepared in .1) was introduced into the strain by a chemical transformation method using lithium acetate.
  • the transformed strains were then cultured in SC medium (20 g / l glucose, 6.7 g / l YNB, appropriate amino acid additives) to select strains transfected with the gene, which were termed S. cerevisiae WT [SDB]. Named it.
  • Saccharomyces cerevisiae has six alcohol dehydrogenases (ADH1, ADH2, ADH3, ADH4, ADH5, and SFA1) using NADH as cofactors and alcohol dehydrogenases (ADH6, and ADH7) using NADPH do.
  • ADH1, ADH2, ADH3, ADH4, ADH5, and SFA1 alcohol dehydrogenases
  • ADH6, and ADH7 using NADPH do.
  • GPD1 and GPD2 glycerol-3-phosphate dehydrogenase which converts dihydroxyacetone phosphate (DHAP) to glycerol-3-phosphate using NADH as a cofactor.
  • the ADH1 (nucleotide sequence of SEQ ID NO: 39, amino acid sequence of SEQ ID NO: 40), ADH2 (nucleotide sequence of SEQ ID NO: 41, amino acid sequence of SEQ ID NO: 42), ADH3 (nucleotide sequence of SEQ ID NO: 43), Amino acid sequence of SEQ ID NO: 44), ADH4 (nucleotide sequence of SEQ ID NO: 45, amino acid sequence of SEQ ID NO: 46), ADH5 (nucleotide sequence of SEQ ID NO: 47, amino acid sequence of SEQ ID NO: 48), GPD1 (nucleotide sequence of SEQ ID NO: 49) , The amino acid sequence of SEQ ID NO: 50), and GPD2 (nucleotide sequence of SEQ ID NO: 51, amino acid sequence of SEQ ID NO: 52) were prepared.
  • Primer sets for gene deletion cassettes include SEQ ID NOs: 53 and 54 (ADH1), SEQ ID NOs: 55 and 56 (ADH2), SEQ ID NOs: 57 and 58 (ADH3), SEQ ID NOs: 59 and 60 (ADH4), SEQ ID NO: 61 And 62 (ADH5), SEQ ID NOs: 63 and 64 (GPD1), and SEQ ID NOs: 65 and 66 (GPD2), respectively, were used for that gene.
  • the ADH1 gene deletion cassette obtained in (2.1) of Example 1 was transformed into a yeast strain in the same manner as in Example 1 (1.2) to obtain a strain lacking the gene, and a primer for identifying the same (SEQ ID NO: 67 And 68).
  • pSH63 TRP1 , Cre recombinase under the control of GAL1 promoter, Euroscarf, Germany
  • Cre recombinase was transformed and a defective strain with the screening marker gene was removed. It was.
  • the deleted strain from which the gene was removed was transformed with the p413-SDB vector prepared in (1.1.1) of Example 1, and the finally obtained strain was named S. cerevisiae adh1 ⁇ [SDB].
  • a strain was prepared in the same manner as in (2.2.1) and (2.2.3) of Example 1, and was named S. cerevisiae adh1 ⁇ gpd1 ⁇ gpd2 ⁇ [SDB].
  • a strain was prepared in the same manner as in (2.2.2) and (2.2.3) of Example 1, and was named S. cerevisiae adh1-5 ⁇ gpd1 ⁇ gpd2 ⁇ [SDB].
  • Example 1 ADH 1-5 gene deletion and GPD 1 and 2 gene deletion S. cerevisiae produced in (2.2.5) of Example 1
  • the strain was prepared by transforming the p413-SDBN vector prepared in (1.1.2) of Example 1 in the same manner as in (2.2.1) of Example 1, to prepare a strain, which was S. cerevisiae adh1-5 ⁇ gpd1 ⁇ gpd2 ⁇ [SDBN ].
  • 2,3-butanediol production medium includes SC-H (50 g / l glucose, 6.7 g / l YNB, amino acid additives except histidine) and YPD10 (100 g / l glucose, 10 g / l yeast) extract, 20 g / l bacto-peptone).
  • SC-H 50 g / l glucose, 6.7 g / l YNB, amino acid additives except histidine
  • YPD10 100 g / l glucose, 10 g / l yeast extract, 20 g / l bacto-peptone
  • Figure 3 is a view showing the production of the metabolite of S. cerevisiae strain increased 2,3-butanediol production capacity according to one embodiment.
  • S. cerevisiae WT [SDB] strain expressing the 2,3-butanediol synthetic gene consumed 50 g / l of glucose, 11.3 g / l of 2,3-butanediol , 6.0 g / l ethanol, and 6.55 g / l glycerol.
  • Example 1 (2.2. In 1) Produced S. cerevisiae adh1 ⁇ [ SDB Production of the metabolite of the strain Example It confirmed by the same method as 1 of 2, and the result is shown in FIG.
  • Example 1 (2.2. 2) in Produced S. cerevisiae adh1 - 5 ⁇ [ SDB Production of the metabolite of the strain Example It confirmed by the same method as 1 of 2, and the result is shown in FIG.
  • S. cerevisiae adh1 - 5 ⁇ [ SDB ] As shown in FIG. 5, S. cerevisiae adh1 - 5 ⁇ [ SDB ] It was confirmed that the strain produced little ethanol (0.4 g / l or less). Also, S. cerevisiae WT [ SDB 2,3- compared to strain Butanediol Alone 1 g / l, Acetoin 2,3- Butanediol The sum can be seen to improve 1.8 g / l.
  • Figure 6 is a view showing the production amount of the metabolite of S. cerevisiae strain increased 2,3-butanediol production capacity according to one embodiment.
  • the S. cerevisiae gpd1 ⁇ gpd2 ⁇ [SDB] strain produced little glycerol (0.1 g / l or less) and increased production of 2,3-butanediol.
  • FIG. 7 is a view showing the production amount of the metabolite of S. cerevisiae strain increased 2,3-butanediol production capacity according to one embodiment.
  • S. cerevisiae adh1 ⁇ gpd1 ⁇ gpd2 ⁇ [SDB] strain can be seen that the effect of ethanol and glycerol reduction and 2,3-butanediol production increased significantly.
  • FIG. 8 is a view showing the production of the metabolite of S. cerevisiae strain increased 2,3-butanediol production capacity according to one embodiment.
  • FIG. 9 is a view showing the production of the metabolite of S. cerevisiae strain increased 2,3-butanediol production capacity according to one embodiment.
  • Example 1 The strain named WT [C] was transformed from the wild-type yeast strain CEN.PK2-1C to the covector p413GPD and used as a control in this experiment.
  • acetolactate synthase In order to introduce an acetoin synthetic gene, acetolactate synthase, and a plasmid for acetolactate decarboxylase gene introduction were prepared.
  • the alsS gene obtained by PCR in the same manner as in Example 1 (1.1.1) was p413GPD plasmid vector [ HIS3 , P TDH3 (SEQ ID NO: 13) , T CYC1 (SEQ ID NO: 81)] (Mumberg et al., 1995) was cloned using BamHI, XhoI restriction enzyme and named p413G-alsS-C.
  • the alsD gene was cloned into the p414P TEF1- T GPM1 plasmid vector [ TRP1 , P TEF1 (SEQ ID NO: 14), T GPM1 (SEQ ID NO: 17)] (Kim and Hahn, 2015) using BamHI, XhoI restriction enzymes and p414T-alsD It was named -G.
  • the PCR product 'P TEF1 - alsD- T GPM1 ' having an AscI-NotI-MluI sequence at the end was obtained. This was cloned into p413GPD plasmid vector treated with MluI restriction enzyme and treated with BssHII restriction enzyme and named p413-D.
  • NADH + / NADH cofactors
  • Example 2 The same noxE as in (1.1.2) of Example 1 was used as the NADH oxidase, and noxE was secured by PCR in the same method.
  • This PCR product was cloned into the p414P FBA1- T FBA1 vector [ TRP1 , P FBA1 (SEQ ID NO: 33), T FBA1 (SEQ ID NO: 34)] (Kim and Hahn, 2015) using HindIII, XhoI restriction enzymes to p414F-noxE. It was named -F.
  • Example 1 (1.1.1) was used to add noxE to p413-SD overexpressing the acetoin synthesis pathway.
  • PCR product 'P FBA1 - noxE- T having a MluI restriction enzyme sequence at the 5' end and an AscI-NotI-MluI sequence at the 3 'end using the p414F-noxE-F vector as a template, using a primer set of SEQ ID NOs: 85 and 86 FBA1 '.
  • This was cloned into p413-SD vector treated with Aslu and NotI restriction enzyme by treatment with MluI, NotI restriction enzyme to finally complete p413-SDN vector.
  • FIG. 11 is a diagram showing a cleavage diagram of a vector for expressing acetoin synthetic gene according to one embodiment.
  • S. cerevisiae strain CEN.PK2-1C (MATa trp1 ura3 -52 -289 leu2 -3,112 his3 ⁇ 1 MAL2-8C SUC2) (Euroscarf, Germany) alsS, and in order to overexpress the gene alsD, in Example 3 (1.1.1 P413-SD vector prepared in the above was introduced into the strain by a chemical transformation method using lithium acetate. The transformed strain was then cultured in SC-H medium (amino acid additives except 20 g / L glucose, 6.7 g / L YNB, 1.92 g / L histidine) to select strains transformed with the gene, and S. cerevisiae WT [SD].
  • SC-H medium amino acid additives except 20 g / L glucose, 6.7 g / L YNB, 1.92 g / L histidine
  • Saccharomyces cerevisiae is a strain that grows and produces ethanol as a major metabolite.
  • Glycerol along with ethanol, is a major competitive metabolite for acetoin synthetic pathways.
  • acetoin production can be enhanced.
  • strains deficient in ADH1, ADH2, ADH3, ADH4, ADH5, GPD1, and GPD2 were prepared.
  • BDH1 2,3-butanediol dehydrogenase
  • the BDH1 gene deletion cassette has a primer (combination of SEQ ID NOs: 87 and 88) having homology to the upper 300 bp and lower 282 bp of the BDH1 gene, using the genomic DNA of strain bdh1 ⁇ (BY4741 bdh1 ⁇ :: KanMX6, Euroscarf) as a template.
  • bdh1 ⁇ BY4741 bdh1 ⁇ :: KanMX6, Euroscarf
  • S. cerevisiae strain CEN.PK2-1C (MATa ura3 leu2 -3,112 -289 -52 trp1 his3 ⁇ 1 MAL2-8C SUC2) (Euroscarf, Germany) ADH1 to ADH5, GPD1 prepared in (2.1) in Example 3 in And a strain for producing a GPD2 gene deletion cassette in the same manner as in (2.2.1) of Example 1, and finally obtained strain was named S. cerevisiae adh1-5 ⁇ gpd1 ⁇ gpd2 ⁇ . Thereafter, the strain was transformed with the p413-SD vector prepared in Example 1 (1.1.1), and finally, the obtained strain was named S. cerevisiae adh1-5 ⁇ gpd1 ⁇ gpd2 ⁇ [SD].
  • Example 3 After transforming the ADH1 to ADH5, GPD1, and GPD2 gene deletion cassettes and BDH1 gene deletion cassettes prepared in (2.1) of Example 3 in the same manner as in (2.2.1) of Example 3, The p413-SD plasmid prepared in (1.1.1) of Example 3 was transformed in the same manner as in (2.2.1) of Example 3 above.
  • a primer for confirming the deletion of the BDH1 gene a combination of SEQ ID NOs: 89 and 90 was used, and the resulting strain was named S. cerevisiae adh1-5 ⁇ gpd1 ⁇ gpd2 ⁇ bdh1 ⁇ [SD].
  • Example 3 After transforming the ADH1 to ADH5, GPD1, and GPD2 gene deletion cassettes and BDH1 gene deletion cassettes prepared in (2.1) of Example 3 in the same manner as in (2.2.1) of Example 3, P413-SDN plasmid prepared in Example 1 (1.1.2) was transformed in the same manner as in Example 2 (2.2.1), and finally the obtained strain was S. cerevisiae adh1-5 ⁇ gpd1 ⁇ gpd2 ⁇ bdh1 ⁇ [SDN].
  • Example 4 Made S. cerevisiae Confirmation of the increase in acetoin productivity of the strain
  • alsS S. cerevisiae Strain Acetoin Productivity increase confirmation
  • acetoin production medium includes SC-H (50 g / L glucose, 6.7 g / L YNB, amino acid additives except 1.92 g / L histidine) and YPD5 (50 g / L glucose, 10 g / L yeast extract , 20 g / L bacto-peptone) was used.
  • SC-H 50 g / L glucose, 6.7 g / L YNB, amino acid additives except 1.92 g / L histidine
  • YPD5 50 g / L glucose, 10 g / L yeast extract , 20 g / L bacto-peptone
  • 1 mL of the culture was centrifuged to obtain a supernatant, which was filtered through a 0.22 ⁇ m filter and subjected to HPLC analysis. UltiMate 3000 HPLC system (Thermo fishers scientific) was used, and a BioRad Aminex HPX-87H column and a RI detector were used. 5 mM sulfuric acid was used as the mobile phase, the flow rate was set to 0.6 mL / min, and the temperature was set to 60 ° C., whereby the amount of metabolite was produced. The results are shown in FIG. 12.
  • FIG. 12 is a view showing the production of metabolites of S. cerevisiae strains with increased acetoin production capacity according to one embodiment.
  • S. cerevisiae WT [SD] strain expressing acetoin synthetic gene consumed 50 g / L of glucose, resulting in 9.3 g / L of acetoin, 2.1 g / L of 2,3- It can be seen that butanediol, 7.9 g / L ethanol, and 3.8 g / L glycerol are produced.
  • alsS And alsD Gene expression, ADH 1 to 5 gene deletions, and GPD 1 and 2 gene deletions S. cerevisiae Confirmation of the increase in acetoin productivity of the strain
  • Figure 13 is a view showing the production of the metabolite of S. cerevisiae strain with increased acetoin production capacity according to one embodiment.
  • S. cerevisiae adh1-5 ⁇ gpd1 ⁇ gpd2 ⁇ [SD] strains consume 50 g / L of glucose, producing 5.9 g / L of acetoin. It can also be seen that as a by-product, 9.3 g / L of 2,3-butanediol was produced.
  • alsS And alsD Gene expression, ADH 1 to 5 gene deletions, GPD 1 and 2 gene deletions, and BDH1 gene deletions S. cerevisiae Confirmation of the increase in acetoin productivity of the strain
  • FIG. 14 is a view showing the production amount of the metabolite of S. cerevisiae strain increased acetoin production capacity according to one embodiment.
  • 15 is a view showing the production of the metabolite of S. cerevisiae strain with increased acetoin production capacity according to one embodiment.
  • S. cerevisiae adh1-5 ⁇ gpd1 ⁇ gpd2 ⁇ bdh1 ⁇ [SDN] strains consume 50 g / L of glucose, producing 20.1 g / L of acetoin.
  • not only by-products were generated, but the time required to consume all 50 g / L of glucose was significantly reduced to 48 hours.
  • the culture was carried out using YPD5 medium as described above, and the carbon source was supplied by adding an inflow solution composed of 80% glucose before all the glucose was consumed.
  • the metabolism of S. cerevisiae adh1-5 ⁇ gpd1 ⁇ gpd2 ⁇ bdh1 ⁇ [SDN] was confirmed, and the results are shown in FIG. 16.
  • 16 is a view showing the production of metabolites in fed-batch culture of S. cerevisiae strain with increased acetoin production capacity according to one embodiment.
  • S. cerevisiae adh1-5 ⁇ gpd1 ⁇ gpd2 ⁇ bdh1 ⁇ [SDN] strains include glycerol (0.2 g / L), ethanol (0.4 g / L), and 2,3-butanediol as byproducts. (0.9 g / L) was produced at insignificant levels and overproduction of acetoin (80.8 g / L).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

모세포에 비하여 아세토락테이트 신타아제, 및 아세토락테이트 디카복실레이즈의 활성이 증가되어 있는, 2,3-부탄다이올 또는 아세토인을 생산능을 갖는 유전적으로 조작된 효모 세포, 그를 사용하여 2,3-부탄다이올 또는 아세토인을 생산하는 방법에 관한 것이다.

