WO2016120907A1 - 照明装置、内視鏡システム及び色味補正装置 - Google Patents

照明装置、内視鏡システム及び色味補正装置 Download PDF

Info

Publication number
WO2016120907A1
WO2016120907A1 PCT/JP2015/000429 JP2015000429W WO2016120907A1 WO 2016120907 A1 WO2016120907 A1 WO 2016120907A1 JP 2015000429 W JP2015000429 W JP 2015000429W WO 2016120907 A1 WO2016120907 A1 WO 2016120907A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
narrow
color
band light
illumination
Prior art date
Application number
PCT/JP2015/000429
Other languages
English (en)
French (fr)
Inventor
宏幸 亀江
藤田 浩正
真博 西尾
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to CN201580071644.2A priority Critical patent/CN107105996B/zh
Priority to JP2016571490A priority patent/JP6484257B2/ja
Priority to PCT/JP2015/000429 priority patent/WO2016120907A1/ja
Publication of WO2016120907A1 publication Critical patent/WO2016120907A1/ja
Priority to US15/659,756 priority patent/US10799102B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0655Control therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2461Illumination
    • G02B23/2469Illumination using optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0646Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements with illumination filters

Definitions

  • the present invention relates to an illumination device, an endoscope system using the illumination device, and a color correction device.
  • solid-state light sources such as LEDs and lasers have various advantages such as low power consumption, high connection efficiency, small size, and high-speed switching. Technological innovation for such solid-state light sources is remarkable, and applications to endoscopes and the like are being promoted in place of conventional light sources. Since light of a narrow band wavelength is generally output as a feature of a solid state light source, when used as an illumination light source, light of a plurality of colors is required. For this reason, it is necessary to prepare a plurality of types of narrow-band light sources having different emission wavelengths and always output light emitted from these light sources with a constant color.
  • Patent Document 1 discloses a method for controlling spectral characteristics of a light source for an electronic endoscope.
  • a specific method first, an image of a white object illuminated by RGB full-color LEDs is detected by a color single-plate image sensor provided at the distal end portion of the electronic endoscope.
  • each detected color signal is input to the comparison circuit of the light source unit via the process circuit.
  • the signal amplitude level of each color signal is compared in the comparison circuit, and based on the result, the LED driver that controls each light emission output of the full color LED is controlled, and the signal amplitude of each color signal detected in the color single-plate CCD is controlled.
  • the ratio between the levels is set to 1.
  • the LED and the laser have a variation of about ⁇ 5 nm for each individual from the center wavelength, and a large variation of about ⁇ 10 nm.
  • a light source having a broad spectrum such as a xenon light source or a halogen light source
  • the image information that can be acquired by the narrow-band light source is based on wavelength information of a single wavelength, the image changes relatively greatly when they individually change in wavelength or light amount.
  • An object of the present invention is stable even when the wavelength and light quantity of each narrow-band light source vary in an illumination device and an endoscope system using a plurality of narrow-band light sources.
  • An object of the present invention is to provide an illuminating device capable of emitting colored illumination light, an endoscope system using the illuminating device, and a color correcting device.
  • An output calculation unit that compares the first appropriate illumination color and calculates an appropriate output for each narrowband light source belonging to the first type narrowband light source group;
  • a light source control unit that controls the plurality of
  • the output calculation unit causes the illumination color obtained from the detection unit to be close to the first appropriate illumination color of the first type narrow band light source group for each of the first type narrow band light source groups.
  • the appropriate output for each of the narrow band light sources belonging to the first type narrow band light source group is calculated.
  • the invention of an endoscope system that achieves the above object is as follows.
  • the lighting device And an imaging unit that converts return light from the observed part generated by the illumination light emitted from the illumination device into an image signal.
  • the imaging unit also serves as the detection unit, and the detection unit detects an image signal acquired for each first type narrowband light source group as the illumination color of the first type narrowband light source group. .
  • the detection unit is configured to output an image signal of the standard subject acquired for each of the first type narrowband light source groups in a state where the standard subject is arranged on the observed unit side. Detected as the illumination color of the band light source group.
  • the detection unit may detect the illumination color based on a part of the illumination light branched from the illumination light emitted from the light source unit.
  • the narrow-band light sources belonging to a plurality of the narrow-band light source groups are caused to emit light, and the illumination light emitted from the illumination device is used as observation illumination light
  • the storage unit further stores a second appropriate illumination color
  • the output calculation unit calculates an appropriate output for each of the plurality of narrowband light sources for each of the first type narrowband light source groups, and then brings the observation illumination light closer to the second appropriate illumination color.
  • the second appropriate illumination color is an illumination color obtained by combining the plurality of narrow-band light source groups
  • the output calculation unit calculates an output of each of the narrowband light sources belonging to the plurality of narrowband light source groups so that the observation illumination light has substantially the same illumination color as the second appropriate illumination color. Can be configured to.
  • the imaging unit includes a plurality of color light receiving elements having different wavelength sensitivity characteristics
  • a plurality of narrow-band light sources belonging to the same first type narrow-band light source group may have a peak wavelength in the same wavelength region among a plurality of wavelength regions that do not overlap each other.
  • the imaging unit comprises a plurality of color light receiving elements having different wavelength sensitivity characteristics
  • Narrow band light sources belonging to the same first type narrow band light source group may have peak wavelengths in a plurality of different wavelength regions that do not overlap each other.
  • At least one of the first-type narrow-band light source groups can be a narrow-band light source used during special light observation.
  • the standard subject may have a region where at least a part of the surface facing the imaging unit is white.
  • L, M, and N are natural numbers of 1 or more, the number of the narrowband light source groups is L, and the largest number of narrowband light sources belonging to each of the narrowband light source groups.
  • the number is M and the number of color types of the color light receiving element is N, N ⁇ L and N ⁇ M It is preferable that
  • the number of the narrow-band light sources provided in the illumination device is 4 or more and 9 or less.
  • the light source unit sequentially performs simultaneous light emission of the narrow band light sources belonging to the narrow band light source group for each of the narrow band light source groups, and the imaging unit performs the image according to the timing of light emission of the narrow band light source.
  • a signal may be acquired, and a color image may be generated based on the image signal.
  • the standard subject may be divided into a region where a part of the surface facing the imaging unit has three or more different colors.
  • a light source device comprising a plurality of narrow-band light sources having different peak wavelengths, wherein the plurality of narrow-band light sources are classified into a plurality of narrow-band light source groups according to a peak wavelength, and a plurality of the narrow-band light source groups
  • a color correction device that performs color correction of a light source device, wherein a narrow-band light source group composed of band light sources is a first type narrow-band light source group,
  • a detection unit for detecting an illumination color of illumination light obtained by light emission of the light source device;
  • a storage unit for storing an appropriate illumination color for each of the first type narrow-band light source groups; For each of the first type narrow band light source group, the illumination color obtained from the detection unit by emitting the plurality of narrow band light sources belonging to the first type narrow band light source group, and the first type narrow band light source group
  • an output calculating unit that calculates an appropriate output for each of the narrow-band light sources belonging to the first
  • the output calculation unit emits a plurality of narrow-band light sources belonging to the first type narrow-band light source group, the illumination color obtained from the detection unit, and the first type of the first-type narrow-band light source group And the appropriate output for each narrow-band light source belonging to the first type narrow-band light source group is calculated, and the light source control unit calculates a plurality of light sources included in the light source unit based on the calculated appropriate output. Since the narrow band light source is controlled, it is possible to irradiate the illumination light with a stable color even if the wavelength or light amount of each individual narrow band light source varies.
  • FIG. 1 is an external view of an endoscope system according to a first embodiment. It is a block diagram of the principal part of the endoscope system of FIG. It is a figure which shows the relationship between the wavelength sensitivity curve of the image pick-up element of a color imaging part, a laser wavelength, and a narrow-band light source group. It is a figure explaining the color correction of each narrow-band light source group in RGB color space. It is a figure explaining the color correction of the narrow-band light source group of a blue area
  • the present invention provides an illumination device capable of natural observation with high color reproducibility by irradiating a group of laser light sources having a plurality of wavelengths, and an endoscope and a color correction device including the illumination device.
  • the “narrow band light source” means a light source having a wavelength intensity in a specific narrow region, and includes a laser, an LED, and the like.
  • a laser is described as an example.
  • an LED that emits light having a narrow-band spectrum can obtain the same effect.
  • color means how the color is seen. In particular, when two or more types of light having different wavelengths are mixed, the generated light represents a color observed when a white object is irradiated.
  • lasers with different wavelengths are counted as separate lasers, while multiple lasers with the same wavelength are installed to increase the output of one wavelength, reduce speckle, reduce costs, etc.
  • the lasers that are being used are not counted as separate lasers. The same applies to LEDs.
  • FIG. 1 is an external view of an endoscope system 1 according to the first embodiment.
  • FIG. 2 is a block diagram of a main part related to the present invention of the endoscope system 1 of FIG.
  • the endoscope system 1 displays an endoscope 2, an endoscope system main body 3 that is detachably connected to the endoscope 2, and an image captured by the endoscope 2.
  • An image display unit 4 is provided.
  • the endoscope 2 includes an elongated insertion portion 5 that is inserted into a body cavity, and an operation portion 6 that is disposed on the opposite side (base end portion side) of the distal end portion side that is inserted into the body cavity of the insertion portion 5.
  • the insertion portion 5 includes a distal end hard portion 7, a bending portion 8, and a flexible tube portion 9 from the distal end portion toward the proximal end portion side.
  • the operation unit 6 includes a gripping unit 10 and a universal cord 11 for gripping the endoscope 2.
  • the grip portion 10 is provided with a bending dial 12 for operating the bending portion 8 and a switch 13 for performing various operations during endoscopic observation.
  • the endoscope system body 3 of the endoscope system 1 includes a light source unit 21, an imaging signal acquisition unit 22, an image forming unit 23, an output calculation imaging signal calculation unit 24, an output calculation unit 25, A storage unit 26, a laser-specific input signal storage unit 27, a light source control unit 28, a laser output adjustment switch 29, and an adjustment state presentation unit 30 are provided.
  • the imaging signal acquisition unit 22, the image forming unit 23, the output calculation imaging signal calculation unit 24, the output calculation unit 25, the storage unit 26, the laser-specific input signal storage unit 27, and the light source control unit 28 have the same processor and memory. Or it can be implemented in multiple computer hardware.
  • a light distribution conversion member 31 and a color imaging unit 32 are disposed on the distal end hard portion 7 of the endoscope 2.
  • the light source unit 21 includes six lasers L 1 to L 6 having different wavelengths, which are individually controlled by the light source control unit 28, and a combiner 34.
  • the lasers L 1 to L 6 solid lasers such as semiconductor lasers can be used.
  • the wavelengths of the lasers L 1 to L 6 are 420 nm, 450 nm, 530 nm, 590 nm, 640 nm, and 660 nm, respectively.
  • Light from each of the lasers L 1 to L 6 is guided by six optical fibers 33 and enters a combiner 34.
  • the combiner 34 the outputs of the optical fibers 33 from the six lasers L 1 to L 6 are combined and output to one optical fiber 35.
  • the six-wavelength mixed light collected in one optical fiber 35 is guided by the optical fiber 35 through the universal cord 11 of the endoscope 2 to the distal end hard portion 7 of the insertion portion 5.
  • the light distribution conversion member 31 at the tip of the optical fiber 35 converts the 6-wavelength mixed light guided through the optical fiber 35 into a light distribution suitable for illumination, and emits it forward as illumination light.
  • the light distribution conversion member 31 includes a lens for expanding the aperture of illumination light, a diffusion member having a diffusion function for spatially uniformizing the light amount, or a combination of these.
  • an observation target (observed part) is arranged in front of the distal end of the insertion part 5.
  • a color image pickup unit 32 as an image pickup unit is disposed on substantially the same surface as the light distribution conversion member 31, and the return light from the observation target is received two-dimensionally by the surface, and an image image of the object is converted into an electrical signal group as an image signal.
  • the signal is converted and transmitted to the endoscope system main body 3 via the signal line 36.
  • the transmitted image signal is received by the imaging signal acquisition unit 22 and then transmitted to the image forming unit 23.
  • the image forming unit 23 performs image processing for display, transmits the processed image signal to the image display unit 4, and causes the image display unit 4 to display an image.
  • the image display unit 4 is a monitor device such as a liquid crystal display, for example. The user of the apparatus observes the observation object by visually recognizing this image.
  • lasers having oscillation wavelengths close to each other belong to the same narrow-band light source group, and output balance adjustment is performed between lasers of narrow-band light source groups in the same color region. Even if there are fluctuations in the light amounts and wavelengths of the individual lasers L 1 to L 6 , and even if the image pickup elements of the color image pickup unit 32 vary in sensitivity from individual to individual, output is performed between laser groups belonging to the same narrow band light source group.
  • the ratio and allowing the color imaging unit 32 to obtain the same illumination color (the same signal output value) individual variations can be complemented and a stable image signal can be acquired.
  • each primary color constituting the color of the illumination light it is classified for each wavelength region.
  • a classification method it is desirable to perform according to the wavelength sensitivity characteristic of the image pickup device of the color image pickup unit 32.
  • a plurality of types of primary color pixels having different wavelength sensitivity characteristics are regularly arranged on the image sensor. More generally, three types of pixels provided with primary color filters of red, green, and blue are arranged.
  • FIG. 3 is a diagram illustrating the relationship among the wavelength sensitivity curves S 1 to S 3 , the laser wavelength, and the narrowband light source groups Gr, Gg, and Gb of the image sensor of the color imaging unit 32.
  • the wavelength sensitivity curves S 1 to S 3 in FIG. 3 respectively indicate the blue, green, and red wavelength sensitivity curves of the image sensor by the spectral transmittance of the color filter of the image sensor of each color.
  • the color imaging unit 32 includes color light receiving elements having different wavelength sensitivity characteristics.
  • the straight line extending vertically is a laser indicating the peak wavelength by the coordinate of the horizontal axis.
  • the wavelength of the red narrowband light source group Gr is 600 nm or more
  • the wavelength of the green narrowband light source group is 500 gm to less than 600 nm
  • the blue narrow band A simple division in which the wavelength of the band light source group Gb is less than 500 nm may be employed.
  • the lasers L 1 , L 2 ; L 3 , L 4 ; L 5 , L 6 belonging to the same narrow band light source group Gb, Gg, Gr have a plurality of wavelengths that do not overlap each other.
  • lasers L 1 and L 2 , lasers L 3 and L 4 , lasers L 5 and L 6 are referred to as lasers L 1 , L 2 ; L 3 , L 4 ; L 5 , L 6. , And indicate that they are in groups.
  • the colors are complemented by lasers belonging to the same narrow band light source group Gr, Gg, Gb.
  • the RGB signal output from the color imaging unit 32 has a predetermined signal value even if the wavelength characteristic of the light source changes or the endoscope to be used is different. By adjusting so as to lead to stabilization of an image in each endoscope apparatus, an image having the same color can be obtained even in different endoscope apparatuses.
  • signal values of RGB image signals output from the image sensor are used as parameters.
  • FIG. 3 shows the grouping of light sources by the narrow-band light source groups Gr, Gg, and Gb for each color. More specifically, the laser L 1 and the laser L 2 are in the blue narrow band light source group Gb, the lasers L 3 and L 4 are in the green narrow band light source group Gg, and the lasers L 5 and L 6 are in the red narrow band light source group Gr. Each belongs.
  • a group including a plurality of narrow band light sources is referred to as a first type narrow band light source group. Therefore, when forming a narrow band light source group with only a single narrow band light source, it is not a first type narrow band light source.
  • Each of the red narrow band light source group Gr, the green narrow band light source group Gg, and the blue narrow band light source group Gb shown in FIG. 3 is a first type narrow band light source group.
