WO2016121839A1 - 近赤外線吸収微粒子分散液とその製造方法、近赤外線吸収微粒子分散液を用いた偽造防止インク組成物、および近赤外線吸収微粒子を用いた偽造防止印刷物 - Google Patents

近赤外線吸収微粒子分散液とその製造方法、近赤外線吸収微粒子分散液を用いた偽造防止インク組成物、および近赤外線吸収微粒子を用いた偽造防止印刷物 Download PDF

Info

Publication number
WO2016121839A1
WO2016121839A1 PCT/JP2016/052396 JP2016052396W WO2016121839A1 WO 2016121839 A1 WO2016121839 A1 WO 2016121839A1 JP 2016052396 W JP2016052396 W JP 2016052396W WO 2016121839 A1 WO2016121839 A1 WO 2016121839A1
Authority
WO
WIPO (PCT)
Prior art keywords
pigment
infrared absorbing
absorbing fine
fine particles
counterfeit
Prior art date
Application number
PCT/JP2016/052396
Other languages
English (en)
French (fr)
Inventor
美香 岡田
英昭 福山
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to US15/546,681 priority Critical patent/US20180022945A1/en
Priority to CN201680007417.8A priority patent/CN107429097B/zh
Priority to JP2016572119A priority patent/JPWO2016121839A1/ja
Priority to EP16743442.2A priority patent/EP3252112B1/en
Priority to AU2016213099A priority patent/AU2016213099B2/en
Publication of WO2016121839A1 publication Critical patent/WO2016121839A1/ja
Priority to US16/662,281 priority patent/US11248133B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/033Printing inks characterised by features other than the chemical nature of the binder characterised by the solvent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • C09D17/002Pigment pastes, e.g. for mixing in paints in organic medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/14Security printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/373Metallic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/378Special inks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/378Special inks
    • B42D25/382Special inks absorbing or reflecting infrared light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/06Printing inks based on fatty oils
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/50Sympathetic, colour changing or similar inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • C09D17/004Pigment pastes, e.g. for mixing in paints containing an inorganic pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the present invention relates to a near-infrared-absorbing fine particle dispersion having an absorption capability in the near-infrared region and applicable to offset printing, a method for producing the same, an anti-counterfeit ink composition using the near-infrared-absorbing fine particle dispersion, and a near-infrared
  • the present invention relates to an anti-counterfeit printed matter using absorbent fine particles.
  • the “near-infrared absorbing fine particles” in the present invention and the “near-infrared absorbing material fine particles” in the previous application based on priority are the same fine particles.
  • offset printing is characterized by being capable of high-definition printing and suitable for mass printing.
  • the pigment dispersion used from the printing principle is required to be oleophilic and not to dissolve the rubber blanket to which the dispersion is transferred during the offset printing.
  • the infrared absorbing material is transparent in the visible light region, it cannot be visually determined that the infrared absorbing material is printed as a pigment. For this reason, it is preferable from the viewpoint of forgery prevention and the like, and since it does not visually disturb the original print display, it is also preferable from the viewpoint of visibility and aesthetics.
  • Patent Document 1 proposes a material using a phthalocyanine compound.
  • Patent Document 2 proposes one using tin-doped indium oxide.
  • Patent Document 3 and Patent Document 4 disclose a coating solution for a selectively permeable membrane dispersed in the above.
  • Patent Document 5 an anti-counterfeit ink in which the anti-counterfeit ink composition containing the hexaboride fine particles as a near-infrared absorbing material is dispersed in a solvent.
  • the organic pigment such as the phthalocyanine compound used in Patent Document 1 has a problem that its infrared absorption characteristics change due to the influence of temperature, ultraviolet rays, etc., and is inferior in durability. have.
  • the infrared absorbing material using tin-doped indium oxide used in Patent Document 2 has insufficient contrast between the wavelength region that transmits or reflects as visible light and the wavelength region that absorbs as infrared light. For this reason, when the near-infrared absorbing fine particle dispersion using the tin-doped indium oxide is applied to offset printing, there is a problem in that the reading accuracy of the printing unit is lowered.
  • the present inventors use a vegetable oil or a compound derived from vegetable oil used as a solvent for offset printing as a solvent, and add to the solvent a general formula XB a (wherein element X is La, Ce, Pr, Nd, Gd, At least one element selected from Tb, Dy, Ho, Y, Sm, Eu, Er, Tm, Yb, Lu, Sr, or Ca, and hexaboron represented by 4.0 ⁇ a ⁇ 6.2) Attempts were made to add dispersion fine particles to form a dispersion. However, it has been found that there is a problem that the viscosity of the obtained dispersion increases and it is difficult to pulverize or disperse the hexaboride fine particles in a solvent.
  • the present invention has been made under such circumstances, and a problem to be solved is a near-infrared ray that has an absorption capability in the near-infrared region, has a clear contrast, and can be applied to offset printing.
  • the object is to provide an absorbent fine particle dispersion and a method for producing the same.
  • the present invention also provides an anti-counterfeit ink composition capable of offset printing containing the near-infrared absorbing fine particle dispersion.
  • an anti-counterfeit ink composition capable of offset printing containing the near-infrared absorbing fine particle dispersion.
  • one or more selected from vegetable oil or a compound derived from vegetable oil is used as a solvent, and 10 to 25% by mass of hexaboride is added here.
  • hexaboride fine particles are added, pulverized and dispersed to form a dispersion, if the viscosity of the dispersion is 180 mPa ⁇ s or less, the hexaboride fine particles are sufficiently pulverized and dispersed and applied to offset printing. It has been found that a possible near-infrared absorbing fine particle dispersion can be obtained.
  • the viscosity of the dispersion can be kept at 180 mPa ⁇ s or less by adding a predetermined dispersant to the dispersion.
  • the anti-counterfeiting ink composition for offset printing containing the near-infrared absorbing fine particle dispersion described above, or containing a pigment usually used in general offset printing ink together with the above-mentioned near-infrared absorbing fine particle dispersion, The present invention was also completed by conceiving an anti-counterfeit printed matter printed using an anti-counterfeit ink composition for offset printing.
  • the first invention for solving the above-described problem is One or more solvents selected from vegetable oils or compounds derived from vegetable oils; Hexaboride fine particles having a general formula of XBa of 2% by mass to 25% by mass (wherein element X is La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Y, Sm At least one selected from the group consisting of Eu, Er, Tm, Yb, Lu, Sr and Ca, one or more near-infrared absorbing fine particles selected from 4.0 ⁇ a ⁇ 6.2), A dispersant soluble in the solvent and having a fatty acid in its structure, A near-infrared absorbing fine particle dispersion having a viscosity of 180 mPa ⁇ s or less.
  • the second invention is The near-infrared absorbing fine particle dispersion according to the first invention, wherein the anchor portion of the dispersant has one or more selected from a secondary amino group, a tertiary amino group, and a quaternary ammonium group It is a liquid.
  • the third invention is The near-infrared absorbing fine particle dispersion according to the first or second invention, wherein the dispersant has an acid value of 1 mgKOH / g or more.
  • the fourth invention is: The near-infrared absorbing fine particle dispersion liquid according to any one of the first to third inventions, wherein the near-infrared absorbing fine particle has a dispersed particle diameter of 1 nm to 200 nm.
  • the fifth invention is: The near-infrared absorbing fine particle dispersion according to any one of the first to fourth inventions, wherein the near-infrared absorbing fine particles have a lattice constant of 0.4100 nm or more and 0.4160 nm or less.
  • the sixth invention is: The near infrared ray according to any one of the first to fifth inventions, wherein the surface of the near infrared ray absorbing fine particles is coated with one or more compounds selected from Si, Ti, Al, and Zr. Absorption fine particle dispersion.
  • the seventh invention The near-infrared absorbing fine particle dispersion according to any one of the first to sixth inventions, wherein the vegetable oil is one or more kinds of vegetable oil selected from drying oil and semi-drying oil.
  • the eighth invention The near-infrared absorbing fine particle dispersion according to any one of the first to seventh inventions, wherein the near-infrared absorbing fine particle dispersion further contains a binder.
  • the ninth invention The method for producing a near-infrared absorbing fine particle dispersion according to any one of the first to eighth inventions, wherein the near-infrared absorbing fine particles, the solvent, and the dispersant are mixed and dispersed.
  • the tenth invention is A forgery-preventing ink composition comprising the near-infrared absorbing fine particle dispersion according to any one of the first to eighth inventions.
  • the eleventh invention is The anti-counterfeit ink composition according to the tenth aspect of the invention, further comprising a pigment.
  • the twelfth invention is The pigment described in the eleventh invention is an inorganic pigment, and carbon black, white pigment, extender pigment, red pigment, yellow pigment, green pigment, blue pigment, purple pigment, fluorescent pigment, temperature pigment, pearl pigment, metal powder pigment It is an anti-counterfeit ink composition characterized by being at least one selected from
  • the thirteenth invention is The forgery-preventing ink, wherein the pigment according to the eleventh invention is an organic pigment and is at least one selected from an azo lake pigment, an insoluble azo pigment, a condensed azo pigment, a phthalocyanine pigment, and a condensed polycyclic pigment It is a composition.
  • the fourteenth invention is The anti-counterfeit ink composition according to any one of the tenth to thirteenth inventions, comprising at least one selected from a plasticizer, an antioxidant, a thickener, and a wax.
  • the fifteenth invention A printed matter having a printing pattern on one or both sides of the substrate, said print pattern general formula are hexaboride particles (here are denoted by XB a, the element X, La, Ce, Pr, Nd, Gd At least one selected from Tb, Dy, Ho, Y, Sm, Eu, Er, Tm, Yb, Lu, Sr and Ca, and at least one selected from 4.0 ⁇ a ⁇ 6.2) It is a forgery-proof printed matter characterized by containing near infrared absorbing fine particles.
  • the sixteenth invention is The printed pattern according to the fifteenth aspect of the invention is a forgery-preventing printed matter characterized by further containing a pigment.
  • the seventeenth invention The pigment described in the sixteenth invention is an inorganic pigment, and carbon black, white pigment, extender pigment, red pigment, yellow pigment, green pigment, blue pigment, purple pigment, fluorescent pigment, temperature pigment, pearl pigment, metal powder pigment It is a forgery prevention printed matter characterized by being 1 or more types selected from.
  • the eighteenth invention The anti-counterfeit printed matter, wherein the pigment according to the sixteenth invention is an organic pigment and is at least one selected from an azo lake pigment, an insoluble azo pigment, a condensed azo pigment, a phthalocyanine pigment, and a condensed polycyclic pigment It is.
  • the nineteenth invention The value obtained by dividing the average value of the diffuse reflectance at a wavelength of 800 nm to 1300 nm of the anti-counterfeit printed matter by the average value of the diffuse reflectance at a wavelength of 800 nm to 1300 nm of a blank not containing near-infrared absorbing fine particles is 0.84 or less.
  • the anti-counterfeit printed matter according to any one of the fifteenth to eighteenth inventions.
  • the near-infrared absorbing fine particle dispersion according to the present invention By using the near-infrared absorbing fine particle dispersion according to the present invention, offset printing having a near-infrared absorption capability and a clear contrast can be easily performed.
  • the anti-counterfeit ink composition that can be offset printed by using the near-infrared absorbing fine particle dispersion according to the present invention and the copy cannot be reproduced by copying, etc. Therefore, it is possible to provide a forgery-preventing printed matter with less design restrictions and excellent anti-counterfeiting effect.
  • near infrared absorbing fine particles solvent, dispersant, dispersion method of near infrared absorbing fine particles in solvent, near infrared absorbing fine particle dispersion, anti-counterfeiting ink composition for offset printing, printing method
  • the authentication will be described in detail in the order of authenticity determination method.
  • the near-infrared absorbing fine particles used in the present invention are hexaboride fine particles whose general formula is represented by XB a (4.0 ⁇ a ⁇ 6.2).
  • the element X is at least one selected from La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Y, Sm, Eu, Er, Tm, Yb, Lu, Sr and Ca. .
  • lanthanum hexaboride LaB 6 cerium hexaboride CeB 6 , praseodymium hexaboride PrB 6 , neodymium hexaboride NdB 6 , gadolinium hexaboride GdB 6 , terbium hexaboride TbB 6 , hexaboride Dysprosium DyB 6 , holmium hexaboride HoB 6 , yttrium hexaboride YB 6 , samarium hexaboride SmB 6 , europium hexaboride EuB 6 , erbium hexaboride ErB 6 , thulium hexaboride TmB 6 , hexaboro It is preferably at least one selected from ytterbium iodide YbB 6 , lutetium hexaboride LuB 6 ,
  • the surface of the hexaboride fine particles is preferably not oxidized. However, usually, the surface is often slightly oxidized, and oxidation of the surface in the fine particle dispersion process is unavoidable to some extent. However, even in that case, the effectiveness of developing the heat ray shielding effect is not changed, and therefore, hexaboride fine particles having an oxidized surface can be used.
  • the higher the crystallinity of the hexaboride fine particles the greater the heat ray shielding effect.
  • the basic bonds inside the fine particles are composed of bonds of each metal and boron.
  • the lattice constant is 0.4100 nm or more and 0.4160 nm or less, it can be preferably applied in the present invention because a desired heat ray shielding effect is exhibited.
  • the lattice constant can be obtained, for example, by performing Rietveld analysis based on XRD pattern data.
  • the surface of the hexaboride fine particles is coated with a silane coupling agent. Since the surface of the hexaboride fine particles is coated with a silane coupling agent, excellent dispersibility of the hexaboride fine particles can be obtained. As a result, in the near-infrared absorbing fine particle dispersion according to the present invention, an excellent near-infrared absorbing function and transparency in the visible light region can be obtained.
  • the light transmittance has a maximum value between wavelengths of 400 nm and 700 nm, and has a minimum value between wavelengths of 700 nm and 1800 nm. Furthermore, it has been observed that the difference between the maximum value and the minimum value in the light transmittance is 15 points or more.