Description

2,3-부탄다이올 또는 아세토인 생산능을 갖는 유전적으로 조작된 효모 세포 및 그를 사용하여 2,3-부탄다이올 또는 아세토인을 생산하는 방법
2,3-부탄다이올 또는 아세토인을 생산할 수 있는 유전적으로 조작된 효모 세포, 그를 사용하여 2,3-부탄다이올 또는 아세토인을 생산하는 방법에 관한 것이다.
지구온난화로 대변되는 기후 변화 문제와 화석연료의 고갈에 따른 에너지 확보의 중요성이 대두되면서, 친환경적인 대체에너지 자원의 탐색 및 생산에 대한 관심이 높아지고 있다. 이에 따라 바이오매스로부터 화학제품과 바이오 연료 등을 생산하는 바이오리파이너리 기술에 대한 연구도 활발히 이루어지고 있다.
2,3-부탄다이올은 높은 산업적 활용도를 지니는 화학물질로써, 메틸 에틸 케톤(methyl ethyl ketone), 및 1,3-부타디엔(1,3-butandien) 등으로 전환될 수 있으며, 산업적 용매, 가소제, 의약품 및 식품 첨가제 등으로 활용될 수 있다.
아세토인은 버터향이 나는 향료로 식품, 화장품, 담배, 또는 세제 등에 널리 사용될 뿐 아니라 해충의 유인제로 작용하여 방충제로서의 활용도 가능하다. 이러한 아세토인의 다양한 활용 용도와 대량 생산 가능성으로 인해, 아세토인은 미국 에너지국이 정한 바이오 매스로부터 생산 가능한 30개 플랫폼 화학물질에 포함되어 있다.
2,3-부탄다이올을 효과적으로 생산하는 미생물로는 클렙시엘라 뉴모니아(Klebsiella pneumonia), 클렙시엘라 옥시토카(Klebsiella oxytoca), 엔테로박터 에어로진스(Enterobacter aerogenea) 등이 있으나, 이들 박테리아의 경우 안전성이 확보되지 않았기 때문에 산업적으로 적용하기에 어려움이 따른다. 최근 많은 미생물 균주 개발 기반의 연구들은 박테리아를 기반으로 진행되고 있으나 이들 중 대부분은 병원성을 가지거나 산성조건, 삼투압이나 고농도의 글루코오스에 대한 내성이 부족하여 산업적 스케일에 적용하는데 한계를 지닌다. 이에, 일반적으로 안전(GRAS: Generally Recognized As Safe) 하다고 여겨지는 미생물을 사용하여 고효율 및 고수율로 2,3-부탄다이올 또는 아세토인을 생산하는 방법이 요구되고 있다.
일 양상은 2,3-부탄다이올을 효과적으로 생산할 수 있는 유전적으로 조작된 효모 세포를 제공한다.
다른 양상은 유전적으로 조작된 효모 세포를 사용하여 2,3-부탄다이올을 생산하는 방법을 제공한다.
다른 양상은 아세토인을 효과적으로 생산할 수 있는 유전적으로 조작된 효모 세포를 제공한다.
다른 양상은 유전적으로 조작된 효모 세포를 사용하여 아세토인을 생산하는 방법을 제공한다.
일 양상은 2,3-부탄다이올 생산능을 갖는 유전적으로 조작된 효모 세포를 제공한다.
상기 효모 세포는 모세포에 비하여 아세토락테이트 신타아제(acetolactate synthase), 아세토락테이트 디카복실레이즈(acetolactate decarboxylase), 및 2,3-부탄다이올 탈수소효소(2,3-butanediol dehydrogenase)의 활성이 증가되어 있는, 2,3-부탄다이올 생산능을 갖는 유전적으로 조작된 효모 세포를 제공한다.
용어 "모세포 (parent cell)"는 본래 세포 (original cell), 예를 들면, 조작된 미생물에 대하여 동일 타입의 유전적으로 조작되지 않은 세포를 의미할 수 있다. 상기 모세포는 특정 유전적 변형을 갖지 않은 세포이지만, 다른 사항에 대하여는 동일한 것일 수 있다. 따라서, 본 발명의 모세포는 주어진 단백질의 증가된 활성을 갖는 유전적으로 조작된 미생물을 생산하는데 출발 물질 또는 시작 물질 (starting material)로 사용된 세포일 수 있다.
또한, 본 발명에서 용어 "유전적 조작 (genetic engineering)" 또는 "유전적으로 조작된 (genetically engineered)"은 세포에 대하여 하나 이상의 유전적 변형 (genetic modification)을 도입하는 행위 또는 그에 의하여 만들어진 세포를 나타낸다.
본 명세서에서 사용된 용어 "활성 증가 (increase in activity)", 또는 "증가된 활성 (increased activity)"은 주어진 유전적으로 조작되지 않은 모세포(예, 야생형)가 갖지 않는 또는 갖는 내재적 단백질 또는 효소의 활성에 비해, 동일한 타입의 단백질 또는 효소의 활성이 보다 더 높은 활성을 갖는 것을 의미할 수 있다. 단백질 또는 효소의 증가된 활성을 갖는 세포는 당업계에 공지된 임의의 방법을 사용하여 확인될 수 있다. 상기 증가된 활성을 갖는 세포 또는 미생물은, 유전적 변형을 갖지 않은 세포 또는 미생물에 비하여 하나 이상의 효소 또는 폴리펩티드의 활성을 증가시키는 유전적 변형을 갖는 것일 수 있다.
본 명세서에서 사용된 용어 "2,3-부탄다이올(2,3-butanediol)"은 C4H10O2의 분자식을 갖는 화합물로 부탄다이올의 구조이성질체(constitutional isomers) 중 하나를 의미할 수 있으며, 2,3-부탄다이올의 2R 및 3R 입체이성질체를 포함할 수 있다.
본 발명에서 용어 "아세토락테이트 신타아제 (acetolactate synthase) (ALS)" (아세토하이드록시산 신타아제(acetohydroxy acid synthase) (AHAS)와 호환적으로 사용됨)는, 류신, 발린 및 이소류신 등의 분지쇄 아미노산 생합성 경로에 대한 조절효소로서, 두 분자의 피루브산으로부터 각각 한 분자의 이산화탄소와 아세토락테이트를 합성하는 효소일 수 있으며, 미생물 또는 식물 전체에 걸쳐 폭넓게 존재하는 것으로 알려져 있다. 상기 아세토락테이트 신타아제는 효소의 이름이 상이하더라도 그와 유사한 활성을 갖는 효소(예를 들면, 동질효소(isoenzyme) 또는 동족체(homolog))를 포함할 수 있으며, 예를 들면, 바실러스 서브틸리스 유래의 alsS에 의해 암호화되는 아세토락테이트 신타아제, 대장균 유래의 ilvB 또는 ilvN에 의해 암호화되는 아세토락테이트 신타아제 I, 대장균 유래의 ilvGMEDA에 의해 암호화되는 아세토락테이트 신타아제 II, 또는 대장균 유래의 ilvI 또는 ilvH에 의해 암호화되는 아세토락테이트 신타아제 III를 포함할 수 있다. 또한, 이외에, 대장균, 사카로마이세스 세레비지애, 탄저균(Bacillus anthracis), 해모필러스 인플루엔자(Haemophilus influenzae), 살모넬라 티피무리움(Salmonella Typhimurium), 써모타가 마리티마(Thermotoga maritima), 코리네박테리움 글루타미쿰(Corynebacterium glutamicum), 결핵균(Mycobacterium tuberculosis), 또는 스트렙토마이세스 신나모네시스(Streptomyces cinnamonensis) 유래의 아세토락테이트 신타아제일 수 있다. 추가적으로 식물 유래로는 애기 장대(Arabidopsis thaliana), 고시피움 히르수툼(Gossypium hirsutum), 헬리안투스 안누우스(Helianthus annuus), 또는 브라시카 나푸스(Brassica napus) 유래의 아세토락테이트 신타아제일 수 있다. 또한, 상기 아세토락테이트 신타아제는 서열번호 2의 아미노산 서열과 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85%이상, 약 90% 이상, 약 92% 이상, 약 95% 이상, 약 97% 이상, 약 98% 이상, 또는 약 99% 이상의 서열 상동성을 갖는 폴리펩티드 일 수 있다. 여기서 "상동성"은 주어진 폴리뉴클레오티드 서열과 일치하는 정도를 의미하며 백분율로 표시될 수 있다. 본 명세서에서, 주어진 폴리뉴클레오티드 서열과 동일하거나 유사한 활성을 갖는 그의 상동성 서열이 "% 상동성"으로 표시된다. 예를 들면, 점수(score), 동일성(identity) 및 유사도(similarity) 등의 매개 변수(parameter)들을 계산하는 표준 소프트웨어, 구체적으로 BLAST 2.0를 이용하거나, 정의된 엄격한 조건하에서 써던 혼성화 실험에 의해 서열을 비교함으로써 확인할 수 있으며, 정의되는 적절한 혼성화 조건은, 당업자에게 잘 알려진 방법으로 결정될 수 있다.
본 발명에서 용어 "아세토락테이트 디카복실레이즈 (acetolactate decarboxylase) (ALD)"는 아세토락테이트로부터 이산화탄소를 제거하여 아세토인(acetoin)을 생산하는 효소를 의미할 수 있다. 상기 아세토락테이트 디카복실레이즈는 효소의 이름이 상이하더라도 그와 유사한 활성을 갖는 효소(예를 들면, 동질효소(isoenzyme) 또는 동족체(homolog))를 포함할 수 있으며, 예를 들면, 바실러스 서브틸리스 유래의 alsD, 락토바실러스 델브루키(Lactobacillus delbrueckii subsp. lactis) 유래의 aldB, 브레비바실러스 브레비스(Brevibacillus brevis), 엔테로박터 에어로게네스(Enterobacter aerogenes), 류코노스톡 락티스(Leuconostoc lactis), 사카로마이세스 세레비지애. 스타필로코커스 아우레우스(Staphylococcus aureus) 유래의 아세토락테이트 디카복실레이즈일 수 있다. 또한, 상기 아세토락테이트 디카복실레이즈는 서열번호 4의 아미노산 서열과 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85%이상, 약 90% 이상, 약 92% 이상, 약 95% 이상, 약 97% 이상, 약 98% 이상, 또는 약 99% 이상의 서열 상동성을 갖는 폴리펩티드 일 수 있다.
본 발명에서 용어 "2,3-부탄다이올 탈수소효소(2,3-butnaediol dehydrogense) (BDH)"는 아세토인, NADH, 및 H+를 기질로 하여, 2,3-부탄다이올 및 NAD+를 생산하는 효소를 의미할 수 있으며, 옥시도리덕타아제(oxidoreductase) 과(family)에 속한다. 상기 2,3-부탄다이올 탈수소효소는 효소의 이름이 상이하더라도 그와 유사한 활성을 갖는 효소(예를 들면, 동질효소(isoenzyme) 또는 동족체(homolog))를 포함할 수 있으며, 예를 들면, 사카로마이세스 세레비지애 유래의 BDH1, 패니바실러스 폴리믹사(Paenibacillus polymyxa) 유래의 BDH99::67, 바실러스 서브틸리스, 엔테로코커스 패시움(Enterococcus faecium) 엔테로코커스 듀란스(Enterococcus durans) 마이코박테리움 속(Mycobacterium sp .) 락토바실러스 락티스 유래의 2,3-부탄다이올 탈수소효소일 수 있다. 또한, 상기 2,3-부탄다이올 탈수소효소는 서열번호 6의 아미노산 서열과 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85%이상, 약 90% 이상, 약 92% 이상, 약 95% 이상, 약 97% 이상, 약 98% 이상, 또는 약 99% 이상의 서열 상동성을 갖는 폴리펩티드 일 수 있다.
상기 효모 세포는 NADH 산화효소의 활성이 추가적으로 증가되어 있는 것인 효모 세포일 수 있다.
본 발명에서 용어 "NADH 산화효소(NADH oxidase)"는 산소와 NADH를 기질로 하여 물과 NAD+를 생산하는 반응을 매개하는 효소를 의미할 수 있다. 상기 NADH 산화효소는 효소의 이름이 상이하더라도 그와 유사한 활성을 갖는 효소(예를 들면, 동질효소(isoenzyme) 또는 동족체(homolog))를 포함할 수 있으며, 예를 들면, nox1, nox3, nox4, 락토코커스 락티스 유래의 noxE를 포함할 수 있고, 이외에, 엔테로코커스 속, 락토바실러스 속, 디설포비브리오 속(Desulfovibrio sp .), 클로스트리디움 속(Clostridium sp .) 스트렙토코커스 속 유래의 NADH 산화효소일 수 있다. 또한, 상기 NADH 산화효소는 서열번호 30의 아미노산 서열과 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85%이상, 약 90% 이상, 약 92% 이상, 약 95% 이상, 약 97% 이상, 약 98% 이상, 또는 약 99% 이상의 서열 상동성을 갖는 폴리펩티드 일 수 있다.
상기 효모 세포는 아세토락테이트 신타아제를 코딩하는 외인성 유전자 (exogenous gene), 아세토락테이트 디카복실레이즈를 코딩하는 외인성 유전자, 2,3-부탄다이올 탈수소효소를 코딩하는 외인성 유전자, 및 NADH 산화효소를 코딩하는 외인성 유전자 중 어느 하나를 포함하는 것일 수 있다. 용어 "외인성 (exogenous)"은 언급된 분자 (referenced molecule) 또는 언급된 활성 (referenced activity)이 숙주 세포로 도입된 것을 의미할 수 있다. 분자는 예를 들면, 숙주 염색체 내로의 삽입에 의하는 것과 같은 코딩 핵산 (encoding nucleic acid)의 숙주 유전 물질 내로의 도입 또는 플라스미드와 같은 비염색체 유전물질로서 도입될 수 있다. 코딩 핵산의 발현과 관련하여, 상기 용어 "외인성"은 상기 코딩 핵산이 개체 내로 발현 가능한 형태로 도입된 것을 나타낸다. 생합성 활성과 관련하여, 상기 용어 "외인성"은 숙주 모세포에 도입된 활성을 나타낸다. 그 기원 (source)은 예를 들면, 숙주 모세포에 도입된 후 언급된 활성을 발현하는 동질성 (homologous) 또는 이질성 (heterologous) 코딩 핵산일 수 있다. 그러므로, 용어 "내인성 (endogenous)"은 상기 숙주 세포에 존재하는 언급된 분자 또는 활성을 나타낸다. 비슷하게, 코딩 핵산의 발현과 관련하여, 상기 용어 "내인성"은 개체 내에 포함된 코딩 핵산의 발현을 나타낸다. 용어 "이질성 (heterologous)"은 언급된 종 외의 다른 기원으로부터의 분자 또는 활성을 나타내고 용어 "동질성 (homologous)"은 숙주 모세포로부터의 분자 또는 활성을 나타낸다. 따라서, 코딩 핵산의 외인성 발현은 이질성 (heterologous) 또는 동질성 (homologous) 코딩 핵산 중 어느 하나 또는 둘 다를 이용할 수 있다.
상기 외인성 유전자는, 상기 효모 세포에서 그 모세포에 비하여 언급된 효소의 활성이 증가되기에 충분한 양으로 발현된 것일 수 있다. 상기 아세토락테이트 신타아제를 코딩하는 외인성 유전자, 아세토락테이트 디카복실레이즈를 코딩하는 외인성 유전자, 2,3-부탄다이올 탈수소효소를 코딩하는 외인성 유전자, 및 NADH 산화효소를 코딩하는 외인성 유전자의 상동 유전자(homolog)는 서로 다른 미생물로부터 유래하였으나 그들이 코딩하는 단백질과 유사한 활성을 나타내는 단백질을 암호화하는 유전자를 의미할 수 있다. 상기 아세토락테이트 신타아제를 코딩하는 외인성 유전자, 아세토락테이트 디카복실레이즈를 코딩하는 외인성 유전자, 2,3-부탄다이올 탈수소효소를 코딩하는 외인성 유전자, 및 NADH 산화효소를 코딩하는 외인성 유전자는 각각 서열번호 2, 4, 6, 및 30의 아미노산 서열과 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85%이상, 약 90% 이상, 약 92% 이상, 약 95% 이상, 약 97% 이상, 약 98% 이상, 또는 약 99% 이상의 서열 상동성을 갖는 아미노산 서열을 코딩하는 것일 수 있다. 상기 아세토락테이트 신타아제를 코딩하는 외인성 유전자, 아세토락테이트 디카복실레이즈를 코딩하는 외인성 유전자, 2,3-부탄다이올 탈수소효소를 코딩하는 외인성 유전자, 및 NADH 산화효소를 코딩하는 외인성 유전자는 각각 서열번호 1, 3, 5, 및 29의 뉴클레오티드 서열과 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85%이상, 약 90% 이상, 약 92% 이상, 약 95% 이상, 약 97% 이상, 약 98% 이상, 또는 약 99% 이상의 서열 상동성을 갖는 것일 수 있다. 이러한 외인성 유전자는 미생물에서 발현되기에 적합한 코돈으로 변경된 서열, 최적화된 코돈을 갖는 서열로 변경될 수 있다. 이 코돈 변경은 단백질의 아미노산 서열이 바뀌지 않는 범위 내에서 적절히 이루어질 수 있다.
