WO2016121144A1 - プロペラファン、送風機および冷凍サイクル装置の室外機 - Google Patents
プロペラファン、送風機および冷凍サイクル装置の室外機 Download PDFInfo
- Publication number
- WO2016121144A1 WO2016121144A1 PCT/JP2015/066375 JP2015066375W WO2016121144A1 WO 2016121144 A1 WO2016121144 A1 WO 2016121144A1 JP 2015066375 W JP2015066375 W JP 2015066375W WO 2016121144 A1 WO2016121144 A1 WO 2016121144A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- boss
- propeller fan
- inner diameter
- main wing
- airflow
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/32—Rotors specially for elastic fluids for axial flow pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/66—Combating cavitation, whirls, noise, vibration or the like; Balancing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/06—Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
- F24F1/38—Fan details of outdoor units, e.g. bell-mouth shaped inlets or fan mountings
Definitions
- the present invention relates to a propeller fan used for a heat exchanger, and an outdoor unit of a refrigeration cycle apparatus such as a blower and an air conditioner or a water heater equipped with the same.
- the airflow passing through the blades spreads in the outer diameter direction due to centrifugal force, the wind speed downstream of the blade becomes high, and the wind speed downstream of the boss becomes low. Since the wind speed difference between the downstream of the wing and the downstream of the boss becomes large, a vortex is generated downstream of the boss, causing energy loss. Further, since the airflow on the outer diameter side is high speed, noise is increased.
- a through hole penetrating the inside of the boss on the cylindrical surface of the boss, a ventilation path communicating from the front side of the boss to the rear side, and an auxiliary air blowing means for blowing air in the direction opposite to the wing outside the boss are provided inside the boss.
- a technique is disclosed in which the airflow flowing on the boss side surface is sucked into the boss side, thereby suppressing the separation of the airflow on the boss side surface and preventing the airflow from expanding in the radial direction (see, for example, Patent Document 1).
- the propeller fan is formed of a cylinder having a constant boss inner diameter.
- the airflow blown out from the inside of the boss through the upstream end of the boss becomes a centrifugal flow by the blades and ribs and is blown out in the outer diameter direction, so that it interferes with the airflow flowing into the blade outside the boss.
- the air flow toward the main wing is disturbed, and the air flow direction and the blade inlet direction do not coincide with each other, causing separation, and there is a possibility that noise increases due to pressure fluctuations and loss increases due to turbulence at the leading edge of the main wing.
- the airflow toward the upstream side of the main wing can be reduced inside the boss by reducing the diameter of the vent on the upstream side of the boss, but the amount of passing air sucked from the downstream end of the boss is reduced. there is a possibility. Moreover, since the direction of the airflow blown out from the inside of the boss cannot be controlled, there is a possibility of interfering with the airflow toward the main wing.
- the present invention is for solving the above-described problems, and an object thereof is to provide a highly efficient and low-noise propeller fan that suppresses the inflow disturbance of the leading edge of the main wing while realizing suction from the downstream by the boss. .
- the propeller fan of the present invention includes a first boss attached to a rotating shaft, a hollow second boss surrounding the first boss, a sub wing connecting the outer periphery of the first boss and the inner periphery of the second boss.
- a propeller fan including a main wing connected to an outer periphery of the second boss, wherein a flow path is provided between the first boss and the second boss in the axial direction of the rotating shaft.
- the air blowing direction of the main wing and the sub wing during rotation of the rotating shaft is opposite, and the second boss includes at least one portion where the inner diameter of the upstream end in the air blowing direction of the main wing is smaller than the inner diameter of the downstream end.
- the propeller fan according to the present invention includes at least one location where the upstream end inner diameter of the main wing in the blowing direction is smaller than the downstream end inner diameter, so that the flow from the downstream by the flow path between the first boss and the second boss is included.
- a high-efficiency and low-noise propeller fan that suppresses inflow turbulence at the leading edge of the main wing while realizing suction can be provided.
- FIG. 3 is a main wing cross-sectional view taken along the line aa of FIG. 2 showing the propeller fan according to the first embodiment of the present invention.
- FIG. 3 is a cross-sectional view of the sub blade taken along the line bb of FIG. 2 showing the propeller fan according to the first embodiment of the present invention.
- FIG. 6B is a cross-sectional view of the main wing taken along the line cc of FIG. 6A, showing a propeller fan according to Embodiment 2 of the present invention. It is a front view of the propeller fan which concerns on Embodiment 2 of this invention.
- the thickness ratio shown is 0.95.
- the ratio of the amount of noise change and the power consumption based on the characteristics of the propeller fan that does not have the inner diameter throttle portion with respect to the pitch ratio according to the thickness ratio of the inner diameter throttle portion of the propeller fan according to Embodiment 2 of the present invention It is a figure when the thickness ratio which shows is 0.9.
- the ratio of the amount of noise change and the power consumption based on the characteristics of the propeller fan that does not have the inner diameter throttle portion with respect to the pitch ratio according to the thickness ratio of the inner diameter throttle portion of the propeller fan according to Embodiment 2 of the present invention It is a figure in case the thickness ratio shown is set to 0.8.
- the ratio of the amount of noise change and the power consumption based on the characteristics of the propeller fan that does not have the inner diameter throttle portion with respect to the pitch ratio according to the thickness ratio of the inner diameter throttle portion of the propeller fan according to Embodiment 2 of the present invention It is a figure at the time of setting thickness ratio to be 0.7. It is a map of the power consumption according to the pitch ratio and thickness ratio of the propeller fan 4 which concerns on Embodiment 2 of this invention. It is a map of the noise according to the pitch ratio and thickness ratio of the propeller fan 4 which concerns on Embodiment 2 of this invention. It is the semi-sectional view which cut
- FIG. 14B is a cross-sectional view of the main wing taken along the line cc of FIG. 14A showing the propeller fan according to Embodiment 5 of the present invention.
- FIG. It is a main wing sectional view showing a propeller fan concerning Embodiment 6 of the present invention. It is main wing sectional drawing which shows the propeller fan and fan motor which concern on Embodiment 6 of this invention.
- FIG. 18B is a cross-sectional view of the main wing taken along the line OA of FIG. 18A showing the propeller fan according to the sixth embodiment of the present invention.
- FIG. 18B is a cross-sectional view of the main wing taken along the line OB in FIG. 18A showing the propeller fan according to the sixth embodiment of the present invention.
- FIG. 19B is a sub-wing sectional view taken along the line SS of FIG.
- FIG. 19A showing a propeller fan according to Embodiment 7 of the present invention.
- FIG. 19B is a boss cross-sectional view of the TT cross section of FIG. 19A showing the propeller fan according to the seventh embodiment of the present invention.
- FIG. 24A is a horizontal sectional view taken along the line AA of FIG. 23A, showing an outdoor unit for an air conditioner according to Embodiment 11 of the present invention.
- FIG. 1A is a perspective view showing a blower according to Embodiment 1 of the present invention.
- FIG. 1B is a horizontal sectional view taken along the line AA of FIG. 1A showing the air blower according to Embodiment 1 of the present invention.
- the blower 100 has a box-shaped housing 1.
- a wind outlet 2 is provided on the front surface of the housing 1, and a suction port 3 is provided on the back surface opposite to the outlet 2.
- a propeller fan 4 is arranged on the air outlet 2 side inside the housing 1.
- a fan motor 5 that drives the propeller fan 4 is disposed on the suction port 3 side inside the housing 1.
- a shaft 5 a extending from the fan motor 5 is connected to the boss 6 of the propeller fan 4, and the propeller fan 4 is rotated by the rotation of the fan motor 5 and blown in the direction of the arrow in FIGS. 1A and 1B.
- the blower 100 has a fan guard 8 in which a propeller fan 4 that rotates in the housing 1 and the crosspiece 7 made of resin or metal that prevents foreign matter from coming into contact with the air outlet 2 and the air inlet 3 are formed in a net shape. It is attached.
- FIG. 2 is a perspective view showing propeller fan 4 according to Embodiment 1 of the present invention.
- the propeller fan 4 includes a first boss 9 attached to the rotation shaft O from the fan motor 5, and a hollow inside the first boss 9 surrounding the first boss 9 and arranged in the outer diameter direction of the first boss 9.
- the second boss 10 is provided.
- the first boss 9 and the second boss 10 are double cylindrical, and constitute the boss 6.
- the outer peripheral surface 9a of the first boss 9 and the inner peripheral surface 10a of the second boss 10 are connected by a plurality of sub-wings 11 extending in the radial direction. That is, the sub wing 11 connects the outer periphery of the first boss 9 and the inner periphery of the second boss 10.
- the sub wing 11 has a curved cross section and is inclined with respect to the rotation axis O. The sub wing 11 can blow in the axial direction by the rotation of the propeller fan 4.
- a plurality of main wings 12 extending in the outer diameter direction are connected to the outer peripheral surface 10 b of the second boss 10.
- the main wing 12 is configured with a curved surface in the same manner as the sub wing 11 and is inclined with respect to the rotation axis O.
- the main wing 12 can blow air in the axial direction by the rotation of the propeller fan 4. However, the blowing direction of the main wing 12 is opposite to the blowing direction of the sub wing 11.
- a ventilation passage 13 is provided as a passage for ventilating in the axial direction of the rotation axis O.
- the second boss 10 uses the outer peripheral side as the main wing 12 side flow path, and divides the inner peripheral side ventilation path 13 into the sub wing 11 side flow path.
- the rotation direction of the propeller fan 4 is an arrow indicating the rotation direction 14 of the main wing 12.
- 3A is a cross-sectional view of the main wing taken along the line aa of FIG. 2 showing the propeller fan according to Embodiment 1 of the present invention.
- 3B is a sub-wing cross-sectional view of the bb cross section of FIG. 2 showing the propeller fan according to Embodiment 1 of the present invention.
- the center of curvature P1 is below the blade cross section.
- the center of curvature P2 is on the upper side with respect to the blade cross section, and the centers of curvature P1 and P2 are in positions opposite to each other.
- the sub wing 11 and the main wing 12 are configured in this manner, the main wing 12 can blow air in the direction 17a with respect to the rotation direction 14 of the arrow of the propeller fan 4, and the sub wing 11 can blow air in the direction 17b.
- the upstream side and the downstream side are defined on the basis of the airflow 17a in the blowing direction of the main wing 12.
- FIG. 4 is a half sectional view of the propeller fan 4 according to the first embodiment of the present invention cut along a plane along the rotation axis O.
- the second boss 10 has a cylindrical shape, and an opening of the ventilation path 13 is provided in the second boss 10 at the upstream end and the downstream end.
- An inner diameter restricting portion 18 is provided on the inner diameter of the upstream end of the second boss 10 so that the inner diameter decreases toward the upstream side in the axial direction with respect to the radius Ro of the downstream end inner diameter, and reaches the upstream end and becomes the inner diameter of the radius Ri.
- the inner diameter throttle part 18 can be realized by integral molding with the propeller fan 4 or by attaching only the inner diameter throttle part 18 as a separate part.
- the inner diameter throttle portion 18 is provided on the upstream side of the connection position of the sub blade 11 in the second boss 10. For this reason, the shape of the inner peripheral surface 10a of the second boss 10 on the downstream side of the inner diameter throttle portion 18 is constant in the axial direction of the rotation axis O with a radius Ro. Further, the shape of the outer peripheral surface 10 b of the second boss 10 is constant in the axial direction of the rotation axis O. In other words, only the inner diameter throttle portion 18 is formed on the inner peripheral surface 10 a of the cylindrical second boss 10.
- FIG. 5A is a schematic diagram of airflow near the boss of the propeller fan according to Embodiment 1 of the present invention.
- FIG. 5B is a schematic diagram of airflow in the vicinity of a boss of a conventional propeller fan.
- the airflow 17a passing through the main wing 12 receives a centrifugal force and flows in the outer diameter direction from the upstream side to the downstream side. Since the sub wing 11 blows air in the opposite direction to the main wing 12, the airflow 17 b blown out from the main wing 12 at the downstream end of the second boss 10 is sucked into the second boss 10.
- the airflow 17c sucked into the second boss 10 becomes a swirling flow by the swirling sub wing 11, and is discharged in the outer diameter direction by centrifugal force.
- the airflow 17d toward the main wing 12 interferes with the airflow 17c that has turned into a swirling flow immediately before the leading edge of the main wing 12, and the airflow is disturbed.
- the flow direction of the leading edge of the main wing 12 deviates from that of the wing and a vortex is generated due to separation, and noise is generated by increasing energy loss and pressure variation at the leading edge.
- the airflow 17e sucked into the second boss 10 is directed in the inner diameter direction by the inner diameter restricting portion 18 provided at the inner upstream end of the second boss 10.
- the airflow blown out from the internal upstream end of the second boss 10 flows out in the inner diameter direction.
- the airflow interference between the airflow 17d from the upstream side toward the main wing 12 on the outside of the second boss 10 and the airflow 17e blown out from the inside of the second boss 10 is separated to reduce mutual airflow interference, and the leading edge of the main wing 12 Air turbulence can be suppressed. Therefore, it is possible to reduce energy loss and noise generated by suppressing the peeling of the leading edge of the main wing 12 as compared with the conventional case. As a result, the propeller fan 4 with high efficiency and low noise can be realized.
- the blower 100 when the fan blowing wind speed passing through the fan guard 8 at the outlet 2 increases, the draft resistance of the crosspiece 7 increases in proportion to the square of the wind speed, and the airflow blown from the propeller fan 4 Since the pressure fluctuation generated when it collides with 7 becomes strong, the noise increases.