  • such a heat ray shielding transparent resin molded article is effective for visible light. It can be seen that it has the characteristic of effectively reflecting and absorbing other heat rays.
  • the hexaboride fine particles according to the present invention greatly absorb light in the near-ultraviolet region with a wavelength of about 350 to 400 nm and near-infrared region with a wavelength of about 650 to 1300 nm, particularly about 1000 nm. For this reason, the transmission color tone is often colorless to green.
  • the dispersed particle size of the hexaboride fine particles In order for the hexaboride fine particles according to the present invention to exhibit absorption in the near-infrared region, it is preferable to sufficiently reduce the dispersed particle size of the hexaboride fine particles. This is because the absorption of hexaboride is due to localized surface plasmon resonance, which is a phenomenon unique to nanoparticles.
  • the dispersed particle size means the aggregated particle size of boride fine particles in a solvent, and can be measured by various commercially available particle size distribution analyzers.
  • ELS-800 manufactured by Otsuka Electronics Co., Ltd. based on the principle of dynamic light scattering, is sampled from a dispersion in which boride fine particles are dispersed in a solvent in the presence of aggregates of boride fine particles. Can be measured.
  • the dispersed particle diameter of the hexaboride fine particles exceeds, for example, 1500 nm, the hexaboride fine particles hardly absorb in the near infrared region.
  • the absorption in the near infrared region becomes strong when the dispersed particle size of the hexaboride fine particles is approximately 800 nm or less, the stronger absorption is exhibited when it is 200 nm or less, and the stronger absorption is exhibited when it is 100 nm or less. Is done.
  • the hexaboride fine particles according to the present invention transparency and non-scattering properties in the visible light region can be obtained by suppressing light scattering caused by the fine particles.
  • Light scattering includes geometric optical scattering, Mie scattering, and Rayleigh scattering depending on the ratio of the particle diameter to the wavelength of light.
  • geometrical optical scattering is almost negligible if the dispersed particle diameter of the hexaboride fine particles is 1000 nm or less. If the dispersed particle diameter is 200 nm or less, Mie scattering is weakened, and if it is 100 nm or less, it is further weakened.
  • Rayleigh scattering is the main scattering factor in the region where the dispersed particle size of the fine particles is smaller. Since the Rayleigh scattering intensity decreases in inverse proportion to the sixth power of the dispersed particle diameter, the scattered light can be reduced by further reducing the dispersed particle diameter of the fine particles, which is preferable.
  • the dispersed particle size of the hexaboride fine particles according to the present invention is 200 nm or less. Preferably there is. If the dispersed particle diameter is 200 nm or less, the near-infrared absorption of hexaboride by localized surface plasmon resonance is sufficiently exhibited and the light scattering of visible light is sufficiently reduced. This is because the contrast of [reflection / absorption] or [transmission / absorption] in light or transmitted light is improved. On the other hand, if the dispersed particle diameter is 1 nm or more, industrial production is easy.
  • the surface of the hexaboride fine particles according to the present invention is coated with an oxide containing one or more of Si, Ti, Zr, and Al. preferable.
  • solvent used in the present invention is insoluble in water and does not dissolve a rubber blanket used in offset printing. Specifically, one or more solvents selected from vegetable oils and vegetable oil-derived compounds can be used.
  • Vegetable oils include dry oils such as linseed oil, sunflower oil and tung oil, semi-dry oils such as sesame oil, cottonseed oil, rapeseed oil, soybean oil and rice bran oil, and non-drying oils such as olive oil, coconut oil, palm oil and dehydrated castor oil. Used.
  • examples of the vegetable oil-derived compounds include fatty acid monoesters and ethers obtained by directly esterifying a fatty acid of a vegetable oil with a monoalcohol.
  • the above-mentioned vegetable oil and the compound derived from vegetable oil have a double bond in the fatty acid which is a constituent component of the contained fat. This double bond reacts with oxygen in the air, so that a polymerization reaction between oil and fat molecules and a double bond such as a pigment component proceeds.
  • the coating film after offset printing is solidified by the polymerization reaction proceeding by the polymerization of the oil / fat molecules or by the polymerization of the oil / fat and a pigment component for offset printing.
  • the solidification of the coating film after offset printing becomes faster as the number of double bonds in the fatty acid that is a constituent of vegetable oil and vegetable oil-derived compounds increases, but the number of double bonds in the fatty acid is evaluated by the iodine value.
  • the solidification of the coating film becomes faster as the iodine value of the vegetable oil or the compound derived from the vegetable oil is higher.
  • dry oil has an iodine value of 130 or more
  • semi-dry oil has 130 to 100
  • non-dry oil has 100 or less.
  • the vegetable oil and the vegetable oil-derived compound used for offset printing are preferably one or more selected from semi-drying oil, dry oil such as linseed oil, sunflower oil, and tung oil having an iodine value of 130 or more.
  • the dispersant for dispersing the near-infrared absorbing fine particles in the solvent preferably has a fatty acid structure. Furthermore, the dispersant is required to be soluble in the solvent according to the present invention described above. Further, the structure of the dispersant is not particularly limited, but it is preferable to use a polymer dispersant having a basic anchor portion.
  • the anchor portion is a site (group) in the molecule of the polymer dispersant, and is a site (group) that is adsorbed on the surface of the near-infrared absorbing fine particles. In the present invention, it is particularly preferable to use a polymer dispersant having a basic anchor portion because the storage stability of the ink is improved. Examples of the basic site (group) serving as the anchor portion include sites (groups) such as a secondary amino group, a tertiary amino group, and a quaternary ammonium group.
  • FIG. 5 shows one embodiment of the polymer dispersant used in the present invention.
  • A1 and A2 are portions (anchor portions) adsorbed on the solid fine particles. If the anchor portion has at least one point (adsorption point) that adsorbs to the solid fine particles, the structure is not particularly limited. For example, a chain, a ring, a condensed polycyclic ring, or a combination thereof Composed. A1 and A2 may be the same or different.
  • X, Y, and Z are polymer chain portions that are solvated and dissolve in the liquid from the surface of the solid fine particles, and hereinafter, X and Z are referred to as a tail portion, and Y is referred to as a loop portion.
  • a homopolymer composed of a single monomer or a copolymer composed of a plurality of monomers is used for the tail portion and the loop portion.
  • a compound having the loop part (Y) in the general formula [X-A1-Y-A2-Z] can be used, and in this case, the general formula [X— A1-A2-Z].
  • Y shown in FIG. 6 does not exist, and a structure in which two tail portions are bonded to one anchor portion can be taken. In this case, the general formula is [X-A3-Z].
  • a structure in which Z shown in FIG. 7 does not exist and one tail portion is bonded to one anchor portion can be taken. In this case, the general formula is [X-A4].
  • a constituting the polymer dispersant used in the present invention (in the present invention, the aforementioned A1, A2, A3, and A4 may be collectively referred to as “A”) is, for example, a hydrogen bond or an acid.
  • -It has at least one adsorption point (functional group) having an adsorption interaction with the solid particle surface by base interaction or the like.
  • A1 and A2 may be the same or different, but considering the adsorptivity to the solid fine particles, those having the same functional group as the adsorption point (functional group) having the adsorption interaction are preferable. Further, from the viewpoint of production of the polymer dispersant, it is preferable that A1 and A2 are the same.
  • X, Y, and Z constituting the polymer dispersant used in the present invention may be composed of different chemical species, and at least two may be composed of the same chemical species. Since the tail part and the loop part are parts that solvate and dissolve in the liquid from the surface of the solid fine particles, a polymer chain having affinity for the solvent in which the solid fine particles are dispersed is used. Furthermore, it is preferable that the acid value of the dispersant according to the present invention is 1 mgKOH / g or more because the ability to disperse the above-described near-infrared absorbing fine particles in the solvent according to the present invention is high.
  • the obtained dispersion exhibits a dispersion ability that enables the viscosity of the dispersion to be maintained at 180 mPa ⁇ s or less.
  • the pulverization and dispersion of hexaboride proceeds sufficiently, and the dispersed particle size in the manufactured near-infrared absorbing fine particle dispersion can be made 200 nm or less. It becomes.
  • the viscosity of the near-infrared absorbing fine particle dispersion is preferably 180 mPa ⁇ s or less from the viewpoint of producing an anti-counterfeit ink for offset printing using the near-infrared absorbing fine particle dispersion.
  • Dispersic As specific examples of preferred dispersants, commercially available dispersants may be Dispersic (DISPERBYK) 142; Dispersic 160, Dispersic 161, Dispersic 162, Dispersic 163, Dispersic 166, Dispersic 170, Dispersic 180, Disperbic 182, Disperbic 184, Disperbic 190, Disperbic 2155 (above, manufactured by Big Chemie Japan Co., Ltd.); EFKA-46, EFKA-47, EFKA-48, EFKA-49 (above, manufactured by BASF); Solsperse 11200, Solsperse 13940, Solsperse 16000, Solsperse 17000, Solsperse 18000, Solsperse 20000, Solsper 24000, Solsperse 27000, Solsperse 28000, Solsperse 32000, Solsperse 33000, Solsperse 39000, Solsperse 56000, Solsperse 71000 (manufactured by Nippon Lubrizol Co., Ltd.
  • the addition amount of the dispersant according to the present invention is preferably 30 parts by weight or more and 200 parts by weight or less with respect to 100 parts by weight of the hexaboride fine particles.
  • the said dispersing agent does not contain the solvent which may melt
  • the dispersion method for obtaining the near-infrared absorbing fine particle dispersion by dispersing the hexaboride fine particles according to the present invention in the solvent according to the present invention is to uniformly distribute the fine particles. Any method of dispersing in a solvent can be selected. Specifically, it is preferable to use a wet medium mill such as a bead mill or a ball mill.
  • the concentration of hexaboride fine particles in the near-infrared absorbing fine particle dispersion according to the present invention is 2 to 25% by mass, preferably 5 to 25% by mass, more preferably 10 to 25% by mass.
  • the higher the concentration of the hexaboride fine particles the easier the preparation of the anti-counterfeit ink for offset printing is preferable.
  • the concentration of the hexaboride fine particles is 25% by mass or less, the addition of the dispersant described above suppresses the viscosity of the obtained near-infrared absorbing fine particle dispersion to 180 mPa ⁇ s or less, Crushing and dispersion can be sufficiently advanced.
  • the dispersed particle size of the hexaboride fine particles can be arbitrarily controlled by the processing time of the wet medium mill. By increasing the treatment time, the dispersed particle size can be reduced.
  • the lower limit of the viscosity of the near-infrared absorbing fine particle dispersion according to the present invention depends on the viscosity of the vegetable oil or the vegetable oil-derived compound used. For example, the viscosity (24 ° C.) of sunflower oil is 50 mPa ⁇ s, and the viscosity of linseed oil (24 ° C.) is 40 mPa ⁇ s.
  • the near-infrared absorbing fine particle dispersion according to the present invention can be obtained by the production method described above.
  • a binder may be further added to the near-infrared absorbing fine particle dispersion according to the present invention.
  • the binder is not particularly limited, and examples thereof include synthetic resins such as rosin-modified phenolic resin, rosin-modified alkyd resin, and petroleum resin-modified phenolic resin. Therefore, it is possible to select a suitable one for the application.
  • Anti-counterfeit ink composition for offset printing The near-infrared absorbing fine particle dispersion according to the present invention, a resin varnish component, a vegetable oil component, a petroleum solvent component, and an additive are mixed to produce an anti-counterfeit ink composition for offset printing.
  • a resin varnish component phenol resin, petroleum resin, rosin modified phenol resin, petroleum resin modified rosin modified phenol resin, vegetable oil modified rosin modified phenol resin, modified alkyd resin, rosin modified maleic acid resin, polyester resin, acrylic resin, Arbitrary resin systems such as urethane resin and epoxy resin are used.
  • resin varnish using rosin-modified phenol resin and petroleum resin is preferably used.
  • the addition amount of the resin varnish in the lithographic offset printing ink composition is 15 to 70% by mass, preferably 40 to 60% by mass.
  • the vegetable oil component and the petroleum solvent component may be any as long as they are generally used for lithographic offset inks.
  • the additive examples include a plasticizer, an antioxidant, a thickener, and a wax.
  • the anti-counterfeit ink composition for offset printing according to the present invention can be added with a pigment used in general lithographic offset ink to form a colored pattern in the visible light region. By forming the colored pattern, the design effect can be enhanced, and the forgery prevention effect can be enhanced.
  • any pigment may be used as long as it does not impair printability.
  • various organic pigments such as carbon black, azo lake pigments, insoluble azo pigments, condensed azo pigments, phthalocyanine pigments, and condensed polycyclic pigments can be used.
  • white pigments such as titanium oxide and lead white
  • extender pigments such as calcium carbonate
  • red pigments such as red pepper
  • yellow pigments such as yellow lead
  • green pigments such as chromium oxide
  • blue pigments such as ultramarine blue
  • Various inorganic pigments such as purple pigments such as manganese violet, fluorescent pigments, temperature pigments, pearl pigments, or metal powder pigments can be used. It is also preferable to use carbon black alone.
  • near-infrared absorbing fine particles and a pigment used in general lithographic offset ink can be used at the same time.
  • the kneading of the near-infrared absorbing fine particle dispersion, the resin varnish component, the petroleum solvent component, the additive, and / or the pigment according to the present invention can be performed using a kneader such as a three-roll mill.
  • a wet varnish such as an alkyd resin, which is excellent in the wettability of the infrared absorber, or other additives may be used in order to increase the kneading degree or work efficiency.
  • a conventionally known planographic offset printing method is used. Examples include offset sheet-fed printing, offset rotary printing, waterless offset printing, and dry offset printing.
  • a base material used for the printed matter according to the present invention for example, a white paper, a white film printed on a plastic film, and the like can be given.
