WO2020100184A1 - 内視鏡用光源装置、内視鏡装置及び内視鏡用光源装置の作動方法 - Google Patents
内視鏡用光源装置、内視鏡装置及び内視鏡用光源装置の作動方法 Download PDFInfo
- Publication number
- WO2020100184A1 WO2020100184A1 PCT/JP2018/041802 JP2018041802W WO2020100184A1 WO 2020100184 A1 WO2020100184 A1 WO 2020100184A1 JP 2018041802 W JP2018041802 W JP 2018041802W WO 2020100184 A1 WO2020100184 A1 WO 2020100184A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- color
- amount ratio
- ratio
- lights
- Prior art date
Links
- 238000000034 method Methods 0.000 title description 24
- 230000014509 gene expression Effects 0.000 claims abstract description 142
- 238000005286 illumination Methods 0.000 claims abstract description 101
- 230000003287 optical effect Effects 0.000 claims description 52
- 230000003595 spectral effect Effects 0.000 claims description 26
- 238000003860 storage Methods 0.000 claims description 26
- 238000009877 rendering Methods 0.000 claims description 18
- 229910052724 xenon Inorganic materials 0.000 claims description 16
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims description 16
- 230000000295 complement effect Effects 0.000 claims description 11
- 230000035945 sensitivity Effects 0.000 claims description 6
- 238000001228 spectrum Methods 0.000 description 30
- 238000012545 processing Methods 0.000 description 17
- 230000000875 corresponding effect Effects 0.000 description 13
- 238000002834 transmittance Methods 0.000 description 10
- 239000004065 semiconductor Substances 0.000 description 7
- 238000003384 imaging method Methods 0.000 description 6
- 238000003780 insertion Methods 0.000 description 6
- 230000037431 insertion Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 239000000470 constituent Substances 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 230000003902 lesion Effects 0.000 description 4
- 239000013307 optical fiber Substances 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000295 emission spectrum Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- KHLVKKOJDHCJMG-QDBORUFSSA-L indigo carmine Chemical compound [Na+].[Na+].N/1C2=CC=C(S([O-])(=O)=O)C=C2C(=O)C\1=C1/NC2=CC=C(S(=O)(=O)[O-])C=C2C1=O KHLVKKOJDHCJMG-QDBORUFSSA-L 0.000 description 2
- 229960003988 indigo carmine Drugs 0.000 description 2
- 235000012738 indigotine Nutrition 0.000 description 2
- 239000004179 indigotine Substances 0.000 description 2
- 230000010365 information processing Effects 0.000 description 2
- 210000004400 mucous membrane Anatomy 0.000 description 2
- 210000002784 stomach Anatomy 0.000 description 2
- 229950003937 tolonium Drugs 0.000 description 2
- HNONEKILPDHFOL-UHFFFAOYSA-M tolonium chloride Chemical compound [Cl-].C1=C(C)C(N)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 HNONEKILPDHFOL-UHFFFAOYSA-M 0.000 description 2
- 101150079616 ARL6IP5 gene Proteins 0.000 description 1
- 208000007882 Gastritis Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 101100462611 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) prr-1 gene Proteins 0.000 description 1
- 101000892301 Phomopsis amygdali Geranylgeranyl diphosphate synthase Proteins 0.000 description 1
- 101150022627 RABAC1 gene Proteins 0.000 description 1
- 239000004904 UV filter Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 210000004798 organs belonging to the digestive system Anatomy 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B23/00—Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
- G02B23/24—Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
- G02B23/2407—Optical details
- G02B23/2461—Illumination
- G02B23/2469—Illumination using optical fibres
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00002—Operational features of endoscopes
- A61B1/00004—Operational features of endoscopes characterised by electronic signal processing
- A61B1/00006—Operational features of endoscopes characterised by electronic signal processing of control signals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00002—Operational features of endoscopes
- A61B1/00057—Operational features of endoscopes provided with means for testing or calibration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/06—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
- A61B1/0638—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/06—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
- A61B1/0655—Control therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/06—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
- A61B1/07—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B23/00—Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
- G02B23/24—Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
- G02B23/2407—Optical details
- G02B23/2423—Optical details of the distal end
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B23/00—Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
- G02B23/24—Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
- G02B23/2476—Non-optical details, e.g. housings, mountings, supports
- G02B23/2484—Arrangements in relation to a camera or imaging device
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/007—Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
- G02B27/14—Beam splitting or combining systems operating by reflection only
- G02B27/141—Beam splitting or combining systems operating by reflection only using dichroic mirrors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
- H04N23/555—Constructional details for picking-up images in sites, inaccessible due to their dimensions or hazardous conditions, e.g. endoscopes or borescopes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/56—Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/70—Circuitry for compensating brightness variation in the scene
- H04N23/76—Circuitry for compensating brightness variation in the scene by influencing the image signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/10—Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
- H04N25/11—Arrangement of colour filter arrays [CFA]; Filter mosaics
- H04N25/13—Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
- H04N25/134—Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/64—Circuits for processing colour signals
- H04N9/73—Colour balance circuits, e.g. white balance circuits or colour temperature control
Definitions
- the present invention relates to a light source device for an endoscope, an endoscope device, a method of operating the light source device for an endoscope, and the like.
- a lighting technology in which a plurality of semiconductor light sources that emit different wavelengths are combined.
- the spectrum of illumination light in such an illumination technique is usually different from the spectrum of a white light source such as a xenon light source.
- the spectrum when a plurality of light sources are combined is determined by the light amount ratio of the light emitted by the plurality of light sources.
- Patent Documents 1 and 2 A technique for adjusting the light amount ratio of light emitted from a plurality of light sources is disclosed in Patent Documents 1 and 2, for example.
- a laser is used as a semiconductor light source, and in order to correct individual differences among lasers, the light quantity ratios of a plurality of lasers are adjusted so that the color balance of illumination light does not change.
- an LED is used as a semiconductor light source, and in each of the red region, the green region, and the blue region, the light amount integrated value of the LED and the light amount integrated value of the xenon light source are made to coincide with each other, thereby making it equivalent to the xenon light source. It produces white light.
- the illumination light when the illumination light is generated by a plurality of light sources having different wavelengths, it is desired to tune the color balance of the illumination light and the color expression of the image independently by adjusting the light amount ratio of the plurality of light sources.
- the color balance is so-called white balance and is related to color temperature.
- the color expression is related to a so-called degree of color, for example, redness or yellowness of a living body.
- One aspect of the present invention includes four or more light sources that emit four or more lights having mutually different wavelengths, a light source unit that makes the four or more lights incident as illumination light on an endoscope scope, and a color balance method.
- a light source controller that adjusts the light intensity of each of the four or more lights based on the light intensity ratio setting value for setting the first light intensity ratio and the second light intensity ratio related to color expression; At least one light of the four or more lights belongs to each of the included blue region, green region, and red region, and is one of the blue region, the green region, and the red region. Two or more lights of the four or more lights belong to the color region, the two or more lights belonging to the first color region are narrow band lights, and the first light amount ratio belongs to the blue region.
- the second light amount ratio is a light amount ratio of the two or more lights belonging to the first color region
- the light source controller is By adjusting the light quantity ratio of the light of 4 or more based on the light quantity ratio setting value, the color balance of the illumination light and the lightness, saturation, and saturation of the image picked up by the image pickup device of the endoscope are obtained.
- the present invention relates to a light source device for an endoscope that adjusts a color expression of the image including at least one of hues.
- Another aspect of the present invention relates to an endoscope apparatus including the endoscope light source apparatus described above and the endoscope scope.
- Still another aspect of the present invention is that at least one of four or more lights belongs to each of the blue region, the green region, and the red region included in the wavelength region of visible light, and the blue region and the green region are included.
- Two or more lights of the four or more lights belong to the first color region, which is either the region or the red region, and the two or more lights belonging to the first color region are narrow band lights.
- the first light amount ratio is a light amount ratio of light belonging to the blue region, light belonging to the green region and light belonging to the red region, and a second light amount ratio is equal to or larger than the two or more belonging to the first color region.
- the four or more lights having different wavelengths are made incident on the endoscope as illumination light to set the first light quantity ratio for color balance and the second light quantity ratio for color expression.
- the light amount of each of the four or more lights based on the light amount ratio set value for, the color balance of the illumination light and the brightness of the image picked up by the image pickup device of the endoscope.
- a color expression of the image including at least one of saturation and hue, and a method of operating the light source device for an endoscope.
- the structural example of an endoscope apparatus The spectrum example of the illumination light in 1st Embodiment.
- the 1st detailed structural example of a light source device. The figure explaining the relationship between a blue light amount ratio and color expression.
- the figure explaining the relationship between a blue light amount ratio and color expression The figure explaining the relationship between a red light amount ratio and color expression.
- the spectrum example of the illumination light in 4th Embodiment An example of a spectrum of illumination light in a 5th embodiment.
- Spectral absorption characteristics of indigo carmine, crystal violet and toluidine blue The spectrum example of the illumination light in 7th Embodiment.
- the detailed structural example of the light source device in 9th Embodiment Spectral transmittance characteristics of dichroic mirror.
- FIG. 1 shows an example of the configuration of the endoscope device 10. Note that, in the following, the description of the configuration and operation common to a general endoscope will be omitted, and the description will focus on the characteristic portions related to the present invention. Further, the medical endoscope for digestive organs will be described below as an example, but the application target of the present invention is not limited to this. That is, the endoscope referred to in the present specification refers to a general device including an insertion portion for observing the inner surface of the recess of various observation objects. For example, the endoscope is a medical endoscope used for examining a living body or an industrial endoscope.
- the endoscope device 10 in FIG. 1 includes a control device 100, an endoscope scope 200, a display unit 300, and an input unit 600.
- the display unit 300 is also called a display or a display device.
- the input unit 600 is also called an input device or an operating device.
- the endoscope scope 200 is composed of an insertion section 210, an operation section 220, a connection cable 230, and a connector 240.
- the insertion portion 210 has flexibility and can be inserted into a body cavity of a living body.