- the propeller fan 4 according to the first embodiment sucks the downstream airflow into the second boss 10 and makes the blowout air speed of the main wing 12 uniform, so that the fan blowout air speed at the same air volume can be reduced. Ventilation resistance when the blown airflow passes through the crosspiece 7 and pressure fluctuations on the surface of the crosspiece 7 can be reduced, and energy loss and noise generated in the fan guard 8 can be reduced. As a result, the highly efficient and low noise blower 100 can be realized.
- FIG. FIG. 6A is an overall perspective view showing a propeller fan according to Embodiment 2 of the present invention.
- 6B is a cross-sectional view of the main wing taken along the line cc of FIG. 6A showing the propeller fan according to Embodiment 2 of the present invention.
- the inner diameter restricting portion 18 extends a point 19 where the leading edge of the second boss 10 and the main wing 12 are connected to the upstream side in the axial direction of the rotation axis O.
- the extension line 20 and the upstream end of the second boss 10 are formed in a circumferential region including the intersection 21.
- a circle in which the portion where the second boss 10 and the range from the center of the main wing 12 to the trailing edge are connected is extended to the upstream side in the axial direction of the rotation axis O and the upstream end of the second boss 10 intersects.
- the inner diameter restricting portion 18 is not formed in the peripheral portion.
- the inner diameter throttle portion 18 formed at the inner upstream end of the second boss 10 is indicated by a hatched portion surrounded by a broken line.
- the inner diameter restricting portion 18 provides ventilation resistance for the sub blade 11. Therefore, by providing the inner diameter restricting portion 18 in a minimum range that does not disturb the flow flowing into the leading edge of the main wing 12, the amount of air blown from the sub wing 11 can be increased.
- the inner diameter throttle portion 18 provided on the inner peripheral surface 10a of the second boss 10 at a position corresponding to the upstream side of the front edge of the main wing 12, the airflow flowing into the front edge of the main wing 12 and the inside of the second boss 10 Interference with the airflow blown out from can be suppressed. Since the airflow toward the main wing 12 flows from the upstream side of the main wing 12 at the position of the intersection 21 where the upstream end of the second boss 10 intersects, the inner diameter throttle portion 18 includes the inner peripheral surface of the second boss 10 including the intersection 21. It is desirable to provide in the circumferential range of 10a. Therefore, peeling of the leading edge of the main wing 12 can be suppressed and energy loss and noise can be reduced. As a result, the propeller fan 4 with high efficiency and low noise can be realized.
- a circle where a portion where the portion where the second boss 10 and the range from the center of the main wing 12 to the rear edge are connected is extended to the upstream side in the axial direction of the rotation axis O intersects with the upstream end of the second boss 10.
- the inner diameter restricting portion 18 is not formed in the peripheral portion.
- the inner diameter restricting portion 18 that provides ventilation resistance for the sub wing 11 is provided in a minimum range that does not disturb the flow that flows into the leading edge of the main wing 12, thereby increasing the air flow rate of the sub wing 11. it can.
- FIG. 7 is a front view of propeller fan 4 according to Embodiment 2 of the present invention.
- An attachment interval between adjacent main wings 12 is defined by an angle between a point 19a and a point 19b where the leading edges of the second boss 10 and the main wing 12 are connected, and an attachment pitch T is defined.
- the width in the circumferential direction of the inner diameter throttle portion 18 inside the second boss 10 is set to an angle t of the continuous inner diameter throttle portion 18.
- a ratio of the width of the inner diameter throttle portion 18 to the mounting pitch T of the main wing 12 is defined as a pitch ratio t / T.
- FIG. 8 is a half sectional view of the propeller fan 4 according to the second embodiment of the present invention cut along a plane along the rotation axis O.
- FIG. 10 Further, regarding the radial thickness of the inner diameter throttle portion 18 at the upstream end of the second boss 10, the radius of the downstream end inner diameter of the second boss 10 is set as the radius Ro as shown in FIG.
- An inner diameter is defined as a radius Ri
- an outer diameter of the first boss 9 is defined as a radius Rb
- a thickness ratio of the inner diameter throttle portion 18 is defined as a thickness ratio (Ri ⁇ Rb) / (Ro ⁇ Rb).
- FIG. 9A is a schematic airflow diagram illustrating a case where the thickness ratio near the boss of the propeller fan according to Embodiment 2 of the present invention is large.
- FIG. 9B is an air flow schematic diagram showing a case where the thickness ratio in the vicinity of the boss of the propeller fan according to Embodiment 2 of the present invention is small.
- a large thickness ratio as shown in FIG. 9A means that the inner passage area of the upstream end of the second boss 10 of the airflow 17e is large.
- the small thickness ratio means that the passage area of the upstream end of the second boss 10 of the airflow 17e is small.
- FIG. 10A shows an inner diameter throttle portion with respect to a pitch ratio t / T corresponding to the thickness ratio (Ri-Rb) / (Ro-Rb) of the inner diameter throttle portion 18 of the propeller fan 4 according to Embodiment 2 of the present invention. It is a figure at the time of setting the thickness ratio which shows the ratio of the noise variation and power consumption on the basis of the characteristic of the propeller fan which does not provide 18 as 0.95.
- FIG. 10B shows the inner diameter throttle portion with respect to the pitch ratio t / T corresponding to the thickness ratio (Ri-Rb) / (Ro-Rb) of the inner diameter throttle portion 18 of the propeller fan 4 according to Embodiment 2 of the present invention.
- FIG. 10C shows the inner diameter throttle portion with respect to the pitch ratio t / T according to the thickness ratio (Ri-Rb) / (Ro-Rb) of the inner diameter throttle portion 18 of the propeller fan 4 according to Embodiment 2 of the present invention. It is a figure in case the thickness ratio which shows the ratio of the noise variation and power consumption on the basis of the characteristic of the propeller fan which does not provide 18 is 0.85.
- FIG. 10C shows the inner diameter throttle portion with respect to the pitch ratio t / T according to the thickness ratio (Ri-Rb) / (Ro-Rb) of the inner diameter throttle portion 18 of the propeller fan 4 according to Embodiment 2 of the present invention. It is a figure in case the thickness ratio which shows the ratio of the noise variation and power consumption on the basis of the characteristic of the propeller fan which does not provide 18 is 0.85.
- FIG. 10D shows the inner diameter throttle portion with respect to the pitch ratio t / T corresponding to the thickness ratio (Ri-Rb) / (Ro-Rb) of the inner diameter throttle portion 18 of the propeller fan 4 according to Embodiment 2 of the present invention. It is a figure at the time of setting thickness ratio which shows the ratio of the noise variation and power consumption on the basis of the characteristic of the propeller fan which does not provide 18 as 0.8.
- FIG. 10E shows the inner diameter throttle portion with respect to the pitch ratio t / T corresponding to the thickness ratio (Ri-Rb) / (Ro-Rb) of the inner diameter throttle portion 18 of the propeller fan 4 according to Embodiment 2 of the present invention.
- FIG. 10F shows the inner diameter throttle portion with respect to the pitch ratio t / T corresponding to the thickness ratio (Ri-Rb) / (Ro-Rb) of the inner diameter throttle portion 18 of the propeller fan 4 according to Embodiment 2 of the present invention. It is a figure at the time of setting the thickness ratio which shows the ratio of the noise variation and power consumption on the basis of the characteristic of the propeller fan which does not provide 18 as 0.7.
- the horizontal axis indicates the pitch ratio t / T
- the vertical axis indicates the ratio of the noise change amount and the power consumption based on the characteristics of the propeller fan without the inner diameter throttle portion 18.
- the pitch ratio t / T is large, that is, as the range of the inner diameter throttle portion 18 is increased, noise and power consumption are increased. It shows a tendency to decrease.
- the pitch ratio t / T is 0.1 or less, that is, the region of the inner diameter throttle portion 18 becomes narrower, the airflow that has passed through the second boss 10 cannot be rectified radially inward. Decreases.
- the inner diameter narrowing portion 18 is not a rectification but an obstacle, disturbs the airflow that passes through the second boss 10 and blows out from the upstream end, and causes the turbulent flow to be supplied to the main wing 12. As a result, noise and power consumption are greater than when the inner diameter restrictor 18 is not provided.
- the thickness ratio (Ri-Rb) / (Ro-Rb) when 0.9, the pitch ratio t / T is 1.0, and noise and power consumption are most effective.
- the thickness ratio (Ri-Rb) / (Ro-Rb) when 0.85, 0.8, and 0.75, the pitch ratio t / T is about 0.6 to 0.8, and noise and consumption Indicates the peak power value.
- the thickness ratio (Ri-Rb) / (Ro-Rb) is 0.7, the effect of reducing power consumption is lost.
- FIG. 10F when the inner diameter of the inner diameter throttle portion 18 is small, the ventilation resistance at the upstream end of the second boss 10 increases as the pitch ratio t / T increases.
- FIG. 11A is a power consumption map according to pitch ratio t / T and thickness ratio (Ri-Rb) / (Ro-Rb) of propeller fan 4 according to Embodiment 2 of the present invention.
- FIG. 11B is a noise map corresponding to the pitch ratio t / T and the thickness ratio (Ri-Rb) / (Ro-Rb) of the propeller fan 4 according to Embodiment 2 of the present invention.
- FIGS. 11A and 11B map power consumption and noise for both parameters.
- the pitch ratio t / T is 0.15 or more and the thickness ratio (Ri-Rb) / (Ro-Rb) is 0.72 or more.
- the pitch ratio t / T is 0.4 or more and the thickness ratio (Ri-Rb) / (Ro-Rb) is 0.85 or more.
- FIG. 12 is a half sectional view of the propeller fan 4 according to the third embodiment of the present invention cut along a plane along the rotation axis O.
- the propeller fan 4 has an outer diameter that decreases toward the upstream side in the axial direction of the rotary shaft O from the diameter RRo to the diameter RRi at the upstream end of the second boss 10.
- An outer diameter restricting portion 22 is provided.
- the upstream end of the second boss 10 becomes thick due to the inner diameter restricting portion 18 provided in the second boss 10.
- the airflow toward the main wing 12 becomes a stagnation region that collides with the upstream end of the second boss 10, and increases the draft resistance, the low-speed airflow in the vicinity of the stagnation region and the airflow blown out from the second boss 10 or the main wing 12.
- Vortices may be generated due to the difference in velocity between the airflow that heads. The generated vortex travels toward the main wing 12 and disturbs the airflow toward the front edge of the main wing 12, causing separation at the front edge of the main wing 12, causing energy loss and noise.
- the outer diameter restricting portion 22 is formed, and the upstream end of the second boss 10 is configured to be thinner than the first embodiment. According to this, the stagnation area at the upstream end of the second boss 10 is reduced, the airflow toward the main wing 12 passes smoothly, and the vortex generated in the stagnation area is also reduced. In addition, the airflow flowing outside the second boss 10 can smoothly flow into the main wing 12 by the inclined portion outside the second boss 10 in which the outer diameter restricting portion 22 is formed, and the ventilation resistance is reduced. From the above, the air flow toward the main wing 12 can be made a flow with low loss and less turbulence. As a result, the propeller fan 4 with high efficiency and low noise can be realized.
- FIG. 13 is a half sectional view of the propeller fan 4 according to the fourth embodiment of the present invention cut along a plane along the rotation axis O.
- FIG. 13 in the fourth embodiment, the inner diameter throttle portion 18 and the outer diameter throttle portion 22 at the upstream end of the second boss 10 are configured with a smooth curved shape 23.
- the inner diameter throttle portion 18 and the outer diameter throttle portion 22 at the upstream end of the second boss 10 are configured with a smooth curved shape 23. Disturbance and pressure loss can be reduced by configuring the curved shape 23 and gradually changing the flow channel shape with a smooth curved cross section such as an arc or a spline.
- FIG. 14A is an overall perspective view showing a propeller fan according to Embodiment 5 of the present invention.
- 14B is a cross-sectional view of the main wing taken along the line cc of FIG. 14A showing the propeller fan according to Embodiment 5 of the present invention.
- a recess 24 that is recessed downstream is provided in a part of the circumference of the upstream end of the second boss 10.
- the definition of the recessed portion 24 is a range that is recessed downstream from the inner diameter restricting portion 18 indicated by a broken line in a side view of the second boss 10 shown in FIG. 14B.
- the recess 24 becomes a ventilation path through which the airflow that has passed through the sub wing 11 inside the second boss 10 blows out to the outside of the second boss 10.
- the inner diameter restricting portion 18 according to the fifth embodiment has a point 19 where the front edge of the second boss 10 and the main wing 12 are connected in the axial direction of the rotation axis O as in the second embodiment shown in FIGS. 6A and 6B.
- a circumferential region including an extension line 20 extending upstream and an intersection 21 intersecting with the upstream end of the second boss 10 is preferable.
- the concave portion 24 extends in the downstream direction along the suction surface of the main wing 12, forms a bottom portion in the circumferential direction perpendicular to the rotational axis O from the upstream end 25 of the sub wing 11, and is just before the front edge of the adjacent main wing 12. It is a shape that gently slopes along the upstream curved surface of the main wing 12 and returns to the upstream side.
- Such a recess 24 can secure the ventilation path 13 that discharges from the inside of the second boss to the upstream side of the second boss 10 even when the fan motor 5 and the second boss 10 approach each other. The performance of sucking the airflow downstream of the propeller fan 4 by the path 13 can be maintained.
- FIG. 15 is a main wing cross-sectional view showing propeller fan 4 according to Embodiment 6 of the present invention.