  • the user first installs a predetermined standard white plate 37 as a standard subject at a predetermined distance and angle on the observation target side of the distal end of the insertion portion 5.
  • the endoscope system main body 3 has a laser output adjustment switch 29.
  • the lasers L 1 , L 2 ; L 3 , L for each of the narrow-band light source groups Gb, Gg, Gr according to a preset procedure. 4 ; L 5 and L 6 are output, and the optimization of each laser output is calculated internally.
  • the lasers L 1 and L 2 belonging to the blue narrow band light source group Gb, the lasers L 3 and L 4 belonging to the green narrow band light source group Gg, and the lasers L 5 and L 6 belonging to the red narrow band light source group Gr are narrowed.
  • the narrow band light source groups Gb, Gg, and Gr that emit light for each band light source group and that emit light can be sequentially switched.
  • the illumination light (mixed wave of a plurality of lasers) emitted for each narrow band light source group is reflected by the standard white plate 37, and the illumination color is detected and imaged by the color imaging unit 32 as an image signal from the standard white plate 37. It is acquired by the signal acquisition unit 22.
  • the image signal from the imaging signal acquisition unit 22 is transmitted to the output calculation imaging signal calculation unit 24.
  • the imaging signal calculation unit 24 for output calculation extracts, for example, a signal value (corresponding to “illumination color”) of a representative pixel such as a predetermined center pixel from the image signal, and outputs the signal value to the output calculation unit 25.
  • the signal value acquired for each narrow band light source group is referred to as a current signal value, and Nr (r Rn , g Rn , b Rn ), Ng (r Gn , g Gn ) for each narrow band light source group Gr, Gg, Gb. , B Gn ), Nb (r Bn , g Bn , b Bn ).
  • the “current signal value” is a signal value corresponding to the illumination color before adjusting the illumination color.
  • the current signal values Nr, Ng, and Nb are not limited to the signal values obtained from any one representative pixel, but the average value or peak value for the signal group of the entire or partial region obtained from the standard white plate 37, etc. But it ’s okay. By acquiring the current signal value for such a representative pixel or a specific region, it is possible to stably correct the laser and image sensor individual variations.
  • FIG. 4 is a diagram for explaining the color correction of each narrow-band light source group Gr, Gg, Gb in the RGB color space.
  • R 420 , R 450 , R 530 , R 590 , R 640 , and R 660 surrounded by broken lines are ranges in which the RGB signal values of the lasers L 1 to L 6 are assumed to vary. Is shown.
  • the storage unit 26 sets the first appropriate illumination colors of the narrow-band light source groups Gr, Gg, and Gb to appropriate signal values Tr (r Rt , g Rt , b Rt ), Tg (r Gt , g Gt , b Gt ), Tb. (R Bt , g Bt , b Bt ) are stored.
  • the first appropriate illumination color is a color to be realized by irradiation of illumination light from the narrow band light source groups Gr, Gg, Gb, and is appropriate for each narrow band light source group Gr, Gg, Gb by the storage unit 26.
  • the first appropriate illumination colors of Gb, Gg, and Gr are the maximum among the outputs of the lasers L 1 , L 2 ; L 3 , L 4 ; L 5 , L 6 and the assumed wavelength variation of the image acquisition unit 22. Even if there is a variation, it is stored in an adjustable range.
  • the output calculation unit 25 adjusts the outputs of the lasers L 1 , L 2 ; L 3 , L 4 ; L 5 , L 6 in each narrow-band light source group Gb, Gg, Gr to obtain the first appropriate illumination color.
  • a specific calculation method for obtaining the illumination light is stored and executed.
  • the output calculation unit 25 irradiates the laser L 1 (wavelength 420 nm) and the laser L 2 (wavelength 450 nm) included in the blue narrow band light source group Gb obtained from the output calculation imaging signal calculation unit 24 at the same time.
  • the current signal value Nb (r Bn , g Bn , b Bn ) of the narrow-band light source group Gb is acquired / calculated.
  • an appropriate signal value Tb (r Bt , g Bt , b Bt ) for the blue narrow band light source group Gb is acquired from the storage unit 26.
  • the output calculation unit 25 compares the current signal value Nb (r Bn , g Bn , b Bn ) of the blue narrow band light source group Gb with the appropriate signal value, Tb (r Bt , g Bt , b Bt ).
  • the outputs of the lasers L 1 and L 2 are calculated. More specifically, the distance on the coordinates from the current signal value Nb (r Bn , g Bn , b Bn ) to the appropriate signal value Tb (r Bt , g Bt , b Bt ) is calculated mathematically, and this distance
  • the appropriate outputs of the lasers L 1 and L 2 are calculated so as to be closer to the appropriate signal value Tb (that is, closer to the first appropriate illumination color). At this time, it is possible that it is not possible to accurately match the proper signal value Tb. Therefore, the outputs of the lasers L 1 and L 2 are adjusted so that the signal value is closest to the proper signal value on the coordinates of the RGB color space. To do
  • FIG. 5 is a diagram for explaining the color correction of the blue narrow-band light source group Gb, and shows the blue portion of the RGB color space of FIG. 4 in an enlarged manner.
  • Each of the 420 nm band and 450 nm band lasers used for the lasers L 1 and L 2 belonging to the blue narrow band light source group Gb has an R region in the RGB color space that varies due to individual differences during manufacturing and changes over time.
  • 420 , R 450, and the signal value, threshold current, and slope efficiency of the specification-centered laser that is most often produced at the time of manufacture are referred to as the center signal value, the center threshold current, and the center slope efficiency, respectively.
  • the notation is as follows.
  • 420 nm laser center signal value C 420 (r 420C , g 420C , b 420C ) 450 nm laser center signal value: C 450 (r 450C , g 450C , b 450C ) 420 nm laser center threshold current: I th420 450 nm laser center threshold current: I th450 420 nm laser center slope efficiency: ⁇ 420 420 nm laser center slope efficiency: ⁇ 450
  • an appropriate signal value Tb (r Bt , g Bt , b Bt ) is set on a straight line connecting them.
  • An output method that employs lasers L 1 and L 2 from a laser of 420 nm band and a laser of 450 nm band, respectively, and has the highest expected value that the mixed light of these lasers L 1 and L 2 becomes an appropriate signal value before adjustment.
  • the outputs of the lasers L 1 and L 2 are set so that the ratio of Therefore, expecting the output of the laser L 1 to be “a ⁇ proportional constant m” [mW], the laser L 1 has a current value, I th420 + a ⁇ proportional constant m ⁇ ⁇ 420 (1) Enter. In addition, expecting the output of the laser L 2 to be “b ⁇ proportional constant m” [mW], the laser L 2 has a current value, I th450 + b ⁇ proportional constant m ⁇ ⁇ 450 (2) Enter. The signal value output in this way becomes the current signal value Nb (r Bn , g Bn , b Bn ).
  • a straight line that passes through the appropriate signal value Tb and is orthogonal to the straight line connecting the 420 nm laser center signal value C 420 and the 450 nm laser center signal value C 450 is defined as an appropriate signal value orthogonal line.
  • the distance on the coordinates of the RGB color space between the value orthogonal line and the current signal value Nb is calculated (referred to as “c” in FIG. 5).
  • the output of the laser L 1 is decreased, and conversely, the output of the laser L 2 is increased. It is possible to approach the signal value Tb.
  • the laser current applied to the lasers L 1 and L 2 is increased or decreased based on the distance c.
  • the applied current of the 420 nm band laser L 1 is I th420 + (ac) ⁇ proportional constant m ⁇ ⁇ 420 (3)
  • the applied current of the 450 nm band laser L 2 is I th450 + (b + c) ⁇ proportional constant m ⁇ ⁇ 450 (4) Change to and output.
  • an appropriate laser output ratio is determined for the lasers L 1 and L 2 belonging to the blue narrow band light source group Gb, and a signal value (output signal value after optimization) when simultaneously output at the output ratio is determined. is expected.
  • the output ratio of the lasers L 3 and L 4 ; L 5 and L 6 to which they belong is determined by the same method, and the output signal value after optimization is predicted. be able to.
  • the distance in the RGB color space between the output signal value after optimization and the appropriate signal value Tb is within 10% of the distance between the 420 nm laser center signal value C 420 and the 420 nm laser center signal value C 450 , it is appropriate The difference in color between the illumination color based on the converted output signal and the first appropriate illumination color is very small. Therefore, a more effective effect can be obtained by setting the output signal value after optimization within this range.
  • FIG. 6 is a diagram for explaining white balance adjustment in the RGB color space.
  • each narrowband light source group Gr, Gg, Gb with the output ratio optimized for each narrowband light source group Gr, Gg, Gb from the light source unit 21 is displayed.
  • the imaging signal is acquired by the color imaging unit 32 and the imaging signal acquisition unit 22.
  • the pixel signal value of each color optimized in each narrow-band light source group Gr, Gg, Gb is acquired. This is called an actual measurement signal value after optimization of the narrowband light source group, and TNr (r Rtn, g Rtn, b Rtn ), TNg (r Gtn, g Gtn, b Gtn ), TNb (r Btn, g Btn, b Btn ).
  • the appropriate signal values Tr, Tg, Tb of each narrow band light source group do not necessarily match the actual measured signal values TNr, TNg, TNb after optimization of each narrow band light source group.
  • the storage unit 26 sets the appropriate observation illumination color when all the narrow-band light source groups used for observation irradiation are simultaneously irradiated as the “second appropriate illumination color” as the appropriate normal light signal value TNw (r Wt , g Wt , b Wt ) are stored.
  • the output calculation unit 25 calculates the appropriate normal light signal value from the measured signal values TNr, TNg, TNb after each narrow band light source group optimization.
  • the distance to TNw is calculated, and based on the distance, the standard white plate 37 is irradiated with the observation illumination light when the lasers L 1 to L 6 of all the narrowband light source groups Gr, Gg, and Gb are irradiated.
  • the output values of the narrowband light source groups Gr, Gg, and Gb are calculated so that the illumination color is substantially the same as the second appropriate illumination color.
  • substantially the same means that the appropriate ordinary light signal value TNw (r Wt , g Wt , b Wt ) and the mixed illumination light of the lasers L 1 to L 6 in each coordinate direction of the RGB color space. This means that the distance from the signal value is within 5% of the average value for the distance between the appropriate normal light signal value TNw (r Wt , g Wt , b Wt ) and the appropriate color signal values Tb, Tg, Tr. To do. With this level of difference, the difference in color that can be visually recognized is small.
  • the output calculation unit 25 outputs an input signal corresponding to the output ratio of each of the lasers L 1 to L 6 to the laser-specific input signal storage unit 27, and the laser-specific input signal storage unit 27 stores this.
  • the light source control unit 28 optimizes the output values of the lasers L 1 to L 6 of the light source unit 21.
  • the output calculation unit 25 confirms that the detected signal is within a predetermined range of the appropriate normal signal value TNw, and ends the adjustment of the output ratio of the lasers L 1 to L 6 .
  • the output calculation unit 25 notifies the adjustment state presenting unit 30 that the adjustment has been completed, and the adjustment state presenting unit 30 informs the user of this by means such as display or sound.
  • the input signal value stored in the laser-specific input signal storage unit 27 is used.
  • the lasers L 1 to L 6 belonging to the respective narrow-band light source groups Gb, Gg, and Gr of the light source unit 21 are caused to emit light at the same time, and the illumination color obtained from the color imaging unit 32 is
  • the appropriate output for each of the lasers L 1 , L 2 ; L 3 , L 4 ; L 5 , L 6 belonging to each narrow-band light source group was calculated so as to approximate the first appropriate illumination color stored in the storage unit 26. .
  • the lasers L 1 , L 2 ; L 3 , L 4 ; L 5 , L 6 of the respective narrow-band light source groups Gb, Gg, Gr are observed while keeping the output ratio of the lasers in the same group unchanged. Since the output between the narrow band light source groups Gb, Gg, and Gr is adjusted so that the illumination color when the illumination light is applied to the standard white plate 37 is substantially the same as the second appropriate illumination color, The primary colors having stable colors obtained from the narrow band light source groups Gb, Gg, and Gr are combined to obtain a white illumination color substantially equal to the second appropriate illumination color. As a result, an image having a stable color and high color rendering properties can be obtained regardless of the observation period. Further, since the color is adjusted so that the predetermined second appropriate illumination color is obtained, it is difficult to be affected by individual differences of lasers or changes with time.
  • the same color imaging unit 32 as the color imaging unit 32 used for image observation in the endoscope system is also used to adjust the color of the illumination light, so the laser L 1
  • the white balance is adjusted by taking into account not only L 6 but also the color difference based on the individual difference of the color imaging unit 32 at the same time.
  • the wavelengths are different from each other refers to a laser having a peak wavelength apart from the spectrum of 10 nm or more.
  • the reason for this is that many of the specifications of visible light LD (laser diode) that are generally sold at present generally allow an error of 10 nm, and it is necessary to install as another wavelength light source having a significantly different wavelength. This is because the laser has a wavelength difference larger than that.
  • the wavelength data interval when discussing color rendering properties, illumination colors, etc. in the JIS (Japanese Industrial Standards) standard is often 5 nm. For this reason, in order to install as another wavelength light source with a different color, it is considered insignificant unless there is an interval of 10 nm or more which is at least twice that.
  • a color correction method for irradiating the standard white plate 37 with illumination light almost simultaneously with respect to an endoscope apparatus in which an RGB primary color filter exists in the image sensor of the color imaging unit 32 (Simultaneous type) is disclosed, but the color correction method is not limited to this.
  • the color correction method is not limited to this.
  • a technique (frame sequential method) is also known in which an image signal is acquired by an imaging unit in accordance with the light emission timing of each color light source, and the subject image is colored.
  • a color standard subject 41 shown in FIG. 7 is used instead of the standard white plate 37 of the above embodiment.
  • the color standard subject 41 has a subject surface 42 divided into three parts, which are colored red (R) / blue (B) / green (G), respectively.
  • a monochrome signal value group obtained by imaging each predetermined color portion of the color standard subject 41 is used as a representative pixel, and color correction can be performed in the same manner as in the above embodiment.
  • the subject surface of the color standard subject 41 may be divided into four or more and may be colored in different colors.
  • FIG. 8 shows the wavelength sensitivity curves S 1 to S 3 of the image sensor when only the green LED 1 is used as the narrow-band light source group Gg in the green region, the wavelength of the narrow-band light source, and the narrow-band light source group Gr, It is a figure which shows the relationship between Gg and Gb.
  • the output ratio in the narrow band light source group Gg is not adjusted, and the color of the light source LED 1 is acquired as a signal.
  • the light amount ratio is adjusted so that an appropriate normal light signal value TNw is obtained.
  • the green narrow band light source group Gg is not the first type narrow band light source group, but the red and blue narrow band light source groups Gr and Gb are the first type narrow band light source group.
  • FIG. 9 shows the wavelength sensitivity curves S 1 to S 3 of the image pickup device when LEDs and lasers are used as the narrow band light source group Gg in the green region, the wavelength of the narrow band light source, and the narrow band light source groups Gr, Gg, Gb
  • the laser L 3 and the LED 2 which is a green LED are mixed in the green region. In that case, it is necessary to correct for the green LED and the green laser L 3, performs color correction in both.
  • a laser combined with green LED may be a green laser which is different from the above embodiment.
  • the green narrow band light source group Gg is a first type narrow band light source group.
  • the maximum number of lasers belonging to each of the narrow-band light source group and the narrow-band light source group is equal to or less than the number of color types of the color light receiving elements, thereby realizing a stable illumination color and stable. This is desirable in terms of realizing a color rendering image. That is, L, M, and N are natural numbers of 1 or more, the number of the narrow-band light source groups is L, the maximum number of the narrow-band light sources belonging to each of the narrow-band light source groups is M, and the color light reception When the number of color types of the element is N, N ⁇ L and N ⁇ M Is desired.
  • the narrowband light sources (lasers, LEDs, etc.) belonging to each narrowband light source group
  • the number of signal types output from the color imaging unit corresponds to the number of color types of the color light receiving elements included in the color imaging unit. For example, in general, it is desirable that the number is 3 or less, which is the same as the number of RGB color types that the color imaging unit has.
  • the number of narrow-band light sources is 4 or more, there may be a plurality of solutions of the laser output ratio that achieves an appropriate signal value, and the color rendering properties differ accordingly.
  • the total number of narrow-band light sources is preferably more than the number of color types of color light receiving elements. This is because there is no need to make partial adjustment for each color in the case of an apparatus that realizes normal light observation using only the same number of lasers as the number of color types in the color imaging unit. As described above, since the number of color types is generally 3, four or more types are desirable. Therefore, in the case of a general color image sensor, it is desirable that the total number of narrow-band light sources is 4 or more and 9 or less. By doing so, the output ratio of the entire narrow-band light source is uniquely determined for each color, and the output ratio for making the second appropriate illumination color is uniquely determined. A sex observation device is achieved.
  • narrow band light sources lasers, LEDs, etc.
  • the image sensor receives light as one frame
  • a plurality of narrow band light sources belonging to the same narrow band light source group may be sequentially emitted, or a plurality of narrow band light sources may be sequentially irradiated for each frame.
  • the configuration of the endoscope system 1 is the same as that of the first embodiment shown in FIG.
  • laser L 1 (420 nm), laser L 2 (450 nm), laser L 3 (530 nm), laser L 4 (590 nm), laser L 5 (640 nm), and laser L 6 (660 nm).
  • the wavelength of the laser is not limited to this, and various lasers can be used.