- the body cavity of the living body is the subject in this embodiment.
- a user such as a doctor holds the operation unit 220 and operates the endoscope device 10 using the operation unit 220.
- the connection cable 230 is a cable that connects the control device 100 and the endoscope scope 200, and has flexibility.
- the connector 240 is provided at one end of the connection cable 230 and allows the control device 100 and the endoscope scope 200 to be attached and detached.
- illumination lenses 211 and 212 that emit illumination light toward a subject
- an imaging unit 213 that captures an image by receiving the illumination light reflected or scattered from the surface of the subject. It is arranged.
- a light guide path 214 is provided in the endoscope scope 200.
- the light guide path 214 is optically connected to the illumination lenses 211 and 212.
- the light source unit 140 is provided in the control device 100, and the light guide path 214 guides the illumination light emitted from the light source unit 140 to the illumination lenses 211 and 212.
- the light guide path 214 is a light guide such as an optical fiber bundle. The light guide extends from the connector 240 to the illumination lenses 211 and 212 via the connection cable 230 and the operation unit 220.
- the illumination lenses 211 and 212 spread the illumination light guided by the light guide to have a desired emission angle.
- Each of the illumination lenses 211 and 212 is an illumination optical system including a single lens or a plurality of lenses.
- the image pickup unit 213 has an image pickup optical system and an image pickup element.
- the image sensor is, for example, a CMOS type imager.
- the imager is a Bayer type imager having RGB primary color filters arranged in a Bayer type, a complementary color imager having a complementary color filter, or a monochrome imager.
- the monochrome imager is used for a field sequential endoscope scope. It is also possible to use a CCD as the image sensor in addition to the CMOS imager.
- An image signal line 215 is provided in the endoscope scope 200, and an image signal of an image captured by the image capturing unit 213 is transmitted to the control device 100.
- the image signal line 215 is arranged in the insertion section 210, the operation section 220, and the connection cable 230, and is electrically connected to the control device 100 via the connector 240.
- the image signal line 215 may be an optical fiber for optical communication or the like.
- the control device 100 includes a light source device 160 that emits illumination light and a processing circuit 110.
- the processing circuit 110 performs image processing on the image signal from the image pickup unit 213 and controls each part of the endoscope device 10.
- the processing circuit 110 is realized by a circuit device in which a plurality of circuit components are mounted on a board.
- the processing circuit 110 may be an integrated circuit device such as a processor or an ASIC (Application Specific Integrated Circuit).
- the processor executes the program describing the operation of the processing circuit 110 to realize the operation of the processing circuit 110.
- the program is stored in, for example, a memory (not shown).
- the display unit 300 displays the image of the subject image-processed by the processing circuit 110.
- the display unit 300 is various commonly used display devices, and is, for example, a liquid crystal monitor or the like.
- the display unit 300 is electrically connected to the control device 100 by electric wiring that transmits an image signal.
- the input unit 600 receives an operation from a user and outputs the operation information to the processing circuit 110.
- the input unit 600 is, for example, a button or dial, a keyboard, a mouse, a touch panel, or the like.
- the touch panel is provided on the display unit 300.
- the input unit 600 may be an interface connected to an information processing device such as a PC (Personal Computer).
- the interface receives input information from the information processing device and outputs the input information to the processing circuit 110.
- the interface is a communication interface such as USB (Universal Serial Bus) or LAN (Local Area Network).
- the light source device 160 includes a light source unit 140 that emits illumination light, a light source controller 150 that controls the light source unit 140, and a storage unit 170 that stores a light amount ratio setting value.
- the light source unit 140 has four or more light sources that emit four or more lights having mutually different wavelengths.
- the light source section 140 makes the four or more lights enter the endoscope scope 200 as illumination light.
- Each of the four or more light sources is a light emitting element.
- the light emitting element is a semiconductor light source such as a light emitting diode (LED: Light Emitting Diode) or a semiconductor laser.
- the wavelength range of visible light includes a red area, a green area, and a blue area. To each of these regions, one of four or more lights that constitute the illumination light belongs. In addition, two or more lights out of four or more lights belong to any one of the red region, the green region, and the blue region. This area will be called a first color area.
- the two or more lights belonging to the first color region are narrow band lights. The light other than the light belonging to the first color region may be narrow band light or may not be narrow band light. A detailed example of the illumination light will be described later.
- the light source controller 150 can include, for example, a drive circuit that drives the light source and a control circuit or a processor that controls the drive circuit.
- the light source controller 150 may be a control circuit or a processor that controls the light source drive circuit.
- the light source controller 150 adjusts the light amount of each of the above four or more lights based on the light amount ratio setting value.
- the light amount ratio set value is a set value for setting the first light amount ratio regarding color balance and the second light amount ratio regarding color expression.
- the first light amount ratio is a light amount ratio of light belonging to the red region, light belonging to the green region, and light belonging to the blue region. As described above, two or more lights belong to the first color area. At this time, the total of the light amounts of the two or more lights becomes the light amount of the light belonging to the first color region.
- the second light amount ratio is a light amount ratio of two or more lights belonging to the first color region.
- the light source controller 150 adjusts the color balance of the illumination light and the color expression of the image by adjusting the light quantity ratio of the light of 4 or more based on the light quantity ratio setting value.
- the color balance is a balance of red, green, and blue in the illumination light, and is, for example, the color temperature of the illumination light.
- the color expression of the image is different from the color balance and is the degree of each color such as bluish or reddish.
- the color expression includes at least one of lightness, saturation, and hue of the image. That is, adjusting the degree of color means adjusting at least one of lightness, saturation, and hue.
- the light quantity ratio set value may be one light quantity ratio that simultaneously realizes the first light quantity ratio and the second light quantity ratio, or the first light quantity ratio and the second light quantity ratio are specified separately.
- a semiconductor light source has a correlation between a current value and a light emission amount.
- the light quantity ratio set value may specify a current value that realizes the first light quantity ratio and the second light quantity ratio.
- the light amount ratio set value is stored in the storage unit 170.
- the light source controller 150 controls the illumination light based on the light amount ratio set value read from the storage unit 170.
- the light amount ratio setting value is input to the processing circuit 110 via the input unit 600.
- the light source controller 150 controls the illumination light based on the light amount ratio set value from the processing circuit 110.
- the storage unit 170 is a semiconductor memory such as a RAM or a ROM or a non-volatile memory.
- the storage unit 170 may be a magnetic storage device such as a hard disk drive.
- the light source controller 150 adjusts the amount of light by changing the drive current that drives the light emitting diode.
- current dimming the light source controller 150 adjusts the amount of light by changing the drive current that drives the light emitting diode.
- PWM dimming the light source controller 150 adjusts the amount of light by changing the time during which light is emitted within a predetermined imaging period.
- pulse number dimming the light source controller 150 adjusts the light amount by changing the number of pulses emitted within a predetermined imaging period. Further, the light source controller 150 may use two or three of these three dimming methods in combination.
- the color balance of the illumination light and the color expression of the image should be tuned independently.
- the user of the endoscopic device makes a diagnosis based on the color of a subject in an endoscopic image, and in the diagnosis, the literature or past experience is referred to. At this time, it is desirable that the color balance and tint according to the literature or past experience be reproduced.
- the light source controller 150 adjusts the light amount ratio of four or more lights forming the illumination light on the basis of the light amount ratio setting value, and thereby the color balance of the illumination light and the color expression of the image. Adjust and. This makes it possible to independently adjust the color balance of the illumination light and the color expression of the image. For example, by adjusting the light amount ratio of four or more lights forming the illumination light, it is possible to reproduce the color balance and the color expression according to the literature or past experience.
- the light source controller 150 keeps the sum of the light amounts of two or more lights belonging to the first color region within a predetermined range based on the first light amount ratio. In addition, the light source controller 150 adjusts the light amount of two or more narrow band lights belonging to the first color region based on the second light amount ratio.
- the first light quantity ratio is the light quantity ratio that sets the color balance of the illumination light
- the second light quantity ratio is the light quantity ratio that sets the color expression. That is, the light source controller 150 sets the color balance of the illumination light according to the first light amount ratio, and adjusts the color expression of the image based on the second light amount ratio while maintaining the color balance. As a result, the color balance of the illumination light and the color expression of the image are adjusted independently, and the target color balance and color expression are realized.
- the predetermined range is an allowable range in which the color balance set by the first light amount ratio can be realized.
- the light amount of the red region is the sum of the light amounts of two or more lights belonging to the red region.
- the amount of light in the red region is kept within a predetermined range such as 0.9 to 1.1.
- 0.9 to 1.1 is an example of the predetermined range, and the predetermined range is not limited to this.
- the permissible range may be within a range that can be corrected by a general image processing technique without significantly affecting the image quality.
- the illumination light is displayed on the display unit 300 via the image sensor mounted on the endoscope scope 200.
- the spectral characteristics of the image sensor and the display unit 300 also affect the color balance.
- the spectral characteristics of the image sensor and the spectral characteristics of the display unit 300 may be taken into consideration. More specifically, the spectral characteristics of the light receiving sensitivity of the image sensor 213, the spectral characteristics of the UV / IR cut filter mounted on the image sensor, the spectral characteristics of a color filter when mounted, and the illumination light are guided.
- the first light amount ratio may be a light amount ratio in which one or more of these factors are taken into consideration. Further, it is desirable that the first light amount ratio is set in consideration of the color reproduction characteristic of the display unit 300.
- illumination light is composed of five lights having different wavelengths.
- the illumination light may be composed of four or six or more lights.
- FIG. 2 is an example of a spectrum of illumination light in the first embodiment.
- the wavelength region of visible light includes a blue region, a green region, and a red region.
- the blue region is 400 nm to 495 nm
- the green region is 496 nm to 585 nm
- the red region is 585 nm to 680 nm.
- the wavelength band is also called a wavelength band.
- the blue area is divided into areas BV and BB, and the red area is divided into areas BA and BR.