  • the plastic film in this case include polypropylene (PP), polyvinyl chloride (PVC), polyethylene terephthalate (PET), and synthetic paper.
  • PP polypropylene
  • PVC polyvinyl chloride
  • PET polyethylene terephthalate
  • synthetic paper synthetic paper.
  • a conventionally known lithographic offset printing ink is used as the anti-counterfeit ink set for offset printing according to the present invention.
  • an oxidation polymerization type ink, a heat set type ink, a permeation dry type ink and the like can be mentioned.
  • a conventionally known plate making technique is also used for the plate used for printing. Examples thereof include a plate formed by an amplitude modulation screening (AM screening) method, a plate formed by a frequency modulation screening (FM screening) method, and the like.
  • AM screening amplitude modulation screening
  • FM screening frequency modulation screening
  • the printed matter according to the present invention is irradiated with near-infrared rays having a wavelength of 800 nm to 1300 nm, and the near-infrared rays having the above-mentioned wavelength diffusely reflected from the printed matter are measured.
  • the printed matter according to the present invention has less diffuse reflection of near-infrared light having a wavelength of 800 nm to 1300 nm as compared with a blank printed matter not containing near-infrared absorbing fine particles.
  • the near infrared diffuse reflectance of 800 nm to 1300 nm of the printed matter containing the near infrared absorbing fine particles and the near infrared diffuse reflectance of the blank printed matter of 800 nm to 1300 nm. Can be determined. For example, by dividing the diffuse reflectance value at a wavelength of 800 nm to 1300 nm of the printed matter according to the present invention by the diffuse reflectance value at a wavelength of 800 nm to 1300 nm of the blank printed matter, The net diffuse reflectance of near-infrared absorbing fine particles excluding factors can be evaluated. The smaller this divided value is, the easier it is to determine authenticity, preferably 0.84 or less, and more preferably 0.77 or less.
  • the content of the near infrared absorbing fine particles may be increased, and the near infrared rays in the ink may be increased.
  • the absorption fine particle concentration may be increased, there is a limit from the viewpoint of ink stability and cost.
  • the amount of the near infrared absorbing fine particles contained in the printed material is small, and the near infrared absorbing fine particles according to the present invention are used.
  • the amount of near-infrared absorbing fine particles contained in the printed material is preferably 0.8 g / cm 2 or less.
  • the diffuse reflectance according to the present invention is adjusted using a spectrophotometer with the diffuse reflectance of a white plate obtained by solidifying a fine powder of barium sulfate as 100%, and the diffuse reflectance in the wavelength range of 800 nm to 1300 nm. Is measured as a relative value.
  • the measuring method of the acid value of the near-infrared absorption fine particle dispersing agent which concerns on a present Example is based on JISK0070, and is based on a potentiometric titration method.
  • the measuring method of the viscosity of the near-infrared absorption fine particle dispersion liquid which concerns on an Example was measured using vibration type viscosity meter VM100A-L (CBC Materials Co., Ltd. product).
  • the diffuse reflectance is adjusted using a spectrophotometer U-4100 (manufactured by Hitachi, Ltd.), with the diffuse reflectance of the white plate on which the fine powder of barium sulfate is solidified being set to 100%, and the wavelength range of 800 nm to 1300 nm.
  • the diffuse reflectance at every 5 nm was measured as a relative value, and the average value of the obtained values was used.
  • Example 1 As near-infrared absorbing fine particles, lanthanum hexaboride fine particles (average particle size of 1 to 2 ⁇ m) are 10.0% by mass, the dispersant has a fatty acid structure, an amino group, and an acid value of 20.3 mgKOH / g. Yes, 5.0% by mass of a dispersant having a hydroxystearic acid chain and a non-volatile content of 100% (hereinafter abbreviated as “dispersant a”), and 85.0% by mass of sunflower oil as a solvent were weighed.
  • dispersant a a dispersant having a hydroxystearic acid chain and a non-volatile content of 100%
  • dispersion A a near-infrared absorbing fine particle dispersion according to Example 1 (hereinafter referred to as dispersion A). Abbreviated).
  • the dispersed particle size of the hexaboride fine particles in the dispersion A was measured by a particle size distribution meter (manufactured by Otsuka Electronics Co., Ltd.), and found to be 84.3 nm, and the viscosity (24 ° C.) of the dispersion A was 98.1 mPa ⁇ s. It was.
  • the lattice constant of the lanthanum hexaboride fine particles was 0.41560 nm. The results are shown in Table 1 (hereinafter, Examples 2 to 4 and Comparative Example 1 are also shown).
  • a transparent PET film having a thickness of 50 ⁇ m was prepared as a substrate to be printed, and a dispersion liquid A was formed on the surface thereof with a thickness of 8 ⁇ m by a bar coater. This membrane was dried at 70 ° C. for 3 hours to dry dispersion A.
  • the visible light transmittance of the dried film of dispersion A thus obtained was 68.2%. Further, the transmittance of light having a wavelength of 550 nm that is a visible light region is 70.3%, the transmittance of light having a wavelength of 800 nm that is a near infrared region is 28.0%, and the transmittance of light having a wavelength of 900 nm is 19. The transmittance of light having a wavelength of 7% and a wavelength of 1000 nm was 17.8%, and the transmittance of light having a wavelength of 1500 nm was 69.3%.
  • the light transmission profile of the dispersion A in the dry film is shown in FIG. 1, and the measurement results are shown in Table 1 (hereinafter, Examples 2 to 4 are also shown).
  • Example 2 A near-infrared absorbing fine particle dispersion liquid (hereinafter referred to as “dispersion liquid B”) according to Example 2 was obtained in the same manner as in Example 1 except that linseed oil was used as the solvent.
  • the dispersed particle size of the hexaboride fine particles in the dispersion B was measured with a particle size distribution meter (manufactured by Otsuka Electronics Co., Ltd.). As a result, it was 82.9 nm, and the viscosity (24 ° C.) of the dispersion B was 93.2 mPa ⁇ s. .
  • the lattice constant was 0.41560 nm.
  • a dry film according to Example 2 was obtained in the same manner as in Example 1, and the optical characteristics were measured. The light transmission profile of the dispersion B in the dry film is shown in FIG.
  • Example 3 The same as in Example 1 except that a dispersant having a fatty acid in the structure of the dispersant, having an acid value of 5 mgKOH / g or more and having a nonvolatile content of 100% (hereinafter abbreviated as “dispersant b”) was used.
  • a near-infrared absorbing fine particle dispersion hereinafter referred to simply as dispersion C according to Example 3 was obtained.
  • Example 3 shows a light transmission profile of the dispersion C in the dry film.
  • Example 4 Example 1 except that a dispersant having a fatty acid in the structure of the dispersant, an acid value of 20.3 mg KOH / g, and having a nonvolatile content of 100% (hereinafter abbreviated as “dispersant c”) was used. Similarly, a near-infrared absorbing fine particle dispersion (hereinafter referred to simply as “dispersion D”) according to Example 4 was obtained.
  • Dispersion E hexaboride fine particle dispersion
  • dispersed particle diameter of the hexaboride fine particles in dispersion E was measured with a particle size distribution meter (manufactured by Otsuka Electronics), it was 84.3 nm, and the viscosity (24 ° C.) of dispersion E was 4.9 mPa ⁇ s. .
  • the amount of toluene as a solvent contained in the dispersion E is 82.0% by mass, and the toluene dissolves a rubber roller (nitrile butadiene rubber) of an offset printing machine, so that it is difficult to apply to offset printing. It was.
  • Comparative Example 2 As near-infrared absorbing fine particles, lanthanum hexaboride fine particles (average particle diameter of 1 to 2 ⁇ m) were weighed in 10.0 mass%, dispersant a was 8.0 mass%, and castor oil was 82.0 mass%. These near-infrared absorbing fine particles, dispersant, and solvent were pulverized and dispersed for 50 hours with a paint shaker containing 0.3 mm ⁇ ZrO 2 beads to obtain a near-infrared absorbing fine particle dispersion according to Comparative Example 2.
  • the dispersed particle size of the hexaboride fine particles in the dispersion according to Comparative Example 2 was 315.2 nm as measured with a particle size distribution meter (manufactured by Otsuka Electronics Co., Ltd.). And the viscosity (24 degreeC) of the said dispersion was as high as 1092 mPa * s. Therefore, pulverization and dispersion treatment with a paint shaker was further added for 20 hours, but there was almost no change in the dispersed particle size.
  • the near-infrared absorbing fine particle dispersion E according to Comparative Example 1 contains toluene as a solvent and dissolves a rubber blanket during offset printing. For this reason, it was considered that application of the near-infrared absorbing fine particle dispersion E to offset printing was inappropriate.
  • the near-infrared absorbing fine particle dispersion according to Comparative Example 2 castor oil having a high viscosity was used as a solvent, so that the viscosity was high. As a result, the hexaboride particles were not sufficiently pulverized and dispersed, and a dispersion could not be produced.
  • Example 5 A preparation example of an anti-counterfeit ink A (hereinafter abbreviated as “ink A”) for offset printing using the dispersion liquid A and a printing example using the ink A will be described.
  • ink A an anti-counterfeit ink A
  • the scope of the present invention is not limited to these described examples.
  • a four-necked flask equipped with a stirrer, a condenser with a water separator, and a thermometer was charged with 1000 parts by weight of gum rosin and dissolved at 200 ° C. while blowing nitrogen gas. To this, 1800 parts by weight of the resol solution obtained above was added and reacted at 230 ° C. for 4 hours while removing toluene. After the reaction, 110 parts by weight of glycerin was added and reacted at 250 ° C.
  • Dispersion A varnish, petroleum solvent (manufactured by Shin Nippon Oil Co., Ltd .: AF-6 solvent), soybean oil, tung oil, and compound (manufactured by Joint Ink Co., Ltd.) prepared in Example 1 with the formulation shown in Table 2 : UG compound), a metal dryer (manufactured by DIC Graphics Corporation: 937 dryer), and a drying inhibitor (manufactured by Tokyo Ink Co., Ltd .: Inkeeper) were mixed to obtain ink A.
  • ink A the concentration of lanthanum hexaboride was 0.38% by mass.
  • the obtained ink for offset printing was stable without causing aggregation or the like.
  • the value obtained by dividing the average value of the diffuse reflectance of the printed matter A according to Example 2 with the wavelength of 800 nm to 1300 nm by the average value of the diffuse reflectance of the blank printed matter described in Comparative Example 3 described later with the wavelength of 800 nm to 1300 nm is It was 0.72.
  • Example 6 In the formulation shown in Table 2, dispersion A, varnish, petroleum solvent, soybean oil, tung oil, compound, metal dryer, and drying inhibitor prepared in Example 1 were mixed in the same manner as in Example 5. An anti-counterfeit ink B for offset printing (hereinafter abbreviated as ink B) was obtained.
  • ink B the concentration of lanthanum hexaboride was 0.75% by mass.
  • White fine paper was prepared as a substrate to be printed, and offset printing was performed using ink B to obtain printed matter B.
  • the average value of the diffuse reflectance at a wavelength of 800 nm to 1300 nm of the obtained printed matter B was 40.7%.
  • the value obtained by dividing the average value of the diffuse reflectance at a wavelength of 800 nm to 1300 nm of the printed material B by the average value of the diffuse reflectance at a wavelength of 800 nm to 1300 nm of the blank printed material described in Comparative Example 3 was 0.52.
  • Example 7 In the formulation shown in Table 2, dispersion A, varnish, petroleum solvent, soybean oil, tung oil, compound, metal dryer, and drying inhibitor prepared in Example 1 were mixed in the same manner as in Example 5. An anti-counterfeit ink C for offset printing (hereinafter abbreviated as ink C) was obtained. In ink C, the concentration of lanthanum hexaboride was 1.88% by mass. White fine paper was prepared as a substrate to be printed, and offset printing was performed using ink C to obtain a printed matter C. The average value of the diffuse reflectance at a wavelength of 800 nm to 1300 nm of the obtained printed matter C was 15.8%.
  • the value obtained by dividing the average value of the diffuse reflectance of the printed product C at a wavelength of 800 nm to 1300 nm by the average value of the diffuse reflectance of the blank printed product described in Comparative Example 3 at a wavelength of 800 nm to 1300 nm was 0.20.
  • Example 3 Forgery prevention ink D for offset printing (hereinafter referred to as Example 5) except that varnish was mixed with petroleum solvent, soybean oil, tung oil, compound, metal dryer and drying inhibitor in the formulation shown in Table 2. And abbreviated as Ink D).
  • White fine paper was prepared as a substrate to be printed, and offset printing was performed using the ink D to obtain a printed matter D that was a blank printed matter.
  • Comparative Example 4 Weigh 20.0% by mass of antimony-doped tin oxide (ATO) particles (average particle size 1 to 10 ⁇ m) as near-infrared absorbing fine particles, 10.0% by mass of dispersant a, and 70.0% by mass of sunflower oil as a solvent. did. These near-infrared absorbing fine particles, a dispersing agent, and a solvent were loaded into a paint shaker containing 0.3 mm ⁇ ZrO 2 beads and pulverized and dispersed for 30 hours to obtain a near-infrared absorbing fine particle dispersion according to Comparative Example 4 (hereinafter referred to as dispersion). (Abbreviated as Liquid F).
  • ATO antimony-doped tin oxide
  • the average value of the reflectance of the obtained printed material E at a wavelength of 800 nm to 1300 nm was 69.5%. Accordingly, the value obtained by dividing the average value of the diffuse reflectance at a wavelength of 800 nm to 1300 nm of the printed material E by the average value of the diffuse reflectance at a wavelength of 800 nm to 1300 nm of the blank described in Comparative Example 3 was 0.89.
  • the printed materials A to C including hexaboride particles in the printed pattern show low diffuse reflectance at wavelengths of 800 nm to 1300 nm.
  • a value obtained by dividing the average value of the diffuse reflectance at wavelengths of 800 nm to 1300 nm by the average value of the diffuse reflectance at wavelengths of 800 nm to 1300 nm of the blank is as small as 0.20 to 0.72. As a result, it was confirmed that the printed matter containing hexaboride particles was easy to determine the authenticity.
  • the printed matter D containing no hexaboride particles in the printed pattern according to Comparative Example 3 and the printed matter E containing antimony-added tin oxide particles in the printed pattern according to Comparative Example 4 have a high diffuse reflectance at a wavelength of 800 nm to 1300 nm. Is shown. A value obtained by dividing the average value of the diffuse reflectance of these wavelengths of 800 nm to 1300 nm by the average value of the diffuse reflectance of the blank wavelength of 800 nm to 1300 nm is as large as 0.89 to 1.00, and the reflection of the wavelength of 800 nm to 1300 nm. It is considered difficult to determine authenticity at a rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Printing Methods (AREA)