  • the lasers L 1 , L 3 and L 5 of the second embodiment belong to the first narrow band light source group G 1
  • the lasers L 2 , L 4 and L 6 belong to the second narrow band light source group G 2 .
  • lasers L 1 to L 6 are grouped according to the wavelength sensitivity characteristics of the image pickup device of the color image pickup unit 32, and the lasers L 1 , L 2 and green are used as narrow band light sources belonging to the blue region.
  • Lasers L 3 and L 4 are grouped as narrow-band light sources belonging to the region, and lasers L 5 and L 6 are grouped as narrow-band light sources belonging to the red region.
  • lasers are selected one by one from each color region and regrouped to obtain the above combination.
  • the lasers L 1 , L 3 , L 5 ; L 2 , L 4 , L 6 belonging to the first and second narrow-band light source groups G 1 , G 2 are in different wavelength regions that do not overlap each other. It has a peak wavelength.
  • the number of lasers is preferably an integral multiple of the number of first and second narrowband light source groups G 1 and G 2 , and it is preferable that lasers can be picked up one by one from the wavelength regions of red, green, and blue.
  • the grouping method is not limited to this.
  • Some of the first and second narrowband light source groups G 1 and G 2 may not include any laser having a peak wavelength in any wavelength region.
  • a plurality of lasers may be selected from the same wavelength region. However, it is necessary that a plurality of lasers belong to the first and second narrow-band light source groups G 1 and G 2 , respectively.
  • Storage unit 26 as the first and the second narrowband light source groups G 1, G 2 of the target color (the first proper illumination color), a predetermined color in each of the narrowband light source group G 1, G 2
  • the first and second appropriate signal values T W1 (r W1t , g W1t , b W1t ), T W2 (r W2t , g W2t , b W2t ) values are stored.
  • the output calculation unit 25 can read these appropriate signal values T W1 and T W2 from the storage unit 26.
  • the light source control unit 28 based on the input signal stored in the laser-specific input signal storage unit 27, the first narrowband light source group G 1. Are simultaneously emitted from lasers L 1 , L 3 , and L 5 .
  • a standard white plate 37 is disposed at the tip of the insertion portion 5 of the endoscope 2, that is, the observation target side, as in the first embodiment, and the return light from the standard white plate 37 is detected by the color imaging unit 32. It is acquired by the imaging signal acquisition unit 22.
  • the imaging signal calculation unit for output calculation 24 acquires a first current signal value N W1 (r W1n , g W1n , b W1n ) that is a signal value of a representative pixel such as “center pixel” in the screen. Subsequently, lasers L 2 , L 4 , and L 6 belonging to the second narrowband light source group G 2 are simultaneously emitted, and second current signal values N W2 (r W2n , g W2n , b W2n ) are acquired. The first current signal value N W1 and the second current signal value N W2 are transmitted to the output calculation unit 25.
  • FIG. 11 is a diagram for explaining the color correction of the first and second narrow-band light source groups G 1 and G 2 in the RGB color space.
  • the signal values in the RGB color space of each of the lasers L 1 to L 6 vary in the regions R 420 , R 450 , R 530 , R 590 , R 640 , and R 660 surrounded by broken lines. The range assumed is shown.
  • the first and second appropriate signal values T W1 and T W2 and the first and second current signal values N W1 and N W2 are displayed in the RGB color space as shown in FIG.
  • the output calculation unit 25 compares the current signal value T W1 of the first narrow band light source group G 1 with the appropriate signal value N W1 in the RGB color space, and the first narrow band so that the difference between them is minimized.
  • the output ratio (appropriate laser output ratio) of the lasers L 1 , L 3 and L 5 belonging to the light source group G 1 is calculated.
  • the current signal value T W2 of the second narrow band light source group G 2 is compared with the appropriate signal value N W2 in the same manner, and the difference between these values becomes the smallest, and belongs to the second narrow band light source group G 2 .
  • the output ratio (appropriate laser output ratio) of the lasers L 2 , L 4 , and L 6 is calculated.
  • output calculation unit 25 an appropriate laser output ratio of each laser calculated for the first narrowband light source group G 1 and the second narrowband light source group G 2, and output to the laser by an input signal storage unit 27,
  • the light source control unit 28 controls the light source unit 21 based on the appropriate laser output ratio.
  • the laser L 1 , L 3 , L 5 to which the first narrowband light source group G 1 belongs is calculated as the appropriate laser. Inject by output ratio.
  • the output calculation unit 25 performs the first post-optimization actual measurement signal value TNw 1 (r W1tn , g W1tn , b) via the color imaging unit 32, the imaging signal acquisition unit 22, and the output calculation imaging signal calculation unit 24. W1tn ).
  • the light source control unit 28 causes the lasers L 2 , L 4 , and L 6 belonging to the second narrowband light source group G 2 to be emitted with the calculated appropriate laser output ratio. Accordingly, the output calculation unit 25 acquires the second optimized actual measurement signal value TNw 2 (r W2tn , g W2tn , b W2tn ) as described above.
  • the storage unit 26 uses the appropriate normal light signal value TNw (as the “second appropriate illumination color” when all the narrow-band light source groups used for observation-time irradiation are simultaneously irradiated. r Wt , g Wt , b Wt ) are stored.
  • the first actual measurement signal value TNw 1, the second actual measurement signal value TNw 2 , and the appropriate normal light signal value TNw are represented in the RGB color space as shown in FIG.
  • FIG. 12 is a diagram for explaining white balance adjustment in the RGB color space.
  • the distances from the measured signal values TNw 1 and TNw 2 after each narrow-band light source group optimization to the appropriate normal light signal value TNw are calculated, and the narrow-band light source groups G 1 and G 2 are calculated based on the distances.
  • the illumination color is substantially the second appropriate illumination color.
  • the output values of the narrow-band light source groups G 1 and G 2 are calculated.
  • an average value obtained by weighting the first measured actual measurement signal value TNw 1 and the second optimized actual measurement signal value TNw 2 by the above distance is closest to the proper normal light signal value TNw.
  • the output ratio between the narrow band light source groups G 1 and G 2 is determined. At this time, the output ratio of each laser belonging to each narrow band light source group G 1 , G 2 is not changed.
  • the wavelengths belonging to different wavelength regions are not affected.
  • the signal value (color) for the mixed light changes greatly. To do. For this reason, the output ratio between the lasers in each of the narrow-band light source groups G 1 and G 2 can be calculated with high accuracy and simplicity, and the color of the mixed light can be quickly stabilized.
  • FIG. 13 is a diagram showing the relationship among the wavelength sensitivity curves S 1 to S 3 , the laser wavelength, and the narrow-band light source groups G 11 and G 22 of the image sensor in the third embodiment.
  • the configuration of the endoscope system according to the third embodiment is the same as the configuration of the first embodiment shown in FIG. 2 except for the laser constituting the light source unit 21 and its grouping.
  • a major feature of multiband laser illumination using a plurality of laser light sources is that normal light observation with high color rendering properties can be performed using only a laser.
  • Narrow Band Imaging Narrow Band Imaging
  • NBI Narrow Band Imaging
  • the emphasis observation method to display can be realized simply.
  • a method for setting the laser output ratio to be realized is adopted.
  • the light source unit 21 of the endoscope system 1 includes five lasers L 11 (420 nm), L 12 (450 nm), L 13 (530 nm), and L 14 (590 nm). And L 15 (640 nm).
  • lasers L 11 and L 13 used for special light observation belong to the first narrow-band light source group G 11
  • the other lasers L 12 , L 14 and L 15 are second narrow-band light sources. belonging to the group G 12.
  • FIG. 14 is a diagram for explaining the color correction of the narrow-band light source groups G 11 and G 12 in the RGB color space.
  • Regions R 420 , R 450 , R 530 , R 640 , and R 660 surrounded by broken lines indicate ranges in which the RGB signal values of the lasers L 11 to L 15 are assumed to vary.
  • the first narrow-band light source appropriate signal value T 1 (r t1 , g t1 , b t1 ) and the second narrow-band light source appropriate signal value T 2 (r t2 , g t2 , b t2 ) are the first and second narrow values, respectively.
  • the signal values are stored in the storage unit 26 so as to have a predetermined color.
  • the lasers belonging to each of the first narrowband light source group G 11 and the second narrowband light source group G 12 are the same as in the first and second embodiments.
  • the first narrowband group current signal value N 1 (r n1 , g n1 , b n1 ) and the second narrow band group current signal value N 2 (r n2 , g n2 , b n2 ) are emitted at a predetermined output ratio. To be acquired.
  • Output calculation unit 25 so that deviation of the current signal value T 1 and the appropriate signal value N 1 of the first narrowband light source group G 11 in the RGB color space is minimized, belonging to the first narrowband light source group G 11
  • the output ratio (appropriate laser output ratio) of the lasers L 11 and L 13 is calculated.
  • the laser L 12 belonging to the second narrowband light source group G 12, L 14 calculates an output ratio of L 15 (the proper laser output ratio).
  • the storage unit 26 has an appropriate normal light signal value for adjusting the white ballast as in the first and second embodiments, and is the same as in the first and second embodiments. calculates a narrowband light source groups without changing the output ratio in the first narrowband light source group G 11 and the second narrowband light source group G 12 mutual output ratio. As a result, the output ratios of the lasers L 11 to L 15 are determined so that the signal values of the respective colors substantially the same as the appropriate normal light signal value are obtained.
  • the wavelengths 420 nm and 530 nm of the laser L 11 and the laser L 13 included in the first narrowband light source group G 11 are close to the typical absorption wavelength of hemoglobin, and these two lasers L 11 and L 13 are transmitted to the living body. By irradiating, it becomes illumination light for special light observation that can highlight and display blood vessels. Since there is a large difference in the color of the blood vessel emphasized image depending on the output ratio of the laser L 11 and the laser L 13 , it is necessary to correct the color accurately.
  • a plurality of lasers L 11 and L 13 having wavelengths that can be emphasized by special light observation and a plurality of lasers L 12 , L 14 , and L 15 having other wavelengths are individually provided. Since the narrow band light source groups G 11 and G 12 are grouped, both the color of the normal light image and the color of the special light image superimposed on the normal light image can be stabilized, and the special light observation image is superimposed. In image observation, more stable and highly color-rendering observation is possible.
  • the special light observation is not limited to so-called NBI (Narrow Band Imaging), but emphasizes blood vessels, displays blood flow, displays oxygen saturation, displays arteries / veins, autofluorescence. Observing with illumination light composed only of narrowband light different from white light, such as those that display the fluorescence, those that emphasize the drug fluorescence, those that emphasize the unevenness, and emphasize some object, component, structure, etc. Includes images that can be acquired.
  • NBI Near Band Imaging
  • FIG. 15 is a block diagram showing the configuration of the color correction device 51 according to the fourth embodiment together with the light source device 52.
  • the color correction device 51 corrects wavelength variation when the light source device 52 is shipped. If the oscillation wavelength of the laser of the endoscope and the light receiving wavelength of the image sensor vary from individual to individual, but they do not change much over time due to accurate temperature control, such color correction It is effective to use the apparatus 51 to adjust the wavelength variation at the time of product shipment.
  • the color correction device 51 includes a spectrum inspection unit 53, a color correction signal acquisition unit 54, an output calculation signal calculation unit 55, an output calculation unit 56, and a storage unit 57.
  • the light source device 52 includes a light source unit 58, a light source control unit 59, and a laser-specific input signal storage unit 60.
  • the light source unit 58 includes the lasers L 1 to L 6 and the combiner 62 similar to those in the first embodiment, and the outputs of the lasers are coupled by the combiner 62 via the optical fiber 61 and output to the optical fiber 63.
  • the light source device 52 is a light source for an endoscope, for example, and can be detachably connected to an endoscope (not shown) and a connector 64.
  • the spectrum inspection unit 53 is a detector including a light receiving element having wavelength sensitivity characteristics of three colors of red, green, and blue, like the color imaging unit 32 of the first embodiment.
  • the output of this detector is output to the color correction signal acquisition unit 54 and further transmitted to the output calculation signal calculation unit 55.
  • the output calculation signal calculation unit 55, the output calculation unit 56, and the storage unit 57 in FIG. 15 are substantially the same as the output calculation imaging signal calculation unit 24, the output calculation unit 25, and the storage unit 26, respectively, in the first embodiment.
  • the light source unit 58, the light source control unit 59, and the laser input signal storage unit 60 function in substantially the same manner as the light source unit 21, the light source control unit 28, and the laser input signal storage unit 27 in the first embodiment, respectively. It is a component to do. Therefore, description of these components is omitted.
  • the color correction of the light source device 52 When the color correction of the light source device 52 is performed, such as when the light source device 52 is shipped, in order to suppress the color variation for each device due to the variation of each laser wavelength incorporated in the light source device 52, Perform color correction. In a state where the color correction device 51 is connected to the light source device 52 via the connector 64, the color correction processing is performed.
  • the color correction process can be performed by a method similar to that described in the first embodiment and the second embodiment.
  • the spectrum inspection unit 53 may directly acquire the peak wavelength of each laser with a spectrum analyzer or the like. By directly measuring the peak wavelength, it is possible to more easily and accurately determine an appropriate output ratio with respect to an appropriate signal value of the laser group belonging to the narrow band light source group. Further, the color correction signal acquisition unit 54, the output calculation signal calculation unit 55, the output calculation unit 56, and the storage unit 57 can be mounted on the same computer, for example.
  • this output ratio is stored in the laser-specific input signal storage unit 60.
  • the output ratio is shipped with the output ratio corrected, and when the light source device 52 is actually used, it is based on the output ratio stored in the input signal storage unit for each laser.
  • white balance correction is performed by the user before observation.
  • correction for wavelength variation is completed at the time of product shipment, so that the burden on the user is reduced and a stable image can be obtained. Further, by using the same appropriate signal value in common with products, it is possible to correct illumination colors with little variation for each product. Furthermore, since the wavelength variation is corrected by a dedicated device at the time of shipment, it becomes possible to perform color correction more accurately.
  • the said color correction apparatus 51 is applicable also to the endoscope apparatus which performs normal light observation and special light observation like 3rd Embodiment.
  • FIG. 16 is a block diagram of main parts of an endoscope system according to the fifth embodiment.
  • the illumination light emitted from the light source unit 21 instead of the imaging unit disposed at the distal end of the insertion unit is branched, and one of the branched illumination lights
  • a detection unit 73 that receives the light is separately provided, and the illumination color is corrected without using an imaging unit or a standard subject.
  • the endoscope system according to the present embodiment includes a coupler 71 that branches a part of the illumination light, an optical fiber 72 that guides a part of the illumination light branched by the coupler, and an optical fiber.
  • a detection unit 73 that detects an illumination color from a part of the guided illumination light is provided. The output of the detection unit 73 is configured to be transmitted to the output calculation unit 25.
  • FIG. 17 shows a schematic diagram of the optical fiber 72 connected to the detection unit and the detection unit 73.
  • the detection unit 73 is a photodetector 75 (PD) having a color filter 74 disposed on the front surface, and has a function of converting the current illumination color into an RGB signal and transmitting it to the output calculation unit 25. Since other configurations are the same as those of the first embodiment and the second embodiment, the same or corresponding components are denoted by the same reference numerals and description thereof is omitted.
  • the detection unit 73 detects the illumination color of the illumination light from a part of the illumination light and outputs it to the output calculation unit 25. Send. Based on the illumination color of the acquired illumination light, the output calculation unit 25 adjusts the illumination color of each narrowband light source group to be close to the first appropriate illumination color, as in the first and second embodiments. Then, the illumination color is optimized by performing correction in two steps so that the illumination color when the narrow-band light sources of all the narrow-band light source groups are made to emit light is substantially the same as the second appropriate illumination color. .
  • the above two-stage correction can be executed before the image is actually displayed on the image display unit.
  • the correction may be intermittently started again at a timing after a certain time has passed.
  • the illumination color can be corrected without attaching / detaching the standard subject by the user's hand, and the illumination color can be automatically corrected.
  • a stable image can always be obtained while reducing the burden on the user.
  • the said endoscope system is applicable also to the endoscope apparatus which performs normal light observation and special light observation like 3rd Embodiment.
  • the present invention is not limited to the above embodiment, and many variations or modifications are possible.
  • the wavelength and number of lasers and LEDs shown in each embodiment, the number of lasers and LEDs for each narrowband light source, and the method of grouping lasers and LEDs are merely examples, and are not shown individually.
  • the narrow-band light source group may not include a laser and may be configured only by LEDs.
  • the first type narrow-band light source may be composed of only a plurality of LEDs, and the output between the LEDs may be adjusted.