- the recess 24 includes an extension line 20 that extends a point 19 where the second boss 10 and the front edge of the main wing 12 are connected to the upstream side in the axial direction of the rotation axis O, and the second boss 10. It is formed in a circumferential region shifted from the intersection 21 where the upstream end intersects. For this reason, the inner diameter restricting portion 18 is formed in a circumferential region including the intersection 21 at the upstream end of the second boss 10 without the recess 24.
- the concave portion 24 from which the airflow inside the second boss 10 blows is configured to be positioned away from the front edge of the main wing 12 in the circumferential direction.
- FIG. 16 is a main wing cross-sectional view showing propeller fan 4 and fan motor 5 according to Embodiment 6 of the present invention.
- the distance from the upstream end of the outer periphery of the second boss 10 having the inner diameter throttle portion 18 to the fan motor 5 disposed on the upstream side in the axial direction of the rotary shaft O is a distance L1
- the recess 24 provided in the second boss 10 A distance between the upstream end 25 and the fan motor 5 disposed on the upstream side in the axial direction of the rotary shaft O from the upstream end 25 of the recess 24 is defined as a distance L2.
- the distance ratio L2 / L1 between the two defines the distance between the side surfaces of the second boss formed by the recess 24.
- FIG. 17 is a diagram showing a relationship between the distance ratio L2 / L1 of the propeller fan 4 according to Embodiment 6 of the present invention, noise, and power consumption.
- the horizontal axis indicates the distance ratio L2 / L1
- the vertical axis indicates noise and power consumption.
- FIG. 18A is a front view showing a propeller fan according to Embodiment 6 of the present invention.
- 18B is a cross-sectional view of the main wing taken along the line OA of FIG. 18A showing the propeller fan according to Embodiment 6 of the present invention.
- 18C is a cross-sectional view of the main wing taken along the line OB of FIG. 18A showing the propeller fan according to Embodiment 6 of the present invention.
- the opening on the side surface of the second boss 10 is enlarged as shown in FIG. 18C, and the airflow that has passed through the second boss 10 is radially outer before colliding with the fan motor 5. To blow out. With this configuration, the ventilation resistance due to the collision of the airflow with the fan motor 5 is reduced, and the power consumption is reduced.
- the recessed part 24 becomes large, the airflow which blows off to the radial direction outer side from the inside of the 2nd boss
- FIG. 19A is a front view showing a propeller fan according to Embodiment 7 of the present invention.
- FIG. 19B is a sub-wing sectional view taken along the line SS of FIG. 19A showing the propeller fan according to Embodiment 7 of the present invention.
- FIG. 19C is a boss cross-sectional view taken along the line TT of FIG. 19A showing the propeller fan according to Embodiment 7 of the present invention.
- there is no inner diameter restricting portion 18 in the SS cross section and an inner diameter restricting portion 18 is installed in the TT cross section. That is, the inner diameter restricting portion 18 is formed in a circumferential region that does not overlap the upstream end of the second boss 10 when the sub blade 11 is projected in the axial direction of the rotation axis O.
- a two-part mold that divides the blade into the upstream side and the downstream side in the axial direction of the rotary shaft O is often used. If the inner diameter restricting portion and the auxiliary blade overlap with each other in the axial direction of the rotation axis O, the upstream die of the second boss 10 is in an undercut state that does not come out in the axial direction of the rotation axis O, making it difficult to perform integral molding. Therefore, in the seventh embodiment, the auxiliary blade 11 and the inner diameter throttle portion 18 are configured not to overlap when projected in the axial direction of the rotation axis O.
- the undercut portion is eliminated, and a molding die that is divided into two on the upstream side and the downstream side in the axial direction of the rotary shaft O can be used, and the integral molding of the propeller fan 4 having the inner diameter throttle portion 18 is facilitated.
- FIG. 20 is a front view showing propeller fan 4 according to Embodiment 8 of the present invention.
- the inner diameter restricting portion 18 is an extension line in which a point 19 where the second boss 10 and the front edge of the main wing 12 are connected is extended to the upstream side in the axial direction of the rotation axis O.
- the upstream end of the second boss 10 is formed in a circumferential region including the intersection 21 where the second boss 10 intersects.
- the inner diameter narrowing portion 18 is an extension in which the point 19 where the second boss 10 and the front edge of the main wing 12 are connected is extended to the upstream side in the axial direction of the rotation axis O. It is provided in a circumferential region including the intersection 21 where the line and the upstream end of the second boss 10 intersect.
- the propeller fan 4 that is highly efficient, low noise, and easy to mold can be realized.
- FIG. FIG. 21 is a front view showing propeller fan 4 according to Embodiment 9 of the present invention. As shown in FIG. 21, the number of blades of the sub wing 11 is larger than the number of blades of the main wing 12.
- the fan diameter of the sub wing 11 is smaller than that of the main wing 12 and the blowing capacity is small.
- the inner diameter restrictor 18 provided at the upstream end of the second boss 10 or the positions of the second boss 10 and the fan motor 5 approach each other the ventilation resistance inside the second boss 10 increases, Requires high static pressure. Therefore, the sub wing 11 is configured to have more wings than the main wing 12 to increase the wing area and to narrow the flow path between the wings so that the flow can easily follow the wings to achieve a high static pressure. According to this, even when the ventilation resistance of the ventilation path 13 inside the 2nd boss
- FIG. FIG. 22 is a half cross-sectional view of propeller fan 4 according to the tenth embodiment of the present invention cut along a plane along rotation axis O.
- FIG. 22 in the tenth embodiment, the downstream end of the second boss 10 is formed with a curved surface shape 26.
- the downstream end of the second boss When the downstream end of the second boss has a rectangular shape, the airflow that goes around the downstream end from the side surface of the second boss peels off at the end, and the generated vortex reduces the flow path area, creating a ventilation path inside the second boss. The amount of air sucked is reduced. Therefore, the downstream end of the second boss 10 is formed into a curved shape 26 such as an R shape, a semicircular cross section, and a chamfered shape. As a result, the airflow flowing around the downstream end from the side surface of the second boss 10 can smoothly flow into the inside from the side surface of the second boss 10, and the suction air volume of the sub blade 11 can be increased.
- a curved shape 26 such as an R shape, a semicircular cross section, and a chamfered shape
- FIG. 23A is a perspective view showing an outdoor unit for an air-conditioning apparatus according to Embodiment 11 of the present invention.
- FIG. 23B is a horizontal sectional view of the AA cross section of FIG. 23A showing the outdoor unit of the air conditioner according to Embodiment 11 of the present invention.
- the outdoor unit 200 is a heat source unit using a refrigeration cycle used for, for example, an air conditioner or a water heater.
- the outdoor unit 200 includes a compressor 27, a heat exchanger 28 that exchanges heat between the refrigerant supplied from the compressor 27 and the outside air, and a propeller fan 4 that sends out the outside air supplied to the heat exchanger 28.
- a fan motor 5 that drives the propeller fan 4 and a circuit board 29 that drives the electronic device.
- a fan guard 8 that suppresses contact between the propeller fan 4 and a foreign object is attached to the outlet 2 downstream of the propeller fan 4 as in the first embodiment.
- the second boss 10 includes at least one location where the inner diameter of the upstream end of the main wing 12 is smaller than the inner diameter of the downstream end. According to this configuration, the air flow 17e sucked into the second boss 10 is directed in the inner diameter direction at a location where the upstream end inner diameter provided at the inner upstream end of the second boss 10 is smaller than the downstream end inner diameter. The air flow blown out from the internal upstream end of the air 10 flows out in the inner diameter direction.
- the airflow interference between the airflow 17d from the upstream side toward the main wing 12 on the outside of the second boss 10 and the airflow 17e blown out from the inside of the second boss 10 is separated to reduce mutual airflow interference, and the leading edge of the main wing 12 Air turbulence can be suppressed. Therefore, it is possible to reduce energy loss and noise generated by suppressing the peeling of the leading edge of the main wing 12 as compared with the conventional case. As a result, the propeller fan 4 with high efficiency and low noise can be realized.
- the portion where the inner diameter of the upstream end of the second boss 10 is smaller than the inner diameter of the downstream end was configured as an inner diameter restricting portion 18 that becomes smaller in the axial direction of the rotating shaft O toward the upstream side. According to this configuration, the air flow 17e sucked into the second boss 10 is directed in the inner diameter direction by the inner diameter restricting portion 18 provided at the inner upstream end of the second boss 10, and from the inner upstream end of the second boss 10. The blown airflow flows out in the inner diameter direction.
- the airflow interference between the airflow 17d from the upstream side toward the main wing 12 on the outside of the second boss 10 and the airflow 17e blown out from the inside of the second boss 10 is separated to reduce mutual airflow interference, and the leading edge of the main wing 12 Air turbulence can be suppressed. Therefore, it is possible to reduce energy loss and noise generated by suppressing the peeling of the leading edge of the main wing 12 as compared with the conventional case. As a result, the propeller fan 4 with high efficiency and low noise can be realized.
- the inner diameter throttle portion 18 was provided on the upstream side of the connection position of the sub blade 11. According to this configuration, the shape of the inner peripheral surface 10 a of the second boss 10 on the downstream side of the inner diameter throttle portion 18 is constant in the axial direction of the rotation axis O with a radius Ro. Thereby, the airflow 17e sucked into the second boss 10 is not disturbed.
- the inner diameter restricting portion 18 includes an extension line 20 that extends a point 19 where the second boss 10 and the leading edge of the main wing 12 are connected to the upstream side in the axial direction of the rotation axis O, and an upstream end of the second boss 10. It was formed in a circumferential region including the intersecting point 21 that intersects. According to this configuration, interference between the airflow flowing into the leading edge of the main wing 12 and the airflow blown out from the second boss 10 can be suppressed. Therefore, peeling of the leading edge of the main wing 12 can be suppressed and energy loss and noise can be reduced. As a result, the propeller fan 4 with high efficiency and low noise can be realized.
- the pitch ratio t / T is 0.15 or more. According to this configuration, as the pitch ratio t / T is larger, that is, the range of the inner diameter throttle portion 18 is expanded, noise and power consumption tend to be reduced.
- the radius of the downstream end inner diameter of the second boss 10 is set as the radius Ro
- the inner diameter of the upstream end of the inner diameter throttle portion 18 is set as the radius Ri
- the outer diameter of the first boss 9 is set as the radius Rb
- the thickness ratio of the inner diameter throttle portion 18 is set.
- the thickness ratio is 0.72 or more. According to this configuration, it is possible to obtain an improvement effect of power consumption and noise.
- the second boss 10 has an outer diameter restricting portion 22 in which the outer diameter of the upstream end decreases toward the upstream side in the axial direction of the rotation axis O. According to this configuration, the stagnation region at the upstream end of the second boss 10 is reduced, the airflow toward the main wing 12 passes smoothly, and vortices generated in the stagnation region are also reduced. In addition, the airflow flowing outside the second boss 10 can smoothly flow into the main wing 12 by the inclined portion outside the second boss 10 in which the outer diameter restricting portion 22 is formed, and the ventilation resistance is reduced. From the above, the air flow toward the main wing 12 can be made a flow with low loss and less turbulence. As a result, the propeller fan 4 with high efficiency and low noise can be realized.
- the inner diameter restricting portion 18 has a smooth curved shape 23 toward the upstream side in the axial direction of the rotation axis O. According to this configuration, the direction of the airflow blown from the sub wing 11 can be smoothly directed inward, work required for the sub wing 11 can be reduced, and high efficiency can be achieved. Moreover, by making the outer diameter restricting portion 22 of the second boss 10 have a smoothly curved inclined surface, it is possible to reduce the low-pressure loss and turbulence of the airflow toward the main wing 12 and to occur at the leading edge of the main wing 12. Energy loss and noise can be reduced. As a result, the propeller fan 4 with high efficiency and low noise can be realized.
- the second boss 10 had a recess 24 that was recessed on the downstream side at a part of the upstream end. According to this configuration, the recess 24 can secure the ventilation path 13 that discharges from the inside of the second boss to the upstream side of the second boss 10 even when the fan motor 5 and the second boss 10 approach each other. The ability to suck the airflow downstream of the propeller fan 4 by the ventilation path 13 can be maintained.
- the distance from the upstream end of the outer periphery of the second boss 10 having the inner diameter throttle portion 18 to the fan motor 5 disposed on the upstream side in the axial direction of the rotary shaft O is a distance L1
- the recess 24 provided in the second boss 10 Assuming that the distance between the upstream end 25 and the fan motor 5 disposed on the upstream side in the axial direction of the rotary shaft O from the upstream end 25 is a distance L2, the distance ratio L2 / L1 is in the range of 1.2 to 1.5. is there.
- the distance ratio L2 / L1 is increased, the ventilation resistance due to the airflow colliding with the fan motor 5 is reduced, the power consumption is reduced, the concave portion 24 is increased, and the side surface of the second boss 10 is increased.
- the air current flowing through the main wing 12 is disturbed by the air current blown out from the air and the efficiency of the propeller fan 4 is lowered, and the power consumption and the peak value of the noise value can be set.
- the inner diameter restricting portion 18 was formed in a region that did not overlap with the upstream end of the second boss 10 when the auxiliary blade 11 was projected in the axial direction of the rotation axis O. According to this configuration, the undercut portion is eliminated, and a molding die that is divided into two on the upstream side and the downstream side in the axial direction of the rotating shaft O can be used, and the integral molding of the propeller fan 4 having the inner diameter throttle portion 18 becomes easy. .
- the number of sub wings 11 is greater than the number of main wings 12.