- the illumination light is composed of a light IV having a region BV, a light IB having a region BB, a light IG having a region BG, a light IA having a region BA, and a light IR having a region BR.
- Lights IV, IB, IA, and IR are narrow band lights.
- Narrow band light is light having a wavelength range narrower than the color range to which the light belongs.
- the light IV has a region BV narrower than the blue region.
- the light IG belonging to the green region is broadband light having a region BG that is substantially the same as the green region.
- the light IG may be narrow band light having a wavelength region narrower than the green region.
- Areas BV, BB, BG, BA and BR correspond to purple, blue, green, amber and red, respectively.
- the area division is not limited to this.
- the first color area described above is a blue area or a red area in FIG.
- FIG. 3 is a first detailed configuration example of the light source device 160. Note that, in FIG. 3, only the connector of the endoscope scope 200 and the light guide path 214 are shown, and the other components are not shown.
- the light source unit 140 includes a light source LDV that emits purple light IV, a light source LDB that emits blue light IB, a light source LDG that emits green light IG, a light source LDA that emits amber light IA, and a red light source LDA.
- a light source LDR that emits the light IR and a light combining unit 141 are included. Further, the light source unit 140 may further include a lens or the like for changing the light distribution of the light source or making the light parallel.
- the region BV of the purple light IV is 400 nm ⁇ BV ⁇ 440 nm
- the region BB of the blue light IB is 440 nm ⁇ BB ⁇ 495 nm
- the region BG of the green light IG is 495 nm ⁇ BG ⁇ 585 nm
- the area BA of the amber light IA is 586 nm ⁇ BA ⁇ 615 nm
- the area BR of the red light IR is 615 nm ⁇ BR ⁇ 680 nm.
- the wavelength component of the illumination light may exist on the shorter wavelength side than 400 nm, or the illumination light on the longer wavelength side than 680 nm may exist. Wavelength components may be present.
- the optical multiplexer 141 multiplexes the lights of the five colors and makes them enter the light guide path 214.
- the light combining unit 141 is dichroic mirrors DC1 to DC4 that combine lights IV, IB, IG, IA, and IR.
- the optical multiplexer 141 may be an optical fiber or an optical fiber bundle having five entrance ends and one exit end.
- the dichroic mirrors DC1 to DC4 have different optical characteristics. That is, DC1 transmits light IV and reflects light IB.
- the DC 2 transmits the lights IV and IB and reflects the light IG.
- the DC 3 transmits the light IV, IB, and IG, and reflects the light IA.
- the DC 4 transmits the light IV and IB, IG, IA, and reflects the light IR.
- transmitting here means transmitting a main portion including a wavelength at which light has a peak intensity.
- “reflecting” here means reflecting a main part. That is, the skirt portion that is not the main portion of the spectrum may be cut. That is, the dichroic mirrors DC1 to DC4 also function as filters for cutting unnecessary portions of each light.
- the illumination lights multiplexed by the dichroic mirrors DC1 to DC4 have five independent spectra that do not substantially overlap each other. That is, one light belongs to each of the regions BV, BB, BG, BA, and BR, and almost no light in the adjacent regions is included.
- the light source unit 140 is configured to be capable of emitting white light and special light illumination according to the observation purpose of the endoscope device.
- a special light illumination is realized by inserting a filter (not shown) in the optical path.
- the filter has a spectral characteristic that matches the spectrum of special light.
- the light source controller 150 outputs a drive current to the light sources LDV, LDB, LDG, LDA, and LDR to cause the light sources LDV, LDB, LDG, LDA, and LDR to emit light. Further, the light source controller 150 synchronously controls the light emission timings of the light sources LDV, LDB, LDG, LDA, and LDR. That is, when the endoscope is of the field sequential type, the light source controller 150 sequentially causes the light sources LDV, LDB, LDG, LDA, and LDR to emit light according to a predetermined light emission sequence. When the image pickup device of the endoscope is a primary color Bayer type or a complementary color type, the light source controller 150 causes the light sources LDV, LDB, LDG, LDA, and LDR to emit light at the same time.
- the light source controller 150 includes a color balance control circuit 151 for adjusting color balance and a color expression control circuit 152 for adjusting color expression.
- the color balance control circuit 151 adjusts the light quantity ratio of the five lights so that the color balance of the illumination light incident on the incident end of the light guide path 214 connected to the connector 240 becomes the first light quantity ratio.
- the light amounts of the lights IV, IB, IG, IA, and IR are Bpv, Bpb, Gp, Rpa, and Rpr, respectively.
- the color expression control circuit 152 adjusts the color expression of the image picked up by the image pickup device of the endoscope scope 200. That is, the color expression control circuit 152 adjusts the color expression of the image displayed on the display unit 300.
- the color expression control circuit 152 realizes a desired color expression by adjusting the light amount ratio Rpa: Rpr of two lights belonging to the red region to the red light amount ratio. Further, the color expression control circuit 152 realizes a desired color expression by adjusting the light quantity ratio Bpv: Bpb of two lights belonging to the blue region to the blue light quantity ratio.
- the color expression control circuit 152 controls the light quantity ratio so that the color expression is approximately equal to the color expression of the inner surface of the living body when the living body surface is illuminated with a xenon light source that is widely used in conventional endoscopes.
- the color difference ⁇ E or the like can be used as an index.
- the light quantity ratio set value is a light quantity ratio determined by the first light quantity ratio, the red light quantity ratio, and the blue light quantity ratio.
- the blue light amount ratio is the second light amount ratio
- the red light amount ratio is the third light amount ratio.
- the light source controller 150 causes the light sources LDV, LDB, LDG, LDA, and LDR to emit light according to the light amount ratio setting value, so that the light source device 160 can emit illumination light that achieves both desired color balance and color expression.
- the color balance of the illumination light is adjusted so that the color balance is the same as the color balance when the subject is illuminated with a white light source such as a xenon light source.
- the color expression of the image is adjusted so that the subject looks red on the image.
- the color expression of the image is adjusted so that an image having the same tint as the image when the lesion part is imaged by the endoscope device having the white light source such as the xenon light source is captured. Further, for example, the color expression of the image is adjusted so that the lesion area and the normal area can be easily distinguished.
- FIG. 4 and 5 are diagrams for explaining the relationship between the blue light amount ratio Bpv: Bpb and the color expression.
- the bluish or yellowishness of the image can be adjusted. That is, as shown in FIG. 4, by making the amount of blue light IB relatively large, the bluish tint of the image can be strengthened. Further, as shown in FIG. 5, the yellowness of the image can be increased by relatively increasing the light amount of the purple light IV.
- the blue area BB has higher visibility than the purple area BV. For this reason, when the light amount of the purple light IV is relatively increased while maintaining the light amount Bpv + Bpb in the blue region, the bluishness relatively decreases on the screen. At this time, since the color balance is maintained by the first light amount ratio Bp: Gp: Rp, the bluishness decreases while maintaining the color balance. It is considered that when the bluishness decreases, the yellowishness, which is a complementary color to blue, becomes stronger. On the other hand, when the light amount of the blue light IB is relatively increased while the light amount Bpv + Bpb in the blue region is maintained, the bluishness relatively increases on the screen.
- the increase in blue tint reduces the yellow tint, and as a result, the pink tint becomes stronger.
- the living body looks like purplish red. This may result in the pink appearing to be stronger.
- FIG. 6 and 7 are diagrams illustrating the relationship between the red light amount ratio Rpa: Rpr and the color expression.
- the redness of the image can be adjusted by changing the light amount ratio Rpa: Rpr of the light IA and IR in the red region. That is, as shown in FIG. 6, the redness of the image can be weakened by relatively increasing the light amount of the amber light IA. Further, as shown in FIG. 7, the redness of the image can be strengthened by relatively increasing the light amount of the red light IR.
- the red region is a wavelength region close to the color of the living body, it is considered that the color of light and the color of the image are highly correlated. That is, when the light amount of the amber light IA is relatively increased while maintaining the light amount Rpa + Rpr in the red region, the reddishness of the image is reduced and the image becomes closer to orange. On the other hand, when the light amount of the red light IR is relatively increased while maintaining the light amount Rpa + Rpr in the red region, the reddishness of the image increases. Since the color balance is maintained by the first light amount ratio Bp: Gp: Rp, the color expression in the red region can be adjusted while maintaining the color balance.
- the light intensity ratio is determined by the following procedure.
- the endoscopic device 10 of the present embodiment images a sample simulating the mucous membrane of the stomach.
- an image that is a target of color expression for example, an image when a sample is illuminated by a xenon light source is acquired.
- the blue light amount ratio Bpv: Bpb and the red light amount ratio Rpa: Rpr are set so that the color expression of the image captured by the endoscope device 10 is similar to the color expression of the target image. This makes it possible to adjust the color expression when the mucous membrane of the stomach or the like is used as the observation target.
- these light amount ratios are adjusted according to the spectral characteristics of the image pickup device and the image pickup optical system included in the endoscope scope 200. Moreover, these light amount ratios may be adjusted according to the observation object. Further, these light amount ratios may be adjusted according to the preference of the user.
- the light amount ratio is set in consideration of the characteristics of the color filter mounted on the image sensor of the endoscope scope 200 and the wavelength sensitivity characteristic of the image sensor. As a result, the color of the illumination light when the image is picked up by the image sensor is adjusted.
- the spectral shapes of the color filters of the image sensor in the blue region, green region, and red region are B ( ⁇ ), G ( ⁇ ), and R ( ⁇ ), respectively.
- ⁇ is the wavelength.
- Im ( ⁇ ) is the spectral sensitivity characteristic of the pixel of the image sensor.
- the emission spectra of the light sources LDV, LDB, LDG, LDA, and LDR are VL ( ⁇ ), BL ( ⁇ ), GL ( ⁇ ), AL ( ⁇ ), and RL ( ⁇ ), respectively.
- the light quantity ratios of the blue area, the green area, and the red area with respect to the maximum light quantity are Pb, Pg, and Pr, respectively.
- the maximum light amount here is the maximum light amount of the blue region, the green region, and the red region.