Abstract

 内視鏡システム1の照明装置は、ピーク波長の異なる複数のレーザL1~L6を備える光源部21であって、該複数のレーザL1~L6が複数の狭帯域光源グループGr,Gg,Gbに分類されている光源部21と、照明光の照明色を検出するカラー撮像部32と、狭帯域光源グループGr,Gg,Gbの適正照明色を記憶する記憶部26と、狭帯域光源グループ毎に、狭帯域光源グループGr,Gg,Gbに属する複数のレーザL1,L2;L3,L4;L5,L6を発光して得られる照明色と、各狭帯域光源グループGr,Gg,Gbの適正照明色とを比べて、各狭帯域光源グループGr,Gg,Gbに属するレーザL1,L2;L3,L4;L5,L6毎の適正出力を算出する出力算出部25と、算出された適正出力に基づいて、複数のレーザL1~L6を制御する光源制御部28とを備える。

Description

照明装置、内視鏡システム及び色味補正装置
 本発明は、照明装置及びこれを用いた内視鏡システム並びに色味補正装置に関する。
 従来から用いられている光源に対し、LEDやレーザなど固体光源は低消費電力、高接続効率、小型、高速切替可能など様々な長所を有する。このような固体光源に対する技術革新は目覚しく、従来の光源に代わり内視鏡等への応用が進められている。固体光源の特徴として一般的に狭帯域波長の光を出力するため、照明用光源として使用する場合は、複数色の波長光が必要となる。そのため、発光波長の異なる複数種類の狭帯域光源を用意し、これらの光源から射出される光を常に色味を一定にして出力することが必要である。
 例えば、特許文献1では、電子内視鏡用の光源の分光特性を制御する方法が開示されている。具体的な方法としては、まず、RGBのフルカラーLEDにより照明された白色物体の映像を、電子内視鏡の先端部に設けられたカラー単板式撮像素子により検出する。次に、検出された各色信号を、プロセス回路を介して光源部の比較回路に入力する。そして、各色信号の信号振幅レベルを比較回路において比較し、その結果に基づいてフルカラーLEDの各発光出力を制御するLEDドライバを制御して、カラー単板式のCCDにおいて検出される各色信号の信号振幅レベル相互間における比が1となるようにする、というものである。この方法では、電子内視鏡に用いられるカラーCCDの波長感度特性に関わりなく、適正なカラー画像を撮像できる。
特開2002-122794号公報
 しかしながら、LEDやレーザなど狭帯域光源を照明光として利用する場合、個体ごとに、あるいは経時的に波長や光量がずれることから、結果として出力される画像が変化してしまうという課題を有している。実際に、LEDやレーザは、中心波長から個体ごとに±5nm程度、大きいもので±10nm程度のバラつきを有する。キセノン光源、ハロゲン光源などブロードなスペクトルを有する光源の場合、このように波長がずれたとしても、広い波長範囲の光を多く含んでいるため、情報が欠落してしまったり強調されてしまったりという変動が少ない。一方、上記狭帯域光源で取得できる画像情報は、単波長の波長情報に基づくものであるため、それらが個々に波長変動または光量変動することにより画像が比較的大きく変化してしまう。
 したがって、これらの点に着目してなされた本発明の目的は、複数の狭帯域光源を用いる照明装置及び内視鏡システムにおいて、狭帯域光源個体ごとの波長や光量が変動しても、安定した色味の照明光を照射することができる照明装置及びこれを用いた内視鏡システム並びに色味補正装置を提供することにある。
 上記目的を達成する照明装置の発明は、
 ピーク波長の異なる複数の狭帯域光源を備える光源部であって、前記複数の狭帯域光源がピーク波長によって複数の狭帯域光源グループに分類され、且つ、前記狭帯域光源グループのうち複数の前記狭帯域光源で構成される狭帯域光源グループを第1種狭帯域光源グループとする、光源部と、
 前記光源部の発光により得られる照明光の照明色を検出する検出部と、
 前記第1種狭帯域光源グループ毎の第1の適正照明色を記憶する記憶部と、
 前記第1種狭帯域光源グループ毎に、該第1種狭帯域光源グループに属する前記複数の狭帯域光源を発光して前記検出部から得られる照明色と、該第1種狭帯域光源グループの前記第1の適正照明色とを比べて、前記第1種狭帯域光源グループに属する前記狭帯域光源毎の適正出力を算出する出力算出部と、
 算出された前記適正出力に基づいて、前記光源部に含まれる前記複数の狭帯域光源を制御する光源制御部と、
を備えることを特徴とするものである。
 好ましくは、前記出力算出部は、前記第1種狭帯域光源グループ毎に、前記検出部から得られる照明色を、該第1種狭帯域光源グループの前記第1の適正照明色に近づけるように、前記第1種狭帯域光源グループに属する前記狭帯域光源毎の前記適正出力を算出する。
 上記目的を達成する内視鏡システムの発明は、
 上記照明装置と、
 該照明装置から射出される照明光によって生成された被観察部からの戻り光を画像信号に変換する撮像部と
を有することを特徴とするものである。
 好ましくは、前記撮像部は前記検出部を兼ね、該検出部は、前記第1種狭帯域光源グループ毎に取得される画像信号を、前記第1種狭帯域光源グループの前記照明色として検出する。
 また、好ましくは、前記検出部は、標準被写体を前記被観察部側に配置した状態で、前記第1種狭帯域光源グループ毎に取得される前記標準被写体の画像信号を、前記第1種狭帯域光源グループの前記照明色として検出する。
 あるいは、前記検出部は、前記光源部から出射した照明光から分岐された該照明光の一部に基づいて、前記照明色を検出しても良い。
 さらに、複数の前記狭帯域光源グループに属する狭帯域光源を発光させ、前記照明装置から射出される照明光を観察照明光とし、
 前記記憶部は、さらに第2の適正照明色を記憶しており、
 前記出力算出部は、前記第1種狭帯域光源グループ毎に、前記複数の狭帯域光源毎の適正出力を算出した後、前記観察照明光を、前記第2の適正照明色に近づけるように、同一の前記第1種狭帯域光源グループに所属する前記狭帯域光源毎の前記適正出力の比である出力比を維持したまま、それぞれの前記複数の狭帯域光源グループに属するそれぞれの前記狭帯域光源の出力を算出するようにすることが好ましい。
 ここで、前記第2の適正照明色は、前記複数の狭帯域光源グループを組み合わせて得られる照明色であり、
 前記出力算出部は、前記観察照明光を前記第2の適正照明色と実質的に同一の照明色を有するように、前記複数の狭帯域光源グループに属するそれぞれの前記狭帯域光源の出力を算出するように構成することができる。
 また、前記撮像部は、互いに波長感度特性の異なる複数のカラー受光素子からなり、
 同一の前記第1種狭帯域光源グループに属する複数の狭帯域光源は、互いに重なり合わない複数の波長領域の中の同一の波長領域にピーク波長を有するようにすることができる。
 あるいは、前記撮像部は、互いに波長感度特性の異なる複数のカラー受光素子からなり、
 同一の前記第1種狭帯域光源グループに属する狭帯域光源は、それぞれ異なる互いに重なり合わない複数の波長領域にピーク波長を有するようにしても良い。
 さらに、前記第1種狭帯域光源グループの少なくとも1つは、特殊光観察時に用いられる狭帯域光源からなることができる。
 また、前記標準被写体は、前記撮像部に対向する面の少なくとも一部が白色の領域を有することができる。
 さらに、上記内視鏡システムは、L、M、Nを1以上の自然数とし、前記狭帯域光源グループの数をL、前記狭帯域光源グループのそれぞれに所属する狭帯域光源の数のうち最大の数をM、前記カラー受光素子のカラー種類数をNとしたとき、
N≧LかつN≧M
であることが好ましい。
 また、前記照明装置の備える前記狭帯域光源の数は、4以上9以下であることが好ましい。
 また、前記光源部は、前記狭帯域光源グループに属する狭帯域光源の同時発光を、前記狭帯域光源グループごとに順次行い、前記撮像部は、前記狭帯域光源の発光のタイミングに合わせて前記画像信号を取得し、前記画像信号を元にカラー画像を生成しても良い。
 また、その場合、前記標準被写体は、前記撮像部に対向する面の一部が、3つ以上の異なる色を有する領域に区分されていても良い。
 さらに、上記目的を達成する色味補正装置の発明は、
 ピーク波長の異なる複数の狭帯域光源を備える光源装置であって、前記複数の狭帯域光源がピーク波長によって複数の狭帯域光源グループに分類され、且つ、前記狭帯域光源グループのうち複数の前記狭帯域光源で構成される狭帯域光源グループを第1種狭帯域光源グループとする、光源装置の色味補正を行う色味補正装置であって、
 前記光源装置の発光により得られる照明光の照明色を検出する検出部と、
 前記第1種狭帯域光源グループ毎の適正照明色を記憶する記憶部と、
 前記第1種狭帯域光源グループ毎に、該第1種狭帯域光源グループに属する前記複数の狭帯域光源を発光して前記検出部から得られる照明色と、該第1種狭帯域光源グループの前記第1の適正照明色とを比べて、前記第1種狭帯域光源グループに属する前記狭帯域光源毎の適正出力を算出する出力算出部とを備えることを特徴とするものである。
 本発明によれば、出力算出部が、第1種狭帯域光源グループに属する複数の狭帯域光源を発光して、検出部から得られる照明色と、該第1種狭帯域光源グループの第1の適正照明色とを比べて、第1種狭帯域光源グループに属する狭帯域光源毎の適正出力を算出し、光源制御部が、算出された適正出力に基づいて、光源部に含まれる複数の狭帯域光源を制御するので、狭帯域光源の個体ごとの波長や光量が変動しても、安定した色味の照明光を照射することができる。
第1実施の形態に係る内視鏡システムの外観図である。 図1の内視鏡システムの主要部分のブロック図である。 カラー撮像部の撮像素子の波長感度曲線、レーザ波長及び狭帯域光源グループの関係を示す図である。 RGB色空間における各狭帯域光源グループの色味補正を説明する図である。 青色領域の狭帯域光源グループの色味補正を説明する図である。 RGB色空間におけるホワイトバランス調整を説明する図である。 カラー被写体の例を示す図である。 緑色領域の狭帯域光源グループとして、LEDのみを用いた場合の撮像素子の波長感度曲線、狭帯域光源の波長及び狭帯域光源グループの関係を示す図である。 緑色領域の狭帯域光源グループとして、LED及びレーザを用いた場合の撮像素子の波長感度曲線、狭帯域光源の波長及び狭帯域光源グループの関係を示す図である。 第2実施の形態における、撮像素子の波長感度曲線、レーザ波長及び狭帯域光源グループの関係を示す図である。 RGB色空間における各狭帯域光源グループの色味補正を説明する図である。 RGB色空間におけるホワイトバランス調整を説明する図である。 第3実施の形態における、撮像素子の波長感度曲線、レーザ波長及び狭帯域光源グループの関係を示す図である。 RGB色空間における各狭帯域光源グループの色味補正を説明する図である。 第4実施の形態に係る色味補正装置の構成を光源装置とともに示すブロック図である。 第5実施の形態に係る内視鏡システムの主要部分のブロック図である。 図16の検出部を説明する図である。
 本発明は、複数波長のレーザ光源群を照射することで、色再現性の高い自然な観察が可能な照明装置、および、該照明装置を含んだ内視鏡並びに色味補正装置を提供するものである。本願において「狭帯域光源」とは、特定の狭い領域に波長強度を有する光源を意味し、レーザ、LED等を含む。実施形態では、レーザを例に記述しているが同様に狭帯域スペクトルの光を出射するLEDでも同様の効果が得られる。また、「色味」とは、色の見え方を意味するものである。特に、二種類以上の異なる波長の光を混合した場合、生成される光が白色物体を照射した際に観察される色彩を表す。さらに、本願において、レーザを数える場合は、波長の異なるレーザどうしを別々のレーザとして数える一方、1波長の出力を上げるためやスペックル低減、コスト削減などの理由で、同波長レーザを複数個設置しているレーザに関しては、別個のレーザとして数えないものとする。LEDについても同様である。
 以下、本発明の実施の形態について、図面を参照して説明する。
(第1実施の形態)
 図1は、第1実施の形態に係る内視鏡システム1の外観図である。また、図2は、図1の内視鏡システム1の本発明に関連する主要部分のブロック図である。図1に示すように、内視鏡システム1は、内視鏡2、内視鏡2と着脱自在に接続する内視鏡システム本体3、及び、内視鏡2で撮像された画像を表示する画像表示部4を有している。
 内視鏡2は、体腔内に挿入される細長い挿入部5、及び、挿入部5の体腔に挿入される先端部側の反対側(基端部側)に配設された操作部6を備える。挿入部5は、先端部から基端部側に向けて、先端硬質部7、湾曲部8及び可撓管部9を有する。また、操作部6は、内視鏡2を把持するための把持部10及びユニバーサルコード11を備える。把持部10には、湾曲部8を操作するための湾曲ダイヤル12や内視鏡観察中にさまざまな操作を行うためのスイッチ13が設けられている。
 図2に示すように、内視鏡システム1の内視鏡システム本体3は、光源部21、撮像信号取得部22、画像形成部23、出力算出用撮像信号算出部24、出力算出部25、記憶部26、レーザ別入力信号記憶部27、光源制御部28、レーザ出力調整スイッチ29、調整状態提示部30を有している。撮像信号取得部22、画像形成部23、出力算出用撮像信号算出部24、出力算出部25、記憶部26、レーザ別入力信号記憶部27、光源制御部28は、プロセッサおよびメモリを有する同一のまたは複数のコンピュータハードウェアに実装することができる。また、内視鏡2の先端硬質部7には、配光変換部材31及びカラー撮像部32(検出部)が配設されている。