Abstract

 近赤外線領域の吸収能力を有し、コントラストが明確であり、オフセット印刷への適用可能な近赤外線吸収微粒子分散液と、その製造方法、近赤外線吸収微粒子分散液を用いた偽造防止インク組成物及び、近赤外線吸収微粒子を用いた偽造防止印刷物、を提供する。植物油または植物油由来の化合物から選択される1種類以上の溶剤と、2質量%以上25質量%以下の、一般式がXBで表記される六ホウ化物微粒子から選択される1種以上の近赤外線吸収微粒子と、前記溶剤に可溶で、脂肪酸を構造中に有する分散剤と、を含み、粘度が、180mPa・s以下であることを特徴とする近赤外線吸収微粒子分散液、近赤外線吸収微粒子分散液を含む偽造防止インク組成物を提供する。また、近赤外線吸収微粒子を含む印刷物によって、偽造防止効果に優れた偽造防止印刷物を提供する。

Description

近赤外線吸収微粒子分散液とその製造方法、近赤外線吸収微粒子分散液を用いた偽造防止インク組成物、および近赤外線吸収微粒子を用いた偽造防止印刷物
 本発明は、近赤外線領域に吸収能力を有し、オフセット印刷へ適用可能な、近赤外線吸収微粒子分散液とその製造方法、近赤外線吸収微粒子分散液を用いた偽造防止インク組成物、および近赤外線吸収微粒子を用いた偽造防止印刷物に関するものである。尚、本発明における「近赤外線吸収微粒子」と、優先権の基礎とされた先の出願における「近赤外線吸収材料微粒子」とは同じ微粒子である。
 印刷技術には、用途等に応じて様々なものが存在する。その中でオフセット印刷は高精細な印刷が可能で、大量印刷に向いているという特徴を有している。当該オフセット印刷においては、その印刷原理から用いられる顔料の分散液は親油性で、且つ当該オフセット印刷の際に当該分散液が転写されるゴム製のブランケットを溶解しない、という特性を求められる。
 一方近年では、例えば偽造防止等を目的として、各種チケットや証書等へ赤外線吸収材料を用いた顔料を用いてデータを印刷しておき、当該データを赤外線判定器等で読み取ることで各種情報管理を行うことが検討されている。
 このような用途においては、大量の紙媒体へ多くのデータが印刷される為、印刷方法としてはオフセット印刷を用いることが検討されている。
 また赤外線吸収材料が可視光領域において透明であると、当該赤外線吸収材料が顔料として印刷されていることを外見上は判別できない。この為、偽造防止等の観点から好ましいとともに、本来の印刷表示を視覚的に妨害しないので、視認性や美観の観点からも好ましい。
 前記赤外線吸収材料を用いたものとして、例えば、特許文献1にはフタロシアニン化合物を用いたものが提案されている。
 また、特許文献2では、錫ドープ酸化インジウムを用いたものが提案されている。
 一方、本発明者らは、高い可視光透過性と近赤外線吸収機能を有する材料として一般式XB(ただし、元素Xは、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Y、Sm、Eu、Er、Tm、Yb、Lu、SrまたはCaから選択される少なくとも1種以上の元素である。)で表される六ホウ化物微粒子を用い、当該六ホウ化物微粒子を有機溶媒中に分散した選択透過膜用塗布液を、特許文献3および特許文献4として開示している。また本発明者らは、近赤外線吸収材料として前記六ホウ化物微粒子を含む偽造防止インク組成物を溶媒中に分散させた偽造防止インクを、特許文献5として開示してもいる。
特開平04-320466号公報 特開2000-309736号公報 特開平11-181336号公報 特開2000-96034号公報 特開2004-168842号公報
 本発明者らの検討によれば、特許文献1に用いられているフタロシアニン化合物のような有機顔料は、温度や紫外線等の影響によってその赤外線吸収特性が変化してしまい、耐久性に劣るという問題を有している。
 また、特許文献2に用いられている錫ドープ酸化インジウムを用いた赤外線吸収材料は、可視光として透過または反射する波長領域と、赤外光として吸収する波長領域とにおけるコントラストが不十分である。この為、当該錫ドープ酸化インジウムを用いた近赤外線吸収微粒子分散液をオフセット印刷へ適用した場合、印刷部の読み取り精度などが低下する問題があった。
 一方、特許文献3から5に記載された選択透過膜用塗布液や偽造防止インクでは、近赤外線吸収微粒子がエタノールやトルエン等の有機溶剤中に分散されている。この為、これらの塗布液やインクは、当該有機溶剤がゴム製のブランケットを溶解する可能性が有り、オフセット印刷用のインクとして用いることは出来なかった。
 そこで、本発明者らは、オフセット印刷用の溶媒として用いられる植物油や植物油由来の化合物を溶剤とし、当該溶剤へ一般式XB(ただし、元素X は、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Y、Sm、Eu、Er、Tm、Yb、Lu、SrまたはCaから選択される少なくとも1種以上の元素、4.0≦a≦6.2)で表される六ホウ化物微粒子を添加し、分散液とすることを試行した。しかしながら、得られた分散液の粘性が上昇してしまい、六ホウ化物微粒子を、粉砕したり溶剤中へ分散させることが困難であるという課題があることを知見した。
 本発明は、このような状況の下になされたものであり、その解決しようとする課題は、近赤外線領域の吸収能力を有し、コントラストが明確であり、オフセット印刷への適用可能な近赤外線吸収微粒子分散液と、その製造方法を提供することである。
 また、本発明は、この近赤外線吸収微粒子分散液を含むオフセット印刷が可能な偽造防止インク組成物を提供する。さらに、当該オフセット印刷用の偽造防止インク組成物を用いることによって、コピー等では複製が不可能であり、目視判定によらず機械的に確実に真贋の判定ができ、デザイン上の制約が少なく、偽造防止効果に優れた偽造防止印刷物を提供することを目的とする。
課題を解決する手段
 上記課題を解決するため、本発明者らが鋭意研究を行った結果、植物油または植物油由来の化合物から選択される1種類以上を溶剤とし、ここへ10質量%以上25質量%以下の六ホウ化物微粒子を添加して、粉砕し分散させて分散液とする際に、当該分散液の粘度が180mPa・s以下であれば、六ホウ化物微粒子の粉砕、分散が十分に行われ、オフセット印刷へ適用可能な近赤外線吸収微粒子分散液が得られることを知見した。そして、六ホウ化物微粒子を粉砕し分散する際、当該分散液へ所定の分散剤を添加することで、当該分散液の粘度を180mPa・s以下に保つことが出来ることにも想到した。
 そして、上述した近赤外線吸収微粒子分散液を含有する、または、上述した近赤外線吸収微粒子分散液と共に一般のオフセット印刷用インクに通常用いられる顔料を含有するオフセット印刷用の偽造防止インク組成物、当該オフセット印刷用の偽造防止インク組成物を用いて印刷された偽造防止印刷物にも想到し、本発明を完成した。
 即ち、上述の課題を解決する第1の発明は、
 植物油または植物油由来の化合物から選択される1種類以上の溶剤と、
 2質量%以上25質量%以下の、一般式がXBで表記される六ホウ化物微粒子(ここで、元素Xは、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Y、Sm、Eu、Er、Tm、Yb、Lu、SrおよびCaから選択される少なくとも1種以上、4.0≦a≦6.2)から選択される1種以上の近赤外線吸収微粒子と、
 前記溶剤に可溶で、脂肪酸を構造中に有する分散剤と、を含み、
 粘度が、180mPa・s以下であることを特徴とする近赤外線吸収微粒子分散液である。
 第2の発明は、
 前記分散剤のアンカー部が、2級アミノ基、3級アミノ基、および、4級アンモニウム基から選択される1種類以上を有することを特徴とする第1の発明に記載の近赤外線吸収微粒子分散液である。
 第3の発明は、
 前記分散剤の酸価が1mgKOH/g以上の分散剤であることを特徴とする第1または第2の発明に記載の近赤外線吸収微粒子分散液である。
 第4の発明は、
 前記近赤外線吸収微粒子の分散粒子径が1nm以上200nm以下であることを特徴とする第1から第3の発明のいずれかに記載の近赤外線吸収微粒子分散液である。
 第5の発明は、
 前記近赤外線吸収微粒子の格子定数が、0.4100nm以上0.4160nm以下であることを特徴とする第1から第4の発明のいずれかに記載の近赤外線吸収微粒子分散液である。
 第6の発明は、
 前記近赤外線吸収微粒子の表面が、Si、Ti、Al、Zrから選択される1種以上の化合物で被覆されていることを特徴とする第1から第5の発明のいずれかに記載の近赤外線吸収微粒子分散液である。
 第7の発明は、
 前記植物油が、乾性油、半乾性油から選択される1種類以上の植物油であることを特徴とする第1から第6の発明のいずれかに記載の近赤外線吸収微粒子分散液である。
 第8の発明は、
 前記近赤外線吸収微粒子分散液が、さらにバインダーを含むことを特徴とする第1から第7の発明のいずれかに記載の近赤外線吸収微粒子分散液である。
 第9の発明は、
 前記近赤外線吸収微粒子と前記溶剤と前記分散剤とを混合し、分散処理することを特徴とする第1から第8の発明のいずれかに記載の近赤外線吸収微粒子分散液の製造方法である。
 第10の発明は、
 第1から第8の発明のいずれかに記載の近赤外線吸収微粒子分散液を含むことを特徴とする偽造防止インク組成物である。
 第11の発明は、
 さらに、顔料を含むことを特徴とする第10の発明に記載の偽造防止インク組成物である。
 第12の発明は、
 第11の発明に記載の顔料が無機顔料であり、カーボンブラック、白色顔料、体質顔料、赤色顔料、黄色顔料、緑色顔料、青色顔料、紫色顔料、蛍光顔料、示温顔料、パール顔料、金属粉顔料から選択される1種類以上であることを特徴とする偽造防止インク組成物である。
 第13の発明は、
 第11の発明に記載の顔料が有機顔料であり、アゾレーキ顔料、不溶性アゾ顔料、縮合アゾ顔料、フタロシアニン顔料、縮合多環系顔料から選択される1種類以上であることを特徴とする偽造防止インク組成物である。
 第14の発明は、
 可塑剤、酸化防止剤、増粘剤、ワックスから選択される1種類以上を含むことを特徴とする第10から第13の発明に記載の偽造防止インク組成物である。
 第15の発明は、
 基材の一方もしくは両面に印刷パターンを有する印刷物であって、前記印刷パターンに一般式がXBで表記される六ホウ化物微粒子(ここで、元素Xは、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Y、Sm、Eu、Er、Tm、Yb、Lu、SrおよびCaから選択される少なくとも1種以上、4.0≦a≦6.2)から選択される1種以上の近赤外線吸収微粒子を含有していることを特徴とする偽造防止印刷物である。
 第16の発明は、
 第15の発明に記載の印刷パターンが、さらに顔料を含むことを特徴とする偽造防止印刷物である。
 第17の発明は、
 第16の発明に記載の顔料が無機顔料であり、カーボンブラック、白色顔料、体質顔料、赤色顔料、黄色顔料、緑色顔料、青色顔料、紫色顔料、蛍光顔料、示温顔料、パール顔料、金属粉顔料から選択される1種類以上であることを特徴とする偽造防止印刷物である。
 第18の発明は、
 第16の発明に記載の顔料が有機顔料であり、アゾレーキ顔料、不溶性アゾ顔料、縮合アゾ顔料、フタロシアニン顔料、縮合多環系顔料から選択される1種類以上であることを特徴とする偽造防止印刷物である。
 第19の発明は、
 偽造防止印刷物の波長800nm~1300nmの拡散反射率の平均値を、近赤外線吸収微粒子を含まないブランクの波長800nm~1300nmの拡散反射率の平均値で除した値が0.84以下であることを特徴とする、第15から第18の発明のいずれかに記載の偽造防止印刷物である。
 本発明に係る近赤外線吸収微粒子分散液を用いることで、近赤外線領域の吸収能力を有しコントラストが明確なオフセット印刷を容易に行うことが出来る。また、本発明に係る近赤外線吸収微粒子分散液を用いることでオフセット印刷が可能な偽造防止インク組成物、及び、コピー等では複製が不可能であり、目視判定によらず機械的に確実に真贋の判定ができ、デザイン上の制約が少なく、偽造防止効果に優れた偽造防止印刷物を提供することができる。