- Bp be the integral of the following equation (5) at wavelength ⁇
- Gp be the integral of equation (6) at the wavelength ⁇
- Rp be the integral of equation (7) at the wavelength ⁇ .
- Bp is the amount of light received by the image sensor in the blue region when a white subject is imaged.
- Gp is the amount of light received by the image sensor in the green region when a white subject is imaged.
- Rp is the amount of light received by the image sensor in the red region when a white subject is imaged.
- Bp: Gp: Rp represents color balance. That is, the light source controller 150 adjusts the color balance by adjusting Bp: Gp: Rp so that the color of the illumination light received by the image sensor becomes a desired color.
- the color balance does not change if the integrated Bp has the same light amount. In other words, the color balance is not affected even if the ratio of the sizes of VL ( ⁇ ) and BL ( ⁇ ) is adjusted in the range where Bp is constant.
- the light intensity ratios of light IV, IB, IG, IA, and IR with respect to the maximum light intensity are Pbv, Pbb, Pg, Pra, and Prr, respectively.
- the maximum light amount here is the maximum light amount of the lights IV, IB, IG, IA, and IR.
- Pbv, Pbb, Pra, and Prr in the first adjustment state are Pbbv1, Pbb1, Pra1, and Prr1.
- Pbv, Pbb, Pra, and Prr in the second adjustment state are Pbbv2, Pbb2, Pra2, and Prr2.
- the desired color expression is realized by adjusting Pra and Prr within the range that satisfies the following expression (10). Note that here, R ( ⁇ ) ⁇ Im ( ⁇ ) does not change as in the case of adjusting the color expression in the blue band.
- AL ( ⁇ ) ⁇ Pba1 + RL ( ⁇ ) ⁇ Pbr1 AL ( ⁇ ) ⁇ Pba2 + RL ( ⁇ ) ⁇ Pbr2 (10)
- the color expression can be adjusted without losing the color balance. Note that the operator may make fine adjustments while actually checking the image during manufacturing of the endoscope device 10 or by the user during actual use.
- the following formula (11) is integrated with wavelength ⁇ is Bpv
- the following formula (12) is integrated with wavelength ⁇ is Bpb
- the following formula (13) is integrated with wavelength ⁇ is Rpa.
- Rpr be the integral of (14) at the wavelength ⁇ .
- the light amount ratio setting value is Bpv: Bpb: Gp: Rpa: Rpr.
- the parameters can be collectively handled as the light amount ratio.
- the first light amount ratio Bp: Gp: Rp, the blue light amount ratio Bpv: Bpb, and the red light amount ratio Rpa: Rpr may be separately set as the light amount ratio set values. By doing so, it is easy to handle the parameters of color balance and color expression independently. For example, when it is desired to change only the color expression while maintaining the color balance, the blue light amount ratio Bpv: Bpb or the red light amount ratio Rpa: Rpr may be changed.
- the light amount ratio set value may be set according to the type of the endoscope scope attached to the endoscope device 10.
- the endoscope scope 200 includes a memory (not shown) that stores an ID, and the light source controller 150 acquires the ID.
- the light source controller 150 identifies the image sensor based on the ID, and controls the light source unit 140 based on the corresponding light amount ratio setting value.
- the endoscope scope 200 includes a memory or the like (not shown) that stores the light amount setting value, the light source controller 150 acquires the light amount ratio setting value, and the light source unit 140 based on the acquired light amount ratio setting value. May be controlled.
- the light source device 160 has a setting mode and a normal operation mode.
- the setting mode is set, for example, when the endoscope device 10 is manufactured.
- the operator operates the input unit 600 to set the color balance and the color expression.
- the processing circuit 110 outputs the setting information to the light source controller 150.
- the color balance control circuit 151 and the color expression control circuit 152 set the light amount ratio setting value based on the setting information, and the light source controller 150 causes the light source unit 140 to emit light at the light amount ratio corresponding to the light amount ratio setting value.
- the operator adjusts the color balance and the color expression so as to obtain a desired color balance and color expression.
- the light source controller 150 writes the finally determined light amount ratio setting value in the storage unit 170.
- the light amount ratio set value may be automatically set in the setting mode.
- the color expression control circuit 152 derives the light amount ratio setting value based on the measurement result obtained by measuring the emission spectrum of each LED of the light source unit so as to obtain a desired color balance and color expression, and sets the light amount ratio setting value.
- the value may be written in the storage unit 170.
- the normal operation mode is a mode when the endoscope device 10 is in a normal operation, that is, when the user uses the endoscope device 10.
- the light source device 160 is powered on, and the light source device 160 starts up according to a normal startup sequence.
- the light source controller 150 reads out the light amount ratio set value corresponding to the connected endoscope scope 200 from the storage unit 170 and corresponds to the light amount ratio set value.
- the light source unit 140 is caused to emit light at a light amount ratio.
- the light source controller 150 includes a so-called dimming circuit.
- the light control circuit controls the light emission amount of the light source unit 140 based on the brightness of the image so as to keep the brightness of the image constant.
- the light emission amount is the total light emission amount of the light sources LDV, LDB, LDG, LDA, and LDR.
- the light source controller 150 controls the light emission amount so as not to change the light amount ratio Bpv: Bpb: Gp: Rpa: Rpr. That is, the brightness of the image is adjusted so that the color balance and the color expression do not change.
- the light source controller 150 determines the light emission amount of each light source by multiplying Bpv, Bpb, Gp, Rpa, and Rpr by the same gain.
- the light source unit 140 emits the first to fifth lights (IV, IB, IG, IA, IR) and the first to fifth light sources (LDV, LDB, LDG, LDA, LDR).
- the light quantity ratio set value is a setting for setting the first light quantity ratio (Bp: Gp: Rp), the second light quantity ratio (blue light quantity ratio Bpv: Bpb), and the third light quantity ratio (red light quantity ratio Rpa: Rpr). It is a value.
- the light source controller 150 adjusts the light quantity ratio of the first light (IV) and the second light (IB) to the second light quantity ratio based on the light quantity ratio setting value, thereby adjusting the degree of blue or yellow in the image. adjust. Further, the light source controller 150 adjusts the redness degree of the image by adjusting the light quantity ratio of the fourth light (IA) and the fifth light (IR) to the third light quantity ratio based on the light quantity ratio setting value. To do.
- the color balance of the illumination light and the color expression of the image can be adjusted independently.
- the color balance can be adjusted to a desired color balance, and the color expression can be adjusted to a desired color expression while maintaining the color balance.
- the light source device 160 has a dimming function, it is possible to provide a light source device capable of dimming while maintaining the adjusted color balance and color expression.
- the light source controller 150 adjusts the light amount of the first to fifth lights based on the light amount ratio setting value corresponding to the target of the color rendering property of the illumination light, thereby achieving the color balance of the illumination light. , Adjust the color balance to correspond to the color rendering property, and adjust the color expression of the image to the color expression corresponding to the color rendering property.
- the light source device 160 of the present embodiment can generate the illumination light that reproduces the color balance and the color expression of the image captured by the illumination light having the target color rendering property.
- the target of the color rendering property is, for example, the color rendering property that reproduces the color of the lesion.
- the light source controller 150 sets the light amount that satisfies the allowable adjustment range of the first light amount ratio specified by the target of color rendering properties and the allowable adjustment range of the second light amount ratio specified by the target of color rendering properties.
- the light amounts of the first to fifth lights are adjusted based on the ratio setting value.
- the light source controller 150 may adjust the light amounts of the first to fifth lights based on the light amount ratio set value that further satisfies the allowable adjustment range of the second light amount ratio specified by the color rendering target.
- the light source device 160 can generate the illumination light that reproduces the color balance and the color expression of the image captured by the target illumination light having the color rendering property within a certain allowable range. Become.
- the allowable adjustment range of the first light amount ratio is the adjustment range of each of Bp, Gp, and Rp in Bp: Gp: Rp.
- the allowable adjustment range of the second light amount ratio is each adjustment range of Bpv and Bpb in Bpv: Bpb.
- the permissible adjustment range of the third light amount ratio is the adjustment range of each of Rpa and Rpr in Rpa: Rpr.
- the target of the color rendering property is the color balance of the xenon light source and the color expression of the image captured using the xenon light source.
- the color balance and color expression of the xenon light source are color expressions of an image captured using the xenon light source.
- the presence or absence of gastritis and H. pylori, the removal status, and other features of the characteristic part to be observed and diagnosed with the endoscope, and the difference in tint from normal tissue can be determined by the color of the xenon light source. It is desirable to make adjustments so that balance and color expression can be reproduced.
- the light source device 160 of this embodiment can generate the illumination light that reproduces the color balance and the color expression of the image captured by the xenon light source.
- the light source controller 150 controls the first to fifth light based on the light quantity ratio set value set by the spectral sensitivity characteristics of the image sensor and the first to fifth light spectral characteristics. Adjust the light intensity.
- the light source controller 150 adjusts the light amounts of the first to fifth lights based on the light amount ratio set value stored in the storage unit 170.
- the light source controller 150 can cause the first to fifth light sources to emit light with the first light amount ratio and the second light amount ratio designated by the light amount ratio setting value stored in the storage unit 170. Thereby, the illumination light is adjusted to a desired color balance, and the image is adjusted to a desired color expression.
- the light source controller 150 sets the light amount ratio set value based on the first light amount ratio set by the color balance control circuit 151 and the second light amount ratio set by the color expression control circuit 152. To do.
- the color balance control circuit 151 can adjust the color balance of the illumination light, and the color expression control circuit 152 can adjust the color balance of the image.
- the color balance control circuit 151 sets the first light amount ratio based on the information input from the input unit 600 of the endoscope device 10.
- the color expression control circuit 152 sets the second light amount ratio based on the information input from the input unit 600.
- the operator or the user can adjust the color balance and the color expression via the input unit 600.
- the light source controller 150 in the setting mode, based on the first light quantity ratio set by the color balance control circuit 151 and the second light quantity ratio set by the color expression control circuit 152, the light quantity ratio.