상기 외인성 유전자는 발현 벡터를 통하여 모세포 내로 도입된 것일 수 있다. 또한, 상기 외인성 유전자는 선형 폴리뉴클레오티드 형태로 모세포 내로 도입된 것일 수 있다. 또한, 상기 외인성 유전자는 세포 내에서 발현 벡터 (예, 플라스미드)로부터 발현되는 것일 수 있다. 또한, 상기 외인성 유전자는 안정적인 발현을 위하여 세포 내의 유전물질 (예, 염색체)에 삽입되어 발현되는 것일 수 있다. 상기 벡터는 복제개시점, 프로모터, 상기 효소를 코딩하는 폴리뉴클레오티드, 및 터미네이터를 포함할 수 있다. 상기 복제 개시점은 효모 자가복제 서열 (autonomous replication sequence, ARS)을 포함할 수 있다. 상기 효모 자가복제서열은 효모 동원체 서열 (centrometric sequence, CEN)에 의해 안정화될 수 있다. 상기 프로모터는 TDH3 프로모터, TEF 프로모터, TPI1 프로모터, 및 FBA1 프로모터로 이루어진 군으로부터 선택된 것일 수 있다. 상기 TDH3 프로모터, TEF 프로모터, TPI1 프로모터, 및 FBA1 프로모터는 각각 서열번호 13, 14, 15, 및 33의 뉴클레오티드 서열을 갖는 것일 수 있다. 상기 터미네이터는 PYK1, GPM1, TPI1 및 FBA1로 이루어진 군으로부터 선택되는 것일 수 있다. 상기 PYK1, GPM1, TPI1 및 FBA1 터미네이터는 각각 서열번호 16, 17, 18, 및 34의 뉴클레오티드 서열을 갖는 것일 수 있다. 상기 벡터는 선별 마커를 더 포함할 수 있다.
상기 효모 세포는 단일 유전자, 복수의 유전자 예를 들면, 2 내지 10 카피 수를 포함할 수 있다. 상기 효모 세포는, 예를 들면, 1 내지 10, 1 내지 8, 1 내지 7, 1 내지 6, 1 내지 5, 1 내지 4, 1 내지 3, 2 내지 10, 2 내지 8, 2 내지 7, 2 내지 6, 2 내지 5, 2 내지 4, 또는 2 내지 3 카피의 상기 효소를 코딩하는 유전자를 포함할 수 있다. 상기 효모 세포가 복수의 유전자를 포함하는 경우, 각각의 유전자는 동일한 유전자의 카피이거나 둘 이상의 상이한 유전자의 카피를 포함할 수 있다. 외인성 유전자의 복수의 카피는 숙주 세포의 게놈 내에 동일한 유전자 좌 (locus), 또는 여러 유전자 좌에 포함될 수 있다.
본 발명에서 제1 과 (family) 또는 종 (species)의 본래 효소 또는 유전자와 관련하여 사용된 용어 "동족체 (homolog)"는 기능적, 구조적 또는 유전체적 분석에 의해, 제1 과 또는 종의 본래 효소 또는 유전자에 상응하는 제2 과 (family) 또는 종 (species)의 효소 또는 유전자인 것으로 결정되는 제2 과 또는 종의 별개의 효소 또는 유전자를 지칭한다. 동족체는 기능적, 구조적 또는 유전체적 유사성을 가질 수 있다. 유전자 프로브 및 PCR을 이용하여 효소 또는 유전자의 동족체를 용이하게 클로닝할 수 있는 기술은 공지되어 있다. 클로닝된 서열의 동족체로서의 확인은 기능적 검사법을 이용하고 및/또는 유전자의 유전체 맵핑 (genomic mapping)에 의해 확인될 수 있다.
본 명세서에서 사용된 폴리뉴클레오티드는 "유전자"를 포함하고, 본 명세서에서 사용된 핵산 분자는 "벡터" 또는 "플라스미드"를 포함하는 것으로 이해될 수 있다. 따라서 용어 "유전자" (일명, "구조적 유전자")는 아미노산의 특정 서열을 코딩하는 폴리뉴클레오티드를 지칭하는데, 이것은 하나 또는 그 이상의 단백질 또는 효소의 전부 또는 일부를 포함하고, 그리고 예로써, 유전자가 발현되는 조건을 결정하는 조절 (비-전사된) DNA 서열, 예를 들면, 프로모터 서열을 포함할 수 있다. 유전자의 전사된 영역은 코딩 서열뿐만 아니라 인트론, 5'-비번역 영역 (UTR), 그리고 3'-UTR을 비롯한 비번역 영역을 포함할 수 있다.
또한, 상기 효모 세포는 모세포에 비하여 알코올 탈수소효소(alcohol dehydrogenase) 또는 글리세롤-3-인산 탈수소효소(glycerol-3-phosphate dehydrogenase)의 활성이 추가적으로 감소되어 있는 것인 효모 세포 일 수 있다.
본 발명에서 용어 "활성 감소 (decrease in activity)" 또는 "감소된 활성 (decreased activity)"은 모세포 (예, 유전적으로 조작되지 않은 세포) 중에서 측정된 것보다 더 낮은 효소 또는 폴리펩티드의 활성을 갖는 세포를 나타낸다. 또한, "활성 감소 (decrease in activity)" 또는 "감소된 활성 (decreased activity)"은 본래의 (original) 또는 야생형 (wild-type)의 효소 또는 폴리펩티드보다 더 낮은 활성을 갖는 분리된 효소 또는 폴리펩티드를 나타낸다. 활성 감소 또는 감소된 활성은 활성이 없는 것, 예를 들면, 불활성화(incactivation)를 포함한다. 상기 감소된 활성을 갖는 세포는, 유전적 변형을 갖지 않은 세포에 비하여 하나 이상의 효소 또는 폴리펩티드의 활성을 감소시키는 유전적 변형 (genetic modification)을 갖는 것일 수 있다.
상기 알코올 탈수소효소 또는 글리세롤-3-인산 탈수소효소의 활성이 감소된 미생물은 상기 단백질을 코딩하는 내인성 유전자(endogenous gene)가 제거 또는 파괴(disruption)된 것일 수 있다. 용어 "제거(deletion)" 또는 "파괴 (disruption)"는 유전자의 발현이 감소되도록 하는 유전적 변형을 나타낸다. 상기 파괴는 유전자의 "불활성화 (inactivation)" 또는 유전자의 "감쇄 (attenuation)"를 포함할 수 있다. 상기 불활성화는 유전자의 기능적 산물 (functional product)이 발현되지 않는 것뿐만 아니라 발현은 되지만 기능적 산물이 발현되지 않는 것을 포함한다. 상기 감쇄는 유전자의 기능적 산물의 발현량 감소를 포함한다. 즉, 상기 감쇄는 유전자의 순 발현량은 증가하였더라도 기능적 산물의 발현량이 감소되는 것을 포함할 수 있다. 여기서 유전자의 기능적 산물이란 모세포 또는 야생형 세포에서 상기 유전자의 산물 (예, 효소)이 갖는 생화학적 또는 생리적 기능 (예, 효소 활성)을 보유하고 있는 것을 말한다. 따라서, 상기 제거 또는 파괴는 유전자의 기능적 제거(functional deletion) 또는 파괴(functional disruption)를 포함한다.
상기 제거 또는 파괴하는 단계는 1) 상기 단백질을 암호화하는 유전자의 일부 또는 전체의 결실, 2) 상기 유전자의 발현이 감소하도록 발현조절 서열의 변형, 3) 상기 단백질의 활성이 약화되도록 염색체 상의 상기 유전자 서열의 변형 또는 4) 이의 조합 등을 사용하여 수행될 수 있다. 상기 단백질을 암호화하는 폴리뉴클레오티드의 일부 또는 전체를 결실하는 방법은 예를 들면, Cre/loxP 재조합 시스템을 사용하여 유전자 결손을 위한 카세트를 모세포에 형질전환함으로써 수행될 수 있고, 효모 내 염색체 삽입용 벡터를 통해 염색체 내 내재적 목적 단백질을 암호화하는 폴리뉴클레오티드를 일부 핵산 서열이 결실된 폴리뉴클레오티드 또는 마커 유전자로 교체함으로써 수행될 수 있다. 상기 "일부"란 폴리뉴클레오티드의 종류에 따라서 상이하지만, 예를 들면, 1 내지 700개, 1 내지 500개, 1 내지 300개, 1 내지 100개, 또는 1 내지 50개일 수 있다. 또한, 상기 뉴클레오티드의 발현이 감소하도록 발현조절 서열을 변형하는 방법은 상기 발현조절 서열의 활성을 더욱 약화하도록 핵산 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 발현조절 서열상의 변이를 유도하여 수행하거나, 더욱 약한 활성을 갖는 핵산 서열로 교체함으로써 수행할 수 있다. 상기 발현조절 서열에는 프로모터, 오퍼레이터 서열, 리보좀 결합 부위를 코딩하는 서열, 및 전사와 해독의 종결을 조절하는 서열을 포함한다. 아울러, 상기 단백질을 암호화하는, 염색체 상의 폴리뉴클레오티드 서열을 변형하는 방법은 상기 단백질의 활성을 더욱 약화하도록 폴리뉴클레오티드 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 서열상의 변이를 유도하여 수행하거나, 더욱 약한 활성을 갖도록 개량된 폴리뉴클레오티드 서열로 교체함으로써 수행할 수 있다.
본 발명에서 용어 "알코올 탈수소효소(alcohol dehydrogenase)"는 NAD+의 환원으로 알코올 및 알데하이드 또는 케톤 사이의 상호전환을 촉진하는 효소를 의미할 수 있다. 상기 알코올 탈수소효소는 효소의 이름이 상이하더라도, 그와 유사한 활성을 갖는 효소를 포함할 수 있으며, 예를 들면, ADH1, ADH2, ADH3, ADH4, ADH5, ADH6, ADH7 또는 SFA1를 포함할 수 있다. 또한, 상기 알코올 탈수소효소는 서열번호 40, 42, 44, 46, 또는 48의 아미노산 서열과 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85%이상, 약 90% 이상, 약 92% 이상, 약 95% 이상, 약 97% 이상, 약 98% 이상, 또는 약 99% 이상의 서열 상동성을 갖는 폴리펩티드 일 수 있다. 상기 알코올 탈수소효소 유전자는 서열번호 39, 41, 43, 45, 47 또는 49의 뉴클레오티드 서열과 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85%이상, 약 90% 이상, 약 92% 이상, 약 95% 이상, 약 97% 이상, 약 98% 이상, 또는 약 99% 이상의 서열 상동성을 갖는 것일 수 있다.
본 발명에서 용어 "글리세롤-3-인산 탈수소효소(glycerol-3-phosphate dehydrogenase)"는 DHAP(dihydroxyacetone phosphate)의 글리세롤-3-인산(G3P)으로의 전환을 촉진하는 효소를 의미할 수 있다. 상기 글리세롤-3-인산 탈수소효소는 효소의 이름이 상이하더라도, 그와 유사한 활성을 갖는 효소를 포함할 수 있으며, 예를 들면, GPD1 또는 GPD2를 포함할 수 있다. 또한, 상기 글리세롤-3-인산 탈수소효소는 서열번호 50 또는 52의 아미노산 서열과 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85%이상, 약 90% 이상, 약 92% 이상, 약 95% 이상, 약 97% 이상, 약 98% 이상, 또는 약 99% 이상의 서열 상동성을 갖는 폴리펩티드 일 수 있다. 상기 글리세롤-3-인산 탈수소효소 유전자는 서열번호 49 또는 51의 뉴클레오티드 서열과 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85%이상, 약 90% 이상, 약 92% 이상, 약 95% 이상, 약 97% 이상, 약 98% 이상, 또는 약 99% 이상의 서열 상동성을 갖는 것일 수 있다.
상기 2,3-부탄다이올 생산능이 증가된 유전적으로 조작된 효모 세포의 제조에 있어서, 아세토락테이트 신타아제, 아세토락테이트 디카복실레이즈, 2,3-부탄다이올 탈수소효소, 및 NADH 산화 효소의 활성 증가 또는 상기 효소를 코딩하는 유전자의 도입, 알코올 탈수소효소 및 글리세롤-3-인산 탈수소효소의 활성 감소 또는 상기 효소를 코딩하는 유전자의 제거 또는 파괴는 동시에 또는 개별적으로 수행될 수 있다. 일구체예에 있어서, 유전적으로 조작된 효모 세포의 제조는 모세포에 알코올 탈수소효소, 글리세롤-3-인산 탈수소효소 또는 그의 조합을 코딩하는 유전자를 제거한 후, 아세토락테이트 신타아제, 아세토락테이트 디카복실레이즈, 2,3-부탄다이올 탈수소효소, NADH 산화 효소 또는 그의 조합을 코딩하는 유전자를 도입하는 것일 수 있다.
2,3-부탄다이올을 효과적으로 생산할 수 있는 유전적으로 조작된 효모 세포의 2,3-부탄다이올 생산 경로에 대해 도 1을 참조하여 설명한다. 도 1은 일구체예에 따른 2,3-부탄다이올 생산 경로 및 경쟁 경로를 도식화하여 나타낸 도면이다.
도 1에 나타낸 바와 같이, 일구체예에 따른 효모 세포는 모세포에 비하여 아세토락테이트 신타아제, 아세토락테이트 디카복실레이즈, 및 2,3-부탄다이올 탈수소효소의 활성이 증가되어 있어 2,3-부탄다이올을 효과적으로 생산할 수 있다. 또한, 2,3-부탄다이올의 생산에 있어서, 부산물 생성을 억제하고, 2,3-부탄다이올의 생산을 더욱 증진시키고자, 상기 효모 세포는 2,3-부탄다이올의 생산 경로의 경쟁적 대상 경로가 추가적으로 차단된 것일 수 있다. 상기 경쟁적 대사 경로는 도 1에 나타낸 바와 같이, 에탄올 및 글리세롤 합성 대사 경로일 수 있으며, 상기 경쟁적 대사 경로는 알코올 탈수소효소 또는 글리세롤-3-인산 탈수소효소의 활성을 감소시켜 달성될 수 있다. 그에 더하여, 보조인자 불균형을 감소시키기 위한 과정을 추가적으로 수행할 수 있다. 세포는 해당작용을 통해 포도당으로부터 2분자의 피루브산을 생성하면서 2분자의 NAD+를 소모하여 2분자의 NADH를 생성한다. 또한, 2,3-부탄다이올 합성경로에서는 2분자의 피루브산으로 1분자의 2,3-부탄다이올을 생성하면서 1분자의 NADH가 NAD+로 전환된다. 이에 따라 하기 반응과 같이 NADH(과잉) 및 NAD+(부족)의 불균형이 발생한다.
Figure PCTKR2015013553-appb-I000001
따라서, NADH 산화 효소의 활성을 증가시켜 NADH를 산화시킴으로써 보조인자(cofactor, NAD+/NADH)의 불균형을 해소할 수 있다.
일 양상은 아세토인 생산능을 갖는 유전적으로 조작된 효모 세포를 제공한다.
상기 효모 세포는 모세포에 비하여 아세토락테이트 신타아제(acetolactate synthase), 및 아세토락테이트 디카복실레이즈(acetolactate decarboxylase)의 활성이 증가되어 있는 것일 수 있다.
본 명세서에서 사용된 용어 "아세토인(acetoin)"은 3-히드록시부타논(3-hydroxybutanone) 또는 아세틸 메틸 카르비놀(acetyl methyl carbinol)과 호환적으로 사용되고, C4H8O2의 분자식을 갖는 화합물을 의미할 수 있다. 상기 아세토인은 (R)-아세토인을 포함할 수 있다.
상기 효모 세포는 NADH 산화효소의 활성이 추가적으로 증가되어 있는 것인 효모 세포일 수 있다.
상기 효모 세포는 아세토락테이트 신타아제를 코딩하는 외인성 유전자 (exogenous gene), 아세토락테이트 디카복실레이즈를 코딩하는 외인성 유전자, 및 NADH 산화효소를 코딩하는 외인성 유전자로 이루어진 군으로부터 선택된 어느 하나이상을 포함하는 것일 수 있다.
또한, 상기 효모 세포는 모세포에 비하여 알코올 탈수소효소(alcohol dehydrogenase), 글리세롤-3-인산 탈수소효소(glycerol-3-phosphate dehydrogenase) 또는 2,3-부탄다이올 탈수소효소(2,3-butanediol dehydrogenase)의 활성이 감소되어 있는 것인 효모 세포 일 수 있다.
상기 알코올 탈수소효소, 글리세롤-3-인산 탈수소효소 또는 2,3-부탄다이올 탈수소효소의 활성이 감소된 미생물은 상기 단백질을 코딩하는 유전자(endogenous gene)가 제거 또는 파괴(disruption)된 것일 수 있다.
상기 아세토인 생산능이 증가된 유전적으로 조작된 효모 세포의 제조에 있어서, 아세토락테이트 신타아제, 아세토락테이트 디카복실레이즈, 또는 NADH 산화 효소의 활성 증가 또는 상기 효소를 코딩하는 유전자의 도입, 알코올 탈수소효소, 글리세롤-3-인산 탈수소효소 또는 2,3-부탄다이올 탈수소효소의 활성 감소 또는 상기 효소를 코딩하는 유전자의 제거 또는 파괴는 동시에 또는 개별적으로 수행될 수 있다. 일구체예에 있어서, 유전적으로 조작된 효모 세포의 제조는 모세포에 알코올 탈수소효소, 글리세롤-3-인산 탈수소효소, 2,3-부탄다이올 탈수소효소 또는 그의 조합을 코딩하는 유전자를 제거한 후, 아세토락테이트 신타아제, 아세토락테이트 디카복실레이즈, NADH 산화 효소 또는 그의 조합을 코딩하는 유전자를 도입하는 것일 수 있다.