本発明に係る分散液Aの乾燥膜における光の透過プロファイルである。 本発明に係る分散液Bの乾燥膜における光の透過プロファイルである。 本発明に係る分散液Cの乾燥膜における光の透過プロファイルである。 本発明に係る分散液Dの乾燥膜における光の透過プロファイルである。 本発明に用いる高分子分散剤の態様の模式図である。 本発明に用いる異なる高分子分散剤の態様の模式図である。 本発明に用いるさらに異なる高分子分散剤の態様の模式図である。
 本発明を実施するための形態について、近赤外線吸収微粒子、溶剤、分散剤、近赤外線吸収微粒子の溶剤への分散方法、近赤外線吸収微粒子分散液、オフセット印刷用の偽造防止インク組成物、印刷方法、真贋判定方法、の順で詳細に説明する。
1.近赤外線吸収微粒子
 本発明に用いられる近赤外線吸収微粒子は、一般式がXB(4.0≦a≦6.2)で表記される六ホウ化物微粒子である。ここで、元素Xは、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Y、Sm、Eu、Er、Tm、Yb、Lu、SrおよびCaから選択される少なくとも1種以上である。
 具体的には、六ホウ化ランタンLaB 、六ホウ化セリウムCeB、六ホウ化プラセオジムPrB、六ホウ化ネオジムNdB 、六ホウ化ガドリニウムGdB 、六ホウ化テルビウムTbB、六ホウ化ディスプロシウムDyB、六ホウ化ホルミウムHoB、六ホウ化イットリウムYB、六ホウ化サマリウムSmB、六ホウ化ユーロピウムEuB、六ホウ化エルビウムErB、六ホウ化ツリウムTmB、六ホウ化イッテルビウムYbB、六ホウ化ルテチウムLuB、六ホウ化ランタンセリウム(La,Ce)B、六ホウ化ストロンチウムSrB、六ホウ化カルシウムCaBから選択される1種以上であることが好ましい。
 上記六ホウ化物微粒子は、その表面が酸化していないことが好ましい。しかし通常、その表面は僅かに酸化していることが多く、また、微粒子の分散工程で表面の酸化が起こることはある程度避けられない。尤も、その場合でも熱線遮蔽効果を発現する有効性に変わりはなく、従って、表面が酸化された六ホウ化物微粒子でも使用することが可能である。
 また、上記六ホウ化物微粒子は、結晶性が高いほど大きい熱線遮蔽効果が得られる。尤も、該六ホウ化物微粒子において、結晶性が低くX線回折でブロードな回折ピークを生じるようなものであっても、微粒子内部の基本的な結合が各金属とホウ素の結合から成り立っており、格子定数が0.4100nm以上0.4160nm以下であるならば、所望の熱線遮蔽効果を発現するため、本発明において好ましく適用することが可能である。格子定数は、例えばXRDパターンのデータを基にリートベルト解析を行うことで求めることができる。
 また、当該六ホウ化物微粒子の表面が、シランカップリング剤で被覆処理されていることも好ましい。六ホウ化物微粒子の表面が、シランカップリング剤で被覆処理されていることにより、六ホウ化物微粒子の優れた分散性が得られる。この結果、本発明に係る近赤外線吸収微粒子分散液において、優れた近赤外線吸収機能、可視光領域における透明性が得られるからである。
 本発明に係る六ホウ化物微粒子を十分細かくかつ均一に分散させた膜では、光の透過率が波長400nm~700nmの間に極大値を持ち、且つ、波長700nm~1800nmの間に極小値を持ち、さらに、当該光の透過率における極大値と極小値との差が、15ポイント以上であることが観察されている。
 ここで、可視光の波長が380nm~780nmであり、人間の視感度が波長550nm付近をピークとする釣鐘型であることを考慮すると、このような熱線遮蔽透明樹脂成形体は、可視光を有効に透過し、それ以外の熱線を有効に反射・吸収する特性を有していることが解る。
 本発明に係る六ホウ化物微粒子は、波長350~400nm付近の近紫外領域、及び波長650nm~1300nm付近の近赤外領域、特に波長1000nm付近の光を大きく吸収する。その為、その透過色調は無色から緑色系となる物が多い。
 また、本発明に係る六ホウ化物微粒子が近赤外領域の吸収を発揮するためには、六ホウ化物微粒子の分散粒子径を十分に小さくすることが好ましい。これは六ホウ化物の持つ吸収が、ナノ粒子特有の現象である局在表面プラズモン共鳴に起因するためである。ここで、分散粒子径とは、溶媒中におけるホウ化物微粒子の凝集粒子径を意味するものであり、市販されている種々の粒度分布計で測定することができる。例えば、ホウ化物微粒子の凝集体も存在する状態で、ホウ化物微粒子が溶媒中に分散された分散液からサンプリングを行い、動的光散乱法を原理とした大塚電子(株)社製ELS-800を用いて測定することができる。
 六ホウ化物微粒子の分散粒子径が、例えば1500nmを超えるとき、当該六ホウ化物微粒子は近赤外領域にほとんど吸収を持たない。これに対し、六ホウ化物微粒子の分散粒子径がおおよそ800nm以下のとき近赤外領域の吸収は強くなり、200nm以下であればより強い吸収が発揮され、100nm以下であればさらに強い吸収が発揮される。
 一方、本発明に係る六ホウ化物微粒子において、可視光領域での透明性・非散乱性は当該微粒子に起因する光散乱を抑制することで得られる。光散乱としては、光の波長に対する粒子径の比によって幾何光学散乱、ミー散乱、レイリー散乱がある。
 可視光の場合、当該六ホウ化物微粒子の分散粒子径が1000nm以下であれば幾何光学散乱はほとんど無視できる。そして、分散粒子径が200nm以下であれば、ミー散乱は弱化され、100nm以下であればさらに弱化される。当該微粒子の分散粒子径が、さらに小さい分散粒子径の領域ではレイリー散乱が主な散乱因子となる。そして、レイリー散乱強度は、分散粒子径の6乗に反比例して低減するため、当該微粒子の分散粒子径をさらに減少させることで散乱光を低減させることができ、好ましい。
 以上を鑑み、さらに、本発明に係る六ホウ化物微粒子分散液がオフセット印刷用の偽造防止インクの原料として用いられることを考慮すると、本発明に係る六ホウ化物微粒子の分散粒子径は200nm以下であることが好ましい。これは分散粒子径が200nm以下であれば、局在表面プラズモン共鳴による六ホウ化物の近赤外吸収が十分に発揮され、かつ可視光の光散乱が十分に減少するために、印刷物の表面反射光あるいは透過光における[反射/吸収]、あるいは[透過/吸収]のコントラストが向上するためである。
一方、分散粒子径が1nm以上であれば、工業的な製造は容易である。
 また、本発明に係る六ホウ化物微粒子の表面が、Si、Ti、Zr、Alの一種類以上を含有する酸化物で被覆されていることは、当該六ホウ化物微粒子の耐候性向上の観点から好ましい。
2.溶剤
 本発明に用いられる溶剤は、非水溶性であり、かつ、オフセット印刷において用いられるゴム製のブランケットを溶解しないことが求められる。具体的には、植物油、植物油由来の化合物から選択される1種類以上の溶剤を用いることが出来る。
 植物油としては、アマニ油、ヒマワリ油、桐油等の乾性油、ゴマ油、綿実油、菜種油、大豆油、米糠油等の半乾性油、オリーブ油、ヤシ油、パーム油、脱水ヒマシ油等の不乾性油が用いられる。植物油由来の化合物としては、植物油の脂肪酸とモノアルコールを直接エステル反応させた脂肪酸モノエステル、エーテル類などを用いることが出来る。
 上述した植物油や植物油由来の化合物は、含有する油脂の構成成分である脂肪酸中に二重結合を有している。この二重結合は空気中の酸素と反応することで、油脂の分子同士や、顔料成分等の二重結合との重合反応が進行する。当該油脂の分子同士の重合や、油脂とオフセット印刷用の顔料成分等との重合によって、重合反応が進行することで、オフセット印刷後の塗膜が固化することとなる。
 当該オフセット印刷後の塗膜の固化は、植物油、植物油由来の化合物の構成成分である脂肪酸中の二重結合が多い程速くなるが、当該脂肪酸中の二重結合の数はヨウ素価により評価される。即ち、当該塗膜の固化は、植物油、植物油由来の化合物のヨウ素価が高い程早くなる。ここで、乾性油ではヨウ素価が130以上、半乾性油では130~100、不乾性油では100以下である。当該観点から、オフセット印刷に用いる植物油、植物油由来の化合物としては、半乾性油、ヨウ素価が130以上であるアマニ油、ヒマワリ油、桐油等の乾性油から選択される1種以上が好ましい。
3.分散剤
 前記近赤外線吸収微粒子を前記溶剤中に分散させる分散剤は、脂肪酸の構造を有するものが好ましい。さらに、当該分散剤は、上述した本発明に係る溶剤に可溶であることが求められる。
 また、当該分散剤の構造は、特に限定されるものではないが、塩基性のアンカー部を有する高分子の分散剤を用いることが好ましい。アンカー部とは、当該高分子分散剤における分子中の部位(基)であって、前記近赤外線吸収微粒子表面に吸着する部位(基)である。
 本発明においては、特に塩基性のアンカー部を有する高分子分散剤を用いると、インクの保存安定性が改良されるため、好ましい。当該アンカー部となる塩基性の部位(基)としては、2級アミノ基、3級アミノ基、および、4級アンモニウム基、等の部位(基)が挙げられる。
 本発明に用いる高分子分散剤の一態様を図5に示す。一般式[X-A1-Y-A2-Z]において、A1、A2は固体微粒子に吸着する部分(アンカー部)である。そして当該アンカー部において、固体微粒子に吸着する点(吸着点)を少なくとも1つ有していれば、その構造は特に制限はなく、例えば、鎖状、環状、縮合多環状、あるいはそれらの組み合わせで構成される。また、A1、A2は同一でも異なっていても良い。一方、X、Y、Zは、溶媒和して固体微粒子表面から液体中に溶け拡がる高分子鎖部分であり、以下、X及びZをテール部、Yをループ部と称する。テール部、ループ部には、単一のモノマーからなるホモポリマー、複数のモノマーからなるコポリマーが用いられる。
 また、本発明に用いる高分子分散剤として、一般式[X-A1-Y-A2-Z]において、ループ部(Y)が存在しない物を用いることができ、この場合、一般式[X-A1-A2-Z]と同義となる。
 さらにまた、本発明に用いる高分子分散剤の一態様として、図6に示すYが存在せず、一つのアンカー部に2つのテール部が結合した構造も取り得る。この場合、一般式は[X-A3-Z]となる。
 さらに加えて、本発明に用いる高分子分散剤の一態様として、図7に示すZが存在せず、一つのアンカー部に一つのテール部が結合した構造も取り得る。この場合、一般式は[X-A4]となる。
 本発明に用いる高分子分散剤を構成するA(本発明において、上述のA1、A2、A3、およびA4を総称して「A」と記載する場合がある。)は、例えば、水素結合や酸・塩基相互作用などによって固体粒子表面と吸着相互作用を有する吸着点(官能基)を少なくとも1つ有している。また、A1、A2は同一であっても異なっていても良いが、固体微粒子への吸着性を考慮すると、吸着相互作用を有する吸着点(官能基)として、同じ官能基を有するものが好ましい。また、高分子分散剤の製造の観点からも、A1とA2とが同一であるものが好ましい。
 次に、本発明に用いる高分子分散剤を構成するX、Y、Zは、各々異なった化学種で構成されていてもよく、また、少なくとも2つが同じ化学種で構成されていてもよい。係るテール部およびループ部は、溶媒和して固体微粒子表面から液体中に溶け拡がる部分であるため、上述した固体微粒子を分散させる溶媒に親和性を有する高分子鎖が用いられる。
 さらに、本発明に係る分散剤の酸価が1mgKOH/g以上であると、上述した近赤外線吸収微粒子を、本発明に係る溶剤に分散させる能力が高く好ましい。
 物性的には、植物油または植物油由来の化合物から選択される1種類以上の溶剤へ、10質量%以上25質量%以下の本発明に係る六ホウ化物を加えて、機械的な分散操作を実施した場合、得られた分散液の粘度が180mPa・s以下に保たれることを可能にする分散能力を発揮するものである。分散液の粘度が180mPa・s以下に保たれることにより、六ホウ化物の粉砕および分散が十分に進行し、製造される近赤外線吸収微粒子分散液における分散粒子径を200nm以下とすることが可能となる。さらに、当該近赤外線吸収微粒子分散液の粘度が180mPa・s以下であることは、当該近赤外線吸収微粒子分散液を用いてオフセット印刷用の偽造防止インクを製造する観点からも好ましい。