- the set value is stored in the storage unit 170.
- the light source controller 150 adjusts the light amounts of the first to fifth lights based on the light amount ratio setting value stored in the storage unit 170.
- the light quantity ratio can be set so as to obtain a desired color balance and color expression, and the light quantity ratio set value can be stored in the storage unit 170. Then, in the normal operation mode, it is possible to generate illumination light having a desired color balance and color expression based on the light amount ratio setting value read from the storage unit 170.
- the user can adjust the color expression via the input unit 600 in the normal operation mode. That is, the color expression control circuit 152 sets the blue light amount ratio Bpv: Bpb and the red light amount ratio Rpa: Rpr based on the information input from the input unit 600. Further, the color balance control circuit 151 sets the first light amount ratio Bp: Gp: Rp based on the light amount ratio set value read from the storage unit 170.
- the user inputs desired color expression information from the input unit 600.
- the color expression control circuit 152 calculates a blue light quantity ratio and a red light quantity ratio that achieve a desired color expression.
- the light source controller 150 controls the light source unit 140 based on the calculated blue light amount ratio and red light amount ratio and the first light amount ratio.
- the color expression information input from the input unit 600 may be information on the degree of color itself or may be information indicating a change in the degree of color. Further, an image of a desired color expression may be read by the input unit 600. Further, the input unit 600 may store samples of various color expressions, display the samples on the display unit 300, and allow the user to select a desired sample.
- FIG. 8 is an example of a spectrum of illumination light in the third embodiment.
- the spectra of two lights whose wavelength regions are adjacent to each other overlap each other.
- FIG. 8 shows a case where the spectra of the lights IV and IB overlap, the spectra of the lights IG and IA overlap, and the spectra of the lights IA and IR overlap.
- the way in which the spectra overlap is not limited to that shown in FIG.
- the spectra of light IB and IG may overlap.
- the portion of the spectrum of the light IV protruding into the area BB is Vb ( ⁇ )
- the portion of the spectrum of the light IB protruding into the area BV is Bv ( ⁇ )
- the portion of the spectrum of the light IA protruding in the region BG is Ag ( ⁇ )
- the portion of the spectrum of the light IA protruding in the region BR is Ar ( ⁇ ).
- Bpv ' is obtained by integrating equation (20) below with wavelength ⁇ in region BV
- Bpb' is obtained by integrating equation (22) below with wavelength ⁇ in region BB.
- Rpa ' be the integral at the wavelength ⁇ in the region
- Rpr' be the integral at the wavelength ⁇ within the region BR in the following expression (23).
- the light quantity ratio for color expression is a blue light quantity ratio Bpv ': Bpb' and a red light quantity ratio Rpa ': Rpr'.
- the light quantity ratios of the light IV, IB, IG, IA, and IR are adjusted so that Bpv ': Bpb': Gp ': Rpa': Rpr 'has a desired color balance and color expression.
- the adjustment method is the same as the method described in the first embodiment and the like.
- FIG. 9 is an example of a spectrum of illumination light in the fourth embodiment.
- the illumination light is composed of light IBX having a region BBX, light IG having a region BG, light IA having a region BA, and light IR having a region BR.
- the lights IA and IR are narrow band lights.
- the light IBX belonging to the blue region is broadband light having the same region BBX as the blue region.
- the light IBX may be narrow band light having a wavelength region narrower than the blue region.
- the light source unit 140 includes first to fourth light sources that emit first to fourth light (IBX, IG, IA, IR).
- the first light amount ratio is a light amount obtained by adding the light amount of the first light (IBX), the light amount of the second light (IG), and the light amount of the third light (IA) and the fourth light (IR). And, the ratio.
- the second light amount ratio is a light amount ratio of the third light (IA) and the fourth light (IR) (red light amount ratio Rpa: Rpr).
- the light source controller 150 adjusts the degree of red color of the image by adjusting the light quantity ratio of the third light (IA) and the fourth light (IR) to the second light quantity ratio based on the light quantity ratio set value. ..
- the color balance of the illumination light and the redness of the image can be adjusted independently. Further, by adjusting only the color expression in the red region, the color expression can be adjusted by the light source device 160 having a simple structure.
- FIG. 10 is an example of a spectrum of illumination light in the fifth embodiment.
- the illumination light is composed of light IV having a region BV, light IB having a region BB, light IG having a region BG, and light IRX having a region BRX.
- the lights IV and IB are narrow band lights.
- the light IRX belonging to the red region is broadband light having the same region BRX as the red region.
- the light IRX may be narrow band light having a wavelength region narrower than the red region.
- the light source unit 140 includes first to fourth light sources that emit first to fourth light (IV, IB, IG, IRX).
- the first light amount ratio is the light amount obtained by adding the light amounts of the first light (IV) and the second light (IB), the light amount of the third light (IG), and the light amount of the fourth light (IRX). And, the ratio.
- the second light amount ratio is a light amount ratio of the first light (IV) and the second light (IB) (blue light amount ratio Bpv: Bpb).
- the light source controller 150 adjusts the light quantity ratio of the first light (IV) and the second light (IB) to the second light quantity ratio based on the light quantity ratio setting value, thereby adjusting the degree of blue or yellow in the image. adjust.
- the color balance of the illumination light and the bluish or yellowishness of the image can be adjusted independently. Further, by adjusting only the color expression in the blue region, the color expression can be adjusted with the light source device 160 having a simple configuration.
- FIG. 11 is an example of a spectrum of illumination light in the sixth embodiment.
- Illumination light includes light IV having a region BV, light IB having a region BB, light IG1 having a region BG1, light IG2 having a region BG2, light IA having a region BA, and light IR having a region BR.
- the lights IV, IB, IG1, IG2, IA, and IR are narrow band lights.
- the light source unit 140 includes first to sixth light sources that emit first to sixth lights (IV, IB, IG1, IG2, IA, IR).
- the light amount ratio set value is a set value for setting the first to fourth light amount ratios.
- the first light quantity ratio is obtained by adding the light quantity of the first light (IV) and the light quantity of the second light (IB) and the light quantity of the third light (IG1) and the fourth light (IG2). It is the ratio of the amount of light that is added to the amount of light that is the sum of the amounts of light of the fifth light (IA) and the sixth light (IR).
- the second light amount ratio is a light amount ratio of the first light (IV) and the second light (IB) (blue light amount ratio Bpv: Bpb).
- the third light amount ratio is a light amount ratio (Gpg1: Gpg2) of the third light (IG1) and the fourth light (IG2).
- Gpg1 is the light amount of the third light (IG1)
- Gpg2 is the light amount of the fourth light (IG2).
- the fourth light amount ratio is a light amount ratio of the fifth light (IA) and the sixth light (IR) (red light amount ratio Rpa: Rpr).
- the light source controller 150 adjusts the light quantity ratio of the first light (IV) and the second light (IB) to the second light quantity ratio based on the light quantity ratio setting value, thereby adjusting the degree of blue or yellow in the image. adjust.
- the light source controller 150 adjusts the green degree of the image by adjusting the light quantity ratio of the third light (IG1) and the fourth light (IG2) to the third light quantity ratio based on the light quantity ratio setting value.
- the light source controller 150 adjusts the degree of red color of the image by adjusting the light quantity ratio of the fifth light (IA) and the sixth light (IR) to the fourth light quantity ratio based on the light quantity ratio set value. .
- the color balance of the illumination light and the color expression of the image in each of the blue region, the green region, and the red region can be adjusted independently. Since the color expression of the image in each of the blue region, the green region, and the red region can be adjusted, the degree of various colors in the image can be adjusted.
- FIG. 12 shows the spectral absorption characteristics of indigo carmine, crystal violet, and toluidine blue, which are spraying agents generally used in the field of endoscopes. As shown in FIG. 12, these agents have steep spectral absorption characteristics in the green region. Therefore, by adjusting the light amount ratio of the lights IG1 and IG2 that belong to the green region and have different wavelengths, it is possible to adjust the color expression in the subject to which the medicine has been sprayed. For example, when the light amount of the light IG1 that is green on the short wavelength side is relatively increased, the subject to which the medicine has been sprayed becomes bluish green.
- the subject to which the medicine is sprayed has a yellowish green color expression. It is possible to adjust the color expression so that the appearance of the drug approaches the color expression by the xenon light source.
- FIG. 13 is an example of a spectrum of illumination light in the seventh embodiment.
- the red area is divided into three areas BA, BR1 and BR2.
- Lights IV, IB, IG, IA, IR1 and IR2 belong to the regions BV, BB, BG, BA, BR1 and BR2, respectively.
- FIG. 13 shows an example of a spectrum when the light source is a laser. That is, the lights IV, IB, IG, IA, IR1 and IR2 are narrow band lights by the laser light.
- the light source controller 150 adjusts the bluish or yellowishness of the image by adjusting the light amount ratio of the light IV and IB. Further, the light source controller 150 adjusts the reddishness of the image by adjusting the light amount ratio of the areas BA, BR1, and BR2. By adjusting the light amount ratios of the three lights in the red region, the color expression in the red region can be precisely adjusted. Since the image of the living body has many red components, the color expression in the red region can be adjusted precisely, so that the color expression of the living body can be adjusted more accurately.
- the case where the light source is a laser has been described as an example, but the light source is not limited to a laser.
- the case where the light source is a light emitting diode has been described as an example, but the light source is not limited to the light emitting diode. That is, various light sources can be adopted in the first to seventh embodiments.
- the light source controller 150 changes the light amount ratio set value according to the image pickup device of the endoscope scope attached to the endoscope device 10.
- the image pickup device is a monochrome image pickup device, a primary color Bayer image pickup device, or a complementary color image pickup device.
- the monochrome image sensor includes a UV filter, an IR filter, or the like, but does not include a color filter having a different color in each pixel.
- the primary color Bayer image sensor is an image sensor provided with a Bayer type color filter.
- the complementary color image sensor is an image sensor provided with a complementary color filter.