 光源部21は、それぞれ光源制御部28により個別に制御される波長の異なる6つのレーザL1~L6、及びコンバイナ34を有する。レーザL1~L6は、半導体レーザなど固体レーザを用いることができる。各レーザL1~L6の波長は、それぞれ420nm,450nm,530nm,590nm,640nm,660nmである。各レーザL1~L6からの光は、6本の光ファイバ33により導波され、コンバイナ34に入射される。コンバイナ34では、上記6つのレーザL1~L6からの光ファイバ33の出力が結合され、1本の光ファイバ35に出力される。1本の光ファイバ35に集約された6波長混合光は、光ファイバ35によって、内視鏡2のユニバーサルコード11を通り、挿入部5の先端硬質部7まで導光される。
 光ファイバ35の先端の配光変換部材31は、光ファイバ35を導光された6波長混合光を、照明に適した配光に変換し、前方に照明光として射出する。配光変換部材31としては、照明光の口径を拡大するためのレンズ、光量を空間的に均一化するための拡散機能を有する拡散部材、またはこれらを組み合わせたもの等で構成される。
 内視鏡システム1の通常の観察において、観察対象(被観察部)は、挿入部5先端の前方に配置される。配光変換部材31とほぼ同じ面に撮像部としてのカラー撮像部32が配置され、観察対象からの戻り光を面で2次元的に受光し、物体のイメージ像を画像信号として電気信号群に変換し、信号線36を介して内視鏡システム本体3へ送信する。送信された画像信号は、撮像信号取得部22が受信し、続いて画像形成部23に送信する。画像形成部23は、表示のための画像処理を行い、処理された画像信号を画像表示部4に送信し、画像表示部4により画像を表示する。画像表示部4は、例えば、液晶ディスプレイなどのモニター装置である。装置使用者はこの画像を視認することで観察対象を観察する。
 次に、内視鏡システム1における、レーザ個体バラつき及び撮像素子感度バラつきに起因する画質バラつきを解消するための出力バランス調整について説明する。本実施の形態では、発振波長の近いレーザどうしを同一の狭帯域光源グループに属するものとし、同一の色領域内の狭帯域光源グループのレーザどうしで出力バランス調整を行う。個々のレーザL1~L6の光量や波長に変動がある場合でも、またカラー撮像部32の撮像素子が個体ごとに感度バラつきがある場合でも、同じ狭帯域光源グループに属するレーザ群どうしで出力比を調整し、カラー撮像部32で同じ照明色(同じ信号出力値)が得られるようにすることで、個々のバラつきを補完し、安定した画像信号を取得することができる。
 具体的には、照明光の色味を構成する原色毎に安定化させるために、波長領域毎に区分する。区分の方法としては、カラー撮像部32の撮像素子の持つ波長感度特性に準じて行うことが望ましい。撮像素子には一般的に複数種類の異なる波長感度特性を有する原色画素が規則正しく並んでいる。より一般的には赤色、緑色、青色の原色カラーフィルタが設置された3種類の画素が配列されている。
 図3は、カラー撮像部32の撮像素子の波長感度曲線S1~S3、レーザ波長及び狭帯域光源グループGr,Gg,Gbの関係を示す図である。図3の波長感度曲線S1~S3は、それぞれ撮像素子の青色、緑色、赤色の各波長感度曲線を、各色の撮像素子のカラーフィルタの分光透過率によって示している。このように、カラー撮像部32は、互いに波長感度特性の異なるカラー受光素子からなる。また、縦に延びる直線は横軸の座標によりピーク波長を示すレーザである。それぞれ異なる波長感度曲線S1~S3の高さが逆転するグラフ上の交点を境界として、各レーザをグループ分けすることが望ましい。しかし、実際には、撮像素子感度特性を実際に測定することに困難があるため、赤色狭帯域光源グループGrを波長が600nm以上、緑色狭帯域光源グループ波長がGgを500nm以上600nm未満、青色狭帯域光源グループGbを波長が500nm未満とする簡易な区分けを採用することもできる。このように、本実施の形態では、同一の狭帯域光源グループGb,Gg,Grに属するレーザL1,L2;L3,L4;L5,L6は、互いに重なり合わない複数の波長領域の中の同一の波長領域に異なるピーク波長を有している。なお、本願においては、レーザL1,L2;L3,L4;L5,L6等の記載により、レーザL1とL2、レーザL3とL4、レーザL5とL6が、それぞれグループになっていることを示すものとする。
 本実施の形態では、同一の狭帯域光源グループGr,Gg,Gbに属するレーザどうしで色味を補完する。同じ色味/明るさの被写体を撮像する際に、光源の波長特性が変化したり、使用する内視鏡が異なっていてもカラー撮像部32から出力されるRGB信号が、所定の信号値となるように調整することによって、各内視鏡装置における画像の安定化に繋がるとともに、異なる内視鏡装置であっても同じ色味の画像が得られる。この色味補完の目的のため撮像素子から出力されるRGB画像信号の信号値をパラメータとして用いる。
 上述のように、図3には、各色の狭帯域光源グループGr,Gg,Gbによる光源のグループ分けを示している。より具体的には、レーザL1及びレーザL2は青色狭帯域光源グループGb、レーザL3,L4は緑色狭帯域光源グループGg、レーザL5,L6は赤色狭帯域光源グループGrに、それぞれ属する。また、以下では狭帯域光源グループのうち、複数の狭帯域光源を含むものを第1種狭帯域光源グループとする。したがって、単一の狭帯域光源のみで狭帯域光源グループを形成する場合は、第1種狭帯域光源ではない。図3に示す赤色狭帯域光源グループGr、緑色狭帯域光源グループGg、青色狭帯域光源グループGbは、何れも第1種狭帯域光源グループである。
 次に、同じ狭帯域光源グループに属するレーザ間の出力調整の方法について説明する。図2に示すように、使用者はまず挿入部5の先端の観察対象側に標準被写体として所定の標準白色板37を所定の距離、角度で設置する。内視鏡システム本体3にはレーザ出力調整スイッチ29があり、それが押されると予め設定された手順に従って、狭帯域光源グループGb,Gg,Gr毎にレーザL1,L2;L3,L4;L5,L6が出力され、各レーザ出力の適正化を内部で算出する。
 本実施形態の場合、例えば、短波長の狭帯域光源グループから順に出力させることができる。すなわち、青色狭帯域光源グループGbに属するレーザL1,L2、緑色狭帯域光源グループGgに属するレーザL3,L4、赤色狭帯域光源グループGrに属するレーザL5,L6を、各狭帯域光源グループごとに発光させ、発光する狭帯域光源グループGb,Gg,Grを順次切り替えていくことができる。
 各狭帯域光源グループごとに射出した照明光(複数レーザの混合波)は、標準白色板37で反射され、その照明色は、標準白色板37からの画像信号としてカラー撮像部32により検出され撮像信号取得部22により取得される。撮像信号取得部22からの画像信号は、出力算出用撮像信号算出部24に送信される。出力算出用撮像信号算出部24は、例えば、画像信号の中から、所定の中心画素など代表画素の信号値(「照明色」に対応する)を抽出し、出力算出部25に出力する。各狭帯域光源グループ毎に取得した信号値を、現状信号値と称し、狭帯域光源グループGr,Gg,Gbごとに、Nr(rRn,gRn,bRn),Ng(rGn,gGn,bGn),Nb(rBn,gBn,bBn)で表す。「現状信号値」とは、照明色の調整を行う前の照明色に対応する信号値である。
 なお、現状信号値Nr,Ng,Nbは、いずれかの代表画素1画素から得られる信号値に限られず、標準白色板37から得られる全体もしくは一部分の領域の信号群に対する平均値やピーク値などでも良い。このような代表画素もしくは特定の領域に対する現状信号値を取得することにより、レーザ及び撮像素子個体バラつきを安定的に補正することができる。
 図4は、RGB色空間における各狭帯域光源グループGr,Gg,Gbの色味補正を説明する図である。図4において、各レーザL1~L6のRGBの信号値がバラつくと想定される範囲を、それぞれ、破線で囲まれたR420,R450,R530,R590,R640,R660で示している。記憶部26は、狭帯域光源グループGr、Gg,Gbの第1の適正照明色を適正信号値Tr(rRt,gRt,bRt),Tg(rGt,gGt,bGt),Tb(rBt,gBt,bBt)として記憶している。第1の適正照明色とは、狭帯域光源グループGr,Gg,Gbからの照明光の照射により実現すべき色味であり、記憶部26により各狭帯域光源グループGr,Gg,Gbごとの適正な画像信号として記憶される。Gb,Gg,Grの第1の適正照明色は、レーザL1,L2;L3,L4;L5,L6の出力や画像取得部22の想定される波長バラつきのうち、最大限バラついても調整可能な範囲のものを記憶している。
 出力算出部25は、各狭帯域光源グループGb,Gg,Gr内における各レーザL1,L2;L3,L4;L5,L6の出力を調整して第1の適正照明色の照明光を得る具体的な算出方法を記憶し、これを実行する。
 例えば、出力算出部25は、出力算出用撮像信号算出部24から得られる、青色狭帯域光源グループGbに含まれる、レーザL1(波長420nm),レーザL2(波長450nm)を同時に照射したときの狭帯域光源グループGbの現状信号値Nb(rBn,gBn,bBn)を取得/算出する。また、記憶部26から青色狭帯域光源グループGbに対する適正信号値、Tb(rBt,gBt,bBt)を取得する。次に、出力算出部25は、青色狭帯域光源グループGbの現状信号値Nb(rBn,gBn,bBn)と適正信号値、Tb(rBt,gBt,bBt)とを比べて、各レーザL1,L2の出力を算出する。より具体的には、数学的に現状信号値Nb(rBn,gBn,bBn)から適正信号値Tb(rBt,gBt,bBt)までの座標上の距離を算出し、この距離に応じた計算を行い、適正信号値Tbにより近付けるように(すなわち、第1の適正照明色に近づくように)、各レーザL1,L2の適正出力を算出する。このとき、適正信号値Tbに正確に合わせられないことも十分あり得るため、最も適正信号値にRGB色空間の座標上で近接した信号値となるよう各レーザL1,L2の出力を調整する。
 具体的な計算方法を、青色領域を例にとり、図5を参照して以下に説明する。図5は、青色狭帯域光源グループGbの色味補正を説明する図であり、図4のRGB色空間の青色部分を拡大して示している。
 青色狭帯域光源グループGbに属しているレーザL1,L2に使用される420nm帯及び450nm帯のレーザのそれぞれが、製造時の個体差及び経時変化によりバラつくRGB色空間上の領域をR420,R450とし、製造時に最も多く作製される仕様中心のレーザに関する信号値、閾値電流、及びスロープ効率を、それぞれ、中心信号値、中心閾値電流、及び、中心スロープ効率と呼び、420nm帯のレーザ及び450nm帯のレーザに対して以下のように表記する。
420nmレーザ中心信号値:C420(r420C,g420C,b420C
450nmレーザ中心信号値:C450(r450C,g450C,b450C
420nmレーザ中心閾値電流:Ith420
450nmレーザ中心閾値電流:Ith450
420nmレーザ中心スロープ効率:η420
420nmレーザ中心スロープ効率:η450
 一般的に上記中心信号値を示すレーザが入手できる確率が最も高いので、これらを結ぶ直線上に適正信号値Tb(rBt,gBt,bBt)が設定されることが望ましい。420nm帯のレーザ及び450nm帯のレーザから、それぞれ、レーザL1、L2を採用し、調整前において、それらレーザL1,L2の混合光が適正信号値となる期待値が最も高い出力方法としては、420nmレーザ中心信号値C420から適正信号値Tbまでの距離(図5中「a」)と、450nmレーザ中心信号値C450から適正信号値までの距離(図5中「b」)の比となるように、レーザL1,L2の出力を設定することである。従って、レーザL1の出力が「a×比例定数m」[mW]となることを期待して、レーザL1に電流値、

   Ith420+a×比例定数m÷η420      (1)

を入力する。また、レーザL2の出力が「b×比例定数m」[mW]となることを期待して、レーザL2に電流値、

   Ith450+b×比例定数m÷η450      (2)

を入力する。このようにして出力された信号値が、現状信号値Nb(rBn,gBn,bBn)となる。
 次に、RGB色空間上で、適正信号値Tbを通り、420nmレーザ中心信号値C420と450nmレーザ中心信号値C450を接続した直線と直交する直線を適正信号値直交線とし、その適正信号値直交線と現状信号値NbとのRGB色空間の座標上での距離を算出する(図5中「c」とする)。図5の例では、現状信号値Nbが適正信号値直交線よりも420nm帯レーザ側に存在するため、レーザL1の出力を低下させ、逆にレーザL2の出力を増加させることで、適正信号値Tbに近づけることができる。具体的には、レーザL1,L2のレーザの印加電流を距離cに基づき増減させる。
420nm帯レーザL1の印加電流を、

   Ith420+(a-c)×比例定数m÷η420      (3)

450nm帯レーザL2の印加電流を、

   Ith450+(b+c)×比例定数m÷η450      (4)