- the sub wing 11 is configured to have more wings than the main wing 12 to increase the wing area and to narrow the flow path between the wings so that the flow can easily follow the wings so as to have a high static pressure. According to this, even when the ventilation resistance of the ventilation path 13 inside the 2nd boss
- the downstream end of the second boss 10 was formed with a curved surface shape 26. According to this configuration, the airflow that goes around the downstream end from the side surface of the second boss 10 can smoothly flow into the inside from the side surface of the second boss 10, and the suction air volume of the sub blade 11 can be increased.
- the propeller fan 4 sucks the downstream air flow into the second boss 10 and equalizes the blowing air speed of the main wing 12, so that the fan blowing air speed at the same air volume can be reduced. Ventilation resistance when the blown airflow passes through the crosspiece 7 and pressure fluctuations on the surface of the crosspiece 7 can be reduced, and energy loss and noise generated in the fan guard 8 can be reduced. As a result, the highly efficient and low noise blower 100 can be realized.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Air-Conditioning Room Units, And Self-Contained Units In General (AREA)
- Other Air-Conditioning Systems (AREA)
Abstract
ボスによる下流からの吸込みを実現しつつ主翼の前縁の流入乱れを抑制する高効率かつ低騒音なプロペラファンを提供することを目的とする。第1ボス(9)と、第2ボス(10)と、副翼(11)と、主翼(12)と、を備え、第1ボス(9)と第2ボス(10)との間に回転軸Oの軸方向に通風する通風路(13)が設けられたプロペラファン(4)であって、回転軸Oの回転時の主翼(12)と副翼(11)の送風方向が逆方向であり、主翼(1 2)の送風方向を基準に上流側および下流側を定義したとき、第2ボス(10)は、上流端内径が下流端内径より小さい内径絞り部(18)が少なくとも1ヶ所含まれるものである。
Description
本発明は、熱交換器に用いられるプロペラファン並びにそれを搭載した送風機および空気調和機や給湯機などの冷凍サイクル装置の室外機に関するものである。
従来のプロペラファンは、翼を通過した気流が遠心力によって外径方向に広がり、翼の下流の風速が高速になり、ボスの下流の風速が低速になる。翼の下流とボスの下流との風速差が大きくなるため、ボスの下流に渦が発生してエネルギー損失を生む。また、外径側の気流が高速であるため、騒音が大きくなる。
そこで、ボスの円筒面にボス内側に貫通する透孔と、ボスの前面側から後面側を連通する通風路と、ボス内部にボス外側の翼と逆方向に送風する補助送風手段と、を設け、ボス側面を流れる気流をボス内側へ吸引することによって、ボス側面の気流の剥離を抑制し、気流が径方向へ拡大することを防ぐ技術が開示されている(例えば、特許文献1参照)。
また、ボス内側に回転軸の軸方向に通風する流路を設け、ボス下流部の逆流風を吸込む技術が開示されている(例えば、特許文献2、3参照)。
特許文献1、2に開示されたプロペラファンによれば、ボス内径が一定の円筒で構成される。ボス内部からボス上流端を経て吹き出した気流は翼やリブにより遠心流れとなり、外径方向へ吹き出されるため、ボス外側の翼へ流入する気流と干渉する。その結果、主翼に向かう気流が乱れて気流方向と翼の入口方向が一致せずに剥離が発生し、主翼の前縁で圧力変動による騒音増加や乱れによる損失増加を起こす可能性がある。
また、特許文献3に開示されたプロペラファンによれば、ボス上流側の通気口の小径化によりボス内側にて主翼上流側に向かう気流を低減できるが、ボス下流端から吸込む通過風量が低下する可能性がある。また、ボス内側から吹き出す気流方向は制御できないため、主翼へ向かう気流と干渉する可能性がある。
本発明は、上記課題を解決するためのものであり、ボスによる下流からの吸込みを実現しつつ主翼の前縁の流入乱れを抑制する高効率かつ低騒音なプロペラファンを提供することを目的する。
本発明のプロペラファンは、回転軸に取り付けられる第1ボスと、前記第1ボスを囲む中空の第2ボスと、前記第1ボスの外周と前記第2ボスの内周を接続する副翼と、前記第2ボスの外周に接続される主翼と、を備え、前記第1ボスと前記第2ボスとの間に前記回転軸の軸方向に通風する流路が設けられたプロペラファンであって、前記回転軸の回転時の前記主翼と前記副翼の送風方向が逆方向であり、前記第2ボスは、前記主翼の送風方向の上流端内径が下流端内径より小さい箇所が少なくとも1ヶ所含まれるものである。
本発明に係るプロペラファンによれば、主翼の送風方向の上流端内径が下流端内径より小さい箇所が少なくとも1ヶ所含まれるため、第1ボスと第2ボスとの間の流路による下流からの吸込みを実現しつつ、主翼の前縁の流入乱れを抑制する高効率かつ低騒音なプロペラファンを提供することができる。
以下に、本発明の実施の形態について説明する。なお、図面の形態は一例であり、本発明を限定するものではない。また、各図において同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。さらに、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
実施の形態1.
図1Aは、本発明の実施の形態1に係る送風機を示す斜視図である。図1Bは、本発明の実施の形態1に係る送風機を示す図1AのA-A断面の水平断面図である。
図1Aおよび図1Bに示すように、送風機100は、箱形の筐体1を有する。筐体1の正面には、風の吹出口2が設けられ、吹出口2の反対側の背面には、吸込口3が設けられる。筐体1の内部の吹出口2側にはプロペラファン4が配置される。筐体1の内部の吸込口3側には、プロペラファン4を駆動するファンモータ5が配置される。ファンモータ5から伸びるシャフト5aがプロペラファン4のボス6に接続され、ファンモータ5の回転によってプロペラファン4が回転し、図1Aおよび図1B中の矢印方向に送風される。
また、送風機100には、吹出口2や吸込口3に筐体1内で回転するプロペラファン4と異物が触れないようにする樹脂製や金属製の桟7を網状に構成したファンガード8が取り付けられる。
図1Aは、本発明の実施の形態1に係る送風機を示す斜視図である。図1Bは、本発明の実施の形態1に係る送風機を示す図1AのA-A断面の水平断面図である。
図1Aおよび図1Bに示すように、送風機100は、箱形の筐体1を有する。筐体1の正面には、風の吹出口2が設けられ、吹出口2の反対側の背面には、吸込口3が設けられる。筐体1の内部の吹出口2側にはプロペラファン4が配置される。筐体1の内部の吸込口3側には、プロペラファン4を駆動するファンモータ5が配置される。ファンモータ5から伸びるシャフト5aがプロペラファン4のボス6に接続され、ファンモータ5の回転によってプロペラファン4が回転し、図1Aおよび図1B中の矢印方向に送風される。
また、送風機100には、吹出口2や吸込口3に筐体1内で回転するプロペラファン4と異物が触れないようにする樹脂製や金属製の桟7を網状に構成したファンガード8が取り付けられる。
図2は、本発明の実施の形態1に係るプロペラファン4を示す斜視図である。
図2に示すように、プロペラファン4は、ファンモータ5からの回転軸Oに取り付けられる第1ボス9と、第1ボス9を囲み第1ボス9の外径方向に配置された内部が中空の第2ボス10と、を備える。第1ボス9および第2ボス10は、2重の円筒状であり、ボス6を構成する。
図2に示すように、プロペラファン4は、ファンモータ5からの回転軸Oに取り付けられる第1ボス9と、第1ボス9を囲み第1ボス9の外径方向に配置された内部が中空の第2ボス10と、を備える。第1ボス9および第2ボス10は、2重の円筒状であり、ボス6を構成する。
第1ボス9の外周面9aと第2ボス10の内周面10aとの間は、半径方向に伸びる複数の副翼11で接続されている。すなわち、副翼11は、第1ボス9の外周と第2ボス10の内周とを接続している。副翼11は、断面が曲面で構成され、回転軸Oに対して傾斜して設置される。副翼11は、プロペラファン4の回転により軸方向に送風することができる。
第2ボス10の外周面10bには外径方向に伸びる複数の主翼12が接続されている。主翼12は、副翼11と同様に断面が曲面で構成され、回転軸Oに対して傾斜して設置される。主翼12は、プロペラファン4の回転により軸方向に送風することができる。ただし、主翼12の送風方向は、副翼11の送風方向に対して逆方向となる。
第1ボス9の外周面9aと第2ボス10の内周面10aとの間は、一定間隔であり、回転軸Oの軸方向に通風する流路としての通風路13が設けられる。第2ボス10は、外周側を主翼12側流路とし、内周側の通風路13を副翼11側流路に区切る。プロペラファン4の回転方向は、主翼12の回転方向14を示す矢印である。
図3Aは、本発明の実施の形態1に係るプロペラファンを示す図2のa-a断面の主翼断面図である。図3Bは、本発明の実施の形態1に係るプロペラファンを示す図2のb-b断面の副翼断面図である。
図3Bに示すように、副翼11の両端点11a、11bと、その両端点11a、11bの2点で構成する線分15bの二等分線16b上にある翼断面の肉厚中央点11cを結ぶ円弧R1で近似した場合には、曲率中心P1は翼断面に対して下側にある。
それに対し、図3Aに示すように、主翼12の翼の両端点12a、12bと、その両端点12a、12bの2点で構成する線分15aの二等分線16a上にある翼断面の肉厚中央点12cを結ぶ円弧R2で近似した場合には、曲率中心P2は翼断面に対して上側にあり、曲率中心P1、P2が互いに逆方向位置にある。
このように副翼11および主翼12を構成すると、プロペラファン4の矢印の回転方向14に対して主翼12は17a方向に送風することができ、副翼11は17b方向に送風することができる。以降の説明では、主翼12の送風方向の気流17aを基準に上流側、下流側を定義する。
図3Bに示すように、副翼11の両端点11a、11bと、その両端点11a、11bの2点で構成する線分15bの二等分線16b上にある翼断面の肉厚中央点11cを結ぶ円弧R1で近似した場合には、曲率中心P1は翼断面に対して下側にある。
それに対し、図3Aに示すように、主翼12の翼の両端点12a、12bと、その両端点12a、12bの2点で構成する線分15aの二等分線16a上にある翼断面の肉厚中央点12cを結ぶ円弧R2で近似した場合には、曲率中心P2は翼断面に対して上側にあり、曲率中心P1、P2が互いに逆方向位置にある。
このように副翼11および主翼12を構成すると、プロペラファン4の矢印の回転方向14に対して主翼12は17a方向に送風することができ、副翼11は17b方向に送風することができる。以降の説明では、主翼12の送風方向の気流17aを基準に上流側、下流側を定義する。
図4は、本発明の実施の形態1に係るプロペラファン4を回転軸Oに沿った面で切断した半断面図である。
図4に示すように、第2ボス10は、円筒状であり、第2ボス10内部には上流端と下流端に通風路13の開口部が設けられる。
第2ボス10の上流端内径には、下流端内径の半径Roに対して軸方向上流側に向かって内径が小さくなり、上流端に至って半径Riの内径となる内径絞り部18が設けられる。
内径絞り部18はプロペラファン4と一体成形あるいは内径絞り部18のみを別パーツとして取り付けることにより実現可能である。
内径絞り部18は、第2ボス10における副翼11の接続位置よりも上流側に設けられている。このため、内径絞り部18より下流側の第2ボス10の内周面10aの形状は半径Roで回転軸Oの軸方向に一定である。また、第2ボス10の外周面10bの形状は、回転軸Oの軸方向に一定である。すなわち、内径絞り部18のみが円筒形状の第2ボス10の内周面10aに形成された構成である。
図4に示すように、第2ボス10は、円筒状であり、第2ボス10内部には上流端と下流端に通風路13の開口部が設けられる。
第2ボス10の上流端内径には、下流端内径の半径Roに対して軸方向上流側に向かって内径が小さくなり、上流端に至って半径Riの内径となる内径絞り部18が設けられる。
内径絞り部18はプロペラファン4と一体成形あるいは内径絞り部18のみを別パーツとして取り付けることにより実現可能である。
内径絞り部18は、第2ボス10における副翼11の接続位置よりも上流側に設けられている。このため、内径絞り部18より下流側の第2ボス10の内周面10aの形状は半径Roで回転軸Oの軸方向に一定である。また、第2ボス10の外周面10bの形状は、回転軸Oの軸方向に一定である。すなわち、内径絞り部18のみが円筒形状の第2ボス10の内周面10aに形成された構成である。
以下、実施の形態1に係る動作について従来例と比較して説明する。
図5Aは、本発明の実施の形態1に係るプロペラファンのボス付近の気流模式図である。図5Bは、従来例のプロペラファンのボス付近の気流模式図である。
図5Aおよび図5Bに示すように、プロペラファン4の回転により、主翼12を通過する気流17aは遠心力を受け、上流側から下流側にかけて外径方向へ流れる。副翼11は主翼12に対して逆方向に送風するため、第2ボス10の下流端で主翼12から吹き出した気流17bは第2ボス10内部に吸引される。
図5Aは、本発明の実施の形態1に係るプロペラファンのボス付近の気流模式図である。図5Bは、従来例のプロペラファンのボス付近の気流模式図である。
図5Aおよび図5Bに示すように、プロペラファン4の回転により、主翼12を通過する気流17aは遠心力を受け、上流側から下流側にかけて外径方向へ流れる。副翼11は主翼12に対して逆方向に送風するため、第2ボス10の下流端で主翼12から吹き出した気流17bは第2ボス10内部に吸引される。
図5Bに示す従来例では、第2ボス10内部に吸い込まれた気流17cは、旋回する副翼11により旋回流となり、遠心力によって外径方向に排出される。主翼12へ向かう気流17dは主翼12の前縁直前で旋回流となった気流17cと干渉して気流が乱れる。その結果、主翼12の前縁で翼と流れ方向がずれて剥離による渦が発生し、エネルギー損失や前縁の圧力変動を増加して騒音が発生する。
これに対し、図5Aに示す実施の形態1は、第2ボス10内部に吸い込まれた気流17eは、第2ボス10の内側上流端に設けられた内径絞り部18により内径方向へ向けられ、第2ボス10の内部上流端から吹き出した気流が内径方向へ流出する。第2ボス10の外側にて上流側から主翼12へ向かう気流17dと、第2ボス10内部から吹出した気流17eとの経路が離れることにより相互の気流干渉が低減され、主翼12の前縁の気流乱れを抑制することができる。よって、従来に比べて主翼12の前縁の剥離を抑えて発生するエネルギー損失や騒音を低減することができる。その結果、高効率で低騒音なプロペラファン4を実現することができる。
さらに送風機100については、吹出口2にあるファンガード8を通過するファン吹出し風速が大きくなると、桟7の通風抵抗は風速の2乗に比例して大きくなり、プロペラファン4から吹き出した気流が桟7に衝突したときに発生する圧力変動も強くなるため騒音が増加する。
実施の形態1のプロペラファン4は、第2ボス10の内部に下流の気流を吸引し、主翼12の吹出し風速を均一化するため、同一風量におけるファン吹出し風速を低減することができる。吹出し気流が桟7を通過するときの通風抵抗と桟7の表面の圧力変動を低減することができ、ファンガード8で発生するエネルギー損失と騒音を低減できる。その結果、高効率で低騒音な送風機100を実現することができる。
実施の形態1のプロペラファン4は、第2ボス10の内部に下流の気流を吸引し、主翼12の吹出し風速を均一化するため、同一風量におけるファン吹出し風速を低減することができる。吹出し気流が桟7を通過するときの通風抵抗と桟7の表面の圧力変動を低減することができ、ファンガード8で発生するエネルギー損失と騒音を低減できる。その結果、高効率で低騒音な送風機100を実現することができる。
実施の形態2.