- the light source controller 150 reads out the light amount ratio setting value corresponding to the image pickup device of the endoscope scope 200 connected to the light source device 160.
- the light amount ratio setting value corresponding to the image sensor is stored in, for example, a memory mounted on the endoscope scope 200 or the storage unit 170 of the light source device 160.
- the light source controller 150 determines the light amount ratio of the light source from the read light amount ratio setting value. Accordingly, the first light amount ratio and the second light amount ratio corresponding to the image pickup device of the endoscope scope 200 connected to the light source device 160 are set. That is, the light amount ratio that achieves color balance and color expression corresponding to the image pickup device of the endoscope scope 200 connected to the light source device 160 is set.
- the light source controller 150 may further change the light emission timing of the light source according to the image pickup device of the endoscope scope attached to the endoscope device 10.
- the light emission timing of the light source includes a frame sequential method and a simultaneous method.
- the field-sequential method is a method in which a monochrome image pickup device images a subject illuminated by a plurality of lights emitted in a time-division manner.
- the simultaneous method is a method in which an imaging element images a subject illuminated by a plurality of lights that are simultaneously emitted.
- the light source controller 150 reads out information regarding the type of the image pickup device mounted on the endoscope scope 200 connected to the light source device 160.
- the information regarding the type of the image pickup device is stored in, for example, a memory mounted on the endoscope scope 200 or the storage unit 170 of the light source device 160.
- the light source controller 150 determines the light emission timing of the light source from the read information regarding the type of the image sensor. That is, the light source controller 150 determines whether simultaneous light emission or frame sequential light emission is performed.
- the light source controller 150 sequentially causes the plurality of light sources to emit light based on the light amount ratio determined corresponding to the monochrome image pickup device. For example, the red light source LDR and the amber light source LDA are simultaneously emitted, the green light source LDG is subsequently emitted, and then the blue light source LDB and the purple light source LDV are simultaneously emitted.
- the image pickup device is the primary color Bayer image pickup device or the complementary color image pickup device
- the light source controller 150 causes the plurality of light sources to emit light simultaneously based on the light amount ratio determined corresponding to the primary color Bayer image pickup device or the complementary color image pickup device.
- the light source controller 150 when the first endoscope is attached to the endoscope device 10, the light source controller 150, based on the first light amount ratio setting value corresponding to the first endoscope scope, The light amount of four or more lights forming the illumination light is adjusted.
- the light source controller 150 is based on the second light amount ratio set value corresponding to the second endoscope scope and different from the first light amount ratio set value. Then, the light amount of four or more lights forming the illumination light is adjusted.
- the light amount ratio set value is set according to the image pickup device of the endoscope is described as an example, but the light amount ratio set value may be set according to the model of the endoscope or the like. ..
- the color balance of the illumination light and the color expression of the image can be adjusted according to the image pickup device of the endoscope scope mounted on the endoscope device 10 or the model of the endoscope scope. ..
- FIG. 14 is a detailed configuration example of the light source device 160 according to the ninth embodiment.
- the light source unit 140 includes light sources LDV, LDB, LDG, LDA, LDR, optical sensors SS1 to SS5, lenses LN1 to LN6, and an optical multiplexer 141.
- the optical multiplexer 141 includes dichroic mirrors DC1 to DC4.
- the light sources on the short wavelength side are arranged in order from the far side to the near side from the connector 240 to which the endoscope scope is connected.
- the lens LN1 causes the light emitted from the light source LDV to enter the dichroic mirror DC1.
- the lenses LN2, LN3, LN4, and LN5 respectively cause the lights emitted from the light sources LDB, LDG, LDA, and LDR to enter the dichroic mirrors DC1, DC2, DC3, and DC4.
- the dichroic mirrors DC1 to DC4 combine the lights emitted from the light sources LDB, LDG, LDA, and LDR.
- the lens LN6 makes the combined light incident on the connector 240.
- the optical sensor SS1 is arranged outside the optical path from the light source LDV to the lens LN1. That is, the optical sensor SS1 detects the leaked light outside the optical path of the light emitted from the light source LDV.
- the optical sensors SS2, SS3, SS4, SS5 are arranged outside the optical paths from the light sources LDB, LDG, LDA, LDR to the lenses LN2, LN3, LN4, LN5, respectively. That is, the optical sensors SS2, SS3, SS4, and SS5 detect leak light outside the optical path among the lights emitted from the light sources LDB, LDG, LDA, and LDR, respectively.
- the light-receiving surfaces of the optical sensors SS1 to SS5 face the emission surface of the light source. Therefore, the optical sensors SS1 to SS5 are less likely to receive the reflected and scattered light from the lens or the dichroic mirror.
- the optical sensor SS1 has an optical filter having a wavelength characteristic that is equal to the attenuation when the light from the light source LDV passes through the optical multiplexer 141.
- the optical sensors SS2 to SS5 have an optical filter having a wavelength characteristic that is equal to the attenuation when the light from the light sources LDB, LDG, LDA, and LDR passes through the optical multiplexer 141. “Equal” includes almost equal cases.
- the wavelength characteristic of the optical filter is not limited to the case where the attenuation is exactly equal to the attenuation when passing through the optical multiplexer 141.
- the optical sensors SS1 to SS5 may include an ND (Neutral Density) filter for optimizing the range of the amount of received light.
- FIG. 15 shows the spectral transmittance characteristics of the dichroic mirrors DC1 to DC4.
- the dichroic mirrors DC1 to DC4 are dielectric multilayer mirrors. In the spectral transmittance characteristics of the dichroic mirrors DC1 to DC4, the transmittance on the short wavelength side is high (about 100%) and the transmittance on the long wavelength side is low (about 0%).
- the dielectric multilayer mirror reflects almost all light that does not pass through. That is, the value obtained by subtracting the transmittance from 100% is the approximate reflectance. It is desirable that the change in transmittance of each dichroic mirror is designed to be as steep as possible. However, it is also preferable to have an appropriate inclination in consideration of cost and the like.
- the transmittance characteristics of all dichroic mirrors are high on the short wavelength side and low on the long wavelength side. Therefore, for example, even if the ambient temperature changes, the transmittance characteristics of all the dichroic mirrors are wavelength-shifted in the same direction, so that the change in the amount of illumination light emitted from the light source device 160 can be reduced. Further, for the same reason, it is possible to reduce the change in the light amount ratio even when the ambient temperature changes.
- the light source controller 150 uses the light sources LDV and LDB based on the light amounts sensed by the optical sensors SS1 to SS5 so that the illumination light emitted from the endoscope to the subject has the light amount ratio indicated by the light amount ratio setting value. , LDG, LDA, LDR are adjusted.
- the light source controller 150 calculates the actual light amount ratio based on the light amounts sensed by the optical sensors SS1 to SS5, compares the calculated light amount ratio with the light amount ratio set value, and based on the comparison result.
- the feedback control is performed on the light emission amounts of the light sources LDV, LDB, LDG, LDA, and LDR. By doing so, it is possible to correct the variation of the light emission amount due to the individual difference of the light source or the change of the light emission amount due to the aged deterioration of the light source by the feedback control. As a result, since an accurate light quantity ratio can be realized, accurate color balance and color expression can be realized.
- Each of the optical sensors SS1 to SS5 has an optical filter, and the optical filter has a wavelength characteristic equal to the attenuation when the light emitted from the light sources LDV, LDB, LDG, LDA, and LDR passes through the optical multiplexer 141. .. As described above, “equal” includes the case of being substantially equal.
- the light source controller 150 adjusts the amount of light based on the outputs from the photosensors SS1 to SS5.
- the light quantity at the exit end of the light combining section 141 is obtained by multiplying the light emission amount of the light source and the attenuation rate of the light combining section 141.
- the amount of light received by the optical sensors SS1 to SS5 takes into consideration the attenuation in the optical multiplexer 141.
- the light source controller 150 adjusts the light emission amount based on the outputs of the optical sensors SS1 to SS5, so that the light amount at the emission end of the light combining unit 141 becomes a light amount that satisfies the light amount ratio set value. Feedback control the quantity.
- the optical sensors SS1 to SS5 may include wavelength cut filters.
- Dichroic mirrors DC1 to DC4 are provided on the optical path of the light emitted from the light sources LDV, LDB, LDG, LDA, and LDR toward the connector 240.
- the wavelength cut filter removes the light in the wavelength range cut by the dichroic mirrors DC1 to DC4. By doing so, it becomes possible to perform more precise feedback control of the light emission amount of the light source with respect to the light amount ratio set value.