아세토인을 효과적으로 생산할 수 있는 유전적으로 조작된 효모 세포의 아세토인 생산 경로에 대해 도 10을 참조하여 설명한다. 도 10은 일구체예에 따른 아세토인 생산 경로 및 경쟁 경로를 도식화하여 나타낸 도면이다.
도 10에 나타낸 바와 같이, 일구체예에 따른 효모 세포는 모세포에 비하여 아세토락테이트 신타아제, 및 아세토락테이트 디카복실레이즈의 활성이 증가되어 있어 아세토인을 효과적으로 생산할 수 있다. 또한, 아세토인의 생산에 있어서, 부산물 생성을 억제하고, 아세토인의 생산을 더욱 증진시키고자, 상기 효모 세포는 아세토인의 생산 경로의 경쟁적 대사 경로가 추가적으로 차단된 것일 수 있다. 상기 경쟁적 대사 경로는 도 10에 나타낸 바와 같이, 에탄올 및 글리세롤 합성 대사 경로일 수 있으며, 상기 경쟁적 대사 경로는 알코올 탈수소효소 또는 글리세롤-3-인산 탈수소효소의 활성을 감소시켜 달성될 수 있다. 또한, 아세토인을 2,3-부탄다이올로 전환하는 대사 경로를 제거하여 아세토인의 생산을 더 증가시킬 수 있다. 그에 더하여, 보조인자 불균형을 감소시키기 위한 과정을 추가적으로 수행할 수 있다. 하기 반응에서와 같이 세포는 해당작용을 통해 포도당으로부터 2분자의 피루브산을 생성하면서 2분자의 NAD+를 소모하여 2분자의 NADH를 생성한다. 이에 따라, 아세토인 합성 경로에서 NADH(과잉)와 NAD+(부족) 현상이 발생할 수 있다.
Figure PCTKR2015013553-appb-I000002
따라서, NADH 산화 효소의 활성을 증가시켜 NADH를 산화시킴으로써 보조인자(cofactor, NAD+/NADH)의 불균형을 해소할 수 있다.
상기 효모 세포는 사카로마이세스(Saccharomyces) 속에 속하는 것일 수 있다. 상기 효모 세포는 사카로마이세스(Saccharomyces), 클루베로마이세스(Kluyveromyces), 피키아(Pichia), 한세눌라(Hansenula), 자이고사카로마이세스(Zygosaccharomyces) 또는 캔디다(Candida)속에 속하는 균주인 것일 수 있다. 또한, 사카로마이세스(Saccharomyces)속에서 사카로마이세스 센수 스트릭토(Saccharomyces sensustricto) 집합체에 속하는 균주인 것일 수 있다. 사카로마이세스 센수 스트릭토(Saccharomyces sensustricto) 집합체에 속하는 균주는 예를 들면, 사카로마이세스 세레비지애(S. cerevisiae), 사카로마이세스 바야누스(S. bayanus), 사카로마이세스 파라독서스 (S. paradoxus), 사카로마이세스 미카테(S. mikatae), 또는 사카로마이세스 쿠드리아브제비(S. kudriavzevii)일 수 있다.
다른 양상은 모세포에 비하여 2,3-부탄다이올 생산능을 갖는 유전적으로 조작된 효모 세포를 배양하는 단계;및 상기 배양물로부터 2,3-부탄다이올을 분리하는 단계를 포함하는 2,3-부탄다이올을 생산하는 방법을 제공한다.
상기 "2,3-부탄다이올 생산능을 갖는 유전적으로 조작된 효모 세포"에 대해서는 상기한 바와 같다.
다른 양상은 모세포에 비하여 아세토인 생산능을 갖는 유전적으로 조작된 효모 세포를 배양하는 단계;및 상기 배양물로부터 아세토인을 분리하는 단계를 포함하는 아세토인을 생산하는 방법을 제공한다.
상기 "아세토인 생산능을 갖는 유전적으로 조작된 효모 세포"에 대해서는 상기한 바와 같다.
본 발명의 용어 "배양"이란, 상기 효모 세포로부터 2,3-부탄다이올, 또는 아세토인을 생산하기 위하여, 상기 세포를 적당히 인공적으로 조절한 환경조건에서 생육시키는 일련의 행위를 의미할 수 있다. 본 발명에서 상기 세포를 배양하는 방법은 당업계에 널리 알려져 있는 방법을 이용하여 수행할 수 있다. 구체적으로 상기 배양은 배치 공정 또는 주입 배치 또는 반복 주입 배치 공정(fed batch or repeated fed batch process)에서 연속식으로 배양할 수 있다. 배양에 사용되는 배지는 2,3-부탄다이올, 또는 아세토인으로 대사될 수 있는 하나 이상의 기질을 포함하는 것일 수 있으며, 예를 들면, 적당한 탄소원, 질소원, 아미노산, 비타민 등을 함유한 통상의 배지 내에서 호기성 조건 하에서 온도, pH 등을 조절하면서 적절한 방식으로 특정 균주의 요건을 충족해야 한다. 사용될 수 있는 탄소원으로는 글루코즈를 주탄소원으로 사용하며, 이외에 자일로즈, 수크로즈, 락토즈, 프락토즈, 말토즈, 전분, 셀룰로즈와 같은 당 및 탄수화물, 대두유, 해바라기유, 피마자유, 코코넛유 등과 같은 오일 및 지방, 팔미트산, 스테아린산, 리놀레산과 같은 지방산, 글리세롤, 에탄올과 같은 알코올, 아세트산과 같은 유기산이 포함될 수 있다. 이들 물질은 개별적으로 또는 혼합물로서 사용될 수 있다. 사용될 수 있는 질소원으로는 암모니아, 황산암모늄, 염화암모늄, 초산암모늄, 인산암모늄, 탄산안모늄, 및 질산암모늄과 같은 무기질소원; 글루탐산, 메티오닌, 글루타민과 같은 아미노산 및 펩톤, NZ-아민, 육류 추출물, 효모 추출물, 맥아 추출물, 옥수수 침지액, 카세인 가수분해물, 어류 또는 그의 분해생성물, 탈지 대두 케이크 또는 그의 분해생성물 등 유기질소원이 사용될 수 있다. 이들 질소원은 단독 또는 조합되어 사용될 수 있다. 상기 배지에는 인원으로서 인산 제1칼륨, 인산 제2칼륨 및 대응되는 소듐-함유 염이 포함될 수 있다. 사용될 수 있는 인원으로는 인산이수소칼륨 또는 인산수소이칼륨 또는 상응하는 나트륨-함유 염이 포함된다. 또한, 무기화합물로는 염화나트륨, 염화칼슘, 염화철, 황산마그네슘, 황산철, 황산망간 및 탄산칼슘 등이 사용될 수 있다. 마지막으로, 상기 물질에 더하여 아미노산 및 비타민과 같은 필수 성장 물질이 사용될 수 있다.
통상적으로 세포는 약 20℃ 내지 약 37℃ 범위의 온도에서 적절한 배지 내에 성장시킬 수 있다. 본 발명에서 성장 배지는, 예를 들면, 효모 질소 베이스(yeast nitrogen base), 암모늄 설페이트, 및 탄소/에너지 공급원으로서의 덱스트로스를 포함하는 브로스(broth) 또는 대부분의 사카로마이세스 세레비지애 균주의 성장을 위한 최적 비율로 펩톤, 효모 추출물 및 덱스트로스를 블렌딩한 YPD 배지와 같이 상업적으로 제조된 통상적인 배지일 수 있다. 그밖에 정의되거나 합성된 성장 배지도 사용할 수 있으며, 특정 미생물의 성장에 적절한 배지는 미생물학 또는 발효과학 분야의 당업자에게 공지되어 있다.
또한, 상기 분리는 배양물, 예를 들면, 세포, 배양 매질 또는 둘 모두로부터 분리하는 것일 수 있다.
생물 생산된 2,3-부탄다이올, 또는 아세토인은 당업계에 공지된 방법을 사용하여 배양 배지로부터 분리할 수 있다. 이러한 분리 방법은 원심분리, 여과, 이온교환크로마토그래피 또는 결정화일 수 있다. 예를 들면, 배양물을 저속 원심분리하여 바이오매스를 제거하고 얻어진 상등액을, 이온교환크로마토그래피를 통하여 분리할 수 있다.
일 양상에 따른 효모 세포 또는 상기 효모 세포를 이용한 2,3-부탄다이올을 생산하는 방법에 의하면, 2,3-부탄다이올을 고효율 및 고수율로 생산할 수 있다.
다른 양상에 따른 효모 세포 또는 상기 효모 세포를 이용한 아세토인을 생산하는 방법에 의하면, 아세토인을 고효율 및 고수율로 생산할 수 있다.
도 1은 일구체예에 따른 2,3-부탄다이올 생산 경로 및 경쟁 경로를 도식화하여 나타낸 도면이다.
도 2는 일구체예에 따른 2,3-부탄다이올 합성 유전자 발현을 위한 벡터의 개열도를 나타낸 도면이다.
도 3은 일구체예에 따른 2,3-부탄다이올 생산능이 증가된 S. cerevisiae 균주의 대사산물의 생산량을 나타낸 도면이다.
도 4는 일구체예에 따른 2,3-부탄다이올 생산능이 증가된 S. cerevisiae 균주의 대사산물의 생산량을 나타낸 도면이다.
도 5는 일구체예에 따른 2,3-부탄다이올 생산능이 증가된 S. cerevisiae 균주의 대사산물의 생산량을 나타낸 도면이다.
도 6은 일구체예에 따른 2,3-부탄다이올 생산능이 증가된 S. cerevisiae 균주의 대사산물의 생산량을 나타낸 도면이다.
도 7은 일구체예에 따른 2,3-부탄다이올 생산능이 증가된 S. cerevisiae 균주의 대사산물의 생산량을 나타낸 도면이다.
도 8은 일구체예에 따른 2,3-부탄다이올 생산능이 증가된 S. cerevisiae 균주의 대사산물의 생산량을 나타낸 도면이다.
도 9는 일구체예에 따른 2,3-부탄다이올 생산능이 증가된 S. cerevisiae 균주의 대사산물의 생산량을 나타낸 도면이다.
도 10은 일구체예에 따른 아세토인 생산 경로 및 경쟁 경로를 도식화하여 나타낸 도면이다.
도 11은 일구체예에 따른 아세토인 합성 유전자 발현을 위한 벡터의 개열도를 나타낸 도면이다.
도 12는 일구체예에 따른 아세토인 생산능이 증가된 S. cerevisiae 균주의 대사 산물의 생산량을 나타낸 도면이다.
도 13은 일구체예에 따른 아세토인 생산능이 증가된 S. cerevisiae 균주의 대사 산물의 생산량을 나타낸 도면이다.
도 14는 일구체예에 따른 아세토인 생산능이 증가된 S. cerevisiae 균주의 대사 산물의 생산량을 나타낸 도면이다.
도 15는 일구체예에 따른 아세토인 생산능이 증가된 S. cerevisiae 균주의 대사 산물의 생산량을 나타낸 도면이다.
도 16은 일 구체예에 따른 아세토인 생산능이 증가된 S. cerevisiae 균주의 유가식 배양에서의 대사 산물의 생산량을 나타낸 도면이다.
이하 본 발명을 실시예에 의해 보다 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 의해 제한되는 것은 아니다.
실시예 1: 2 ,3- 부탄다이올 (2,3- butanediol ) 생산능이 증가된 S. cerevisiae 균주의 제작
1. 2,3-부탄다이올 합성 유전자 발현 S. cerevisiae 균주의 제작
(1.1) 아세토락테이트 신타아제 , 아세토락테이트 디카복실레이즈 , 2,3- 부탄다이올 탈수소효소 및/또는 NADH 산화효소 유전자 도입용 플라스미드의 제작
(1.1.1) alsS, alsD, 및 BDH1 유전자 도입용 p413-SDB 플라스미드의 제작
2.3-부탄다이올 합성 유전자를 도입하기 위해, 아세토락테이트 신타아제(acetolactate synthase), 아세토락테이트 디카복실레이즈(acetolactate decarboxylase), 및 2,3-부탄다이올 탈수소효소(2,3-butanediol dehydrogenase) 유전자 도입용 플라스미드를 제작하였다.
아세토락테이트 신타아제로는 바실러스 서브틸리스(Bacilus subtilis) 유래의 alsS (서열번호 1의 뉴클레오티드 서열, 서열번호 2의 아미노산 서열), 아세토락테이트 디카복실레이즈로는 바실러스 서브틸리스(Bacilus subtilis) 유래의 alsD (서열번호 3의 뉴클레오티드 서열, 서열번호 4의 아미노산 서열), 2,3-부탄다이올 탈수소효소로는 사카로마이세스 세레비지애(Saccharomyces cerevisiae) 유래의 BDH1 (서열번호 5의 뉴클레오티드 서열, 서열번호 6의 아미노산 서열)을 각각 사용하였다. 구체적으로, alsS 유전자 및 alsD는 바실러스 서브틸리스 유전체 DNA를 주형으로 PCR(alsS 유전자: 서열번호 7 및 8의 프라이머 세트, alsD 유전자: 서열번호 9 및 10의 프라이머 세트)을 통해 확보하였다. 또한, BHD1 유전자는 사카로마이세스 세레비지애 유전체 DNA를 주형으로 PCR(서열번호 11 및 12의 프라이머 세트)을 통해 확보하였다.
또한, alsS, alsD 및 BHD1 유전자를 과발현시키기 위해, 각각 TDH3 (서열번호 13), TEF1 (서열번호 14), 및 TPI1 (서열번호 15)유전자의 프로모터와 PYK1 (서열번호 16), GPM1 (서열번호 17), TPI1 (서열번호 18) 유전자의 터미네이터를 사용하였다. TDH3, TEF1 프로모터는 p414GPD, p414TEF 벡터 (Mumberg et al., 1995)를 SacI, SpeI 제한효소로 처리하여 얻었다. 그 외의 프로모터와 터미네이터는 사카로마이세스 세레비지애의 유전체 DNA를 주형으로 사용하여 PCR(PYK1 터미네이터: 서열번호 19 및 20의 프라이머 세트, GPM1 터미네이터: 서열번호 21 및 22의 프라이머 세트, TPI1 프로모터: 서열번호 23 및 24의 프라이머 세트, TPI1 터미네이터: 서열번호 25 및 26의 프라이머 세트)을 통해 얻었다. 얻어진 프로모터 절편은 SacI, SpeI 제한효소를 이용하여 클로닝하였고, 터미네이터 절편은 XhoI, KpnI 제한효소를 이용하여 클로닝하였다.
이후, alsS, alsD, 및 BDH1는 BamHI, XhoI 제한효소를 사용하여 클로닝하였고, 그에 따라 얻어진 벡터를 각각 p414_P TDH3 -alsS-T PYK1 , p414_P TEF1 - alsD-T GPM1 , 및 p414_P TPI1 -BDH1-T TPI1 로 명명하였다.
최종적으로는 하나의 벡터를 사용하여 필요한 유전자를 모두 발현시키기 위하여, 앞서 클로닝 된 3종류의 벡터를 각각 주형으로 서열번호 27 및 28의 프라이머 세트를 사용하여 '프로모터-유전자-터미네이터'를 지니는 PCR 산물을 얻었다. 이 PCR 산물은 5' 말단에 MluI 제한효소 서열, 3' 말단에 AscI-NotI-MluI 서열을 갖는다. p413GPD 플라스미드 벡터(HIS3, P TDH3 , T CYC1 ) (Mumberg et al., 1995)를 BssHII 제한효소로 처리하고 PCR 산물인 P TEF1 - alsD-T GPM1 을 MluI 제한효소로 처리하여 클로닝하였다. 추가적인 클로닝은 벡터의 AscI, NotI 제한효소 자리와 PCR 산물의 MluI, NotI 제한효소 자리를 이용하였다. AscI과 MluI 은 동일한 접착말단(sticky end)을 형성하므로 서로 접착이 가능하고, 접착된 후에는 각 효소에 의해 더 이상 인지되지 않기 때문에 PCR 산물에 포함되어 클로닝된 새로운 AscI 제한효소 자리를 이용하여 추가적인 클로닝이 가능하다. 이러한 방법을 통하여 P TPI1 -BDH1-T TPI1 및 P TDH3 -alsS-T PYK1 를 순차적으로 클로닝 하여 벡터를 제작하고, 그를 p413-SDB로 명명하였다.
(1.1.2) alsD , alsD , BDH1 , 및 noxE 유전자 도입용 p413- SDBN 플라스미드의 제작
2,3-부탄다이올 합성 경로에서 발생할 수 있는 보조인자(cofactor, NAD+/NADH)의 불균형을 개선하고자 NADH 산화 효소를 추가적으로 발현시키고자 하였다.
NADH 산화 효소로는 락토코커스 락티스(Lactococcus lactis) 유래의 noxE (서열번호 29의 뉴클레오티드 서열, 서열번호 30의 아미노산 서열)를 사용하였다. noxE 유전자는 락토코커스 락티스의 유전체 DNA를 주형으로 PCR(서열번호 31 및 32의 프라이머 세트)을 통해 확보하였다.
또한, noxE 유전자를 과발현하기 위해, FBA1 유전자의 프로모터(서열번호 33)와 FBA1 유전자의 터미네이터(서열번호 34)를 사용하였다. FBA1 프로모터 및 터미네이터는 사카로마이세스 세레비지애의 유전체 DNA를 주형으로 사용하여 PCR(프로모터: 서열번호 35 및 36의 프라이머 세트, 터미네이터: 서열번호 37 및 38의 프라이머 세트)을 통해 얻었다.
그 외의 클로닝 방법은 상기 실시예 1의 (1.1.1)과 동일한 방법으로 수행하였고, 이에 따라 얻어진 벡터를 p414_P FBA1 -noxE-TFBA1로 명명하였다.