図6Aは、本発明の実施の形態2に係るプロペラファンを示す全体斜視図である。図6Bは、本発明の実施の形態2に係るプロペラファンを示す図6Aのc-c断面の主翼断面図である。
図6Aおよび図6Bに示すように、実施の形態2では、内径絞り部18は、第2ボス10と主翼12との前縁が接続される点19を回転軸Oの軸方向上流側に延長した延長線20と、第2ボス10の上流端と、が交わる交点21を含む円周領域に形成される。一方、第2ボス10と主翼12の中央から後縁までの範囲とが接続される部分を回転軸Oの軸方向上流側に延長した部分と、第2ボス10の上流端と、が交わる円周部分には、内径絞り部18を形成していない。図6Bでは、第2ボス10の内部上流端に形成される内径絞り部18を破線で囲った斜線部で示す。
図6Aは、本発明の実施の形態2に係るプロペラファンを示す全体斜視図である。図6Bは、本発明の実施の形態2に係るプロペラファンを示す図6Aのc-c断面の主翼断面図である。
図6Aおよび図6Bに示すように、実施の形態2では、内径絞り部18は、第2ボス10と主翼12との前縁が接続される点19を回転軸Oの軸方向上流側に延長した延長線20と、第2ボス10の上流端と、が交わる交点21を含む円周領域に形成される。一方、第2ボス10と主翼12の中央から後縁までの範囲とが接続される部分を回転軸Oの軸方向上流側に延長した部分と、第2ボス10の上流端と、が交わる円周部分には、内径絞り部18を形成していない。図6Bでは、第2ボス10の内部上流端に形成される内径絞り部18を破線で囲った斜線部で示す。
主翼12の前縁に流入直前の気流が乱れると、主翼12で翼と気流方向とが一致せず前縁での剥離が発生し、エネルギー損失や騒音の原因となる。第2ボス10の内部から吹き出す気流は、主翼12の前縁直前を流れる気流との干渉を避けることが必要である。
一方、内径絞り部18は、副翼11にとって通風抵抗となる。そのため、主翼12の前縁に流入する流れを乱さない最小限の範囲に内径絞り部18を設けることにより、副翼11の送風量を増加できる。
そこで、第2ボス10の内周面10aに設ける内径絞り部18を主翼12の前縁の上流側に相当する位置に設けることにより、主翼12の前縁に流入する気流と第2ボス10内部から吹き出した気流との干渉を抑制することができる。主翼12に向かう気流は、第2ボス10の上流端と交わる交点21の位置にて主翼12の上流側から流入するため、内径絞り部18は交点21を含んだ第2ボス10の内周面10aの円周範囲に設けることが望ましい。よって、主翼12の前縁の剥離を抑えてエネルギー損失や騒音を低減することができる。その結果、高効率で低騒音なプロペラファン4を実現することができる。
一方、内径絞り部18は、副翼11にとって通風抵抗となる。そのため、主翼12の前縁に流入する流れを乱さない最小限の範囲に内径絞り部18を設けることにより、副翼11の送風量を増加できる。
そこで、第2ボス10の内周面10aに設ける内径絞り部18を主翼12の前縁の上流側に相当する位置に設けることにより、主翼12の前縁に流入する気流と第2ボス10内部から吹き出した気流との干渉を抑制することができる。主翼12に向かう気流は、第2ボス10の上流端と交わる交点21の位置にて主翼12の上流側から流入するため、内径絞り部18は交点21を含んだ第2ボス10の内周面10aの円周範囲に設けることが望ましい。よって、主翼12の前縁の剥離を抑えてエネルギー損失や騒音を低減することができる。その結果、高効率で低騒音なプロペラファン4を実現することができる。
また、第2ボス10と主翼12の中央から後縁までの範囲とが接続される部分を回転軸Oの軸方向上流側に延長した部分と、第2ボス10の上流端と、が交わる円周部分には、内径絞り部18を形成していない。これにより、副翼11にとって通風抵抗となる内径絞り部18は、主翼12の前縁に流入する流れを乱さない最小限の範囲で設けられることにより、副翼11の送風量を増加することができる。そして、副翼11の送風量が増加するため、プロペラファン4の下流の気流を中心に吸引する力を大きくすることができ、第2ボス10側面の気流の剥離を抑制し、気流の径方向への拡大を防ぐことができる。
(内径絞り部18の寸法規定)
図7は、本発明の実施の形態2に係るプロペラファン4の正面図である。
隣接する主翼12の取付け間隔を、第2ボス10と主翼12との前縁が接続される点19aと点19b間の角度で定義し、取付けピッチTとする。また、第2ボス10内部の内径絞り部18の円周方向の幅を連続する内径絞り部18の角度tとする。そして、主翼12の取付けピッチTに対する内径絞り部18の幅の比をピッチ比t/Tと定義する。
図7は、本発明の実施の形態2に係るプロペラファン4の正面図である。
隣接する主翼12の取付け間隔を、第2ボス10と主翼12との前縁が接続される点19aと点19b間の角度で定義し、取付けピッチTとする。また、第2ボス10内部の内径絞り部18の円周方向の幅を連続する内径絞り部18の角度tとする。そして、主翼12の取付けピッチTに対する内径絞り部18の幅の比をピッチ比t/Tと定義する。
図8は、本発明の実施の形態2に係るプロペラファン4を回転軸Oに沿った面で切断した半断面図である。
また、第2ボス10の上流端の内径絞り部18の半径方向厚さについて、図8に示すように第2ボス10の下流端内径の半径を半径Roとし、内径絞り部18の上流端の内径を半径Riとし、第1ボス9の外径を半径Rbとし、内径絞り部18の厚さ比を厚さ比(Ri-Rb)/(Ro-Rb)と定義する。
また、第2ボス10の上流端の内径絞り部18の半径方向厚さについて、図8に示すように第2ボス10の下流端内径の半径を半径Roとし、内径絞り部18の上流端の内径を半径Riとし、第1ボス9の外径を半径Rbとし、内径絞り部18の厚さ比を厚さ比(Ri-Rb)/(Ro-Rb)と定義する。
図9Aは、本発明の実施の形態2に係るプロペラファンのボス付近の厚さ比が大きい場合を示す気流模式図である。図9Bは、本発明の実施の形態2に係るプロペラファンのボス付近の厚さ比が小さい場合を示す気流模式図である。
図9Aに示すように厚さ比が大きいことは、気流17eの第2ボス10の上流端の内側通過面積が大きいことを意味する。また、図9Bに示すように厚さ比が小さいことは、気流17eの第2ボス10の上流端の通過面積が小さいことを意味する。
図9Aに示すように厚さ比が大きいことは、気流17eの第2ボス10の上流端の内側通過面積が大きいことを意味する。また、図9Bに示すように厚さ比が小さいことは、気流17eの第2ボス10の上流端の通過面積が小さいことを意味する。
図10Aは、本発明の実施の形態2に係るプロペラファン4の内径絞り部18の厚さ比(Ri-Rb)/(Ro-Rb)に応じたピッチ比t/Tに対して内径絞り部18を設けないプロペラファンの特性を基準とした騒音変化量および消費電力の比率を示す厚さ比を0.95とした場合の図である。図10Bは、本発明の実施の形態2に係るプロペラファン4の内径絞り部18の厚さ比(Ri-Rb)/(Ro-Rb)に応じたピッチ比t/Tに対して内径絞り部18を設けないプロペラファンの特性を基準とした騒音変化量および消費電力の比率を示す厚さ比を0.9とした場合の図である。図10Cは、本発明の実施の形態2に係るプロペラファン4の内径絞り部18の厚さ比(Ri-Rb)/(Ro-Rb)に応じたピッチ比t/Tに対して内径絞り部18を設けないプロペラファンの特性を基準とした騒音変化量および消費電力の比率を示す厚さ比を0.85とした場合の図である。図10Dは、本発明の実施の形態2に係るプロペラファン4の内径絞り部18の厚さ比(Ri-Rb)/(Ro-Rb)に応じたピッチ比t/Tに対して内径絞り部18を設けないプロペラファンの特性を基準とした騒音変化量および消費電力の比率を示す厚さ比を0.8とした場合の図である。図10Eは、本発明の実施の形態2に係るプロペラファン4の内径絞り部18の厚さ比(Ri-Rb)/(Ro-Rb)に応じたピッチ比t/Tに対して内径絞り部18を設けないプロペラファンの特性を基準とした騒音変化量および消費電力の比率を示す厚さ比を0.75とした場合の図である。図10Fは、本発明の実施の形態2に係るプロペラファン4の内径絞り部18の厚さ比(Ri-Rb)/(Ro-Rb)に応じたピッチ比t/Tに対して内径絞り部18を設けないプロペラファンの特性を基準とした騒音変化量および消費電力の比率を示す厚さ比を0.7とした場合の図である。
図10A~図10Fでは、横軸がピッチ比t/Tを示し、縦軸が内径絞り部18を設けないプロペラファンの特性を基準とした騒音変化量および消費電力の比率を示す。
図10A~図10Fでは、横軸がピッチ比t/Tを示し、縦軸が内径絞り部18を設けないプロペラファンの特性を基準とした騒音変化量および消費電力の比率を示す。
例として、厚さ比(Ri-Rb)/(Ro-Rb)が0.9の場合は、ピッチ比t/Tが大きい、つまり内径絞り部18の範囲が拡大する程、騒音と消費電力が低減する傾向を示す。
これに対し、ピッチ比t/Tが0.1以下になる、つまり内径絞り部18の領域が狭くなると、第2ボス10の内部を通過した気流を径方向内側へ整流することができないため効果が低下する。また、内径絞り部18が整流ではなく、障害物となり、第2ボス10の内部を通過して上流端から吹き出す気流を乱し、主翼12に乱れた流れを供給する原因にもなる。その結果、騒音と消費電力が内径絞り部18を設けない場合よりも大きくなる。
これに対し、ピッチ比t/Tが0.1以下になる、つまり内径絞り部18の領域が狭くなると、第2ボス10の内部を通過した気流を径方向内側へ整流することができないため効果が低下する。また、内径絞り部18が整流ではなく、障害物となり、第2ボス10の内部を通過して上流端から吹き出す気流を乱し、主翼12に乱れた流れを供給する原因にもなる。その結果、騒音と消費電力が内径絞り部18を設けない場合よりも大きくなる。
厚さ比(Ri-Rb)/(Ro-Rb)については、0.9の場合は、ピッチ比t/Tが1.0で騒音および消費電力が最も効果が大きい。一方、厚さ比(Ri-Rb)/(Ro-Rb)が0.85、0.8、0.75の場合は、ピッチ比t/Tが約0.6~0.8で騒音および消費電力のピーク値を示す。厚さ比(Ri-Rb)/(Ro-Rb)が0.7の場合は、消費電力の低減効果がなくなる。
これは、図10Fに示すように内径絞り部18の内径が小さい場合、ピッチ比t/Tが大きくなると第2ボス10の上流端の通風抵抗が大きくなる。このとき、副翼11の送風量が低下するため、主翼12から吹き出した気流の吸引量が低下し、主翼12の吹出し流が径方向外側へ偏る。その結果、プロペラファン4の下流のファンガード8を通過するときの風速が増加し、ファンガード8で発生するエネルギー損失と騒音が大きくなる。
これは、図10Fに示すように内径絞り部18の内径が小さい場合、ピッチ比t/Tが大きくなると第2ボス10の上流端の通風抵抗が大きくなる。このとき、副翼11の送風量が低下するため、主翼12から吹き出した気流の吸引量が低下し、主翼12の吹出し流が径方向外側へ偏る。その結果、プロペラファン4の下流のファンガード8を通過するときの風速が増加し、ファンガード8で発生するエネルギー損失と騒音が大きくなる。
図11Aは、本発明の実施の形態2に係るプロペラファン4のピッチ比t/Tと厚さ比(Ri-Rb)/(Ro-Rb)とに応じた消費電力のマップである。図11Bは、本発明の実施の形態2に係るプロペラファン4のピッチ比t/Tと厚さ比(Ri-Rb)/(Ro-Rb)とに応じた騒音のマップである。
ピッチ比t/Tと厚さ比(Ri-Rb)/(Ro-Rb)には相互作用があり、図11Aおよび図11Bは両パラメータに対する消費電力と騒音をマップ化したものである。
改善効果を得るためには、少なくともピッチ比t/Tを0.15以上、厚さ比(Ri-Rb)/(Ro-Rb)を0.72以上とすることが望ましい。相互作用を考慮して大きな効果を得るためには、ピッチ比t/Tを0.4以上かつ厚さ比(Ri-Rb)/(Ro-Rb)を0.85以上とすることが望ましい。
ピッチ比t/Tと厚さ比(Ri-Rb)/(Ro-Rb)には相互作用があり、図11Aおよび図11Bは両パラメータに対する消費電力と騒音をマップ化したものである。
改善効果を得るためには、少なくともピッチ比t/Tを0.15以上、厚さ比(Ri-Rb)/(Ro-Rb)を0.72以上とすることが望ましい。相互作用を考慮して大きな効果を得るためには、ピッチ比t/Tを0.4以上かつ厚さ比(Ri-Rb)/(Ro-Rb)を0.85以上とすることが望ましい。
実施の形態3.