- 10 endoscope device 100 control device, 110 processing circuit, 140 light source unit, 141 light combining unit, 150 light source controller, 151 color balance control circuit, 152 color expression control circuit, 160 light source device, 170 storage unit, 200 endoscope Mirror scope, 210 insertion part, 211, 212 illumination lens, 213 imaging unit, 214 light guide path, 215 image signal line, 220 operation part, 230 connection cable, 240 connector, 300 display part, 600 input part, BV, BB, BG , BA, BR area, IV, IB, IG, IA, IR light, LDV, LDB, LDG, LDA, LDR light source, SS1-SS5 optical sensor
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- General Physics & Mathematics (AREA)
- Astronomy & Astrophysics (AREA)
- Heart & Thoracic Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Endoscopes (AREA)
Abstract
内視鏡用光源装置は、光源部(140)と光源コントローラ(150)とを含む。光源コントローラ(150)は、色バランスに関する第1光量比及び色表現に関する第2光量比を設定するための光量比設定値に基づいて、4以上の光の各光の光量を調整する。第1光量比は、青色領域に属する光と緑色領域に属する光と赤色領域に属する光の光量比である。青色領域、緑色領域及び赤色領域のいずれかの領域に、2以上の光が属する。第2光量比は、その2以上の光の光量比である。光源コントローラ(150)は、光量比設定値に基づいて4以上の光の光量比を調整することで、照明光の色バランスと画像の色表現とを調整する。
Description
本発明は、内視鏡用光源装置、内視鏡装置及び内視鏡用光源装置の作動方法等に関する。
内視鏡装置において、互いに異なる波長で発光する複数の半導体光源を組み合わせた照明技術が知られている。このような照明技術における照明光のスペクトルは、キセノン光源等の白色光源のスペクトルと異なるのが通常である。複数の光源を組み合わせた場合のスペクトルは、複数の光源が射出する光の光量比によって決まる。
複数の光源が射出する光の光量比を調整する技術が、例えば特許文献1、2に開示されている。特許文献1では、半導体光源としてレーザを用いており、レーザの個体差を補正するために、照明光の色バランスが変わらないように複数のレーザの光量比を調整する。特許文献2では、半導体光源としてLEDを用いており、赤色領域、緑色領域及び青色領域の各々において、LEDの光量積分値とキセノン光源の光量積分値とを一致させることで、キセノン光源と同等な白色光を生成している。
内視鏡装置において、互いに波長が異なる複数の光源により照明光を発生させる場合において、複数の光源の光量比を調整することで、照明光の色バランスと画像の色表現を各々独立にチューニングしたいという課題がある。色バランスは、いわゆるホワイトバランスであり、色温度に関係する。色表現は、いわゆる色の度合いに関係しており、例えば生体の赤味又は黄色味等に関係する。
本発明の一態様は、互いに波長の異なる4以上の光を射出する4以上の光源を有し、前記4以上の光を照明光として内視鏡スコープに入射する光源部と、色バランスに関する第1光量比及び色表現に関する第2光量比を設定するための光量比設定値に基づいて、前記4以上の光の各光の光量を調整する光源コントローラと、を含み、可視光の波長領域に含まれる青色領域、緑色領域及び赤色領域の各々に、前記4以上の光のうち少なくとも1つずつの光が属し、前記青色領域、前記緑色領域及び前記赤色領域のいずれかの領域である第1色領域に、前記4以上の光のうち2以上の光が属し、前記第1色領域に属する前記2以上の光は、狭帯域光であり、前記第1光量比は、前記青色領域に属する光と前記緑色領域に属する光と前記赤色領域に属する光の光量比であり、前記第2光量比は、前記第1色領域に属する前記2以上の光の光量比であり、前記光源コントローラは、前記光量比設定値に基づいて前記4以上の光の光量比を調整することで、前記照明光の色バランスと、前記内視鏡スコープの撮像素子によって撮像される画像の明度、彩度及び色相の少なくとも一つを含む前記画像の色表現と、を調整する内視鏡用光源装置に関係する。
また本発明の他の態様は、上記に記載された内視鏡用光源装置と、前記内視鏡スコープと、を含む内視鏡装置に関係する。
また本発明の更に他の態様は、可視光の波長領域に含まれる青色領域、緑色領域及び赤色領域の各々に4以上の光のうち少なくとも1つずつの光が属し、前記青色領域、前記緑色領域及び前記赤色領域のいずれかの領域である第1色領域に前記4以上の光のうち2以上の光が属し、前記第1色領域に属する前記2以上の光は、狭帯域光であり、第1光量比は、前記青色領域に属する光と前記緑色領域に属する光と前記赤色領域に属する光の光量比であり、第2光量比は、前記第1色領域に属する前記2以上の光の光量比である場合において、互いに波長の異なる前記4以上の光を照明光として内視鏡スコープに入射し、色バランスに関する前記第1光量比及び色表現に関する前記第2光量比を設定するための光量比設定値に基づいて、前記4以上の光の各光の光量を調整することで、前記照明光の色バランスと、前記内視鏡スコープの撮像素子によって撮像される画像の明度、彩度及び色相の少なくとも一つを含む前記画像の色表現と、を調整する内視鏡用光源装置の作動方法に関係する。
以下、本実施形態について説明する。なお、以下に説明する本実施形態は、請求の範囲に記載された本発明の内容を不当に限定するものではない。また本実施形態で説明される構成の全てが、本発明の必須構成要件であるとは限らない。
1.内視鏡装置
図1は、内視鏡装置10の構成例である。なお以下では、一般的な内視鏡と共通する構成及び動作については説明を省略し、本発明に関連する特徴部を中心に説明する。また以下では、消化器用の医療用内視鏡を例に説明するが、本発明の適用対象はこれに限定されない。即ち、本明細書で言う内視鏡とは、様々な観察対象物の凹部内面を観察するための挿入部を備える機器一般を言うものとする。例えば、内視鏡とは、生体の診察に用いる医療用内視鏡、又は工業用内視鏡である。
図1の内視鏡装置10は、制御装置100と内視鏡スコープ200と表示部300と入力部600とを含む。なお、表示部300をディスプレイ、表示装置とも呼ぶ。また入力部600を入力装置、操作装置とも呼ぶ。
まず、内視鏡装置10の構成について説明する。
内視鏡スコープ200は、挿入部210と操作部220と接続ケーブル230とコネクタ240とにより構成されている。挿入部210は、可撓性を有しており、生体の体腔内に挿入可能である。生体の体腔は、本実施形態における被写体である。医師等のユーザは、操作部220を把持すると共に、操作部220を用いて内視鏡装置10を操作する。接続ケーブル230は、制御装置100と内視鏡スコープ200を接続するケーブルであり、可撓性を有する。コネクタ240は、接続ケーブル230の一端に設けられており、制御装置100と内視鏡スコープ200を着脱可能にする。
挿入部210の先端には、照明光を被写体に向けて射出する照明レンズ211、212と、被写体の表面から反射又は散乱された照明光を受光することで画像を撮像する撮像ユニット213と、が配置されている。
内視鏡スコープ200には、導光路214が設けられている。導光路214は、照明レンズ211、212と光学的に接続される。制御装置100に光源部140が設けられており、導光路214は、光源部140から射出される照明光を照明レンズ211、212まで導光する。導光路214は、光ファイバ束等のライトガイドである。ライトガイドは、コネクタ240から、接続ケーブル230、操作部220内を経由して、照明レンズ211、212まで延びている。
照明レンズ211、212は、ライトガイドにより導光された照明光を所望の放射角となるように広げる。照明レンズ211、212の各々は、単数または複数のレンズにより構成された照明光学系である。
撮像ユニット213は、撮像光学系と撮像素子を有している。撮像素子は、例えばCMOS型イメージャである。イメージャは、ベイヤ型に配列されたRGB原色カラーフィルタが搭載されたベイヤ型イメージャ、又は補色カラーフィルタが搭載された補色イメージャ、又はモノクロイメージャである。モノクロイメージャは、面順次方式の内視鏡スコープに用いられる。なお、撮像素子として、CMOS型イメージャの他にCCDを用いることも可能である。
内視鏡スコープ200には画像信号線215が設けられており、撮像ユニット213が撮像した画像の画像信号を制御装置100まで伝送する。画像信号線215は、挿入部210、操作部220、接続ケーブル230内に配置されており、コネクタ240を介して制御装置100へ電気的に接続されている。なお、画像信号線215は、光通信用の光ファイバ等であってもよい。
制御装置100は、照明光を射出する光源装置160と、処理回路110とを含む。処理回路110は、撮像ユニット213からの画像信号に対して画像処理を行ったり、内視鏡装置10の各部を制御したりする。
処理回路110は、複数の回路部品が基板に実装された回路装置により実現される。或いは、処理回路110は、プロセッサ或いはASIC(Application Specific Integrated Circuit)等の集積回路装置であってもよい。処理回路110がプロセッサである場合、処理回路110の動作を記述したプログラムをプロセッサが実行することで、処理回路110の動作が実現される。プログラムは、例えば、図示しないメモリに記憶されている。
表示部300は、処理回路110により画像処理された被写体の画像を表示する。表示部300は、一般に用いられている種々の表示デバイスであり、例えば液晶モニタ等である。表示部300は、画像信号を伝送する電気配線により、制御装置100と電気的に接続されている。
入力部600は、ユーザからの操作を受け付け、その操作情報を処理回路110へ出力する。入力部600は、例えばボタン又はダイヤル、キーボード、マウス、タッチパネル等である。タッチパネルは表示部300に設けられる。或いは、入力部600は、PC(Personal Computer)等の情報処理装置に接続されるインターフェースであってもよい。インターフェースは、情報処理装置からの入力情報を受け付け、その入力情報を処理回路110へ出力する。インターフェースは、例えばUSB(Universal Serial Bus)又はLAN(Local Area Network)等の通信インターフェースである。
光源装置160は、照明光を射出する光源部140と、光源部140を制御する光源コントローラ150と、光量比設定値を記憶する記憶部170と、を含む。