또한, 최종적으로 하나의 벡터를 사용하여 필요한 유전자를 모두 발현시키기 위하여, 상기 실시예 1의 (1.1.1)과 동일한 방법으로 p413-SDB 벡터에 동일한 방법으로 P FBA1 -noxE-TFBA1 클로닝하여 벡터를 제작하였고, 그를 p413-SDBN으로 명명하였다.
도 2는 일구체예에 따른 2,3-부탄다이올 합성 유전자 발현을 위한 벡터의 개열도를 나타낸 도면이다.
(1.2) alsS, alsD, 및 BDH1 유전자 발현 S. cerevisiae 균주의 제작
S. cerevisiae 균주 CEN.PK2-1C(MATa ura3 -52 trp1 -289 leu2 -3,112 his3Δ1 MAL2-8C SUC2) (Euroscarf, 독일)에 alsS, alsD, 및 BDH1 유전자를 과발현시키기 위하여, 실시예 1의 (1.1.1)에서 제작한 p413-SDB 벡터를 상기 균주에 리튬 아세테이트를 이용한 화학적 형질전환 방법에 의하여 도입하였다. 이후, 상기 형질전환 균주를 SC 배지 (20 g/l 포도당, 6.7 g/l YNB, 적당한 아미노산 첨가물)에서 배양하여, 상기 유전자가 형질전환된 균주를 선별하였고, 그를 S. cerevisiae WT[SDB]라고 명명하였다.
2. 2,3- 부탄다이올 합성 유전자 발현 및 알코올 탈수소 효소 및/또는 글리세롤 3-인산 탈수소 효소 유전자 결손 S. cerevisiae 균주의 제작
본 실시예에서는 2,3-부탄다이올 합성 경로에서 추가로 경쟁적 대사경로를 차단함으로써 부산물 생성을 억제하고 2,3-부탄다이올 생산을 증진시키고자 하였다. 사카로마이세스 세레비지애는 에탄올을 주요 대사산물로 생산하며 생장하는 균주이다. 2,3-부탄다이올 합성경로가 도입된 균주의 경우 글리세롤이 주요한 경쟁 대사산물로 생성된다. 따라서, 에탄올 및 글리세롤을 합성하는 대사경로를 차단함으로써, 2,3-부탄다이올 생산을 증진시킬 수 있다. 사카로마이세스 세레비지애에는 보조인자로 NADH를 사용하는 6종의 알코올 탈수소효소 (ADH1, ADH2, ADH3, ADH4, ADH5, 및 SFA1) 및 NADPH를 사용하는 알코올 탈수소효소 (ADH6, 및 ADH7)가 존재한다. 또한, NADH를 보조인자로 사용하여 디히드록시아세톤인산 (dihydroxyacetone phosphate, DHAP) 을 글리세롤-3-인산으로 전환시키는 글리세롤-3-인산 탈수소 효소 (GPD1 및 GPD2)가 존재한다.
이에, 본 실시예에서는 상기 ADH1 (서열번호 39의 뉴클레오티드 서열, 서열번호 40의 아미노산 서열), ADH2 (서열번호 41의 뉴클레오티드 서열, 서열번호 42의 아미노산 서열), ADH3 (서열번호 43의 뉴클레오티드 서열, 서열번호 44의 아미노산 서열), ADH4 (서열번호 45의 뉴클레오티드 서열, 서열번호 46의 아미노산 서열), ADH5 (서열번호 47의 뉴클레오티드 서열, 서열번호 48의 아미노산 서열), GPD1 (서열번호 49의 뉴클레오티드 서열, 서열번호 50의 아미노산 서열), 및 GPD2 (서열번호 51의 뉴클레오티드 서열, 서열번호 52의 아미노산 서열)를 결손시킨 균주를 제작하였다.
(2.1) 알코올 탈수소 효소 및/또는 글리세롤 3-인산 탈수소 효소 유전자 결손용 카세트의 제작
ADH1 내지 ADH5, GPD1 및 GPD2 유전자가 결손된 돌연변이는 Cre/loxP 재조합 시스템을 이용하였다. 유전자 결손을 위한 카세트는 pUG27(loxP-his5 + -loxP 결손 카세트를 포함하는 플라스미드, Euroscarf, 독일) 또는 pUG72 (loxP - URA3 - loxP 결손 카세트를 포함하는 플라스미드, Euroscarf, 독일) 플라스미드를 주형으로 사용하여 PCR 증폭을 통해 획득하였다. 유전자 결손 카세트 제작을 위한 프라이머 세트로는, 서열번호 53 및 54 (ADH1), 서열번호 55 및 56 (ADH2), 서열번호 57 및 58 (ADH3), 서열번호 59 및 60 (ADH4), 서열번호 61 및 62 (ADH5), 서열번호 63 및 64 (GPD1), 및 서열번호 65 및 66 (GPD2)의 조합을 각각 해당 유전자에 대해 사용하였다.
(2.2) 2,3- 부탄다이올 합성 유전자 발현 및 알코올 탈수소 효소 및/또는 글리세롤 3-인산 탈수소 효소 유전자 결손 S. cerevisiae 균주의 제작
(2.2.1) alsS , alsD , 및 BDH1 유전자 발현, 및 ADH 1 유전자 결손 S. cerevisiae 균주의 제작
실시예 1의 (2.1)에서 획득한 ADH1 유전자 결손 카세트를 효모 균주에 실시예 1의 (1.2)와 동일한 방법으로 형질전환하여 해당 유전자가 결손된 균주를 획득하였고, 이를 확인용 프라이머 (서열번호 67 및 68)를 사용하여 확인하였다. 유전자가 결손된 균주가 지니고 있는 선별마커를 제거하기 위하여 Cre recombinase를 발현시키는 pSH63 (TRP1, Cre recombinase under the control of GAL1 promoter, Euroscarf, 독일)를 형질전환 하였고 선별마커 유전자가 제거된 결손 균주를 제작하였다. 이후, 상기 유전자가 제거된 결손 균주에, 실시예 1의 (1.1.1)에서 제작한 p413-SDB 벡터를 형질전환하였고, 최종적으로 수득된 균주를 S. cerevisiae adh1Δ[SDB]로 명명하였다.
(2.2.2) alsS , alsD , 및 BDH1 유전자 발현, 및 ADH 1 내지 5 유전자 결손 S. cerevisiae 균주의 제작
확인용 프라이머로서, 각각 서열번호 69 및 70 (ADH2), 서열번호 71 및 72 (ADH3), 서열번호 73 및 74 (ADH4), 및 서열번호 75 및 76 (ADH5)의 조합을 사용한 것만을 제외하고는 실시예 1의 (2.2.1)과 동일한 방법으로 균주를 제작하였고, 그를 S. cerevisiae adh1-5Δ[SDB]로 명명하였다.
(2.2.3) alsS , alsD , 및 BDH1 유전자 발현, 및 GPD 1 및 2 유전자 결손 S. cerevisiae 균주의 제작
확인용 프라이머로서, 각각 서열번호 77 및 78 (GPD1), 및 서열번호 79 및 80 (GPD2)의 조합을 사용한 것만을 제외하고는 실시예 1의 (2.2.1)과 동일한 방법으로 균주를 제작하였고, 그를 S. cerevisiae gpd1Δgpd2Δ[SDB]로 명명하였다.
(2.2.4) alsS , alsD , 및 BDH1 유전자 발현, ADH 1 유전자 결손, 및 GPD 1 및 2 유전자 결손 S. cerevisiae 균주의 제작
실시예 1의 (2.2.1) 및 (2.2.3)과 동일한 방법으로 균주를 제작하였고, 그를 S. cerevisiae adh1Δgpd1Δgpd2Δ[SDB]로 명명하였다.
(2.2.5) alsS , alsD , 및 BDH1 유전자 발현, ADH 1 내지 5 유전자 결손, 및 GPD 1 및 2 유전자 결손 S. cerevisiae 균주의 제작
실시예 1의 (2.2.2) 및 (2.2.3)과 동일한 방법으로 균주를 제작하였고, 그를 S. cerevisiae adh1-5Δgpd1Δgpd2Δ[SDB]로 명명하였다.
3. 2,3- 부탄다이올 합성 유전자 발현, 알코올 탈수소 효소 유전자 결손, 글리세롤-3-인산 탈수소 효소 유전자 결손 및 NADH 산화 효소 발현 S. cerevisiae 균주의 제작
실시예 1의 (2.2.5)에서 제작한 ADH 1 내지 5 유전자 결손, 및 GPD 1 및 2 유전자 결손 S. cerevisiae 균주에, 실시예 1의 (1.1.2)에서 제작한 p413-SDBN 벡터를 실시예 1의 (2.2.1)과 동일한 방법으로 형질전환하여 균주를 제작하였고, 그를 S. cerevisiae adh1-5Δgpd1Δgpd2Δ[SDBN]로 명명하였다.
실시예 2: 제작된 S. cerevisiae 균주의 2,3-부탄다이올 생산성 증대 확인
1. 2,3- 부탄다이올 합성 유전자 발현 S. cerevisiae 균주의 2,3- 부탄다이올 생산성 증대 확인
2,3-부탄다이올 합성 유전자 발현 S. cerevisiae 균주의 2,3-부탄다이올 생산성 증대 확인하기 위해, 실시예 1의 (1.2)에서 제작한 균주를 2,3-부탄다이올 생산 배지에서 배양하였다.
구체적으로, 2,3-부탄다이올 생산 배지로는 SC-H (50 g/l 포도당, 6.7 g/l YNB, 히스티딘을 제외한 아미노산 첨가물) 및 YPD10(100 g/l포도당, 10 g/l yeast extract, 20 g/l bacto-peptone)을 사용하였다. 세포 배양은 진탕배양기를 이용하여 30 ℃에서 170rpm으로 진행하였다. 2,3-부탄다이올을 생산하기 위한 배양조건은 초기접종 세포농도는 OD600=0.3으로 고정하였고, 50 ml 코니컬 튜브에서 8 ml 배지로 진행하였다. 대사산물을 분석하기 위하여 배양액 800μl를 원심분리하여 상등액을 얻고, 이를 0.22 μm 필터로 여과하여 HPLC 분석을 진행하였다. UltiMate 3000 HPLC system(Thermo fishers scientific)을 이용하였고 BioRad Aminex HPX-87H 컬럼과 굴절률검출기(RI detector)를 사용하였다. 이동상은 5 mM 황산을 사용하였고 유속은 0.6 ml/분, 온도는 60도로 설정하여, 대사산물의 생산량을 확인하였고, 그 결과를 도 3에 나타내었다.
도 3은 일구체예에 따른 2,3-부탄다이올 생산능이 증가된 S. cerevisiae 균주의 대사산물의 생산량을 나타낸 도면이다.
도 3에 나타낸 바와 같이, 2,3-부탄다이올 합성 유전자를 발현하는 S. cerevisiae WT[SDB] 균주는 50 g/l의 포도당을 소모하여, 11.3 g/l의 2,3-부탄다이올, 6.0 g/l의 에탄올, 및 6.55 g/l의 글리세롤을 생산하는 것을 확인할 수 있다.
2. 2,3- 부탄다이올 합성 유전자 발현, 알코올 탈수소 효소 유전자 결손, 및/또는 글리세롤-3-인산 탈수소 효소 유전자 결손 S. cerevisiae 균주의 2,3- 부탄다이올 생산성 증대 확인
(2.1) ADH1 결손균주 adh1△에서의 2,3-부탄다이올 생산
실시예 1의 (2.2. 1)에서 제작한 S. cerevisiae adh1Δ [ SDB ] 균주의 대사 산물의 생산량을 실시예 2의 1과 동일한 방법으로 확인하였고, 그 결과를 도 4로 나타내었다.
도 4는 일구체예에 따른 2,3- 부탄다이올 생산능이 증가된 S. cerevisiae 균주의 대사산물의 생산량을 나타낸 도면이다.
도 4에 나타낸 바와 같이, S. cerevisiae adh1Δ [ SDB ] 균주는 S. cerevisiae WT[SDB] 균주와 비교하여 에탄올 생성이 감소하고 2,3- 부탄다이올 생성이 증가함을 확인할 수 있다.
(2.2) ADH1 내지 5가 결손된 균주 adh1-5△에서의 2,3-부탄다이올 생산
실시예 1의 (2.2. 2)에서 제작한 S. cerevisiae adh1 - [ SDB ] 균주의 대사 산물의 생산량을 실시예 2의 1과 동일한 방법으로 확인하였고, 그 결과를 도 5로 나타내었다.
도 5는 일구체예에 따른 2,3- 부탄다이올 생산능이 증가된 S. cerevisiae 균주의 대사산물의 생산량을 나타낸 도면이다.
도 5에 나타낸 바와 같이, S. cerevisiae adh1 - [ SDB ] 균주는 에탄올이 거의 생성되지 않음(0.4 g/l 이하)을 확인하였다. 또한, S. cerevisiae WT[ SDB ] 균주와 비교하여 2,3- 부탄다이올 단독으로는 1 g /l, 아세토인과 2,3- 부탄다이올의 합은 1.8 g/l 향상되었음을 확인할 수 있다.
(2.3) GPD1 및 GPD2가 결손된 gpd1△gpd2△에서의 2,3-부탄다이올 생산
실시예 1의 (2.2.3)에서 제작한 S. cerevisiae gpd1Δgpd2Δ[SDB] 균주의 대사 산물의 생산량을 실시예 2의 1과 동일한 방법으로 확인하였고, 그 결과를 도 6으로 나타내었다.
도 6은 일구체예에 따른 2,3-부탄다이올 생산능이 증가된 S. cerevisiae 균주의 대사산물의 생산량을 나타낸 도면이다.
도 6에 나타낸 바와 같이, S. cerevisiae gpd1Δgpd2Δ[SDB] 균주는 글리세롤을 거의 생성하지 않았고(0.1 g/l 이하) 2,3-부탄다이올의 생산이 증가하였음을 확인할 수 있다.
(2.4) ADH1 , GPD1 GPD2가 결손된 adh1 gpd1 gpd2 △에서의 2,3- 부탄다이올 생산
실시예 1의 (2.2.4)에서 제작한 S. cerevisiae adh1Δgpd1Δgpd2Δ[SDB] 균주의 대사 산물의 생산량을 실시예 2의 1과 동일한 방법으로 확인하였고, 그 결과를 도 7로 나타내었다.
도 7은 일구체예에 따른 2,3-부탄다이올 생산능이 증가된 S. cerevisiae 균주의 대사산물의 생산량을 나타낸 도면이다.
도 7에 나타낸 바와 같이, S. cerevisiae adh1Δgpd1Δgpd2Δ[SDB] 균주는 에탄올 및 글리세롤의 감소와 2,3-부탄다이올 생산량 증가 효과가 크게 나타났음을 확인할 수 있다.
(2.5) ADH1 내지 5, GPD1 GPD2가 결손된 adh1 -5△ gpd1 gpd2 △에서의 2,3-부탄다이올 생산증가
실시예 1의 (2.2.5)에서 제작한 S. cerevisiae adh1-5Δgpd1Δgpd2Δ[SDB] 균주의 대사 산물의 생산량을 실시예 2의 1과 동일한 방법으로 확인하였고, 그 결과를 도 8로 나타내었다.
도 8은 일구체예에 따른 2,3-부탄다이올 생산능이 증가된 S. cerevisiae 균주의 대사산물의 생산량을 나타낸 도면이다.
도 8에 나타낸 바와 같이, S. cerevisiae adh1-5Δgpd1Δgpd2Δ[SDB] 균주에서 에탄올(0.1 g/l 이하) 및 글리세롤(0.15 g/l 이하) 생성이 크게 감소하였고 2,3-부탄다이올(18.1 g/l)의 생산이 크게 증가함을 확인하였다.
3. 2,3- 부탄다이올 합성 유전자 발현, 알코올 탈수소 효소 유전자 결손, 글리세롤-3-인산 탈수소 효소 유전자 결손 및 NADH 산화 효소 발현 S. cerevisiae 균주의 2,3-부탄다이올 생산성 증대 확인
실시예 1의 3에서 제작한 S. cerevisiae adh1-5Δgpd1Δgpd2Δ[SDBN] 균주의 대사 산물의 생산량을 실시예 2의 1과 동일한 방법으로 확인하였고, 그 결과를 도 9로 나타내었다.
도 9는 일구체예에 따른 2,3-부탄다이올 생산능이 증가된 S. cerevisiae 균주의 대사산물의 생산량을 나타낸 도면이다.
도 9에 나타낸 바와 같이, S. cerevisiae adh1-5Δgpd1Δgpd2Δ[SDBN] 균주는 2,3-부탄다이올을 포함한 대사산물의 생성량은 동일한 수준으로 유지된 반면, 50 g/l 포도당을 모두 소모하는데 소요된 시간이 noxE를 발현시키지 않은 경우 72 시간인 것에 비해 43 시간으로 단축되었음을 확인할 수 있다.
추가적으로 상기 실시예 2의 1, 2 및 3의 결과를 하기 표 1 과 같이 정리하였다. WT[C]로 명명된 균주는 야생형 효모 균주 CEN.PK2-1C에 공벡터인 p413GPD를 형질전환한 균주로 본 실험에서 대조군으로 사용되었다
표 1
균주명 배양시간(h) 에탄올(g/l) 글리세롤 (g/l) 아세토인(g/l) 2,3-부탄다이올(g/l) 아세토인+2,3-부탄다이올(g/l)
WT[C] (CEN.PK2-1C,p413GPD) 24 22.03±0.11 0.70±0.01 0.56±0.05 0.03±0.00 0.59±0.05
WT[SDB] 31 5.97±0.69 6.55±0.58 0.86±0.24 11.30±0.33 12.16±0.43
adh1Δ[SDB] 27 3.44±0.72 8.64±0.32 0.60±0.37 13.27±0.28 13.87±0.59
adh1-5Δ[SDB] 36 0.39±0.05 10.54±0.25 1.77±0.15 12.22±0.13 14.00±0.25
gpd1Δgpd2Δ[SDB] 52 7.78±0.29 0.04±0.00 1.11±0.01 12.31±0.14 13.42±0.14