に変更して出力させる。
 このようにして、青色狭帯域光源グループGbに属するレーザL1,L2について、適正なレーザ出力比が決定され、その出力比で同時に出力したときの信号値(適正化後出力信号値)が予想される。他の緑色および赤色狭帯域光源グループGg,Grについても、同様の方法で、所属するレーザL3,L4;L5,L6の出力比を決定し、適正化後出力信号値を予想することができる。
 適正化後出力信号値と適正信号値TbとのRGB色空間での距離は、420nmレーザ中心信号値C420と420nmレーザ中心信号値C450との間の距離の10%以内であれば、適正化後出力信号に基づく照明色と、第1の適正照明色との色味の差異は非常に小さい。したがって、適正化後出力信号値をこの範囲にすることによって、より効果が得られる。
 次に、通常光観察をする際に出力される全てのレーザL1~L6の出力比の調整方法について、図6を参照して説明する。図6は、RGB色空間におけるホワイトバランス調整を説明する図である。
 まず、標準白色板37を配置した状態で、光源部21から各狭帯域光源グループGr,Gg,Gb別に適正化された出力比で、狭帯域光源グループGr,Gg,Gb毎に所属するレーザを出力させ、カラー撮像部32、撮像信号取得部22により、撮像信号を取得する。そうすることで、各狭帯域光源グループGr,Gg,Gb内で適正化された各色の画素信号値を取得する。これを狭帯域光源グループ適正化後実測信号値と呼び、赤色、緑色及び青色についてそれぞれ、TNr(rRtn,Rtn,Rtn),TNg(rGtn,Gtn,Gtn),TNb(rBtn,Btn,Btn)とする。なお、各狭帯域光源グループの適正信号値Tr,Tg,Tbと各狭帯域光源グループ適正化後実測信号値TNr,TNg,TNbとは必ずしも一致しない。
 一方、記憶部26は、観察時照射に使用する全ての狭帯域光源グループを同時照射したときの適正な観察照明色を「第2の適正照明色」として適正通常光信号値TNw(rWt,gWt,bWt)を記憶している。出力算出部25は、上記狭帯域光源グループGr,Gg,Gb内でのレーザの調整と同様に、各々の各狭帯域光源グループ適正化後実測信号値TNr,TNg,TNbから適正通常光信号値TNwまでの距離を算出し、その距離に基づいて、全ての狭帯域光源グループGr,Gg,GbのレーザL1~L6を照射したときの観察照明光を標準白色板37に照射したときの照明色が、第2の適正照明色と実質的に同一となるように、狭帯域光源グループGr,Gg,Gbの出力値を算出する。その際、各狭帯域光源グループGb,Gg,Gr内のレーザL1,L2;L3,L4;L5,L6の出力比は維持したまま変更しないことが重要である。これによって、各レーザL1~L6の出力比が決定される。
 なお、「実質的に同一」とは、RGB色空間の各座標方向において、適正通常光信号値TNw(rWt,gWt,bWt)とレーザL1~L6の混合波の照明光の信号値との距離が、適正通常光信号値TNw(rWt,gWt,bWt)と各色適正信号値Tb、Tg、Trとのそれぞれの距離に対する平均値の5%以内であることを意味する。この程度の差異であれば、視認できる色味の差異は小さい。
 次に、出力算出部25は、各レーザL1~L6の出力比に対応する入力信号を、レーザ別入力信号記憶部27に出力し、レーザ別入力信号記憶部27はこれを記憶する。次に、レーザ別入力信号記憶部27に記憶した各レーザL1~L6の入力信号に基づいて、光源制御部28が光源部21の各レーザL1~L6を適正化後の出力値で出力させる。出力算出部25は、検出される信号が、適正通常信号値TNwの所定の範囲内にあることを確認し、レーザL1~L6の出力比の調整を終了する。出力算出部25は、調整が終了したことを調整状態提示部30に通知し、調整状態提示部30は、表示や音等の手段でこれを使用者に知らせる。
 以降の内視鏡システム1の通常の観察において、レーザ別入力信号記憶部27に記憶された入力信号値が使用される。
 以上説明したように、本実施の形態によれば、光源部21の照明色の補正を行うのに、まず狭帯域光源グループGb,Gg,Grごとの出力調整を行う。このとき、標準白色板37を用い、光源部21の各狭帯域光源グループGb,Gg,Gr毎に所属するレーザL1~L6を同時に発光させ、カラー撮像部32から得られる照明色を、記憶部26に記憶された第1の適正照明色に近づけるように、各狭帯域光源グループに属するレーザL1,L2;L3,L4;L5,L6毎の適正出力を算出した。これによって、レーザ個体ごとの波長のバラつきや経時的な光量の変動に対して、安定した色味の照明光を照射することが可能になる。これによって、装置毎に色味や明るさの安定した原色で構成された通常光照明を照射することができ、演色性が安定し、装置間で安定な画像が取得できる。
 また、それぞれの狭帯域光源グループGb,Gg,GrのレーザL1,L2;L3,L4;L5,L6を、同じグループ内のレーザの出力比を変えないようにしながら、観察照明光を標準白色板37に照射したときの照明色が、第2の適正照明色と実質的に同一となるように、狭帯域光源グループGb,Gg,Gr間の出力を調整したので、各狭帯域光源グループGb,Gg,Grから得られた色味の安定した原色どうしが組み合わされ、ほぼ第2の適正照明色に等しい白色の照明色が得られる。これによって、観察時期によらず安定した色味で演色性の高い画像が得られる。また、所定の第2の適正照明色になるように色味を調整するので、レーザの個体差や経時変化の影響を受け難い。
 さらに、従来、カラー撮像部32の撮像素子に関しても個体毎に波長感度特性バラつきが存在し、撮像素子が変わるごとに、取得される画像の色味に変化が生じていた。しかし、本実施の形態によれば、内視鏡システムにおける画像観察に用いるカラー撮像部32と同じカラー撮像部32を、照明光の色味を調整するためにも用いているので、レーザL1~L6のみでなくカラー撮像部32の個体差に基づく色味の違いも、同時に加味してホワイトバランスが調整される。
 なお、狭帯域光源のピーク波長に関し、「互いに波長が異なる」とは、10nm以上スペクトルの離れたピーク波長を有するレーザについて述べることとする。その理由は、現在一般的に販売されている可視光LD(レーザダイオード)の仕様の多くが10nmの誤差を許容することが多く、有意に波長を異ならせた別の波長光源として設置するのは、それ以上の波長差を有するレーザということになるからである。また、JIS(Japanese Industrial Standards)規格において演色性や照明色等を論じる場合の波長データ間隔は5nmが多い。このため、色が異なる別の波長光源として設置するには、少なくともその倍の10nm以上の間隔がないと有意でないと考えられる。
 なお、本実施の形態に対して、種々の変形、変更が可能であり、その例を以下に説明する。
 まず、上記実施の形態においては、カラー撮像部32の撮像素子内にRGB原色カラーフィルタが存在する内視鏡装置に対して、標準白色板37に照明光をほぼ同時に照射する色味補正方法(同時式)を開示したが、色味補正の方法はこれに限られない。例えば、撮像素子前面等にはカラーフィルタは存在せず、輝度情報だけ受光する撮像素子が設置してあり、光源制御部28による光源部21の制御により、RGBの各色光を時系列に順次照明し、各色の光源の発光のタイミングに合わせて撮像部により画像信号を取得して被写体像をカラー化する手法(面順次法)も知られている。この場合、順次出力されるRGB各色に対応する狭帯域光源グループGr,Gg,Gbの出力調整を行うことが望ましい。ただしこの場合、カラー撮像部32とは異なり、撮像素子から出力される信号が輝度信号のみであるため、適正化する解が一義的に決められない。そのため、標準被写体側をカラー化する必要がある。そこで、上記実施形態(同時式)の標準白色板37に代えて、図7に例を示すカラー標準被写体41を使用する。カラー標準被写体41は、被写体面42が3つに分割され、それぞれ赤色(R)/青色(B)/緑色(G)に着色されている。このカラー標準被写体41の所定の各色部分を撮像したモノクロ信号値群を代表画素とし、上記実施の形態と同様に色味補正を行うことができる。なお、カラー標準被写体41の被写体面は4つ以上に分割され、それぞれ異なる色に着色されていても良い。
 次に、上記実施の形態では、全ての狭帯域光源がレーザの場合を開示したが、光源部21の構成はこれに限られない。例えば、緑色領域に関しては、レーザではなく、LEDや蛍光体など異なる光源を用いることもできる。図8は、緑色領域の狭帯域光源グループGgとして、緑色LEDであるLED1のみを用いた場合の撮像素子の波長感度曲線S1~S3、狭帯域光源の波長及び狭帯域光源グループGr,Gg,Gbの関係を示す図である。このような場合、緑色狭帯域光源グループGgに関しては、狭帯域光源グループGg内での出力比の調整を行わず、この光源LED1の色味を信号として取得する。そして、通常観察を行うためのホワイトバランスの調整では、適正通常光信号値TNwが得られるように、光量比が調整される。なお、この例では、緑色狭帯域光源グループGgは、第1種狭帯域光源グループではないが、赤色および青色狭帯域光源グループGr,Gbは、第1種狭帯域光源グループである。
 また、図9は緑色領域の狭帯域光源グループGgとして、LED及びレーザを用いた場合の撮像素子の波長感度曲線S1~S3、狭帯域光源の波長及び狭帯域光源グループGr,Gg,Gbの関係を示す図である。この図に示すように、緑色領域にレーザL3と緑色LEDであるLED2が混在している場合も考えられる。その場合、緑色LED及び緑色レーザL3に関して補正する必要があるため、両者で色味補正を行う。なお、緑色レーザとして上記実施の形態と同じレーザL3を例示したが、緑色LEDと組み合わされるレーザは、上記実施の形態と異なる緑色レーザであっても良い。また、この例では、緑色狭帯域光源グループGgは、第1種狭帯域光源グループである。
 また、狭帯域光源グループおよび狭帯域光源グループのそれぞれに所属するレーザの最大の数は、カラー受光素子のカラー種類数以下であることが、安定的な照明の色味を実現し、安定的な演色性の画像を実現する面から望ましい。すなわち、L、M、Nを1以上の自然数とし、前記狭帯域光源グループの数をL、前記狭帯域光源グループのそれぞれに所属する狭帯域光源の数のうち最大の数をM、前記カラー受光素子のカラー種類数をNとしたとき、
N≧LかつN≧M
とすることが望まれる。
 なぜなら、複数の狭帯域光源に対する適正信号値を達成する出力比に対して一義的に解が求まる状態とするためには、各狭帯域光源グループに所属する狭帯域光源(レーザ及びLED等)の数を、常にカラー撮像部から出力される信号種類数以下とする必要があるからである。カラー撮像部から出力される信号種類数は、カラー撮像部が有するカラー受光素子のカラー種類数に該当する。例えば一般的にはカラー撮像部が有するRGBのカラー種類と同数の3以下であることが望ましい。狭帯域光源の数が4以上の場合、適正信号値を達成するレーザの出力比の解が複数考えられる場合があり、それにより演色性が異なってしまう。
 一方、狭帯域光源全体の数は、カラー受光素子のカラー種類数以上が望ましい。なぜなら、カラー撮像部のカラー種類数と同数のレーザのみで通常光の観察を実現する装置の場合、各色毎に部分調整をする必要が無いからである。上記の通り一般的にはカラー種類数は3であるため、4種類以上が望ましいということになる。従って、一般的なカラー撮像素子の場合、狭帯域光源全体の数は4以上9以下が望ましいということになる。このようにすることにより、狭帯域光源全体の出力比が各色毎に一義的に求まり、かつ第2の適正照明色にするための出力比が一義的に決まるため、常に同じ色味、同じ演色性の観察装置が達成される。
 また、狭帯域光源グループGr,Gg,Gbに所属する狭帯域光源(レーザ及びLED等)を「同時に」照射する必要は必ずしもない。撮像素子が1フレームとして受光している間に、同一の狭帯域光源グループに所属する複数の狭帯域光源を順次光らせても良いし、フレーム毎に順次複数の狭帯域光源を照射しても良い。特に後者の場合、複数のフレームで取得した狭帯域光源情報を元にそれらを同時照射したとき適正信号色に最も近接する出力比を算出することが望ましい。
(第2実施の形態)
 第2実施の形態は、第1実施の形態における内視鏡システムにおいて、図10に示すように、レーザのグルーピングの仕方を異ならせたものである。このため内視鏡システム1の構成は、図2に示した第1実施の形態の構成と同様である。なお、第1実施の形態と同じ、レーザL1(420nm)、レーザL2(450nm)、レーザL3(530nm)、レーザL4(590nm)、レーザL5(640nm)、レーザL6(660nm)の6つのレーザを使用する例を用いて説明するが、レーザの波長としてはこれに限定されず、種々のレーザを使用することができる。
 第2実施の形態のレーザL1,L3,L5は、第1狭帯域光源グループG1に所属し、レーザL2,L4,L6は、第2狭帯域光源グループG2に所属する。この区分の仕方としては、まず、カラー撮像部32の撮像素子の波長感度特性に応じてレーザL1~L6のグルーピングを行い、青色領域に属する狭帯域光源としてレーザL1,L2、緑色領域に属する狭帯域光源としてレーザL3,L4、赤色領域に属する狭帯域光源としてレーザL5,L6をそれぞれグルーピングする。次に各色領域からレーザを1つずつ選定しグルーピングをし直し、上述のような組み合わせとする。すなわち、第1および第2狭帯域光源グループG1,G2に属する各レーザL1,L3,L5;L2,L4,L6は、それぞれ異なる互いに重なり合わない複数の波長領域にピーク波長を有している。
 なお、レーザ数が第1および第2狭帯域光源グループG1、G2の数の整数倍であり、赤色、緑色、青色の各色の波長領域から1つずつレーザをピックアップできることが好ましいが、レーザのグルーピングの方法はそれに限られない。第1および第2狭帯域光源グループG1,G2の中には、いずれかの波長領域にピーク波長を有するレーザを1つも含まないものがあっても良い。あるいは、同一の波長領域から複数のレーザを選択していても良い。しかし、第1および第2狭帯域光源グループG1,G2には、それぞれ複数のレーザが所属していることが必要である。
 以下に、レーザL1~L6の出力調整の方法を説明する。
 記憶部26は、第1および第2狭帯域光源グループG1,G2の目標色(第1の適正照明色)として、それぞれの狭帯域光源グループG1,G2で所定の色味になるように、第1および第2適正信号値TW1(rW1t,gW1t,bW1t),TW2(rW2t,gW2t,bW2t)値を記憶している。出力算出部25は、これらの適正信号値TW1,TW2を記憶部26から読みだすことができる。
 レーザ出力調整スイッチ29が操作され、出力調整処理が起動されると、光源制御部28は、レーザ別入力信号記憶部27に記憶された、入力信号に基づいて、第1狭帯域光源グループG1に所属するレーザL1,L3,L5を同時に射出する。内視鏡2の挿入部5の先、すなわち観察対象側には、第1実施の形態と同様に標準白色板37が配置され、標準白色板37からの戻り光がカラー撮像部32で検出され撮像信号取得部22により取得される。次に、出力算出用撮像信号算出部24は、画面内のうち「中心画素」など代表画素の信号値である第1現状信号値NW1(rW1n,gW1n,bW1n)を取得する。続いて第2狭帯域光源グループG2に所属するレーザL2,L4,L6を同時に射出し、第2現状信号値NW2(rW2n,gW2n,bW2n)を取得する。これら第1現状信号値NW1,第2現状信号値NW2は、出力算出部25に送信される。
 図11は、RGB色空間における第1および第2狭帯域光源グループG1,G2の色味補正を説明する図である。図4と同様に、破線で囲まれた領域R420,R450,R530,R590,R640,R660は、それぞれ各レーザL1~L6のRGB色空間での信号値がバラつくと想定される範囲を示している。第1および第2適正信号値TW1,TW2並びに第1及び第2現状信号値NW1,NW2は、RGB色空間で図11に示すように表示される。
 出力算出部25は、RGB色空間における第1狭帯域光源グループG1の現状信号値TW1と適正信号値NW1とを比べ、これらの間の乖離が最も小さくなるように、第1狭帯域光源グループG1に所属するレーザL1,L3,L5の出力比(適正レーザ出力比)を算出する。続いて同様に第2狭帯域光源グループG2の現状信号値TW2と適正信号値NW2とを比べ、これらの間の乖離が最も小さくなるように、第2狭帯域光源グループG2に所属するレーザL2,L4,L6の出力比(適正レーザ出力比)を算出する。