 好ましい分散剤の具体例として市販の分散剤であれば、ディスパービック(DISPERBYK)142;ディスパービック160、ディスパービック161、ディスパービック162、ディスパービック163、ディスパービック166、ディスパービック170、ディスパービック180、ディスパービック182、ディスパービック184、ディスパービック190、ディスパービック2155(以上、ビックケミー・ジャパン(株)製);EFKA-46、EFKA-47、EFKA-48、EFKA-49(以上、BASF社製);ソルスパース(SOLSPERSE)11200、ソルスパース13940、ソルスパース16000、ソルスパース17000、ソルスパース18000、ソルスパース20000、ソルスパース24000、ソルスパース27000、ソルスパース28000、ソルスパース32000、ソルスパース33000、ソルスパース39000、ソルスパース56000、ソルスパース71000(以上、日本ルーブリゾール(株)製);ソルプラス(SOLPLUS)ソルプラスD530、ソルプラスDP320、ソルプラスL300、ソルプラスK500、ソルプラスR700(以上、日本ルーブリゾール(株)製);アジスパーPB711、アジスパーPA111、アジスパーPB811、アジスパーPW911(以上、味の素社製);フローレンDOPA-15B、フローレンDOPA-22、フローレンDOPA-17、フローレンTG-730W、フローレンG-700、フローレンTG-720W(以上、共栄社化学工業(株)製)等を挙げることができる。
 本発明に係る分散剤の添加量は、六ホウ化物微粒子100重量部に対して、30重量部以上200重量部以下であることが好ましい。
 また、市販の分散剤を用いる場合は、当該分散剤がオフセット印刷用のゴム製のブランケットを溶解する可能性のある溶剤を、含有していないことが好ましい。従って、当該分散剤の不揮発分(180℃、20分間加熱後)は高いことが好ましく、例えば95%以上であることが好ましい。
4.近赤外線吸収微粒子の溶剤への分散方法
 本発明に係る六ホウ化物微粒子を本発明に係る溶剤へ分散させて、近赤外線吸収微粒子分散液を得る為の分散方法は、当該微粒子を均一に溶剤へ分散する方法であれば任意に選択できる。具体的には、ビーズミル、ボールミル等の湿式媒体ミルを用いることが好ましい。
 本発明に係る近赤外線吸収微粒子分散液における、六ホウ化物微粒子の濃度は2~25質量%、好ましくは5~25質量%、より好ましくは10~25質量%である。
 六ホウ化物微粒子の濃度が高いほど、オフセット印刷用の偽造防止インク調製が容易であり好ましい。一方、六ホウ化物微粒子の濃度が25質量%以下であれば、上述した分散剤の添加により、得られる近赤外線吸収微粒子分散液の粘度を180mPa・s以下に抑制して、六ホウ化物微粒子の粉砕・分散を十分に進めることが出来る。この場合、六ホウ化物微粒子の分散粒子径は、湿式媒体ミルの処理時間により、任意に制御出来る。処理時間を長くする事により、分散粒子径を小さくすることができる。
 尚、本発明に係る近赤外線吸収微粒子分散液の粘度の下限値は、用いられる植物油または植物油由来の化合物の粘度に依存する。例えば、ヒマワリ油の粘度(24℃)は50mPa・sであり、アマニ油の粘度(24℃)は40mPa・sである。
5.近赤外線吸収微粒子分散液
 以上説明した製造方法により、本発明に係る近赤外線吸収微粒子分散液が得られる。
 本発明に係る近赤外線吸収微粒子分散液へ、さらにバインダーを添加してもよい。当該バインダーとしては、特に限定されず、例えば、ロジン変性フェノール樹脂、ロジン変性アルキッド樹脂、石油樹脂変性フェノール樹脂などの合成樹脂等が挙げられる。そこで、用途に適したものを選択することが可能である。
6.オフセット印刷用の偽造防止インク組成物
 本発明に係る近赤外線吸収微粒子分散液、樹脂ワニス成分、植物油成分、石油系溶剤成分、および添加剤を混合して、オフセット印刷用の偽造防止インク組成物を得ることが出来る。
 樹脂ワニス成分としては、フェノール樹脂、石油樹脂、ロジン変性フェノール樹脂、石油樹脂変性ロジン変性フェノール樹脂、植物油変性ロジン変性フェノール樹脂、変性アルキッド樹脂、ロジン変性マレイン酸樹脂、ポリエステル系樹脂、アクリル系樹脂、ウレタン樹脂、エポキシ樹脂等任意の樹脂系が用いられるが、例えばロジン変性フェノール樹脂、石油樹脂を用いた樹脂ワニスが好ましく用いられる。
 平版オフセット印刷インク組成物中の樹脂ワニスの添加量は15~70質量%、好ましくは40~60質量%である。また、植物油成分と石油系溶剤成分としては、一般的に平版オフセットインクに用いられるものであればいずれのものでも良い。
 添加剤としては、可塑剤、酸化剤防止剤、増粘剤、ワックス等が挙げられる。
 さらに、本発明に係るオフセット印刷用の偽造防止インク組成物には、一般の平版オフセットインクに用いられる顔料を添加して、可視光領域で着色したパターンを形成することができる。着色パターンの形成により、デザイン上の効果を高めたり、偽造防止効果を高めることができる。
 前記の顔料としては、印刷適性を損なわないものであれば、どのようなものを用いても良い。具体的には、カーボンブラックや、アゾレーキ顔料、不溶性アゾ顔料、縮合アゾ顔料、フタロシアニン顔料、縮合多環系顔料等の種々の有機顔料を用いることができる。当該有機顔料以外にも、酸化チタンや鉛白などの白色顔料、炭酸カルシウムなどの体質顔料、べんがらなどの赤色顔料、黄鉛などの黄色顔料、酸化クロムなどの緑色顔料、群青などの青色顔料、マンガンバイオレットなどの紫色顔料、蛍光顔料、示温顔料、パール顔料、あるいは金属粉顔料等の種々の無機顔料を用いることができる。
 また、カーボンブラック単体で用いることも好ましい。
 本発明に係るオフセット印刷用の偽造防止インク組成物においては、上述のように近赤外線吸収微粒子と一般の平版オフセットインクに用いられる顔料とを同時に用いることができる。当該構成を採ることで、近赤外線吸収微粒子を含有しない一般のオフセットインクとの色の違いを、目視によって判別できないくらいに小さくすることもできる。
 本発明に係る近赤外線吸収微粒子分散液、樹脂ワニス成分、石油系溶剤成分、添加剤、および/または、顔料の混練は、三本ロールミル等の練肉機を用いて行うことができる。その際、練和度を高めるためや作業効率を高めるために赤外線吸収剤のウェッティング性に優れるアルキッド樹脂等のウェッティングワニスやその他の添加剤を用いてもよい。
7.印刷方法
 本発明に係る印刷物を提供するための印刷方法としては、従来公知の平版オフセット印刷方法が用いられる。例えば、オフセット枚葉印刷、オフセット輪転印刷、水無しオフセット印刷、ドライオフセット印刷などが挙げられる。
 本発明に係る印刷物に用いられる基材としては、例えば白紙、プラスチックフィルムに白色印刷したもの等を挙げることができる。この場合のプラスチックフィルムとしては、ポリプロピレン(PP)、ポリ塩化ビニル(PVC)、ポリエチレンテレフタレート(PET)、合成紙などが挙げられる。完成品の用途によりそれぞれ紙・フィルムの優位性があると考えられ、一概にはどれが良いとは言えないが、後述する本発明実施例においては、安価な点や扱いやすさなどから白色上質紙を選択した。
 本発明に係るオフセット印刷用の偽造防止インクセットとしては、従来公知の平版オフセット印刷用インクが用いられる。例えば、酸化重合型インク、ヒートセット型インク、浸透乾燥型インクなどが挙げられる。
 また、印刷に使用する版についても、従来公知の製版技術が用いられる。例えば、振幅変調スクリーニング(AMスクリーニング)法により形成した版、周波数変調スクリーニング(FMスクリーニング)法により形成した版などが挙げられる。
 本発明に係るオフセット印刷の偽造防止インク組成物を用いて印刷することにより、デザイン上の制約が少なく、偽造防止効果にも優れた印刷物を提供することができる。
8.真贋判定方法
 本発明に係る印刷物に波長800nm~1300nmの近赤外線を照射し、当該印刷物から拡散反射してくる上記波長の近赤外線を測定する。本発明に係る印刷物は、近赤外線吸収微粒子を含有していないブランク印刷物に比べて、波長800nm~1300nmの近赤外線の拡散反射が少ない。そのため、近赤外線吸収微粒子を含有する印刷物の波長800nm~1300nmの近赤外線の拡散反射率と、ブランク印刷物の波長800nm~1300nmの近赤外線の拡散反射率との差に拠って、印刷物の真贋を容易に判定することができる。例えば、本発明に係る印刷物の波長800nm~1300nmの拡散反射率の値を、ブランク印刷物の波長800nm~1300nmの拡散反射率の値で除することで、バインダー等の他の成分や基材などの要因を除いた近赤外線吸収微粒子の正味の拡散反射率を評価できる。この除した値が小さい程、真贋の判定は容易であり、0.84以下であることが好ましく、0.77以下であることがより好ましい。
 上述した近赤外線吸収微粒子を含む印刷物の拡散反射率を、ブランク印刷物の拡散反射率の値で除した値を小さくするには、近赤外線吸収微粒子の含有量を増やせば良く、インク中の近赤外線吸収微粒子濃度を高くすれば良いとも考えられるが、インクの安定性やコストの観点から限界がある。他にも、インクを重ね塗りして膜厚を厚くすることも考えられる。しかし、工数が増えたり、膜厚が厚くなることで印刷面に凹凸が発生する、等の影響が懸念される。
 従って、印刷物中に含まれる近赤外線吸収微粒子の量は少ないほうが好ましく、本発明に係る近赤外線吸収微粒子を用いることとなる。具体的には、印刷物中に含まれる近赤外線吸収微粒子の量が0.8g/cm以下であることが好ましい。
 尚、本発明に係る拡散反射率は、分光光度計を用いて、硫酸バリウムの微粉末を固めた白板の拡散反射率を100%として調整の上、波長800nm~1300nmの波長領域における拡散反射率を相対値で測定したものである。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるわけではない。
 尚、本実施例に係る近赤外線吸収微粒子分散剤の酸価の測定方法は、JIS K 0070に準拠し、電位差滴定法による。また、実施例に係る近赤外線吸収微粒子分散液の粘度の測定方法は、振動式粘度計VM100A-L(CBCマテリアルズ(株)製)を用いて測定した。さらに、微粒子X線回折装置(ブルカー・エイエックスエス(株)製、D2 PHASER)を用い、CuKα線使用の条件下で測定を行い、2θ=10°~100°のXRDパターンを得て、XRDパターンに基づいてリートベルト解析を行い、実施例に係る近赤外線吸収微粒子の格子定数を求めた。
 そして、本実施例に係る印刷物の光学特性は、分光光度計U-4100(日立製作所(株)製)を用いて測定した。拡散反射率は、分光光度計U-4100(日立製作所(株)製)を用いて、硫酸バリウムの微粉末を固めた白板の拡散反射率を100%として調整の上、波長800nm~1300nm波長領域において5nm毎の拡散反射率を相対値で測定し、得られた値の平均値を用いた。
(実施例1)
 近赤外線吸収微粒子として六ホウ化ランタン微粒子(平均粒径1~2μm)を10.0質量%、分散剤の構造に脂肪酸を有し、アミノ基を有し、酸価が20.3mgKOH/gであり、ヒドロキシステアリン酸鎖を有し、不揮発分100%である分散剤(以下、分散剤aと略称する。)5.0質量%、溶剤としてヒマワリ油85.0質量%を秤量した。
 これらの近赤外線吸収微粒子、分散剤、溶剤を、0.3mmφZrOビーズを入れたペイントシェーカーに装填し、30時間分散処理し、実施例1に係る近赤外線吸収微粒子分散液(以下、分散液Aと略称する)を得た。
 分散液A中における六ホウ化物微粒子の分散粒子径を、粒度分布計(大塚電子製)で測定したところ84.3nmであり、分散液Aの粘度(24℃)は98.1mPa・sであった。また、六ホウ化ランタン微粒子の格子定数は0.41560nmであった。
 当該結果を表1に示す(以下、実施例2~4、比較例1も同様に示す。)。
 被印刷基材として厚さ50μmの透明PETフィルムを準備し、その表面に分散液Aをバーコーターにより8μm厚にて成膜した。この膜を70℃で3時間乾燥して分散液Aを乾燥させた。