adh1Δgpd1Δgpd2Δ[SDB] 60 4.38±0.57 0.07±0.01 1.54±0.65 15.67±0.34 17.20±0.34
adh1-5Δgpd1Δgpd2Δ[SDB] 72 0.07±0.02 0.13±0.00 1.22±0.45 18.47±0.58 19.69±0.14
adh1-5Δgpd1Δgpd2Δ[SDBN] 43 0.12±0.09 0.04±0.01 1.78±0.22 18.89±1.22 20.67±1.00
실시예 3. 아세토인 생산능이 증가된 S. cerevisiae 균주의 제작
1. 아세토인 합성 유전자 발현 S. cerevisiae 균주의 제작
(1.1) 아세토락테이트 신타아제 , 아세토락테이트 디카복실레이즈 및/또는 NADH 산화 효소 유전자 도입용 플라스미드의 제작
(1.1.1) alsS, 및 alsD 유전자 도입용 p413-SD 플라스미드의 제작
아세토인 합성 유전자를 도입하기 위해, 아세토락테이트 신타아제(acetolactate synthase), 및 아세토락테이트 디카복실레이즈(acetolactate decarboxylase) 유전자 도입용 플라스미드를 제작하였다.
상기 실시예 1의 (1.1.1)과 동일한 방법의 PCR로 확보한 alsS 유전자는 p413GPD 플라스미드 벡터[HIS3, P TDH3 (서열번호 13) , T CYC1 (서열번호 81)] (Mumberg et al., 1995)에 BamHI, XhoI 제한효소를 사용하여 클로닝하고 p413G-alsS-C로 명명하였다. alsD 유전자는 p414PTEF1-TGPM1 플라스미드 벡터 [TRP1, P TEF1 (서열번호 14), T GPM1 (서열번호 17)] (Kim and Hahn, 2015)에 BamHI, XhoI 제한효소를 사용하여 클로닝하고 p414T-alsD-G로 명명하였다.
최종적으로는 하나의 벡터를 사용하여 필요한 유전자를 모두 발현시키기 위하여, 앞서 클로닝한 p414T-alsD-G벡터를 주형으로 서열번호 82, 84의 프라이머 세트를 사용하여 5' 말단에 MluI 제한효소 서열, 3' 말단에 AscI-NotI-MluI 서열을 갖는 PCR 산물 'P TEF1 - alsD-T GPM1 '을 확보하였다. 이를 MluI 제한효소로 처리하고 BssHII 제한효소로 처리한 p413GPD 플라스미드 벡터에 클로닝하여 p413-D로 명명하였다. 추가적인 클로닝은 벡터의 AscI, NotI 제한효소 자리와 PCR 산물의 MluI(혹은 MauBI), NotI 제한효소 자리를 이용하여 이루어진다. AscI과 MluI, MauBI 제한효소는 동일한 접착말단(sticky end)을 형성하므로 서로 접착이 가능하고, 접착된 후에는 각 효소에 의해 더 이상 인지되지 않기 때문에 PCR 산물에 포함되어 도입된 새로운 AscI 제한효소 자리를 이용하여 추가적인 클로닝이 가능하다. alsS 유전자를 추가로 클로닝하기 위하여 p413G-alsS-C벡터를 주형으로 서열번호 83, 84의 프라이머 세트를 사용하여 5' 말단에 MauBI 제한효소 서열, 3' 말단에 AscI-NotI-MluI 서열을 갖는 PCR 산물 'P TDH3 -alsS-T CYC1 '을 확보하였다. 이를 MauBI, NotI 제한효소로 처리하여 AscI, NotI 제한효소로 처리한 p413-D 벡터에 클로닝하여 p413-SD 벡터를 확보하였다.
(1.1.2) alsD, alsD, 및 noxE 유전자 도입용 p413-SDN 플라스미드의 제작
아세토인 합성 경로에서 발생할 수 있는 보조인자(cofactor, NAD+/NADH)의 불균형을 개선하고자 NADH 산화 효소를 추가적으로 발현시키고자 하였다.
NADH 산화 효소로는 상기 실시예 1의 (1.1.2)와 동일한 noxE를 사용하였고, 동일한 방법의 PCR로 noxE를 확보하였다. 이 PCR산물을 p414PFBA1-TFBA1 벡터 [TRP1, P FBA1 (서열번호 33), T FBA1 (서열번호 34)] (Kim and Hahn, 2015)에 HindIII, XhoI 제한효소를 사용하여 클로닝하여 p414F-noxE-F로 명명하였다.
최종적으로 아세토인 합성경로를 과발현하는 p413-SD에 noxE를 추가하기 위하여 상기 실시예 3의 (1.1.1)과 동일한 방법을 사용하였다. p414F-noxE-F벡터를 주형으로 서열번호 85, 86의 프라이머 세트를 사용하여 5' 말단에 MluI 제한효소 서열, 3' 말단에 AscI-NotI-MluI 서열을 갖는 PCR 산물 'P FBA1 - noxE-T FBA1 '를 확보하였다. 이를 MluI, NotI 제한효소로 처리하여 AscI, NotI 제한효소가 처리된 p413-SD 벡터에 클로닝하여 최종적으로 p413-SDN 벡터를 완성하였다.
도 11은 일구체예에 따른 아세토인 합성 유전자 발현을 위한 벡터의 개열도를 나타낸 도면이다.
(1.2) alsS, 및 alsD 유전자 발현 S. cerevisiae 균주의 제작
S. cerevisiae 균주 CEN.PK2-1C(MATa ura3 -52 trp1 -289 leu2 -3,112 his3Δ1 MAL2-8C SUC2) (Euroscarf, 독일)에 alsS, 및 alsD 유전자를 과발현시키기 위하여, 실시예 3의 (1.1.1)에서 제작한 p413-SD 벡터를 상기 균주에 리튬 아세테이트를 이용한 화학적 형질전환 방법에 의하여 도입하였다. 이후, 상기 형질전환 균주를 SC-H 배지 (20 g/L 포도당, 6.7 g/L YNB, 1.92 g/L 히스티딘을 제외한 아미노산 첨가물)에서 배양하여, 상기 유전자가 형질전환된 균주를 선별하였고, 그를 S. cerevisiae WT[SD]라고 명명하였다.
2. 아세토인 합성 유전자 발현 및 알코올 탈수소 효소, 글리세롤 3-인산 탈수소 효소 및/또는 2,3- 부탄다이올 탈수소 효소 유전자 결손 S. cerevisiae 균주의 제작
본 실시예에서는 아세토인 합성 경로에서 추가로 경쟁적 대사경로를 차단함으로써 부산물 생성을 억제하고 아세토인 생산을 증진시키고자 하였다. 사카로마이세스 세레비지애는 에탄올을 주요 대사산물로 생산하며 생장하는 균주이다. 아세토인 합성경로가 도입된 균주의 경우 에탄올과 함께 글리세롤이 주요한 경쟁 대사산물로 생성된다. 따라서, 에탄올 및 글리세롤을 합성하는 대사경로를 차단함으로써, 아세토인 생산을 증진시킬 수 있다.
이에, 본 실시예에서는 상기 ADH1, ADH2, ADH3, ADH4, ADH5, GPD1, 및 GPD2 를 결손시킨 균주를 제작하였다.
또한, 추가적으로, 아세토인을 2,3-부탄다이올로 전환하는 대사 경로를 제거하기 위해, 2,3-부탄다이올 탈수소 효소(BDH1)를 결손시킨 균주를 제작하였다.
(2.1) 알코올 탈수소 효소, 글리세롤 3-인산 탈수소 효소 및/또는 2,3- 부탄다이올 탈수소 효소 유전자 결손용 카세트의 제작
ADH1 내지 ADH5, GPD1 및 GPD2 유전자가 결손된 돌연변이는 Cre/loxP 재조합 시스템을 이용하였다. 유전자 결손을 위한 카세트는 상기 실시예 1의 (2.1)과 동일한방법으로 제조하였다.
BDH1 유전자가 결손된 돌연변이는 상동 재조합 시스템을 이용하였다. BDH1 유전자 결손용 카세트는 bdh1Δ (BY4741 bdh1Δ::KanMX6, Euroscarf)균주의 유전체 DNA를 주형으로 하여 BDH1 유전자 위치의 상위 300 bp, 하위 282 bp에 동질성을 가지는 프라이머(서열번호 87 및 88의 조합)를 이용하여 PCR 증폭을 통해 제작하였다.
(2.2) S. cerevisiae 균주의 제작
(2.2.1) alsS , 및 alsD 유전자 발현, ADH 1 내지 5 유전자 결손, 및 GPD 1 및 2 유전자 결손 S. cerevisiae 균주의 제작
S. cerevisiae 균주 CEN.PK2-1C(MATa ura3 -52 trp1 -289 leu2 -3,112 his3 △1 MAL2-8C SUC2) (Euroscarf, 독일)에 상기 실시예 3의 (2.1)에서 제작한 ADH1 내지 ADH5, GPD1 및 GPD2 유전자 결손용 카세트를 상기 실시예 1의 (2.2.1)과 동일한 방법으로 균주를 제작하였고, 최종적으로 수득된 균주를 S. cerevisiae adh1-5△gpd1△gpd2△라고 명명하였다. 이후, 상기 균주에 실시예 3의 (1.1.1)에서 제작한 p413-SD 벡터를 형질전환하였고, 최종적으로 수득된 균주를 S. cerevisiae adh1-5△gpd1△gpd2△[SD]로 명명하였다.
(2.2.2) alsS , 및 alsD 유전자 발현, ADH 1 내지 5 유전자 결손, GPD 1 및 2 유전자 결손, 및 BDH1 유전자 결손 S. cerevisiae 균주의 제작
상기 실시예 3의 (2.1)에서 제작한 ADH1 내지 ADH5, GPD1 및 GPD2 유전자 결손용 카세트, 및 BDH1 유전자 결손용 카세트를 상기 실시예 3의 (2.2.1)과 동일한 방법으로 형질전환 한 후, 상기 실시예 3의 (1.1.1)에서 제조한 p413-SD 플라스미드를 상기 실시예 3의 (2.2.1)과 동일한 방법으로 형질전환하였다. 상기 BDH1 유전자의 결손 확인용 프라이머로서, 서열번호 89 및 90의 조합을 사용하였고, 최종적으로 수득된 균주를 S. cerevisiae adh1-5△gpd1△gpd2△bdh1△[SD]라고 명명하였다.
(2.2.3) alsS , alsD , 및 noxE 유전자 발현, ADH 1 내지 5 유전자 결손, GPD 1 및 2 유전자 결손, 및 BDH1 유전자 결손 S. cerevisiae 균주의 제작
상기 실시예 3의 (2.1)에서 제작한 ADH1 내지 ADH5, GPD1 및 GPD2 유전자 결손용 카세트, 및 BDH1 유전자 결손용 카세트를 상기 실시예 3의 (2.2.1)과 동일한 방법으로 형질전환 한 후, 상기 실시예 3의 (1.1.2)에서 제조한 p413-SDN 플라스미드를 상기 실시예 3의 (2.2.1)과 동일한 방법으로 형질전환하였고, 최종적으로 수득된 균주를 S. cerevisiae adh1-5△gpd1△gpd2△bdh1△[SDN]라고 명명하였다.
실시예 4. 제작된 S. cerevisiae 균주의 아세토인 생산성 증대 확인
1. alsS , 및 alsD 유전자 발현 S. cerevisiae 균주의 아세토인 생산성 증대 확인
아세토인 합성 유전자 발현 S. cerevisiae 균주의 아세토인 생산성 증대 확인하기 위해, 실시예 3의 (1.2)에서 제작한 균주를 아세토인 생산 배지에서 배양하였다.
구체적으로, 아세토인 생산 배지로는 SC-H (50 g/L 포도당, 6.7 g/L YNB, 1.92 g/L 히스티딘을 제외한 아미노산 첨가물) 및 YPD5 (50 g/L 포도당, 10 g/L yeast extract, 20 g/L bacto-peptone)을 사용하였다. 세포 배양은 진탕배양기를 이용하여 30 ℃에서 170 rpm으로 진행하였다. SC-H 배지를 사용하는 경우, 초기접종 세포농도는 OD600=0.3으로 고정하였고, 100 mL 삼각플라스크에서 10 mL 배지로 진행하였다. YPD5 배지를 사용하는 경우, 초기접종 세포농도는 OD600=10으로 고정하였고, 250 mL 삼각플라스크에서 25 mL 배지로 진행하였다. 대사산물을 분석하기 위하여 배양액 1 mL를 원심분리하여 상등액을 얻고, 이를 0.22 ㎛ 필터로 여과하여 HPLC 분석을 진행하였다. UltiMate 3000 HPLC system(Thermo fishers scientific)을 이용하였고 BioRad Aminex HPX-87H 컬럼과 굴절률검출기(RI detector)를 사용하였다. 이동상은 5 mM 황산을 사용하였고 유속은 0.6 mL/분, 온도는 60 ℃로 설정하여, 대사산물의 생산량을 확인하였고, 그 결과를 도 12에 나타내였다.
도 12는 일구체예에 따른 아세토인 생산능이 증가된 S. cerevisiae 균주의 대사 산물의 생산량을 나타낸 도면이다.
도 12에 나타난 바와 같이, 아세토인 합성 유전자를 발현하는 S. cerevisiae WT[SD] 균주는 50 g/L의 포도당을 소모하여, 9.3 g/L 의 아세토인, 2.1 g/L의 2,3-부탄다이올, 7.9 g/L 의 에탄올, 및 3.8 g/L 의 글리세롤을 생산하는 것을 확인할 수 있다.
2. alsS , 및 alsD 유전자 발현, ADH 1 내지 5 유전자 결손, 및 GPD 1 및 2 유전자 결손 S. cerevisiae 균주의 아세토인 생산성 증대 확인
상기한 바와 같은 방법으로, S. cerevisiae adh1-5△gpd1△gpd2△[SD]의 물질 대사를 확인하였고, 그 결과를 도 13에 나타내었다.
도 13은 일구체예에 따른 아세토인 생산능이 증가된 S. cerevisiae 균주의 대사 산물의 생산량을 나타낸 도면이다.
도 13에 나타낸 바와 같이, S. cerevisiae adh1-5△gpd1△gpd2△[SD] 균주는 50 g/L의 포도당을 소모하여, 5.9 g/L의 아세토인을 생산함을 알 수 있다. 또한, 부산물로서, 9.3 g/L의 2,3-부탄다이올이 생성되었음을 알 수 있다.
3. alsS , 및 alsD 유전자 발현, ADH 1 내지 5 유전자 결손, GPD 1 및 2 유전자 결손, 및 BDH1 유전자 결손 S. cerevisiae 균주의 아세토인 생산성 증대 확인
상기한 바와 같은 방법으로, S. cerevisiae adh1-5△gpd1△gpd2△bdh1△[SD]의 물질 대사를 확인하였고, 그 결과를 도 14에 나타내었다.
도 14는 일구체예에 따른 아세토인 생산능이 증가된 S. cerevisiae 균주의 대사 산물의 생산량을 나타낸 도면이다.
도 14에 나타낸 바와 같이, S. cerevisiae adh1-5△gpd1△gpd2△bdh1△[SD] 균주는 50 g/L의 포도당을 소모하여, 15.43 g/L의 아세토인을 생산함을 알 수 있다. 또한, 부산물로서 0.18 g/L의 2,3-부탄다이올이 생성되었고, 그 외의 부산물도 거의 생성되지 않았음을 알 수 있다.
4. alsS , alsD , 및 noxE 유전자 발현, ADH 1 내지 5 유전자 결손, GPD 1 및 2 유전자 결손, 및 BDH1 유전자 결손 S. cerevisiae 균주의 아세토인 생산성 증대 확인
상기한 바와 같은 방법으로, S. cerevisiae adh1-5△gpd1△gpd2△bdh1△[SDN]의 물질 대사를 확인하였고, 그 결과를 도 15에 나타내었다.
도 15는 일구체예에 따른 아세토인 생산능이 증가된 S. cerevisiae 균주의 대사 산물의 생산량을 나타낸 도면이다.
도 15에 나타낸 바와 같이, S. cerevisiae adh1-5△gpd1△gpd2△bdh1△[SDN] 균주는 50 g/L의 포도당을 소모하여, 20.1 g/L의 아세토인을 생산함을 알 수 있다. 또한, 부산물이 거의 생성되지 않았을 뿐만 아니라, 50 g/L의 포도당을 모두 소모하는데 소요된 시간이 48시간으로 크게 단축되었음을 알 수 있다.
추가적으로, S. cerevisiae adh1-5△gpd1△gpd2△bdh1△[SDN] 균주에 대해 유가식 배양을 통한 물질 대사를 확인하였다.
구체적으로 상기한 바와 같이 YPD5 배지를 사용하여 배양하였고, 포도당이 모두 소모되기 전 80% 포도당으로 구성된 유입용액을 추가하여 탄소원을 공급하였다. 상기한 바와 같은 방법으로, S. cerevisiae adh1-5△gpd1△gpd2△bdh1△[SDN]의 물질 대사를 확인하였고, 그 결과를 도 16에 나타내었다.
도 16은 일 구체예에 따른 아세토인 생산능이 증가된 S. cerevisiae 균주의 유가식 배양에서의 대사 산물의 생산량을 나타낸 도면이다.
도 16에 나타낸 바와 같이 S. cerevisiae adh1-5△gpd1△gpd2△bdh1△[SDN] 균주는 부산물인 글리세롤(0.2 g/L), 에탄올(0.4 g/L), 및 2,3-부탄다이올(0.9 g/L)은 미미한 수준으로 생성하였고, 아세토인 (80.8 g/L)을 과량 생산하였음을 알 수 있다.