図12は、本発明の実施の形態3に係るプロペラファン4を回転軸Oに沿った面で切断した半断面図である。
図12に示すように、実施の形態3では、プロペラファン4は、第2ボス10の上流端に、外径が径RRoから径RRiまで回転軸Oの軸方向に上流側に向かって小さくなる外径絞り部22を設ける。
図12は、本発明の実施の形態3に係るプロペラファン4を回転軸Oに沿った面で切断した半断面図である。
図12に示すように、実施の形態3では、プロペラファン4は、第2ボス10の上流端に、外径が径RRoから径RRiまで回転軸Oの軸方向に上流側に向かって小さくなる外径絞り部22を設ける。
実施の形態1で示したプロペラファン4は第2ボス10に設けた内径絞り部18により、第2ボス10の上流端が厚肉となる。この場合には、主翼12へ向かう気流が第2ボス10の上流端に衝突する淀み域となり、通風抵抗の増加や、淀み域近傍の低速気流と第2ボス10内部から吹き出す気流或いは主翼12へ向かう気流との間の速度差により渦が発生する可能性がある。発生した渦は、主翼12へ向かい、主翼12の前縁へ向かう気流を乱し、主翼12の前縁で剥離を発生し、エネルギー損失や騒音の原因となる。
そこで、実施の形態3のように、外径絞り部22を形成し、第2ボス10の上流端を実施の形態1に対して薄い肉厚22aになるように構成する。これによると、第2ボス10の上流端の淀み域が縮小し、主翼12へ向かう気流がスムーズに通過し、淀み域で発生する渦も低減される。また、外径絞り部22を形成した第2ボス10の外側の傾斜部により、第2ボス10の外側を流れる気流が滑らかに主翼12へ流入することができ、通風抵抗が小さくなる。以上のことから、主翼12へ向かう気流を低損失で乱れが少ない流れにすることができる。その結果、高効率で低騒音なプロペラファン4を実現することができる。
そこで、実施の形態3のように、外径絞り部22を形成し、第2ボス10の上流端を実施の形態1に対して薄い肉厚22aになるように構成する。これによると、第2ボス10の上流端の淀み域が縮小し、主翼12へ向かう気流がスムーズに通過し、淀み域で発生する渦も低減される。また、外径絞り部22を形成した第2ボス10の外側の傾斜部により、第2ボス10の外側を流れる気流が滑らかに主翼12へ流入することができ、通風抵抗が小さくなる。以上のことから、主翼12へ向かう気流を低損失で乱れが少ない流れにすることができる。その結果、高効率で低騒音なプロペラファン4を実現することができる。
実施の形態4.
図13は、本発明の実施の形態4に係るプロペラファン4を回転軸Oに沿った面で切断した半断面図である。
図13に示すように、実施の形態4では、第2ボス10の上流端の内径絞り部18および外径絞り部22が滑らかな曲線形状23で構成される。
図13は、本発明の実施の形態4に係るプロペラファン4を回転軸Oに沿った面で切断した半断面図である。
図13に示すように、実施の形態4では、第2ボス10の上流端の内径絞り部18および外径絞り部22が滑らかな曲線形状23で構成される。
仮に、流路断面を直線で急激に変化させると角部や段差が生じ、気流が壁に沿わずに剥離や渦発生など乱れや損失の原因となる。そこで、第2ボス10の上流端の内径絞り部18および外径絞り部22が滑らかな曲線形状23で構成される。曲線形状23で構成し、円弧やスプラインなど滑らかな曲線断面で徐々に流路形状を変化させることにより、乱れと圧損を低減することができる。
実施の形態4では、第2ボス10の内径絞り部18を滑らかな曲線の傾斜面とすることにより、副翼11から吹き出す気流方向を滑らかに内側に向けることができ、副翼11に必要な仕事を低減することができ、高効率化できる。また、第2ボス10の外径絞り部22を滑らかな曲線の傾斜面とすることにより、主翼12へ向かう気流の低圧損化と乱れを小さくすることができ、主翼12の前縁で発生するエネルギー損失と騒音を低減することができる。その結果、高効率で低騒音なプロペラファン4を実現することができる。
実施の形態5.
図14Aは、本発明の実施の形態5に係るプロペラファンを示す全体斜視図である。図14Bは、本発明の実施の形態5に係るプロペラファンを示す図14Aのc-c断面の主翼断面図である。
第2ボス10の上流端の円周上の一部に下流側に凹む凹部24を設けた。凹部24の定義は、図14Bに示す第2ボス10の側面視において、破線で示す内径絞り部18よりも下流側に凹む範囲とする。凹部24は、第2ボス10内部の副翼11を通過した気流が第2ボス10の外側へ吹き出す通風路となる。
なお、実施の形態5の内径絞り部18は、図6Aおよび図6Bに示す実施の形態2と同様の第2ボス10と主翼12の前縁が接続される点19を回転軸Oの軸方向上流側に延長した延長線20と、第2ボス10の上流端と交わる交点21を含む円周領域であるとよい。
図14Aは、本発明の実施の形態5に係るプロペラファンを示す全体斜視図である。図14Bは、本発明の実施の形態5に係るプロペラファンを示す図14Aのc-c断面の主翼断面図である。
第2ボス10の上流端の円周上の一部に下流側に凹む凹部24を設けた。凹部24の定義は、図14Bに示す第2ボス10の側面視において、破線で示す内径絞り部18よりも下流側に凹む範囲とする。凹部24は、第2ボス10内部の副翼11を通過した気流が第2ボス10の外側へ吹き出す通風路となる。
なお、実施の形態5の内径絞り部18は、図6Aおよび図6Bに示す実施の形態2と同様の第2ボス10と主翼12の前縁が接続される点19を回転軸Oの軸方向上流側に延長した延長線20と、第2ボス10の上流端と交わる交点21を含む円周領域であるとよい。
ここで、プロペラファン4を駆動するために取り付けられるファンモータ5は、第2ボス10の下流端から主翼12の吹出し気流を吸引する通風路13を確保するため、上流に取り付けることが望ましい。しかし、第2ボス10とファンモータ5との位置が接近すると、第2ボス10内部から第2ボス外側へ排出する通風路13が狭くなり通風抵抗が増加し、副翼11による送風量が減少する。
そこで、第2ボス10の上流端に下流側に凹む凹部24を設け、副翼11で吸引した気流を第2ボス10の側面から排出できるようにする。凹部24は、主翼12の負圧面に沿って下流方向に延び、副翼11の上流端25からは回転軸Oに垂直に周方向に底部を形成し、隣接する主翼12の前縁の手前まで主翼12の上流の曲面に沿って緩やかに傾斜して上流側へ戻る形状である。
このような凹部24は、ファンモータ5と第2ボス10とが接近する場合においても、第2ボス内部から第2ボス10の上流側へ排出する通風路13を確保することができるため、通風路13によってプロペラファン4の下流の気流を吸引する性能を維持することができる。
そこで、第2ボス10の上流端に下流側に凹む凹部24を設け、副翼11で吸引した気流を第2ボス10の側面から排出できるようにする。凹部24は、主翼12の負圧面に沿って下流方向に延び、副翼11の上流端25からは回転軸Oに垂直に周方向に底部を形成し、隣接する主翼12の前縁の手前まで主翼12の上流の曲面に沿って緩やかに傾斜して上流側へ戻る形状である。
このような凹部24は、ファンモータ5と第2ボス10とが接近する場合においても、第2ボス内部から第2ボス10の上流側へ排出する通風路13を確保することができるため、通風路13によってプロペラファン4の下流の気流を吸引する性能を維持することができる。
実施の形態6.
図15は、本発明の実施の形態6に係るプロペラファン4を示す主翼断面図である。
図15に示すように、凹部24は、第2ボス10と主翼12の前縁とが接続される点19を回転軸Oの軸方向上流側に延長した延長線20と、第2ボス10の上流端と、が交わる交点21からずれた円周領域に形成される。このため、凹部24の無い第2ボス10の上流端の交点21を含む円周領域には、内径絞り部18が形成される。
図15は、本発明の実施の形態6に係るプロペラファン4を示す主翼断面図である。
図15に示すように、凹部24は、第2ボス10と主翼12の前縁とが接続される点19を回転軸Oの軸方向上流側に延長した延長線20と、第2ボス10の上流端と、が交わる交点21からずれた円周領域に形成される。このため、凹部24の無い第2ボス10の上流端の交点21を含む円周領域には、内径絞り部18が形成される。
仮に、凹部が交点21を含む位置に設けられると、主翼12の前縁へ流入する流れと第2ボス10の凹部24から排出される外径方向の気流とが干渉して、主翼12の前縁へ向かう気流が乱れ、主翼12の前縁でエネルギー損失と騒音を増加させる。
そこで、第2ボス10内部の気流が吹き出す凹部24は、周方向に主翼12の前縁から離れた位置になるように構成する。このように構成すると、ファンモータ5と第2ボス10とが接近する状態においても、第2ボス10の下流側の気流を通風路13に吸引する性能を維持しながら、第2ボス10を通過した気流と主翼12の前縁へ向かう気流との干渉を抑制することができる。その結果、高効率で低騒音なプロペラファン4を実現することができる。
そこで、第2ボス10内部の気流が吹き出す凹部24は、周方向に主翼12の前縁から離れた位置になるように構成する。このように構成すると、ファンモータ5と第2ボス10とが接近する状態においても、第2ボス10の下流側の気流を通風路13に吸引する性能を維持しながら、第2ボス10を通過した気流と主翼12の前縁へ向かう気流との干渉を抑制することができる。その結果、高効率で低騒音なプロペラファン4を実現することができる。
(第2ボス10の凹部24の寸法規定)
図16は、本発明の実施の形態6に係るプロペラファン4とファンモータ5とを示す主翼断面図である。
内径絞り部18を有する第2ボス10の外周の上流端から回転軸Oの軸方向上流側に配置されたファンモータ5との距離を距離L1とし、第2ボス10に設けられた凹部24の上流端25とこの凹部24の上流端25から回転軸Oの軸方向上流側に配置されたファンモータ5との距離を距離L2とする。両者の距離比L2/L1は、凹部24により形成される第2ボス側面の距離を定義する。
図16は、本発明の実施の形態6に係るプロペラファン4とファンモータ5とを示す主翼断面図である。
内径絞り部18を有する第2ボス10の外周の上流端から回転軸Oの軸方向上流側に配置されたファンモータ5との距離を距離L1とし、第2ボス10に設けられた凹部24の上流端25とこの凹部24の上流端25から回転軸Oの軸方向上流側に配置されたファンモータ5との距離を距離L2とする。両者の距離比L2/L1は、凹部24により形成される第2ボス側面の距離を定義する。
図17は、本発明の実施の形態6に係るプロペラファン4の距離比L2/L1と騒音および消費電力との関係を示す図である。図17では、横軸に距離比L2/L1を示し、縦軸に騒音および消費電力を示す。
図18Aは、本発明の実施の形態6に係るプロペラファンを示す正面図である。図18Bは、本発明の実施の形態6に係るプロペラファンを示す図18AのO-A断面の主翼断面図である。図18Cは、本発明の実施の形態6に係るプロペラファンを示す図18AのO-B断面の主翼断面図である。
距離比L2/L1が大きくなると、図18Cに示すように第2ボス10の側面の開口部が拡大し、第2ボス10の内部を通過した気流がファンモータ5と衝突する前に径方向外側に吹出す。この構成によって、ファンモータ5に気流が衝突することによる通風抵抗が低減し、消費電力が低減する。
一方、凹部24が大きくなると、第2ボス10の内部から径方向外側に吹き出す気流が増加する。第2ボス10の側面から吹き出した気流により主翼12を流れる気流が乱れ、プロペラファン4の効率が低下する。
以上のことから、凹部24は、特定の長さで消費電力と騒音値のピーク値を持つ。この結果から、距離比L2/L1は、1.2以上1.5以下の範囲内とすることが望ましい。
図18Aは、本発明の実施の形態6に係るプロペラファンを示す正面図である。図18Bは、本発明の実施の形態6に係るプロペラファンを示す図18AのO-A断面の主翼断面図である。図18Cは、本発明の実施の形態6に係るプロペラファンを示す図18AのO-B断面の主翼断面図である。
距離比L2/L1が大きくなると、図18Cに示すように第2ボス10の側面の開口部が拡大し、第2ボス10の内部を通過した気流がファンモータ5と衝突する前に径方向外側に吹出す。この構成によって、ファンモータ5に気流が衝突することによる通風抵抗が低減し、消費電力が低減する。
一方、凹部24が大きくなると、第2ボス10の内部から径方向外側に吹き出す気流が増加する。第2ボス10の側面から吹き出した気流により主翼12を流れる気流が乱れ、プロペラファン4の効率が低下する。
以上のことから、凹部24は、特定の長さで消費電力と騒音値のピーク値を持つ。この結果から、距離比L2/L1は、1.2以上1.5以下の範囲内とすることが望ましい。
実施の形態7.