 次に、出力算出部25は、第1狭帯域光源グループG1及び第2狭帯域光源グループG2について算出された各レーザの適正レーザ出力比を、レーザ別入力信号記憶部27に出力し、光源制御部28はこの適正レーザ出力比に基づいて光源部21を制御し、まず、第1狭帯域光源グループG1について、所属するレーザL1,L3,L5を、算出された適正レーザ出力比により射出させる。これにより、出力算出部25は、カラー撮像部32、撮像信号取得部22及び出力算出用撮像信号算出部24を介して、第1適正化後実測信号値TNw1(rW1tn,gW1tn,bW1tn)を取得する。さらに、光源制御部28は、第2狭帯域光源グループG2について、所属するレーザL2,L4,L6を、算出された適正レーザ出力比により射出させる。これによって、出力算出部25は、上記と同様に第2適正化後実測信号値TNw2(rW2tn,gW2tn,bW2tn)を取得する。
 一方、記憶部26は、第1実施の形態と同様に、観察時照射に使用する全ての狭帯域光源グループを同時照射したときの「第2の適正照明色」として適正通常光信号値TNw(rWt,gWt,bWt)を記憶している。第1適正化後実測信号値TNw1及び第2適正化後実測信号値TNw2、並びに、適正通常光信号値TNwは、RGB色空間上で図12のように表わされる。この図12は、RGB色空間におけるホワイトバランス調整を説明する図である。
 次に、各々の各狭帯域光源グループ適正化後実測信号値TNw1及びTNw2から適正通常光信号値TNwまでの距離を算出し、その距離に基づいて、狭帯域光源グループG1,G2のレーザL1,L3,L5;L2,L4,L6を照射したときの観察照明光を標準白色板37に照射したときの照明色が、第2の適正照明色と実質的に同一となるように、狭帯域光源グループG1,G2の出力値を算出する。具体的には、第1適正化後実測信号値TNw1と第2適正化後実測信号値TNw2とを上記距離により重みづけした平均値が、適正通常光信号値TNwに最も近接するように、狭帯域光源グループG1,G2間の出力比を決定する。その際、各狭帯域光源グループG1,G2に所属する各レーザの出力比は変えないようにする。
 このようにすることによって、個々のレーザL1~L6に対する光量や波長に変動がある場合でも、また、カラー撮像部32の撮像素子に感度バラつきがある場合でも、異なる波長領域に属する波長の大きく異なるレーザL1,L3,L5;L2,L4,L6どうしを狭帯域光源グループG1,G2としてグルーピングすることで、その混合光に対する信号値(色味)が大きく変化する。このため、各狭帯域光源グループG1,G2内のレーザどうしの出力比を高精度且つ簡便に算出することができ、迅速に混合光の色味を安定化させることができる。
 さらに、第1狭帯域光源グループG1と第2狭帯域光源グループG2との出力比を適切に調整することによって、撮像素子から常に同じまたは近接した照明色の信号が得られるようにでき、常に色味と演色性の安定した照明光を照射することができる。
(第3実施の形態)
 本実施形態では、第1実施の形態における内視鏡システム1において、通常光観察を行うための各色のレーザを、特殊光観察用としても活用する狭帯域光源グループとそれ以外の狭帯域光源グループに分けている。図13は、第3実施の形態における、撮像素子の波長感度曲線S1~S3、レーザ波長及び狭帯域光源グループG11,G22の関係を示す図である。第3実施の形態に係る内視鏡システムの構成は、光源部21を構成するレーザとそのグルーピングを除き、図2に示した第1実施の形態の構成と同様である。
 複数のレーザ光源を用いるマルチバンドレーザ照明の大きな特徴として、レーザのみで演色性の高い通常光観察を行うことができるということが挙げられる。さらに、付加的に、一部のレーザのみを照射することで、一般的には狭帯域光観察(NBI:Narrow Band Imaging)と呼ばれている一部の部位、物質、成分などを強調して表示する強調観察方法を簡便に実現できるという特徴も有することができる。本実施形態では、通常光画像に上記強調観察方法を一部採用することで、通常光画像上に一部の部位、物質、成分などが強調される使用者にとって使い勝手の良い画像を作り出す技術を実現する、レーザ出力比の設定手法を採用する。
 具体的には、図13に示すように、この内視鏡システム1の光源部21は、5つのレーザL11(420nm),L12(450nm),L13(530nm),L14(590nm)及びL15(640nm)を有している。これらのレーザのうち、特殊光観察用に用いられるレーザL11及びL13は、第1狭帯域光源グループG11に属し、他のレーザL12,L14及びL15は、第2狭帯域光源グループG12に属する。
 図14は、RGB色空間における各狭帯域光源グループG11,G12の色味補正を説明する図である。破線で囲まれた領域R420,R450,R530,R640,R660は各レーザL11~L15のRGBの信号値がバラつくと想定される範囲を示している。第1狭帯域光源適正信号値T1(rt1,gt1,bt1)及び第2狭帯域光源適正信号値T2(rt2,gt2,bt2)は、それぞれ第1及び第2狭帯域光源グループG11,G12について、所定の色味になるように、記憶部26に記憶された信号値である。
 レーザ出力調整スイッチ29が操作されると、第1実施の形態及び第2実施の形態と同様に、第1狭帯域光源グループG11、第2狭帯域光源グループG12ごとに、所属するレーザが所定の出力比で射出され、第1狭帯域グループ現状信号値N1(rn1,gn1,bn1)及び第2狭帯域グループ現状信号値N2(rn2,gn2,bn2)が取得される。出力算出部25は、RGB色空間における第1狭帯域光源グループG11の現状信号値T1と適正信号値N1の乖離が最も小さくなるように、第1狭帯域光源グループG11に所属するレーザL11,L13の出力比(適正レーザ出力比)を算出する。続いて同様に第2狭帯域光源グループG12の現状信号値T2と適正信号値N2の乖離が最も小さくなるように、第2狭帯域光源グループG12に所属するレーザL12,L14,L15の出力比(適正レーザ出力比)を算出する。
 さらに、記憶部26は、第1及び第2実施の形態と同様に、ホワイトバラスを調整するための適正通常光信号値を有しており、第1実施及び第2の実施の形態と同様に、狭帯域光源グループ内での出力比を変えることなく、第1狭帯域光源グループG11及び第2狭帯域光源グループG12相互の出力比を算出する。これによって、適正通常光信号値と実質的に同じ各色の信号値が得られるように、レーザL11~L15の出力比が決定される。
 ここで、第1狭帯域光源グループG11に含まれるレーザL11及びレーザL13の波長420nm及び530nmはヘモグロビンの代表的な吸収波長に近く、この2つのレーザL11,L13は、生体に照射することにより、血管を強調して表示することができる特殊光観察用の照明光となる。レーザL11及びレーザL13の出力比によっても血管強調画像の色味に大きく差異が生じるため、正確に色味補正を行う必要がある。また、特殊光観察照明光以外のレーザL12,L14,L15を照射した画像に特殊光観察画像を重ねた画像を作成することで色再現性に優れ、かつ一部分の物質等を強調させた生体通常光画像を作り出すことができる。
 本実施の形態によれば、特殊光観察で強調可能な波長を有する複数のレーザL11,L13と、それ以外の波長の複数のレーザL12,L14,L15とを、それぞれ個別に狭帯域光源グループG11,G12としてグルーピングしたので、通常光画像の色味及びその画像に重畳される特殊光画像の色味の双方を安定させることができ、特殊光観察画像が重畳された画像観察において、より安定した演色性の高い観察が可能となる。
 なお、特殊光観察とは、いわゆるNBI(Narrow Band Imaging)に限られず、血管を強調するもの、血流を表示するもの、酸素飽和度を表示するもの、動脈/静脈を表示するもの、自家蛍光を表示するもの、薬剤蛍光を強調するもの、凹凸を強調するものなど、白色光とは異なる狭帯域光のみで構成された照明光で観察し、何かしらの物体、成分、構造等を強調して画像取得できるものを含む。
(第4実施の形態)
 図15は、第4実施の形態に係る色味補正装置51の構成を光源装置52とともに示すブロック図である。色味補正装置51は、光源装置52の出荷時等における波長バラつきを補正するものである。内視鏡のレーザの発振波長及び撮像素子の受光波長が、個体ごとにバラついているが、温度制御を正確に行うことにより、それらが経時的にはあまり変化しない場合、このような色味補正装置51を用いて、波長バラツキに関して製品出荷時等に調整しておくことが有効である。
 色味補正装置51は、スペクトル検査部53、色味補正信号取得部54、出力算出用信号算出部55、出力算出部56、及び、記憶部57を備える。また、光源装置52は、光源部58、光源制御部59、レーザ別入力信号記憶部60を含んで構成される。光源部58は、第1実施の形態と同様のレーザL1~L6及びコンバイナ62を備え、各レーザの出力は光ファイバ61を介してコンバイナ62により結合され、光ファイバ63に出力される。光源装置52は、例えば内視鏡用の光源であり、図示しない内視鏡とコネクタ64により着脱可能に接続することができる。
 スペクトル検査部53は、第1実施の形態のカラー撮像部32と同様に、赤色、緑色、青色の3色の波長感度特性を有する受光素子を備える検出器である。この検出器の出力は、色味補正信号取得部54に出力され、さらに出力算出用信号算出部55に送信される。
 図15の出力算出用信号算出部55、出力算出部56及び記憶部57は、それぞれ、第1実施の形態における出力算出用撮像信号算出部24、出力算出部25及び記憶部26とほぼ同様に機能する構成要素である。また、光源部58、光源制御部59及びレーザ別入力信号記憶部60は、それぞれ、第1実施の形態における光源部21、光源制御部28及びレーザ別入力信号記憶部27と、ほぼ同様に機能する構成要素である。したがって、これらの構成要素については説明を省略する。
 光源装置52を出荷する際等、光源装置52の色味補正を行う場合、光源装置52に組み込まれた各レーザ波長のバラつきに起因する装置ごとの色味バラつきを抑えるために、光源装置52毎に色味補正を行う。色味補正装置51を、コネクタ64を介して光源装置52に接続した状態で、色味補正処理を行う。色味補正処理は、第1実施の形態および第2実施の形態に記載したものと同様の方法で行うことができる。
 なお、スペクトル検査部53としては、各レーザのピーク波長を直接スペクトルアナライザ等で取得しても良い。直接ピーク波長を測定することで狭帯域光源グループに所属するレーザ群の適正信号値に対して、適正な出力比をより簡便により正確に決定することができる。また、色味補正信号取得部54、出力算出用信号算出部55、出力算出部56、及び、記憶部57は、例えば、同一のコンピュータ上に実装することができる。
 各狭帯域光源グループに対する適正信号値に近接した色味を出力できる適正な出力比が算出及び確認されると、レーザ別入力信号記憶部60にこの出力比が記憶される。製品出荷時の色味補正の場合には、この出力比が補正された状態で出荷され、光源装置52を実際に使用する場合に、このレーザ別入力信号記憶部に記憶された出力比に基づいて、ホワイトバランス補正が観察前などに使用者によって行われる。
 以上のように本実施の形態によれば、製品出荷時に波長バラつきについて補正を完了するため、使用者負担が軽減され、且つ、安定的な画像が得られる。また、製品に共通して同一の適正信号値を用いることによって、製品ごとのバラツキの少ない照明色の補正を行うことが可能になる。さらに、出荷時に専用の装置によって波長バラつきの補正をするため、より正確に色味補正を行うことが可能となる。なお、上記色味補正装置51は、第3実施の形態のように、通常光観察と特殊光観察を行う内視鏡装置にも適用することができる。
(第5実施の形態)
 図16は、第5実施の形態に係る内視鏡システムの主要部分のブロック図である。本実施形態では、第1実施の形態における内視鏡システム1において、挿入部先端に配置された撮像部ではなく、光源部21から射出される照明光を分岐させ、分岐された照明光の一部を受光する検出部73を別途設け、撮像部や標準被写体を介さず照明色を補正するものである。このため、本実施の形態に係る内視鏡システムは、照明光のうち一部の光を分岐させるカプラ71、カプラで分岐された照明光の一部を導光する光ファイバ72、光ファイバを導光された照明光の一部から照明色を検出する検出部73を備える。検出部73の出力は、出力算出部25に送信されるように構成されている。
 図17に検出部及び検出部73に接続している光ファイバ72の模式図を示す。検出部73は前面にカラーフィルタ74が配置されたフォトディテクタ75(PD)であり現状の照明色をRGB信号に変換し、出力算出部25に送信する機能を有する。その他の構成は、第1実施の形態および第2実施の形態と同様なので、同一または対応する構成要素には、同一の符号を付して説明を省略する。
 このような構成によって、使用者が本内視鏡システムを用いて観察を開始する際には、照明光の一部から、検出部73が照明光の照明色を検出して出力算出部25に送信する。出力算出部25は、取得した照明光の照明色に基づいて、第1および第2実施の形態と同様に、各狭帯域光源グループの照明色を第1の適正照明色に近づけるように調整し、その後、全ての狭帯域光源グループの狭帯域光源を発光させたときの照明色が第2の適正照明色と実質的に同一になるよう2段階で補正を行うことで照明色を適正化する。
 使用者が本内視鏡システムを用いて観察を行う場合、実際に画像表示部に画像を表示させる前にこの上記2段階の補正を実行することができる。また、本内視鏡システムを用いた観察中に、一定の時間経ったタイミングで再び上記補正を断続的に開始しても良い。
 以上のように、本実施の形態によれば、使用者の手により標準被写体を着脱することなく照明色の補正を行うことができ、且つ、照明色の補正を自動で行うことも可能なため、使用者負担が軽減されつつ、常に安定的な画像が得られる。なお、上記内視鏡システムは、第3実施の形態のように、通常光観察と特殊光観察を行う内視鏡装置にも適用することができる。
 なお、本発明は、上記実施の形態にのみ限定されるものではなく、幾多の変形または変更が可能である。たとえば、各実施の形態に示したレーザおよびLEDの波長および個数、狭帯域光源ごとのレーザおよびLEDの数、レーザおよびLEDのグルーピングの仕方は、一例を示すものに過ぎず、個々に示した以外にも種々の構成が可能である。また、狭帯域光源グループとしてはレーザを含まず、LEDのみで構成されていても良い。例えば、第1種狭帯域光源を複数のLEDのみで構成し、LED間での出力の調整を行うようにしても良い。
 1  内視鏡システム
 2  内視鏡
 3  内視鏡システム本体
 4  画像表示部
 5  挿入部
 6  操作部
 7  先端硬質部
 8  湾曲部
 9  可撓管部
 10  把持部
 11  ユニバーサルコード
 12  湾曲操作ダイヤル
 13  スイッチ
 21  光源部
 22  撮像信号取得部
 23  画像形成部
 24  出力算出用撮像信号算出部
 25  出力算出部
 26  記憶部
 27  レーザ別入力信号記憶部
 28  光源制御部
 29  レーザ出力調整スイッチ
 30  調整状態提示部
 31  配光変換部材
 32  カラー撮像部
 33  光ファイバ
 34  コンバイナ
 35  光ファイバ
 36  信号線
 37  標準白色板
 41  カラー標準被写体
 42  被写体面
 51  色味補正装置
 52  光源装置
 53  スペクトル検査部
 54  色味補正信号取得部
 55  出力算出用信号算出部
 56  出力算出部
 57  記憶部
 58  光源部
 59  光源制御部
 60  レーザ別入力信号記憶部
 61  光ファイバ
 62  コンバイナ
 63  光ファイバ
 64  コネクタ
 71  カプラ
 72  光ファイバ
 73  検出部
 74  カラーフィルタ
 75  フォトディテクタ