Claims (20)

  1. 모세포에 비하여 아세토락테이트 신타아제(acetolactate synthase), 아세토락테이트 디카복실레이즈(acetolactate decarboxylase), 및 2,3-부탄다이올 탈수소효소(2,3-butanediol dehydrogenase)의 활성이 증가되어 있는, 2,3-부탄다이올 생산능을 갖는 유전적으로 조작된 효모 세포.
  2. 청구항 1에 있어서, 상기 효모 세포는 모세포에 비하여 알코올 탈수소효소(alcohol dehydrogenase) 또는 글리세롤-3-인산 탈수소효소(glycerol-3-phosphate dehydrogenase)의 활성이 감소되어 있는 것인 효모 세포.
  3. 청구항 1에 있어서, 상기 효모 세포는 모세포에 비하여 NADH 산화효소(NADH oxidase)의 활성이 증가되어 있는 것인 효모 세포.
  4. 청구항 1에 있어서, 상기 효모 세포는 아세토락테이트 신타아제를 코딩하는 외인성 유전자(exogenous gene), 아세토락테이트 디카복실레이즈를 코딩하는 외인성 유전자, 및 2,3-부탄다이올 탈수소효소를 코딩하는 외인성 유전자를 포함하는 것인 효모 세포.
  5. 청구항 2에 있어서, 상기 알코올 탈수소효소는 ADH1, ADH2, ADH3, ADH4, ADH5 또는 그들의 조합인 것인 효모 세포.
  6. 청구항 2에 있어서, 상기 글리세롤-3-인산 탈수소효소는 GPD1, GPD2 또는 그들의 조합인 것인 효모 세포.
  7. 청구항 2에 있어서, 상기 효모 세포는 알코올 탈수소효소 또는 글리세롤-3-인산 탈수소효소를 코딩하는 유전자가 제거 또는 파괴된 것인 효모 세포.
  8. 청구항 3에 있어서, 상기 NADH 산화효소는 nox1, nox3, nox4 또는 noxE인 것인 효모 세포.
  9. 청구항 1에 있어서, 상기 효모 세포는 사카로마이세스(Saccharomyces) 속에 속하는 것인 효모 세포.
  10. 청구항 1 내지 9 중 어느 한 항의 효모 세포를 배지에서 배양하는 단계;및
    상기 배양물로부터 2,3-부탄다이올을 분리하는 단계를 포함하는 2,3-부탄다이올을 생산하는 방법.
  11. 모세포에 비하여 아세토락테이트 신타아제(acetolactate synthase), 및 아세토락테이트 디카복실레이즈(acetolactate decarboxylase)의 활성이 증가되어 있는, 아세토인 생산능을 갖는 유전적으로 조작된 효모 세포.
  12. 청구항 11에 있어서, 상기 효모 세포는 모세포에 비하여 알코올 탈수소효소(alcohol dehydrogenase), 글리세롤-3-인산 탈수소효소(glycerol-3-phosphate dehydrogenase), 또는 2,3-부탄다이올 탈수소효소(2,3-butanediol dehydrogenase)의 활성이 감소되어 있는 것인 효모 세포.
  13. 청구항 11에 있어서, 상기 효모 세포는 모세포에 비하여 NADH 산화효소(NADH oxidase)의 활성이 증가되어 있는 것인 효모 세포.
  14. 청구항 11에 있어서, 상기 효모 세포는 아세토락테이트 신타아제를 코딩하는 외인성 유전자(exogenous gene), 및 아세토락테이트 디카복실레이즈를 코딩하는 외인성 유전자를 포함하는 것인 효모 세포.
  15. 청구항 12에 있어서, 상기 알코올 탈수소효소는 ADH1, ADH2, ADH3, ADH4, ADH5 또는 그들의 조합인 것인 효모 세포.
  16. 청구항 12에 있어서, 상기 글리세롤-3-인산 탈수소효소는 GPD1, GPD2 또는 그들의 조합인 것인 효모 세포.
  17. 청구항 13에 있어서, 상기 NADH 산화효소는 nox1, nox3, nox4 또는 noxE인 것인 효모 세포.
  18. 청구항 12에 있어서, 상기 효모 세포는 알코올 탈수소효소, 글리세롤-3-인산 탈수소효소, 또는 2,3-부탄다이올 탈수소효소를 코딩하는 유전자가 제거 또는 파괴된 것인 효모 세포.
  19. 청구항 11에 있어서, 상기 효모 세포는 사카로마이세스(Saccharomyces) 속에 속하는 것인 효모 세포.
  20. 청구항 11 내지 19 중 어느 한 항의 효모 세포를 배지에서 배양하는 단계;및
    상기 배양물로부터 아세토인을 분리하는 단계를 포함하는 아세토인을 생산하는 방법.
PCT/KR2015/013553 2015-01-29 2015-12-11 2,3-부탄다이올 또는 아세토인 생산능을 갖는 유전적으로 조작된 효모 세포 및 그를 사용하여 2,3-부탄다이올 또는 아세토인을 생산하는 방법 WO2016122107A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0014601 2015-01-29
KR1020150014601A KR101773123B1 (ko) 2015-01-29 2015-01-29 2,3-부탄다이올 생산능을 갖는 유전적으로 조작된 효모 세포 및 그를 사용하여 2,3-부탄다이올을 생산하는 방법
KR1020150171436A KR101819189B1 (ko) 2015-12-03 2015-12-03 아세토인 생산능을 갖는 유전적으로 조작된 효모 세포 및 그를 사용하여 아세토인을 생산하는 방법
KR10-2015-0171436 2015-12-03