 得られた分散液Aの乾燥膜の可視光透過率は68.2%であった。また、可視光領域である波長550nmの光の透過率は70.3%であり、近赤外線領域である波長800nmの光の透過率は28.0%、波長900nmの光の透過率は19.7%、波長1000nmの光の透過率は17.8%、波長1500nmの光の透過率は69.3%であった。この分散液Aの乾燥膜における光の透過プロファイルを図1に、測定結果を表1に示す(以下、実施例2~4も同様に示す。)。
(実施例2)
 溶剤としてアマニ油を用いた以外は、実施例1と同様にして実施例2に係る近赤外線吸収微粒子分散液(以下、分散液Bと略称する)を得た。
 分散液B中の六ホウ化物微粒子の分散粒子径を粒度分布計(大塚電子製)で測定したところ82.9nmであり、分散液Bの粘度(24℃)は93.2mPa・sであった。また、格子定数は0.41560nmであった。
 次に、実施例1と同様にして実施例2に係る乾燥膜を得、光学特性を測定した。この分散液Bの乾燥膜における光の透過プロファイルを図2に示す。
(実施例3)
 分散剤の構造に脂肪酸を有し、酸価が5mgKOH/g以上であり、不揮発分100%である分散剤(以下、分散剤bと略称する。)を用いた以外は、実施例1と同様にして実施例3に係る近赤外線吸収微粒子分散液(以下、分散液Cと略称する)を得た。
 分散液C中の六ホウ化物微粒子の分散粒子径を粒度分布計(大塚電子製)で測定したところ84.9nmであり、分散液Cの粘度(24℃)は163mPa・sであった。また、格子定数は0.41560nmであった。
 次に、実施例1と同様にして実施例3に係る乾燥膜を得、光学特性を測定した。この分散液Cの乾燥膜における光の透過プロファイルを図3に示す。
(実施例4)
 分散剤の構造に脂肪酸を有し、酸価が20.3mgKOH/gであり、不揮発分100%である分散剤(以下、分散剤cと略称する。)を用いた以外は、実施例1と同様にして実施例4に係る近赤外線吸収微粒子分散液(以下、分散液Dと略称する)を得た。
 分散液D中の六ホウ化物微粒子の分散粒子径を粒度分布計(大塚電子製)で測定したところ84.1nmであり、分散液Dの粘度(24℃)は115mPa・sであった。また、格子定数は0.41560nmであった。
 次に、実施例1と同様にして乾燥膜を得、光学特性を測定した。この分散液Dの乾燥膜の透過プロファイルを図4に示す。
(比較例1)
 近赤外線吸収微粒子として六ホウ化ランタン微粒子(平均粒径1~2μm)を10.0質量%、官能基としてカルボキシル基を有するアクリル系分散剤(以下、分散剤dと略称する。)8.0質量%、溶剤としてトルエン82.0質量%を混合し、0.3mmφZrOビーズを入れたペイントシェーカーで30時間粉砕・分散処理することによって六ホウ化物微粒子分散液(以下、分散液Eと略称する。)を調製した。
 分散液E中の六ホウ化物微粒子の分散粒子径を粒度分布計(大塚電子製)で測定したところ84.3nmであり、分散液Eの粘度(24℃)は4.9mPa・sであった。
 一方、分散液Eに含まれる溶剤としてのトルエン量は82.0質量%あり、当該トルエンは、オフセット印刷機のゴムローラー(ニトリルブタジエンゴム)を溶解するため、オフセット印刷への適用は困難であった。
(比較例2)
 近赤外線吸収微粒子として六ホウ化ランタン微粒子(平均粒径1~2μm)を10.0質量%、分散剤aを8.0質量%、ひまし油82.0質量%を秤量した。
 これらの近赤外線吸収微粒子、分散剤、溶剤を、0.3mmφZrOビーズを入れたペイントシェーカーで50時間粉砕・分散処理し、比較例2に係る近赤外線吸収微粒子分散液を得た。
 当該比較例2に係る分散液中における六ホウ化物微粒子の分散粒子径を、粒度分布計(大塚電子製)で測定したところ315.2nmであった。そして、当該分散液の粘度(24℃)は1092mPa・sと、高粘度であった。
 そこで更にペイントシェーカーによる粉砕、分散処理を20時間追加したが、分散粒子径に、ほとんど変化は無かった。
(実施例1~4および比較例1~2の評価)
 実施例1~4に係る植物油中に六ホウ化物の粒子を分散させた近赤外線吸収微粒子分散液を用いて作製した乾燥膜は、可視光領域では高い透過率を示し、近赤外線領域では透過率が顕著に低いものであった。
 この結果、本発明に係る近赤外線吸収微粒子分散液を用いて調製した印刷パターンは、近赤外線鑑定機で判別可能であることが確認された。
 これに対し、比較例1に係る近赤外線吸収微粒子分散液Eは、溶剤としてトルエンを含有し、オフセット印刷の際ゴム製のブランケットを溶解する。この為、近赤外線吸収微粒子分散液Eのオフセット印刷への適用は、不適であると考えられた。
 比較例2に係る近赤外線吸収微粒子分散液では、溶媒として粘度の高いひまし油を用いた為、高粘度となった。この結果、六ホウ化物の粒子の粉砕、分散処理が十分に進まず分散液が作製出来なかった。
(実施例5)
 分散液A液を用いたオフセット印刷用の偽造防止インクA(以下、インクAと略称する)の調製例、および、当該インクAを用いた印刷例について説明する。但し、本発明の範囲は、これら記載の実施例に限定されるものではない。
(ロジン変性フェノール樹脂の調製)
 撹拌機、冷却器、温度計をつけた4つ口フラスコに、P-オクチルフェノール1000重量部、35%ホルマリン850重量部、93%水酸化ナトリウム60重量部、トルエン1000重量部を装填して、90℃で6時間反応させた。その後、6N塩酸125重量部、水1000重量部の塩酸溶液を添加し、撹拌、静置した後、上層部を取り出した。そして、不揮発分49%のレゾールタイプフェノール樹脂のトルエン溶液2000重量部を得、これをレゾール液とした。
 撹拌機、水分分離器付き冷却器、温度計をつけた4つ口フラスコに、ガムロジン1000重量部を装填し、窒素ガスを吹き込みながら200℃で溶解した。ここへ、前記で得られたレゾール液1800重量部を添加し、トルエンを除去しながら230℃で4時間反応させた。当該反応後、グリセリン110重量部を添加し、250℃で10時間反応させて酸価を20mgKOH/g以下とし、重量平均分子量50000、新日本石油化学(株)AFソルベント6号での白濁温度88℃のロジン変性フェノール樹脂を得た。
(ワニスの調製)
 前記で得られたロジン変性フェノール樹脂40重量部、大豆油35重量部、AFソルベント6号(新日本石油化学(株)製溶剤)24重量部、ALCH(川研ファインケミカル(株)製ゲル化剤)1.0重量部を、190℃で1時間加熱撹拌してワニスを得た。
(オフセット印刷用の偽造防止インクの調製)
 表2に示す配合にて、実施例1にて調製した分散液A、ワニス、石油系溶剤(新日本石油株式会社製:AF-6ソルベント)、大豆油、桐油、コンパウンド(合同インキ株式会社製:UGコンパウンド)、金属ドライヤー(DICグラフィックス株式会社製:937ドライヤー)、乾燥抑制剤(東京インキ株式会社製:インキーパー)を混合しインクAを得た。インクAにおいて六ホウ化ランタン濃度は0.38質量%となった。得られたオフセット印刷用インクは凝集等を起こさず、安定であった。
(印刷物の調製)
 被印刷基材として白色上質紙を準備し、インクAを用いてオフセット印刷を行って印刷物Aを得た。得られた印刷物Aの波長800nm~1300nmにおける拡散反射率の平均値は、56.2%であった。
 一方、後述する比較例3に係るブランク印刷物の波長800nm~1300nmにおける拡散反射率の平均値は77.7%であった。
 従って、実施例2に係る印刷物Aの波長800nm~1300nmの拡散反射率の平均値を、後述する比較例3に記載するブランク印刷物の波長800nm~1300nmの拡散反射率の平均値で除した値は0.72であった。
(実施例6)
 表2に示す配合にて、実施例1にて調製した分散液A、ワニス、石油系溶剤、大豆油、桐油、コンパウンド、金属ドライヤー、乾燥抑制剤を混合した以外は実施例5と同様にしてオフセット印刷用の偽造防止インクB(以下、インクBと略称する)を得た。インクBにおいて六ホウ化ランタン濃度は0.75質量%となった。被印刷基材として白色上質紙を準備し、インクBを用いてオフセット印刷を行って印刷物Bを得た。得られた印刷物Bの波長800nm~1300nmにおける拡散反射率の平均値は40.7%であった。
 従って、印刷物Bの波長800nm~1300nmの拡散反射率の平均値を比較例3に記載のブランク印刷物の波長800nm~1300nmの拡散反射率の平均値で除した値は0.52であった。
(実施例7)
 表2に示す配合にて、実施例1にて調製した分散液A、ワニス、石油系溶剤、大豆油、桐油、コンパウンド、金属ドライヤー、乾燥抑制剤を混合した以外は実施例5と同様にしてオフセット印刷用の偽造防止インクC(以下、インクCと略称する)を得た。インクCにおいて六ホウ化ランタン濃度は1.88質量%となった。被印刷基材として白色上質紙を準備し、インクCを用いてオフセット印刷を行って印刷物Cを得た。得られた印刷物Cの波長800nm~1300nmにおける拡散反射率の平均値は15.8%であった。
 従って、印刷物Cの波長800nm~1300nmの拡散反射率の平均値を比較例3に記載のブランク印刷物の波長800nm~1300nmの拡散反射率の平均値で除した値は0.20であった。
(比較例3)
 表2に示す配合にて、ワニスと、石油系溶剤、大豆油、桐油、コンパウンド、金属ドライヤー、乾燥抑制剤を混合した以外は実施例5と同様にしてオフセット印刷用の偽造防止インクD(以下、インクDと略称する)を得た。被印刷基材として白色上質紙を準備し、インクDを用いてオフセット印刷を行ってブランク印刷物である印刷物Dを得た。得られたブランク印刷物である印刷物Dの波長800nm~1300nmにおける拡散反射率の平均値は77.7%であった。
(比較例4)
 近赤外線吸収微粒子としてアンチモン添加酸化錫(ATO)粒子(平均粒径1~10μm)を20.0質量%、分散剤aを10.0質量%、溶剤としてヒマワリ油を70.0質量%を秤量した。
 これらの近赤外線吸収微粒子、分散剤、溶剤を、0.3mmφZrOビーズを入れたペイントシェーカーに装填して30時間粉砕・分散処理し、比較例4に係る近赤外線吸収微粒子分散液(以下、分散液Fと略称する)を得た。
 分散液F中におけるアンチモン添加酸化錫微粒子の分散粒子径を測定したところ53.6nmであり、分散液Fの粘度(24℃)は156mPa・sであった。
 表3に示す配合にて調製した分散液F、ワニス、石油系溶剤、大豆油、桐油、コンパウンド、金属ドライヤー、乾燥抑制剤を混合した以外は実施例5と同様にしてオフセット印刷用の偽造防止インクE(以下、インクEと略称する)を得た。被印刷基材として白色上質紙を準備し、インクEを用いてオフセット印刷を行って印刷物Eを得た。得られた印刷物Eの波長800nm~1300nmの反射率の平均値は69.5%であった。
 従って、印刷物Eの波長800nm~1300nmの拡散反射率の平均値を比較例3に記載のブランクの波長800nm~1300nmの拡散反射率の平均値で除した値は0.89であった。
(実施例5~7および比較例3、4の評価)
 実施例5~7において、印刷パターンに六ホウ化物の粒子を含む印刷物A~Cは、波長800nm~1300nmで低い拡散反射率を示している。これらの波長800nm~1300nmの拡散反射率の平均値を、ブランクの波長800nm~1300nmの拡散反射率の平均値で除した値は、0.20~0.72と小さい。この結果、六ホウ化物の粒子を含む印刷物は真贋判定が容易であることが確認された。
 一方、比較例3に係る印刷パターンに六ホウ化物の粒子を含まない印刷物D、比較例4に係る印刷パターンにアンチモン添加酸化錫の粒子を含む印刷物Eは、波長800nm~1300nmで高い拡散反射率を示している。これらの波長800nm~1300nmの拡散反射率の平均値を、ブランクの波長800nm~1300nmの拡散反射率の平均値で除した値は、0.89~1.00と大きく、波長800nm~1300nmの反射率で真贋判定を行うことは困難であると考えられる。
 また、比較例4に係るアンチモン添加酸化錫の粒子を含む印刷インクで真贋判定が容易な印刷物を得ようとした場合、印刷物表面のインクの膜厚を、目視で認識できるほど厚くする必要があり、当該印刷物を偽造防止用途に用いることは、現実的でないと考えられた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 