Claims (17)

  1.  ピーク波長の異なる複数の狭帯域光源を備える光源部であって、前記複数の狭帯域光源がピーク波長によって複数の狭帯域光源グループに分類され、且つ、前記狭帯域光源グループのうち複数の前記狭帯域光源で構成される狭帯域光源グループを第1種狭帯域光源グループとする、光源部と、
     前記光源部の発光により得られる照明光の照明色を検出する検出部と、
     前記第1種狭帯域光源グループ毎の第1の適正照明色を記憶する記憶部と、
     前記第1種狭帯域光源グループ毎に、該第1種狭帯域光源グループに属する前記複数の狭帯域光源を発光して前記検出部から得られる照明色と、該第1種狭帯域光源グループの前記第1の適正照明色とを比べて、前記第1種狭帯域光源グループに属する前記狭帯域光源毎の適正出力を算出する出力算出部と、
     算出された前記適正出力に基づいて、前記光源部に含まれる前記複数の狭帯域光源を制御する光源制御部と、
    を備える照明装置。
  2.  請求項1に記載の照明装置において、
     前記出力算出部は、前記第1種狭帯域光源グループ毎に、前記検出部から得られる照明色を、該第1種狭帯域光源グループの前記第1の適正照明色に近づけるように、前記第1種狭帯域光源グループに属する前記狭帯域光源毎の前記適正出力を算出することを特徴とする照明装置。
  3.  請求項1または2に記載の照明装置と、
     該照明装置から射出される照明光によって生成された被観察部からの戻り光を画像信号に変換する撮像部と
    を有することを特徴とする内視鏡を備えた内視鏡システム。
  4.  請求項3に記載の内視鏡システムにおいて、
     前記撮像部は前記検出部を兼ね、該検出部は、前記第1種狭帯域光源グループ毎に取得される画像信号を、前記第1種狭帯域光源グループの前記照明色として検出することを特徴とする内視鏡システム。
  5.  請求項4に記載の内視鏡システムにおいて、
     前記検出部は、標準被写体を前記被観察部側に配置した状態で、前記第1種狭帯域光源グループ毎に取得される前記標準被写体の画像信号を、前記第1種狭帯域光源グループの前記照明色として検出することを特徴とする内視鏡システム。
  6.  請求項3に記載の内視鏡システムにおいて、
     前記検出部は、前記光源部から出射した照明光から分岐された該照明光の一部に基づいて、前記照明色を検出することを特徴とする内視鏡システム。
  7.  請求項3から6の何れか一項に記載の内視鏡システムにおいて、
     複数の前記狭帯域光源グループに属する狭帯域光源を発光させ、前記照明装置から射出される照明光を観察照明光とし、
     前記記憶部は、さらに第2の適正照明色を記憶しており、
     前記出力算出部は、前記第1種狭帯域光源グループ毎に、前記複数の狭帯域光源毎の適正出力を算出した後、前記観察照明光を、前記第2の適正照明色に近づけるように、同一の前記第1種狭帯域光源グループに所属する前記狭帯域光源毎の前記適正出力の比である出力比を維持したまま、それぞれの前記複数の狭帯域光源グループに属するそれぞれの前記狭帯域光源の出力を算出することを特徴とする内視鏡システム。
  8.  請求項7に記載の内視鏡システムにおいて、
     前記第2の適正照明色は、前記複数の狭帯域光源グループを組み合わせて得られる照明色であり、
     前記出力算出部は、前記観察照明光を前記第2の適正照明色と実質的に同一の照明色を有するように、前記複数の狭帯域光源グループに属するそれぞれの前記狭帯域光源の出力を算出することを特徴とする内視鏡システム。
  9.  請求項5に記載の内視鏡システムにおいて、
     前記撮像部は、互いに波長感度特性の異なる複数のカラー受光素子からなり、
     同一の前記第1種狭帯域光源グループに属する複数の狭帯域光源は、互いに重なり合わない複数の波長領域の中の同一の波長領域にピーク波長を有することを特徴とする内視鏡システム。
  10.  請求項5に記載の内視鏡システムにおいて、
     前記撮像部は、互いに波長感度特性の異なる複数のカラー受光素子からなり、
     同一の前記第1種狭帯域光源グループに属する狭帯域光源は、それぞれ異なる互いに重なり合わない複数の波長領域にピーク波長を有することを特徴とする内視鏡システム。
  11.  請求項9または10に記載の内視鏡システムにおいて、
     前記第1種狭帯域光源グループの少なくとも1つは、特殊光観察時に用いられる狭帯域光源からなる内視鏡システム。
  12.  請求項9から11の何れか一項に記載の内視鏡システムにおいて、
     前記標準被写体は、前記撮像部に対向する面の少なくとも一部が白色の領域を有していることを特徴とする内視鏡システム。
  13.  請求項9から12の何れか一項に記載の内視鏡システムにおいて、
    L、M、Nを1以上の自然数とし、前記狭帯域光源グループの数をL、前記狭帯域光源グループのそれぞれに所属する狭帯域光源の数のうち最大の数をM、前記カラー受光素子のカラー種類数をNとしたとき、
    N≧LかつN≧M
    であることを特徴とする内視鏡システム。
  14.  請求項13に記載の内視鏡システムにおいて、
     前記照明装置の備える前記狭帯域光源の数は、4以上9以下である内視鏡システム。
  15.  請求項3から8の何れか一項に記載の内視鏡システムにおいて、
     前記光源部は、前記狭帯域光源グループに属する狭帯域光源の同時発光を、前記狭帯域光源グループごとに順次行い、前記撮像部は、前記狭帯域光源の発光のタイミングに合わせて前記画像信号を取得し、前記画像信号を元にカラー画像を生成する内視鏡システム。
  16.  請求項5に記載の内視鏡システムにおいて、
     前記光源部は、前記狭帯域光源グループに属する狭帯域光源の同時発光を、前記狭帯域光源グループごとに順次行い、前記撮像部は、前記狭帯域光源の発光のタイミングに合わせて前記画像信号を取得し、前記画像信号を元にカラー画像を生成する内視鏡システムであって、
     前記標準被写体は、前記撮像部に対向する面の一部が、3つ以上の異なる色を有する領域に区分されていることを特徴とする内視鏡システム。
  17.  ピーク波長の異なる複数の狭帯域光源を備える光源装置であって、前記複数の狭帯域光源がピーク波長によって複数の狭帯域光源グループに分類され、且つ、前記狭帯域光源グループのうち複数の前記狭帯域光源で構成される狭帯域光源グループを第1種狭帯域光源グループとする、光源装置の色味補正を行う色味補正装置であって、
     前記光源装置の発光により得られる照明光の照明色を検出する検出部と、
     前記第1種狭帯域光源グループ毎の適正照明色を記憶する記憶部と、
     前記第1種狭帯域光源グループ毎に、該第1種狭帯域光源グループに属する前記複数の狭帯域光源を発光して前記検出部から得られる照明色と、該第1種狭帯域光源グループの前記第1の適正照明色とを比べて、前記第1種狭帯域光源グループに属する前記狭帯域光源毎の適正出力を算出する出力算出部とを備える色味補正装置。
PCT/JP2015/000429 2015-01-30 2015-01-30 照明装置、内視鏡システム及び色味補正装置 WO2016120907A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580071644.2A CN107105996B (zh) 2015-01-30 2015-01-30 照明装置、内窥镜系统及色调修正装置
JP2016571490A JP6484257B2 (ja) 2015-01-30 2015-01-30 照明装置、内視鏡システム及び色味補正装置
PCT/JP2015/000429 WO2016120907A1 (ja) 2015-01-30 2015-01-30 照明装置、内視鏡システム及び色味補正装置
US15/659,756 US10799102B2 (en) 2015-01-30 2017-07-26 Illumination apparatus, endoscopic system, and color correction apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/000429 WO2016120907A1 (ja) 2015-01-30 2015-01-30 照明装置、内視鏡システム及び色味補正装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/659,756 Continuation US10799102B2 (en) 2015-01-30 2017-07-26 Illumination apparatus, endoscopic system, and color correction apparatus

Publications (1)

Publication Number Publication Date
WO2016120907A1 true WO2016120907A1 (ja) 2016-08-04

Family

ID=56542575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000429 WO2016120907A1 (ja) 2015-01-30 2015-01-30 照明装置、内視鏡システム及び色味補正装置

Country Status (4)

Country Link
US (1) US10799102B2 (ja)
JP (1) JP6484257B2 (ja)
CN (1) CN107105996B (ja)
WO (1) WO2016120907A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020100184A1 (ja) * 2018-11-12 2020-05-22 オリンパス株式会社 内視鏡用光源装置、内視鏡装置及び内視鏡用光源装置の作動方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110573056B (zh) * 2017-05-02 2021-11-30 奥林巴斯株式会社 内窥镜系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10286235A (ja) * 1997-04-14 1998-10-27 Fuji Photo Film Co Ltd 内視鏡装置
JP2005034166A (ja) * 2003-07-15 2005-02-10 Pentax Corp ホワイトバランス調整可能な電子内視鏡装置
JP5467181B1 (ja) * 2012-03-29 2014-04-09 オリンパスメディカルシステムズ株式会社 内視鏡システム
JP2014150932A (ja) * 2013-02-07 2014-08-25 Olympus Corp 光源装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002122794A (ja) 2000-10-13 2002-04-26 Asahi Optical Co Ltd 電子内視鏡用光源部
US8480566B2 (en) * 2004-09-24 2013-07-09 Vivid Medical, Inc. Solid state illumination for endoscopy
JP5364520B2 (ja) * 2009-09-24 2013-12-11 富士フイルム株式会社 内視鏡装置及び内視鏡装置の作動方法
JP5371921B2 (ja) * 2010-09-29 2013-12-18 富士フイルム株式会社 内視鏡装置
JP5502812B2 (ja) * 2011-07-14 2014-05-28 富士フイルム株式会社 生体情報取得システムおよび生体情報取得システムの作動方法
JP5911496B2 (ja) * 2011-09-05 2016-04-27 富士フイルム株式会社 内視鏡システム及びそのプロセッサ装置並びに内視鏡システムの作動方法
JP5385493B1 (ja) * 2012-02-21 2014-01-08 オリンパスメディカルシステムズ株式会社 内視鏡装置
JP5931031B2 (ja) * 2013-09-23 2016-06-08 富士フイルム株式会社 内視鏡システム及び内視鏡システムの作動方法
JP2015139613A (ja) * 2014-01-29 2015-08-03 オリンパス株式会社 医療用画像形成装置
JP6013382B2 (ja) * 2014-02-27 2016-10-25 富士フイルム株式会社 内視鏡システム及びその作動方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10286235A (ja) * 1997-04-14 1998-10-27 Fuji Photo Film Co Ltd 内視鏡装置
JP2005034166A (ja) * 2003-07-15 2005-02-10 Pentax Corp ホワイトバランス調整可能な電子内視鏡装置
JP5467181B1 (ja) * 2012-03-29 2014-04-09 オリンパスメディカルシステムズ株式会社 内視鏡システム
JP2014150932A (ja) * 2013-02-07 2014-08-25 Olympus Corp 光源装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020100184A1 (ja) * 2018-11-12 2020-05-22 オリンパス株式会社 内視鏡用光源装置、内視鏡装置及び内視鏡用光源装置の作動方法
CN113260297A (zh) * 2018-11-12 2021-08-13 奥林巴斯株式会社 内窥镜用光源装置、内窥镜装置及内窥镜用光源装置的工作方法
JPWO2020100184A1 (ja) * 2018-11-12 2021-09-24 オリンパス株式会社 内視鏡用光源装置、内視鏡装置及び内視鏡用光源装置の作動方法
JP7191978B2 (ja) 2018-11-12 2022-12-19 オリンパス株式会社 内視鏡用光源装置、内視鏡装置及び光量調整方法

Also Published As

Publication number Publication date
CN107105996B (zh) 2018-11-20
US10799102B2 (en) 2020-10-13
US20170319053A1 (en) 2017-11-09
CN107105996A (zh) 2017-08-29
JPWO2016120907A1 (ja) 2017-10-12
JP6484257B2 (ja) 2019-03-13

Similar Documents

Publication Publication Date Title
US10617287B2 (en) Endoscope system and endoscope light source apparatus
JP6138203B2 (ja) 内視鏡装置
US9918613B2 (en) Endoscope system and operating method thereof
US8825125B2 (en) Endoscope system and processor apparatus thereof, and image generating method
US9801573B2 (en) Endoscope system, processor device, and method for operating endoscope system
JP6791821B2 (ja) 内視鏡システム
US9895054B2 (en) Endoscope system, light source device, operation method for endoscope system, and operation method for light source device
US9578293B2 (en) Endoscope system and light source device
JP5963982B2 (ja) 画像処理システム及び画像処理装置
JP6100674B2 (ja) 内視鏡用光源装置及び内視鏡システム
US10834791B2 (en) Light source device
WO2016125334A1 (ja) 内視鏡装置
US20180249889A1 (en) Endoscope system, processor device, and method for operating endoscope system
US20160302652A1 (en) Fluorescence observation apparatus
JPWO2017046857A1 (ja) 内視鏡装置
US9509964B2 (en) Endoscope system and light source device
US20190328206A1 (en) Observation apparatus and method of controlling observation apparatus
JP6979510B2 (ja) 内視鏡システム及びその作動方法
JP5558331B2 (ja) 内視鏡システム、内視鏡システムのプロセッサ装置及び内視鏡システムの作動方法
JP6484257B2 (ja) 照明装置、内視鏡システム及び色味補正装置
WO2020183528A1 (ja) 内視鏡装置、内視鏡画像処理装置、内視鏡装置の作動方法及びプログラム
JP6325707B2 (ja) 内視鏡用光源装置及び内視鏡システム
JP2019041946A (ja) プロセッサ装置とその作動方法、および内視鏡システム
US20240130610A1 (en) Processor for endoscope and endoscope system
US11583165B2 (en) Medical signal processing device, cap member, and medical signal processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879808

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016571490

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15879808

Country of ref document: EP

Kind code of ref document: A1