図19Aは、本発明の実施の形態7に係るプロペラファンを示す正面図である。図19Bは、本発明の実施の形態7に係るプロペラファンを示す図19AのS-S断面の副翼断面図である。図19Cは、本発明の実施の形態7に係るプロペラファンを示す図19AのT-T断面のボス断面図である。
図19A~図19Cに示すように、S-S断面には内径絞り部18が無く、T-T断面には内径絞り部18が設置される。すなわち、内径絞り部18は、副翼11が回転軸Oの軸方向に投影されたときに第2ボス10の上流端と重ならない円周領域に形成される。
図19Aは、本発明の実施の形態7に係るプロペラファンを示す正面図である。図19Bは、本発明の実施の形態7に係るプロペラファンを示す図19AのS-S断面の副翼断面図である。図19Cは、本発明の実施の形態7に係るプロペラファンを示す図19AのT-T断面のボス断面図である。
図19A~図19Cに示すように、S-S断面には内径絞り部18が無く、T-T断面には内径絞り部18が設置される。すなわち、内径絞り部18は、副翼11が回転軸Oの軸方向に投影されたときに第2ボス10の上流端と重ならない円周領域に形成される。
プロペラファンを一体成形する場合は、翼を境界にして回転軸Oの軸方向に上流側と下流側に分割する2分割式の成形型を用いる場合が多い。
内径絞り部と副翼が回転軸Oの軸方向に重なると、第2ボス10の上流側型が回転軸Oの軸方向に抜けないアンダーカット状態になり、一体成形が困難になる。そこで、実施の形態7では、副翼11と内径絞り部18が回転軸Oの軸方向に投影したときに重ならないように構成する。これにより、アンダーカット部が無くなり、回転軸Oの軸方向に上流側と下流側とに2分割する成形型が使用でき、内径絞り部18を有するプロペラファン4の一体成形が容易になる。
内径絞り部と副翼が回転軸Oの軸方向に重なると、第2ボス10の上流側型が回転軸Oの軸方向に抜けないアンダーカット状態になり、一体成形が困難になる。そこで、実施の形態7では、副翼11と内径絞り部18が回転軸Oの軸方向に投影したときに重ならないように構成する。これにより、アンダーカット部が無くなり、回転軸Oの軸方向に上流側と下流側とに2分割する成形型が使用でき、内径絞り部18を有するプロペラファン4の一体成形が容易になる。
実施の形態8.
図20は、本発明の実施の形態8に係るプロペラファン4を示す正面図である。
図20に示すように、実施の形態8では、内径絞り部18が、第2ボス10と主翼12の前縁とが接続される点19を回転軸Oの軸方向上流側に延長した延長線と、第2ボス10の上流端と、が交わる交点21を含む円周領域に形成される。
図20は、本発明の実施の形態8に係るプロペラファン4を示す正面図である。
図20に示すように、実施の形態8では、内径絞り部18が、第2ボス10と主翼12の前縁とが接続される点19を回転軸Oの軸方向上流側に延長した延長線と、第2ボス10の上流端と、が交わる交点21を含む円周領域に形成される。
実施の形態7に示された一体成形を容易にするプロペラファンでは、第2ボスの一部の上流端に内径絞り部が無いため、副翼で送風された気流は第2ボスの上流端から外径方向に流出し、主翼に向かう気流と干渉し易くなる。
そこで、実施の形態8では、図20に示すように内径絞り部18が、第2ボス10と主翼12の前縁とが接続される点19を回転軸Oの軸方向上流側に延長した延長線と、第2ボス10の上流端と、が交わる交点21を含む円周領域に設ける。
主翼12の前縁に流入する気流と第2ボス10から吹き出す気流との干渉を内径絞り部18により抑制することができるため、主翼12で発生するエネルギー損失や乱れを抑制することができる。その結果、高効率で低騒音かつ成形容易なプロペラファン4を実現することができる。
そこで、実施の形態8では、図20に示すように内径絞り部18が、第2ボス10と主翼12の前縁とが接続される点19を回転軸Oの軸方向上流側に延長した延長線と、第2ボス10の上流端と、が交わる交点21を含む円周領域に設ける。
主翼12の前縁に流入する気流と第2ボス10から吹き出す気流との干渉を内径絞り部18により抑制することができるため、主翼12で発生するエネルギー損失や乱れを抑制することができる。その結果、高効率で低騒音かつ成形容易なプロペラファン4を実現することができる。
実施の形態9.
図21は、本発明の実施の形態9に係るプロペラファン4を示す正面図である。
図21に示すように、主翼12の翼枚数に比べて、副翼11の翼枚数が多い。
図21は、本発明の実施の形態9に係るプロペラファン4を示す正面図である。
図21に示すように、主翼12の翼枚数に比べて、副翼11の翼枚数が多い。
副翼11のファン径は主翼12に比べて小さく送風能力が小さい。第2ボス10の上流端に設けた内径絞り部18や、第2ボス10とファンモータ5との位置が接近した場合には、第2ボス10内部の通風抵抗が大きくなり、副翼11には高静圧が求められる。
そこで、副翼11を主翼12よりも多翼に構成して翼面積の増加と、翼間流路を狭めて翼に流れが沿い易くして高静圧となるようにする。これによると、内径絞り部18やファンモータ5の接近による第2ボス10内部の通風路13の通風抵抗が大きい場合も副翼11による送風量を確保することができる。
そこで、副翼11を主翼12よりも多翼に構成して翼面積の増加と、翼間流路を狭めて翼に流れが沿い易くして高静圧となるようにする。これによると、内径絞り部18やファンモータ5の接近による第2ボス10内部の通風路13の通風抵抗が大きい場合も副翼11による送風量を確保することができる。
実施の形態10.
図22は、本発明の実施の形態10に係るプロペラファン4を回転軸Oに沿った面で切断した半断面図である。
図22に示すように、実施の形態10では、第2ボス10の下流端が曲面形状26で形成される。
図22は、本発明の実施の形態10に係るプロペラファン4を回転軸Oに沿った面で切断した半断面図である。
図22に示すように、実施の形態10では、第2ボス10の下流端が曲面形状26で形成される。
第2ボスの下流端が矩形形状の場合には、第2ボス側面から下流端を回り込む気流が端部で剥離し、発生した渦が流路面積を縮小し、第2ボス内部の通風路に吸引される風量が低下する。
そこで、第2ボス10の下流端をR形状、断面半円形状、面取り形状などの曲面形状26にする。これにより、第2ボス10の側面から下流端を回り込む気流は、第2ボス10の側面から内部へスムーズに流入できるようになり、副翼11の吸引風量を増加することができる。
そこで、第2ボス10の下流端をR形状、断面半円形状、面取り形状などの曲面形状26にする。これにより、第2ボス10の側面から下流端を回り込む気流は、第2ボス10の側面から内部へスムーズに流入できるようになり、副翼11の吸引風量を増加することができる。
実施の形態11.
図23Aは、本発明の実施の形態11に係る空気調和機の室外機を示す斜視図である。図23Bは、本発明の実施の形態11に係る空気調和機の室外機を示す図23AのA-A断面の水平断面図である。
図23Aおよび図23Bに示すように、室外機200は、例えば空気調和機や給湯機用に用いられる冷凍サイクルを用いた熱源機である。
室外機200は、筐体1内部に、圧縮機27と、圧縮機27から供給される冷媒と外気を熱交換する熱交換器28と、熱交換器28に供給された外気を送り出すプロペラファン4と、プロペラファン4を駆動するファンモータ5と、電子機器を駆動する回路基板29と、を有して構成される。プロペラファン4の下流の吹出口2には、実施の形態1と同様にプロペラファン4と異物の接触を抑制するファンガード8が取り付けられる。
以上のような室外機200にプロペラファン4を使用すると、実施の形態10と同様にファンガード8で発生する通風抵抗と騒音が低減されると共に、翼で発生するエネルギー損失と騒音が低減することができる。その結果、高効率で低騒音となる室外機200を実現することができる。
図23Aは、本発明の実施の形態11に係る空気調和機の室外機を示す斜視図である。図23Bは、本発明の実施の形態11に係る空気調和機の室外機を示す図23AのA-A断面の水平断面図である。
図23Aおよび図23Bに示すように、室外機200は、例えば空気調和機や給湯機用に用いられる冷凍サイクルを用いた熱源機である。
室外機200は、筐体1内部に、圧縮機27と、圧縮機27から供給される冷媒と外気を熱交換する熱交換器28と、熱交換器28に供給された外気を送り出すプロペラファン4と、プロペラファン4を駆動するファンモータ5と、電子機器を駆動する回路基板29と、を有して構成される。プロペラファン4の下流の吹出口2には、実施の形態1と同様にプロペラファン4と異物の接触を抑制するファンガード8が取り付けられる。
以上のような室外機200にプロペラファン4を使用すると、実施の形態10と同様にファンガード8で発生する通風抵抗と騒音が低減されると共に、翼で発生するエネルギー損失と騒音が低減することができる。その結果、高効率で低騒音となる室外機200を実現することができる。
以上の実施の形態1~11では、第2ボス10は、主翼12の送風方向の上流端内径が下流端内径より小さい箇所が少なくとも1ヶ所含まれる。この構成によると、第2ボス10内部に吸い込まれた気流17eは、第2ボス10の内側上流端に設けられた上流端内径が下流端内径より小さい箇所により内径方向へ向けられ、第2ボス10の内部上流端から吹き出した気流が内径方向へ流出する。第2ボス10の外側にて上流側から主翼12へ向かう気流17dと、第2ボス10内部から吹出した気流17eとの経路が離れることにより相互の気流干渉が低減され、主翼12の前縁の気流乱れを抑制することができる。よって、従来に比べて主翼12の前縁の剥離を抑えて発生するエネルギー損失や騒音を低減することができる。その結果、高効率で低騒音なプロペラファン4を実現することができる。
第2ボス10の上流端内径が下流端内径より小さい箇所は、回転軸Oの軸方向に上流側に向かって小さくなる内径絞り部18に構成された。この構成によると、第2ボス10内部に吸い込まれた気流17eは、第2ボス10の内側上流端に設けられた内径絞り部18により内径方向へ向けられ、第2ボス10の内部上流端から吹き出した気流が内径方向へ流出する。第2ボス10の外側にて上流側から主翼12へ向かう気流17dと、第2ボス10内部から吹出した気流17eとの経路が離れることにより相互の気流干渉が低減され、主翼12の前縁の気流乱れを抑制することができる。よって、従来に比べて主翼12の前縁の剥離を抑えて発生するエネルギー損失や騒音を低減することができる。その結果、高効率で低騒音なプロペラファン4を実現することができる。
内径絞り部18は、副翼11の接続位置よりも上流側に設けられた。この構成によると、内径絞り部18より下流側の第2ボス10の内周面10aの形状は半径Roで回転軸Oの軸方向に一定である。これにより、第2ボス10内部に吸い込まれた気流17eを乱すことがない。
内径絞り部18は、第2ボス10と主翼12の前縁とが接続される点19を回転軸Oの軸方向上流側に延長した延長線20と、第2ボス10の上流端と、が交わる交点21を含む円周領域に形成された。この構成によると、主翼12の前縁に流入する気流と第2ボス10内部から吹き出した気流との干渉を抑制することができる。よって、主翼12の前縁の剥離を抑えてエネルギー損失や騒音を低減することができる。その結果、高効率で低騒音なプロペラファン4を実現することができる。
第2ボス10と主翼12の前縁が接続される点19間の角度を取付けピッチTとし、第2ボス10の内部の内径絞り部18が連続で存在する角度範囲をtとすると、ピッチ比t/Tは、0.15以上である。この構成によると、ピッチ比t/Tが大きい、つまり内径絞り部18の範囲が拡大する程、騒音と消費電力が低減する傾向を示す。
第2ボス10の下流端内径の半径を半径Roとし、内径絞り部18の上流端の内径を半径Riとし、第1ボス9の外径を半径Rbとし、内径絞り部18の厚さ比を(Ri-Rb)/(Ro-Rb)と定義すると、厚さ比は、0.72以上である。この構成によると、消費電力と騒音との改善効果を得ることができる。
第2ボス10は、上流端の外径が回転軸Oの軸方向に上流側に向かって小さくなる外径絞り部22を有した。この構成によると、第2ボス10の上流端の淀み域が縮小し、主翼12へ向かう気流がスムーズに通過し、淀み域で発生する渦も低減される。また、外径絞り部22を形成した第2ボス10の外側の傾斜部により、第2ボス10の外側を流れる気流が滑らかに主翼12へ流入することができ、通風抵抗が小さくなる。以上のことから、主翼12へ向かう気流を低損失で乱れが少ない流れにすることができる。その結果、高効率で低騒音なプロペラファン4を実現することができる。
内径絞り部18は、回転軸Oの軸方向に上流側に向かって滑らかな曲線形状23で構成される。この構成によると、副翼11から吹き出す気流方向を滑らかに内側に向けることができ、副翼11に必要な仕事を低減することができ、高効率化できる。また、第2ボス10の外径絞り部22を滑らかな曲線の傾斜面とすることにより、主翼12へ向かう気流の低圧損化と乱れを小さくすることができ、主翼12の前縁で発生するエネルギー損失と騒音を低減することができる。その結果、高効率で低騒音なプロペラファン4を実現することができる。
第2ボス10は、上流端の一部に下流側に凹む凹部24を有した。この構成によると、凹部24は、ファンモータ5と第2ボス10とが接近する場合においても、第2ボス内部から第2ボス10の上流側へ排出する通風路13を確保することができるため、通風路13によってプロペラファン4の下流の気流を吸引する性能を維持することができる。
内径絞り部18を有する第2ボス10の外周の上流端から回転軸Oの軸方向上流側に配置されたファンモータ5との距離を距離L1とし、第2ボス10に設けられた凹部24の上流端25と上流端25から回転軸Oの軸方向上流側に配置されたファンモータ5との距離を距離L2とすると、距離比L2/L1は、1.2以上1.5以下の範囲である。この構成によると、距離比L2/L1が大きくなり、ファンモータ5に気流が衝突することによる通風抵抗が低減し、消費電力が低減することと、凹部24が大きくなり、第2ボス10の側面から吹き出した気流により主翼12を流れる気流が乱れ、プロペラファン4の効率が低下することとの両者が良好になる消費電力と騒音値のピーク値を設定することができる。
内径絞り部18は、副翼11が回転軸Oの軸方向に投影されたときに第2ボス10の上流端と重ならない領域に形成された。この構成によると、アンダーカット部が無くなり、回転軸Oの軸方向に上流側と下流側とに2分割する成形型が使用でき、内径絞り部18を有するプロペラファン4の一体成形が容易になる。