Publications (1)

Publication Number Publication Date
WO2016122107A1 true WO2016122107A1 (ko) 2016-08-04

Family

ID=56543675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/013553 WO2016122107A1 (ko) 2015-01-29 2015-12-11 2,3-부탄다이올 또는 아세토인 생산능을 갖는 유전적으로 조작된 효모 세포 및 그를 사용하여 2,3-부탄다이올 또는 아세토인을 생산하는 방법

Country Status (1)

Country Link
WO (1) WO2016122107A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3056226A1 (fr) * 2016-09-22 2018-03-23 Weylchem Lamotte Bioproduction d'acetaldehyde par reorientation du metabolisme fermentaire de s. cerevisiae
EP3172330B1 (en) * 2014-07-25 2019-12-25 Alderys Microorganism strains for the production of 2.3- butanediol

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100086644A1 (en) * 2007-05-07 2010-04-08 Sylvie Dequin Means for reducing acetoin buildup in alcoholic fermentation media
WO2013076144A2 (en) * 2011-11-21 2013-05-30 Metabolic Explorer Microorganism strains for the production of 2,3-butanediol
KR20130094394A (ko) * 2012-02-16 2013-08-26 서강대학교산학협력단 2,3-부탄다이올 제조용 효모의 제조방법
US20140080188A1 (en) * 2011-03-09 2014-03-20 Gevo, Inc. Yeast microorganisms with reduced 2,3-butanediol accumulation for improved production of fuels, chemicals, and amino acids
WO2014052920A2 (en) * 2012-09-28 2014-04-03 The Regents Of The University Of California Methods of producing acetoin and 2,3-butanediol using photosynthetic microorganisms

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100086644A1 (en) * 2007-05-07 2010-04-08 Sylvie Dequin Means for reducing acetoin buildup in alcoholic fermentation media
US20140080188A1 (en) * 2011-03-09 2014-03-20 Gevo, Inc. Yeast microorganisms with reduced 2,3-butanediol accumulation for improved production of fuels, chemicals, and amino acids
WO2013076144A2 (en) * 2011-11-21 2013-05-30 Metabolic Explorer Microorganism strains for the production of 2,3-butanediol
KR20130094394A (ko) * 2012-02-16 2013-08-26 서강대학교산학협력단 2,3-부탄다이올 제조용 효모의 제조방법
WO2014052920A2 (en) * 2012-09-28 2014-04-03 The Regents Of The University Of California Methods of producing acetoin and 2,3-butanediol using photosynthetic microorganisms

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BAE, SANG - JEONG ET AL.: "PS6-3: Metabolic Engineereing of Saccharomyces Cerevisiae for enhanced Production of Acetoin", 27TH INTERNATIONAL CONFERENCE ON YEAST GENETICS AND MOLECULAR BIOLOGY, 6 July 2015 (2015-07-06), Levico Terme (Trento), Italy *
KIM, SUJIN ET AL.: "S4-2:Metabolic Engineering of Saccharomyces Cerevisiae for the Production of 2,3-butanediol", MOLECULAR MICROBIOLOGY WORKSHOP, 12 December 2014 (2014-12-12), Korea *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3172330B1 (en) * 2014-07-25 2019-12-25 Alderys Microorganism strains for the production of 2.3- butanediol
FR3056226A1 (fr) * 2016-09-22 2018-03-23 Weylchem Lamotte Bioproduction d'acetaldehyde par reorientation du metabolisme fermentaire de s. cerevisiae
WO2018055308A1 (fr) * 2016-09-22 2018-03-29 Weylchem Lamotte Bioproduction d'acetaldehyde par reorientation du metabolisme fermentaire de s. cerevisiae

Similar Documents

Publication Publication Date Title
WO2015194921A1 (ko) 신규한 피키아 쿠드리압즈비 ng7 균주 및 이의 용도
WO2021133101A2 (ko) 마이코스포린 유사 아미노산을 생산하는 미생물 및 이를 이용한 마이코스포린 유사 아미노산의 생산방법
WO2014003439A1 (ko) 에탄올 생산 경로가 봉쇄된 클루이베로마이세스 막시아누스 균주 및 이의 용도
WO2016032279A9 (en) Recombinant Yeast Producing 3-Hydroxypropionic Acid and Method for Producing 3-Hydroxypropionic Acid Using the Same
WO2019203435A1 (ko) 유기산 내성 효모 유래 신규 프로모터 및 이를 이용한 목적유전자의 발현방법
WO2016200207A1 (ko) 젖산을 생산하는 미생물 및 이를 이용한 젖산 제조 방법
WO2015170914A1 (ko) 젖산 생산이 향상된 미생물 및 이를 이용하여 젖산을 생산하는 방법
WO2013119020A1 (ko) 에탄-1, 2-디올 생산 미생물 및 이를 이용한 에탄-1, 2-디올 생산 방법
CA3094172A1 (en) Methods for ethanol production using engineered yeast
WO2012046924A1 (ko) 아라비노스 대사경로가 도입된 자일리톨 생산균주 및 이를 이용한 자일리톨 생산방법
WO2015163682A1 (ko) 2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 2,3-부탄디올의 생산 방법
EP2977444B1 (en) Recombinant microorganism with increased productivity of 2,3-butanediol, and method for producing 2,3-butanediol using same
WO2015093831A1 (ko) D(-)2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 d(-)2,3-부탄디올의 생산 방법
WO2019035612A1 (ko) 마이코스포린 유사 아미노산을 생산하는 미생물 및 이를 이용한 마이코스포린 유사 아미노산의 생산방법
WO2016122107A1 (ko) 2,3-부탄다이올 또는 아세토인 생산능을 갖는 유전적으로 조작된 효모 세포 및 그를 사용하여 2,3-부탄다이올 또는 아세토인을 생산하는 방법
WO2019235680A1 (ko) 5'-크산틸산을 생산하는 미생물 및 이를 이용한 5'-크산틸산의 제조방법
WO2022004953A1 (ko) 아세토인 생산능을 갖는 유전적으로 조작된 효모 및 이를 이용한 아세토인 생산방법
KR101819189B1 (ko) 아세토인 생산능을 갖는 유전적으로 조작된 효모 세포 및 그를 사용하여 아세토인을 생산하는 방법
WO2022098163A1 (ko) 포도당으로부터 3-히드록시프로피온산의 생산능을 가지는 미생물 및 이의 용도
WO2020075943A1 (ko) 고활성의 말산 탈수소효소가 도입된 숙신산 생성용 변이 미생물 및 이를 이용한 숙신산 제조방법
KR101773123B1 (ko) 2,3-부탄다이올 생산능을 갖는 유전적으로 조작된 효모 세포 및 그를 사용하여 2,3-부탄다이올을 생산하는 방법
WO2014081084A1 (ko) 부탄올 생성능이 증강된 재조합 미생물 및 이를 이용한 부탄올 생산 방법
US10006008B2 (en) Recombinant microorganism having enhanced ability to produce 2,3-butanediol and method for producing 2,3-butanediol using same
WO2016195439A1 (ko) O-아세틸-호모세린을 생산하는 미생물 및 이를 이용하여 o-아세틸-호모세린을 생산하는 방법
WO2022211212A1 (ko) 부산물 생성이 저감된 2,3-부탄다이올 생산용 재조합 미생물 및 이를 이용한 2,3-부탄다이올 생산방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15880287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15880287

Country of ref document: EP

Kind code of ref document: A1