Claims (19)

  1.  植物油または植物油由来の化合物から選択される1種類以上の溶剤と、
     2質量%以上25質量%以下の、一般式がXBで表記される六ホウ化物微粒子(ここで、元素Xは、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Y、Sm、Eu、Er、Tm、Yb、Lu、SrおよびCaから選択される少なくとも1種以上、4.0≦a≦6.2)から選択される1種以上の近赤外線吸収微粒子と、
     前記溶剤に可溶で、脂肪酸を構造中に有する分散剤と、を含み、
     粘度が、180mPa・s以下であることを特徴とする近赤外線吸収微粒子分散液。
  2.  前記分散剤のアンカー部が、2級アミノ基、3級アミノ基、および、4級アンモニウム基から選択される1種類以上を有することを特徴とする請求項1に記載の近赤外線吸収微粒子分散液。
  3.  前記分散剤の酸価が1mgKOH/g以上の分散剤であることを特徴とする請求項1または2に記載の近赤外線吸収微粒子分散液。
  4.  前記近赤外線吸収微粒子の分散粒子径が1nm以上200nm以下であることを特徴とする請求項1から3のいずれかに記載の近赤外線吸収微粒子分散液。
  5.  前記近赤外線吸収微粒子の格子定数が、0.4100nm以上0.4160nm以下であることを特徴とする請求項1から4のいずれかに記載の近赤外線吸収微粒子分散液。
  6.  前記近赤外線吸収微粒子の表面が、Si、Ti、Al、Zrから選択される1種以上の化合物で被覆されていることを特徴とする請求項1から5のいずれかに記載の近赤外線吸収微粒子分散液。
  7.  前記植物油が、乾性油、半乾性油から選択される1種類以上の植物油であることを特徴とする請求項1から6のいずれかに記載の近赤外線吸収微粒子分散液。
  8.  前記近赤外線吸収微粒子分散液が、さらにバインダーを含むことを特徴とする請求項1から7のいずれかに記載の近赤外線吸収微粒子分散液。
  9.  前記近赤外線吸収微粒子と前記溶剤と前記分散剤とを混合し、分散処理することを特徴とする請求項1から8のいずれかに記載の近赤外線吸収微粒子分散液の製造方法。
  10.  請求項1から8のいずれかに記載の近赤外線吸収微粒子分散液を含むことを特徴とする偽造防止インク組成物。
  11.  さらに、顔料を含むことを特徴とする請求項10に記載の偽造防止インク組成物。
  12.  請求項11に記載の顔料が無機顔料であり、カーボンブラック、白色顔料、体質顔料、赤色顔料、黄色顔料、緑色顔料、青色顔料、紫色顔料、蛍光顔料、示温顔料、パール顔料、金属粉顔料から選択される1種類以上であることを特徴とする偽造防止インク組成物。
  13.  請求項11に記載の顔料が有機顔料であり、アゾレーキ顔料、不溶性アゾ顔料、縮合アゾ顔料、フタロシアニン顔料、縮合多環系顔料から選択される1種類以上であることを特徴とする偽造防止インク組成物。
  14.  可塑剤、酸化防止剤、増粘剤、ワックスから選択される1種類以上を含むことを特徴とする請求項10から13のいずれかに記載の偽造防止インク組成物。
  15.  基材の一方もしくは両面に印刷パターンを有する印刷物であって、前記印刷パターンに一般式がXBで表記される六ホウ化物微粒子(ここで、元素Xは、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Y、Sm、Eu、Er、Tm、Yb、Lu、SrおよびCaから選択される少なくとも1種以上、4.0≦a≦6.2)から選択される1種以上の近赤外線吸収微粒子を含有していることを特徴とする偽造防止印刷物。
  16.  請求項15に記載の印刷パターンが、さらに顔料を含むことを特徴とする偽造防止印刷物。
  17.  請求項16に記載の顔料が無機顔料であり、カーボンブラック、白色顔料、体質顔料、赤色顔料、黄色顔料、緑色顔料、青色顔料、紫色顔料、蛍光顔料、示温顔料、パール顔料、金属粉顔料から選択される1種類以上であることを特徴とする偽造防止印刷物。
  18.  請求項16に記載の顔料が有機顔料であり、アゾレーキ顔料、不溶性アゾ顔料、縮合アゾ顔料、フタロシアニン顔料、縮合多環系顔料から選択される1種類以上であることを特徴とする偽造防止印刷物。
  19.  偽造防止印刷物の波長800nm~1300nmの拡散反射率の平均値を、近赤外線吸収微粒子を含まないブランクの波長800nm~1300nmの拡散反射率の平均値で除した値が0.84以下であることを特徴とする、請求項15から18のいずれかに記載の偽造防止印刷物。
PCT/JP2016/052396 2015-01-27 2016-01-27 近赤外線吸収微粒子分散液とその製造方法、近赤外線吸収微粒子分散液を用いた偽造防止インク組成物、および近赤外線吸収微粒子を用いた偽造防止印刷物 WO2016121839A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/546,681 US20180022945A1 (en) 2015-01-27 2016-01-27 Near infrared absorbing fine particle dispersion liquid and method for producing the same, anti-counterfeit ink composition using near infrared absorbing fine particle dispersion liquid, and anti-counterfeit printed matter using near infrared absorbing fine particles
CN201680007417.8A CN107429097B (zh) 2015-01-27 2016-01-27 近红外线吸收微粒分散液及其制造方法、防伪油墨组合物及防伪印刷物
JP2016572119A JPWO2016121839A1 (ja) 2015-01-27 2016-01-27 近赤外線吸収微粒子分散液とその製造方法、近赤外線吸収微粒子分散液を用いた偽造防止インク組成物、および近赤外線吸収微粒子を用いた偽造防止印刷物
EP16743442.2A EP3252112B1 (en) 2015-01-27 2016-01-27 Near-infrared ray absorbing microparticle dispersion solution, production method thereof, counterfeit-preventing ink composition using said near-infrared ray absorbing microparticle dispersion solution, and anti-counterfeit printed matter using said near-infrared ray absorbing microparticles
AU2016213099A AU2016213099B2 (en) 2015-01-27 2016-01-27 Near-infrared ray absorbing microparticle dispersion solution, production method thereof, counterfeit-preventing ink composition using said near-infrared ray absorbing microparticle dispersion solution, and anti-counterfeit printed matter using said near-infrared ray absorbing microparticles
US16/662,281 US11248133B2 (en) 2015-01-27 2019-10-24 Near infrared absorbing fine particle dispersion liquid and method for producing the same, anti-counterfeit ink composition using near infrared absorbing fine particle dispersion liquid, and anti-counterfeit printed matter using near infrared absorbing fine particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015012895 2015-01-27
JP2015-012895 2015-01-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/546,681 A-371-Of-International US20180022945A1 (en) 2015-01-27 2016-01-27 Near infrared absorbing fine particle dispersion liquid and method for producing the same, anti-counterfeit ink composition using near infrared absorbing fine particle dispersion liquid, and anti-counterfeit printed matter using near infrared absorbing fine particles
US16/662,281 Division US11248133B2 (en) 2015-01-27 2019-10-24 Near infrared absorbing fine particle dispersion liquid and method for producing the same, anti-counterfeit ink composition using near infrared absorbing fine particle dispersion liquid, and anti-counterfeit printed matter using near infrared absorbing fine particles

Publications (1)

Publication Number Publication Date
WO2016121839A1 true WO2016121839A1 (ja) 2016-08-04

Family

ID=56543447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052396 WO2016121839A1 (ja) 2015-01-27 2016-01-27 近赤外線吸収微粒子分散液とその製造方法、近赤外線吸収微粒子分散液を用いた偽造防止インク組成物、および近赤外線吸収微粒子を用いた偽造防止印刷物

Country Status (7)

Country Link
US (2) US20180022945A1 (ja)
EP (1) EP3252112B1 (ja)
JP (1) JPWO2016121839A1 (ja)
CN (1) CN107429097B (ja)
AU (1) AU2016213099B2 (ja)
TW (1) TW201634390A (ja)
WO (1) WO2016121839A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190127599A1 (en) * 2017-11-01 2019-05-02 Industrial Technology Research Institute Dispersion of ir absorption particles, inkjet ink, and method of 3d printing
CN108559331A (zh) * 2018-03-22 2018-09-21 深圳市华鑫防伪科技有限公司 一种感应显示防伪材料及该材料的感应显示防伪探测方法
CN108659621A (zh) * 2018-03-22 2018-10-16 深圳市华鑫防伪科技有限公司 一种感应显示防伪材料及该材料的感应显示防伪探测方法
CN108559332A (zh) * 2018-03-22 2018-09-21 深圳市华鑫防伪科技有限公司 一种红外线防伪检测材料及该材料的红外线防伪探测方法
CN109491174B (zh) * 2018-11-19 2020-09-04 浙江精一新材料科技有限公司 一种无机-有机杂化核壳型纳米棒及带有该纳米棒的光阀
CN117467310A (zh) * 2023-10-31 2024-01-30 珠海市铠信科技有限公司 防伪色浆、紫外光固化防伪喷墨墨水及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168842A (ja) * 2002-11-19 2004-06-17 Sumitomo Metal Mining Co Ltd 偽造防止インク用組成物、偽造防止インク及び偽造防止印刷物
JP2008509271A (ja) * 2004-08-13 2008-03-27 ヘ−ウク・イ 機能性コーティング組成物、これを用いた機能性被膜及びそれらの製造方法
JP2008169294A (ja) * 2007-01-11 2008-07-24 Sumitomo Metal Mining Co Ltd レーザー溶着用光吸収樹脂組成物及び光吸収樹脂成形体、並びに光吸収樹脂成形体の製造方法
JP2008291167A (ja) * 2007-05-28 2008-12-04 Toyo Ink Mfg Co Ltd 平版インキ組成物

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04320466A (ja) 1991-04-19 1992-11-11 Mitsui Toatsu Chem Inc セキュリティインキ
JP4058822B2 (ja) 1997-09-30 2008-03-12 住友金属鉱山株式会社 選択透過膜用塗布液、選択透過膜および選択透過多層膜
JP4096277B2 (ja) 1998-09-22 2008-06-04 住友金属鉱山株式会社 日射遮蔽材料、日射遮蔽膜用塗布液、及び、日射遮蔽膜
JP2000309736A (ja) 1999-04-26 2000-11-07 Toppan Printing Co Ltd 赤外線吸収インキ組成物およびそれを用いた印刷物
JP3982466B2 (ja) 2002-09-25 2007-09-26 住友金属鉱山株式会社 熱線遮蔽成分分散体とその製造方法およびこの分散体を用いて得られる熱線遮蔽膜形成用塗布液と熱線遮蔽膜並びに熱線遮蔽樹脂成形体
US7179535B2 (en) * 2003-12-17 2007-02-20 Solutia Incorporated Polymer sheets and multiple layer glass panels having adjustable tint
GB2438196B (en) * 2006-05-13 2008-05-28 Inovink Ltd Improvements in or relating to printing
EP2567995B1 (en) * 2006-12-26 2014-02-19 Asahi Kasei E-materials Corporation Resin composition for printing plate
CN101646734A (zh) * 2007-01-24 2010-02-10 卡伯特公司 形成改性颜料的方法
DE102008049595A1 (de) * 2008-09-30 2010-04-01 Merck Patent Gmbh Infrarotabsorbierende Druckfarben
JP2009108324A (ja) * 2008-12-12 2009-05-21 Sumitomo Metal Mining Co Ltd 偽造防止用インク及び偽造防止印刷物
JP2012214650A (ja) * 2011-04-01 2012-11-08 Seiko Epson Corp 水性インク組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168842A (ja) * 2002-11-19 2004-06-17 Sumitomo Metal Mining Co Ltd 偽造防止インク用組成物、偽造防止インク及び偽造防止印刷物
JP2008509271A (ja) * 2004-08-13 2008-03-27 ヘ−ウク・イ 機能性コーティング組成物、これを用いた機能性被膜及びそれらの製造方法
JP2008169294A (ja) * 2007-01-11 2008-07-24 Sumitomo Metal Mining Co Ltd レーザー溶着用光吸収樹脂組成物及び光吸収樹脂成形体、並びに光吸収樹脂成形体の製造方法
JP2008291167A (ja) * 2007-05-28 2008-12-04 Toyo Ink Mfg Co Ltd 平版インキ組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3252112A4 *

Also Published As

Publication number Publication date
US20180022945A1 (en) 2018-01-25
JPWO2016121839A1 (ja) 2017-11-02
TW201634390A (zh) 2016-10-01
US11248133B2 (en) 2022-02-15
EP3252112A4 (en) 2018-06-20
AU2016213099B2 (en) 2020-01-02
AU2016213099A1 (en) 2017-08-31
CN107429097B (zh) 2020-10-27
CN107429097A (zh) 2017-12-01
US20200062974A1 (en) 2020-02-27
EP3252112A1 (en) 2017-12-06
EP3252112B1 (en) 2021-03-10

Similar Documents

Publication Publication Date Title
US11021002B2 (en) Near infrared absorbing fine particle dispersion liquid and method for producing the same, anti-counterfeit ink composition using near infrared absorbing fine particle dispersion liquid, and anti-counterfeit printed matter using near infrared absorbing fine particles
US11248133B2 (en) Near infrared absorbing fine particle dispersion liquid and method for producing the same, anti-counterfeit ink composition using near infrared absorbing fine particle dispersion liquid, and anti-counterfeit printed matter using near infrared absorbing fine particles
US11084949B2 (en) Near infrared absorbing fine particle dispersion liquid and method for producing the same, anti-counterfeit ink composition using near infrared absorbing fine particle dispersion liquid, and anti-counterfeit printed matter using near infrared absorbing fine particles
AU2016213105B2 (en) Near-infrared ray absorbing microparticle dispersion solution and production method thereof
US10442948B2 (en) Near-infrared absorbing fine particle dispersion liquid and method for producing the same
JP6541400B2 (ja) 偽造防止用インキ及びその印刷物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743442

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016572119

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15546681

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016743442

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016213099

Country of ref document: AU

Date of ref document: 20160127

Kind code of ref document: A