副翼11の翼枚数は、主翼12の翼枚数より多い。この構成によると、副翼11を主翼12よりも多翼に構成して翼面積の増加と、翼間流路を狭めて翼に流れが沿い易くして高静圧となるようにする。これによると、内径絞り部18やファンモータ5の接近による第2ボス10内部の通風路13の通風抵抗が大きい場合も副翼11による送風量を確保することができる。
第2ボス10の下流端は、曲面形状26で形成された。この構成によると、第2ボス10の側面から下流端を回り込む気流は、第2ボス10の側面から内部へスムーズに流入できるようになり、副翼11の吸引風量を増加することができる。
プロペラファン4を搭載した送風機100である。この構成によると、プロペラファン4は、第2ボス10の内部に下流の気流を吸引し、主翼12の吹出し風速を均一化するため、同一風量におけるファン吹出し風速を低減することができる。吹出し気流が桟7を通過するときの通風抵抗と桟7の表面の圧力変動を低減することができ、ファンガード8で発生するエネルギー損失と騒音を低減できる。その結果、高効率で低騒音な送風機100を実現することができる。
プロペラファン4を搭載した冷凍サイクル装置の室外機200である。この構成によると、ファンガード8で発生する通風抵抗と騒音が低減されると共に、翼で発生するエネルギー損失と騒音が低減することができる。その結果、高効率で低騒音となる室外機200を実現することができる。
なお、上記の各実施の形態の構成を適宜組み合わせることも当初から予定している。また、今回開示された各実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 筐体、2 吹出口、3 吸込口、4 プロペラファン、5 ファンモータ、5a シャフト、6 ボス、7 桟、8 ファンガード、9 第1ボス、9a 外周面、10 第2ボス、10a 内周面、10b 外周面、11 副翼、11a 端点、11b 端点、11c 肉厚中央点、12 主翼、12a 端点、12b 端点、12c 肉厚中央点、13 通風路、14 回転方向、15a 線分、15b 線分、16a 二等分線、16b 二等分線、17a 気流、17b 気流、17c 気流、17d 気流、17e 気流、18 内径絞り部、19、19a、19b 第2ボスと主翼の前縁とが接続される点、20 延長線、21 交点、22 外径絞り部、22a 肉厚、23 曲線形状、24 凹部、25 上流端、26 曲面形状、27 圧縮機、28 熱交換器、29 回路基板、100 送風機、200 室外機。
Claims (16)
- 回転軸に取り付けられる第1ボスと、
前記第1ボスを囲む中空の第2ボスと、
前記第1ボスの外周と前記第2ボスの内周を接続する副翼と、
前記第2ボスの外周に接続される主翼と、
を備え、
前記第1ボスと前記第2ボスとの間に前記回転軸の軸方向に通風する流路が設けられたプロペラファンであって、
前記回転軸の回転時の前記主翼と前記副翼の送風方向が逆方向であり、
前記第2ボスは、前記主翼の送風方向の上流端内径が下流端内径より小さい箇所が少なくとも1ヶ所含まれるプロペラファン。 - 前記第2ボスの上流端内径が下流端内径より小さい箇所は、前記回転軸の軸方向に上流側に向かって小さくなる内径絞り部に構成された請求項1に記載のプロペラファン。
- 前記内径絞り部は、前記副翼の接続位置よりも上流側に設けられた請求項2に記載のプロペラファン。
- 前記内径絞り部は、前記第2ボスと前記主翼の前縁とが接続される点を前記回転軸の軸方向上流側に延長した延長線と、前記第2ボスの上流端と、が交わる交点を含む円周領域に形成された請求項2または3に記載のプロペラファン。
- 前記第2ボスと前記主翼の前縁が接続される点間の角度を取付けピッチTとし、前記第2ボスの内部の前記内径絞り部が連続で存在する角度範囲をtとすると、
ピッチ比t/Tは、0.15以上である請求項2~4のいずれか1項に記載のプロペラファン。 - 前記第2ボスの下流端内径の半径を半径Roとし、前記内径絞り部の上流端の内径を半径Riとし、前記第1ボスの外径を半径Rbとし、前記内径絞り部の厚さ比を(Ri-Rb)/(Ro-Rb)と定義すると、
厚さ比は、0.72以上である請求項2~5のいずれか1項に記載のプロペラファン。 - 前記第2ボスは、上流端の外径が前記回転軸の軸方向に上流側に向かって小さくなる外径絞り部を有した請求項1~6のいずれか1項に記載のプロペラファン。
- 前記内径絞り部は、前記回転軸の軸方向に上流側に向かって滑らかな曲線形状で構成される請求項2~7のいずれか1項に記載のプロペラファン。
- 前記第2ボスは、上流端の一部に下流側に凹む凹部を有したことを特徴とする請求項1~8のいずれか1項に記載のプロペラファン。
- 前記内径絞り部を有する前記第2ボスの外周の上流端から前記回転軸の軸方向上流側に配置されたファンモータとの距離を距離L1とし、前記第2ボスに設けられた前記凹部の上流端と前記凹部の上流端から前記回転軸の軸方向上流側に配置された前記ファンモータとの距離を距離L2とすると、
距離比L2/L1は、1.2以上1.5以下の範囲である請求項9に記載のプロペラファン。 - 前記凹部は、前記第2ボスと前記主翼の前縁とが接続される点を前記回転軸の軸方向上流側に延長した延長線と、前記第2ボスの上流端と、が交わる交点からずれた円周領域に形成された請求項9または10に記載のプロペラファン。
- 前記内径絞り部は、前記副翼が前記回転軸の軸方向に投影されたときに前記第2ボスの上流端と重ならない領域に形成された請求項2~11のいずれか1項に記載のプロペラファン。
- 前記副翼の翼枚数は、前記主翼の翼枚数より多い請求項1~12のいずれか1項に記載のプロペラファン。
- 前記第2ボスの下流端は、曲面形状で形成された請求項1~13のいずれか1項に記載のプロペラファン。
- 請求項1~14のいずれか1項に記載のプロペラファンを搭載した送風機。
- 請求項1~14のいずれか1項に記載のプロペラファンを搭載した冷凍サイクル装置の室外機。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016571661A JP6336135B2 (ja) | 2015-01-30 | 2015-06-05 | プロペラファン、送風機および冷凍サイクル装置の室外機 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015016861 | 2015-01-30 | ||
JP2015-016861 | 2015-01-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016121144A1 true WO2016121144A1 (ja) | 2016-08-04 |
Family
ID=56542785
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/066375 WO2016121144A1 (ja) | 2015-01-30 | 2015-06-05 | プロペラファン、送風機および冷凍サイクル装置の室外機 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6336135B2 (ja) |
WO (1) | WO2016121144A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019183737A (ja) * | 2018-04-10 | 2019-10-24 | パナソニックIpマネジメント株式会社 | 軸流ファン |
US10975882B2 (en) * | 2016-10-26 | 2021-04-13 | Man Truck & Bus Ag | Axial fan wheel |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55119398U (ja) * | 1979-02-18 | 1980-08-23 | ||
JPS5844298A (ja) * | 1981-09-09 | 1983-03-15 | Matsushita Electric Ind Co Ltd | 送風装置 |
JPH06317295A (ja) * | 1993-05-10 | 1994-11-15 | Hitachi Ltd | 軸流ファン |
JPH09195991A (ja) * | 1996-01-19 | 1997-07-29 | Fujita Corp | 気流生成装置 |
EP1519052A2 (de) * | 2003-09-19 | 2005-03-30 | Behr GmbH & Co. KG | Lüfter eines Kühlgebläses |
JP2006207379A (ja) * | 2005-01-25 | 2006-08-10 | Calsonic Kansei Corp | 送風ファン |
-
2015
- 2015-06-05 JP JP2016571661A patent/JP6336135B2/ja not_active Expired - Fee Related
- 2015-06-05 WO PCT/JP2015/066375 patent/WO2016121144A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55119398U (ja) * | 1979-02-18 | 1980-08-23 | ||
JPS5844298A (ja) * | 1981-09-09 | 1983-03-15 | Matsushita Electric Ind Co Ltd | 送風装置 |
JPH06317295A (ja) * | 1993-05-10 | 1994-11-15 | Hitachi Ltd | 軸流ファン |
JPH09195991A (ja) * | 1996-01-19 | 1997-07-29 | Fujita Corp | 気流生成装置 |
EP1519052A2 (de) * | 2003-09-19 | 2005-03-30 | Behr GmbH & Co. KG | Lüfter eines Kühlgebläses |
JP2006207379A (ja) * | 2005-01-25 | 2006-08-10 | Calsonic Kansei Corp | 送風ファン |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10975882B2 (en) * | 2016-10-26 | 2021-04-13 | Man Truck & Bus Ag | Axial fan wheel |
US11060528B2 (en) | 2016-10-26 | 2021-07-13 | Man Truck & Bus Se | Axial fan wheel |
JP2019183737A (ja) * | 2018-04-10 | 2019-10-24 | パナソニックIpマネジメント株式会社 | 軸流ファン |
Also Published As
Publication number | Publication date |
---|---|
JP6336135B2 (ja) | 2018-06-06 |
JPWO2016121144A1 (ja) | 2017-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107795516B (zh) | 轴流风扇及室外机 | |
JP5178816B2 (ja) | 空気調和機 | |
JP4823294B2 (ja) | 送風機及びこの送風機を用いたヒートポンプ装置 | |
JP6463548B2 (ja) | 軸流送風機および室外機 | |
WO2009139422A1 (ja) | 遠心送風機 | |
WO2017026150A1 (ja) | 送風機およびこの送風機を搭載した空気調和装置 | |
JP6029738B2 (ja) | 車両用空気調和装置の室外冷却ユニット | |
WO2017042877A1 (ja) | プロペラファン、プロペラファン装置および空気調和装置用室外機 | |
WO2013150569A1 (ja) | 空気調和装置の室内機 | |
JP6381811B2 (ja) | 送風機および空気調和装置 | |
JP6524331B2 (ja) | 送風機及びそれを用いた空気調和機 | |
WO2016071948A1 (ja) | プロペラファン、プロペラファン装置および空気調和装置用室外機 | |
WO2018193545A1 (ja) | プロペラファン及び空気調和装置用室外機 | |
JP6611676B2 (ja) | 送風機および冷凍サイクル装置の室外機 | |
JP6336135B2 (ja) | プロペラファン、送風機および冷凍サイクル装置の室外機 | |
CN110914553B (zh) | 叶轮、送风机及空调装置 | |
US20230417249A1 (en) | Propeller fan and refrigeration apparatus | |
KR101233538B1 (ko) | 크로스 플로우 팬 및 이것을 구비한 공기 조화기 | |
JP2016160905A (ja) | 遠心ファン | |
EP2905474B1 (en) | Propeller fan | |
JP2016003641A (ja) | 遠心ファン | |
JPWO2020110969A1 (ja) | プロペラファン | |
JPWO2020110968A1 (ja) | プロペラファン | |
WO2018002987A1 (ja) | 多翼ファン及び空気調和機 | |
JP2018115807A (ja) | 空気調和機の室外機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15880038 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016571661 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15880038 Country of ref document: EP Kind code of ref document: A1 |