光源部140は、互いに波長の異なる4以上の光を射出する4以上の光源を有する。光源部140は、その4以上の光を照明光として内視鏡スコープ200に入射する。4以上の光源の各々は、発光素子である。例えば、発光素子は、発光ダイオード(LED: Light Emitting Diode)又は半導体レーザ等の半導体光源である。
可視光の波長領域は、赤色領域、緑色領域及び青色領域を含む。これら各領域には、照明光を構成する4以上の光のうち1つずつが、属している。且つ、赤色領域、緑色領域及び青色領域のいずれかの領域には、4以上の光のうち2以上の光が属している。この領域を第1色領域と呼ぶことにする。第1色領域に属する2以上の光は、狭帯域光である。第1色領域に属する光以外の光は、狭帯域光であってもよいし、狭帯域光でなくてもよい。なお、照明光の詳細な例については後述する。
光源コントローラ150は、例えば、光源を駆動する駆動回路と、駆動回路を制御する制御回路又はプロセッサと、を含むことができる。或いは、光源に駆動回路が含まれる場合には、光源コントローラ150は、光源の駆動回路を制御する制御回路又はプロセッサであってもよい。
光源コントローラ150は、光量比設定値に基づいて上記4以上の光の各光の光量を調整する。光量比設定値は、色バランスに関する第1光量比及び色表現に関する第2光量比を設定するための設定値である。第1光量比は、赤色領域に属する光と緑色領域に属する光と青色領域に属する光の光量比である。上述のように第1色領域には2以上の光が属する。このとき、その2以上の光の光量の合計が、第1色領域に属する光の光量となる。第2光量比は、第1色領域に属する2以上の光の光量比である。光源コントローラ150は、光量比設定値に基づいて4以上の光の光量比を調整することで、照明光の色バランスと画像の色表現とを調整する。色バランスは、照明光における赤色と緑色と青色のバランスであり、例えば照明光の色温度のことである。画像の色表現は、色バランスとは異なり、例えば青味又は赤味等、各色の度合いのことである。具体的には、色表現は、画像の明度、彩度及び色相の少なくとも一つを含む。即ち、色の度合いが調整されるということは、明度、彩度及び色相の少なくとも一つが調整されるということである。
光量比設定値は、第1光量比及び第2光量比を同時に実現する1つの光量比であってもよいし、或いは第1光量比及び第2光量比が別々に指定されたものであってもよい。例えば、半導体光源は電流値と発光量に相関がある。この場合、光量比設定値は、第1光量比及び第2光量比を実現する電流値を指定するものであってもよい。例えば、光量比設定値は、記憶部170に記憶されている。光源コントローラ150は、記憶部170から読み出した光量比設定値に基づいて、照明光を制御する。或いは、光量比設定値は、入力部600を介して処理回路110に入力される。光源コントローラ150は、処理回路110からの光量比設定値に基づいて、照明光を制御する。
記憶部170として種々の記憶装置を想定できる。例えば、記憶部170は、RAM又はROM、不揮発性メモリ等の半導体メモリである。或いは、記憶部170は、ハードディスクドライブ等の磁気記憶装置であってもよい。
光源コントローラ150が光源の発光量を制御する手法は種々想定できる。例えば光源が発光ダイオードである場合、電流調光又はPWM調光、パルス数調光、それらの組み合わせ等の手法がある。電流調光では、光源コントローラ150は、発光ダイオードを駆動する駆動電流を変化させることで光量を調整する。PWM調光では、光源コントローラ150は、所定の撮像期間内に発光する時間を変化させることで光量を調整する。パルス数調光では、光源コントローラ150は、所定の撮像期間内に発光させるパルスの数を変化させることで光量を調整する。また、光源コントローラ150は、これら3つの調光手法のうち2つ又は3つを組み合わせて用いてもよい。
以上のように複数の光源を用いて照明光を発生させた場合において、照明光の色バランスと画像の色表現を各々独立にチューニングしたいという課題がある。例えば、内視鏡装置のユーザは、内視鏡画像における被写体の色などに基づいて診断を行うが、その診断において、文献或いは過去の経験を参考にしている。このとき、文献或いは過去の経験に即した色バランスや色味が再現されていることが望ましい。
この点、本実施形態によれば、光源コントローラ150は、照明光を構成する4以上の光の光量比を光量比設定値に基づいて調整することで、照明光の色バランスと画像の色表現とを調整する。これにより、照明光の色バランスと画像の色表現を各々独立に調整することが可能になる。例えば、照明光を構成する4以上の光の光量比が調整されることで、文献或いは過去の経験に即した色バランスや色表現を再現できる。
具体的には、光源コントローラ150は、第1色領域に属する2以上の光の光量の和を、第1光量比に基づいて所定の範囲内に保つ。且つ、光源コントローラ150は、第1色領域に属する2以上の狭帯域光の光量を、第2光量比に基づいて調整する。
上述したように、第1光量比は照明光の色バランスを設定する光量比であり、第2光量比は色表現を設定する光量比である。即ち、光源コントローラ150は、第1光量比によって照明光の色バランスを設定すると共に、その色バランスを保ちながら第2光量比に基づいて画像の色表現を調整する。これにより、照明光の色バランスと画像の色表現が独立に調整され、目標とする色バランス及び色表現が実現される。
ここで、所定の範囲は、第1光量比によって設定される色バランスを実現できる許容範囲である。例えば、第1光量比が、赤色領域の光量:緑色領域の光量:青色領域の光量=1:1:1であり、第1色領域が赤色領域であるとする。このとき、赤色領域の光量は、赤色領域に属する2以上の光の光量の和である。赤色領域の光量は、例えば0.9~1.1等の所定の範囲内に保たれる。但し、0.9~1.1は所定の範囲の一例であって、所定の範囲はこれに限定されない。許容範囲は、一般的な画像処理技術により、画質に大きな影響を与えることなく補正可能な範囲に入っていれば良い。すなわち、色帯域ごとにゲインを掛けて明るさを補正する場合、一般的な内視鏡観察では±50%程度であれば使用に耐えうる。±30%程度であれば、大多くの用途で場合、問題なく使用できる。±10%程度に収めることで、画像ノイズや明部、暗部の色合いにも影響を与えることはほとんど無く、精密な診察や治療にも問題なく利用できる。さらに最新の画像処理技術を用いることで許容範囲を広げることも可能である。
なお、照明光は、内視鏡スコープ200に搭載された撮像素子を経由して表示部300に表示される。このとき、撮像素子や表示部300の分光特性も色バランスに影響してくる。最終的に表示部300に表示される色バランスを所望のバランスに設定するため、撮像素子の分光特性と表示部300の分光特性などを考慮してもよい。より詳細には、撮像素子213の受光感度の分光特性、及び撮像素子に搭載されたUV/IRカットフィルタの分光特性、カラーフィルタが搭載されている場合はその分光特性、照明光を導光する導光路214の分光特性、照明レンズ211、212の分光特性、撮像光学系の分光特性等を考慮してもよい。第1光量比は、これらの要素のうち1以上が考慮された光量比であってもよい。更に、表示部300の色再現に関する特性が考慮された第1光量比となっていることが、望ましい。
以下、詳細な実施形態について説明する。なお、以下の複数の実施形態は適宜に組み合わされてもよい。
2.第1実施形態
第1実施形態では、互いに波長が異なる5つの光により照明光が構成される場合を説明する。なお後述するように、4つ又は6以上の光により照明光が構成されてもよい。
図2は、第1実施形態における照明光のスペクトル例である。図2に示すように、可視光の波長領域は青色領域と緑色領域と赤色領域を含む。例えば、青色領域は400nm~495nmであり、緑色領域は496nm~585nmであり、赤色領域は585nm~680nmである。なお波長帯域を波長帯域とも呼ぶ。
青色領域は、領域BVと領域BBに分割され、赤色領域は領域BAと領域BRに分割される。照明光は、領域BVを有する光IVと、領域BBを有する光IBと、領域BGを有する光IGと、領域BAを有する光IAと、領域BRを有する光IRと、により構成されている。光IV、IB、IA、IRは、狭帯域光である。狭帯域光とは、その光が属する色領域よりも狭い波長領域を有する光である。例えば光IVは、青色領域より狭い領域BVを有する。緑色領域に属する光IGは、緑色領域と同程度の領域BGを有する広帯域光である。なお、光IGは、緑色領域より狭い波長領域を有する狭帯域光であってもよい。領域BV、BB、BG、BA、BRは、それぞれ紫、青、緑、アンバー、赤に対応する。但し、領域分割はこれに限定されない。なお、上述した第1色領域は、図2において青色領域又は赤色領域である。
図3は、光源装置160の第1の詳細な構成例である。なお図3において内視鏡スコープ200のコネクタ及び導光路214のみを図示し、その他の構成要素について図示を省略している。
光源部140は、紫の光IVを射出する光源LDVと、青の光IBを射出する光源LDBと、緑の光IGを射出する光源LDGと、アンバーの光IAを射出する光源LDAと、赤の光IRを射出する光源LDRと、光合波部141と、を含む。また光源部140は、光源の配光を変更したり並行光化したりするためのレンズ等を、更に含んでもよい。
例えば、紫の光IVの領域BVは400nm≦BV≦440nmであり、青の光IBの領域BBは440nm<BB≦495nmであり、緑の光IGの領域BGは495nm<BG≦585nmであり、アンバーの光IAの領域BAは586nm<BA≦615nmであり、赤の光IRの領域BRは615nm<BR≦680nmである。なお、短波長側の境界を400nmとし、長波長側の境界を680nmとしたが、400nmより短波長側に照明光の波長成分が存在してもよいし、680nmより長波長側に照明光の波長成分が存在してもよい。
光合波部141は、上記5色の光を合波して導光路214に入射させる。光合波部141は、光IV、IB、IG、IA、IRを合波するダイクロイックミラーDC1~DC4である。或いは、光合波部141は、5つの入射端と1つの出射端を有する光ファイバ又は光ファイバ束であってもよい。
ダイクロイックミラーDC1~DC4は、互いに異なる光学特性を有している。即ち、DC1は、光IVを透過し、光IBを反射する。DC2は、光IV及びIBを透過し、光IGを反射する。DC3は、光IV及びIB、IGを透過し、光IAを反射する。DC4は、光IV及びIB、IG、IAを透過し、光IRを反射する。なお、ここでの“透過する”は、光がピーク強度となる波長を含む主要部分を透過することである。また、ここでの“反射する”とは、主要部分を反射することである。即ち、スペクトルの主要部分でない裾野部分はカットされてもよい。即ち、ダイクロイックミラーDC1~DC4は、各光の不要な部分をカットするフィルタとしても機能している。この結果、ダイクロイックミラーDC1~DC4により合波された照明光は、互いに略重なりの無い5つの独立したスペクトルを有する。即ち、領域BV、BB、BG、BA、BRの各々には、ひとつずつの光が属しており、隣接する領域の光はほとんど含まれない。
光源部140は、内視鏡装置の観察目的に応じて、白色照明と特殊光照明を射出可能に構成されている。例えば光路に図示しないフィルタが挿入されることで、特殊光照明が実現される。フィルタは、特殊光のスペクトルに合わせた分光特性になっている。光源部140が白色照明を射出するとき、5つの光源全てが発光し、5つの光全ての主要部分が導光路214に入射する。
光源コントローラ150は、光源LDV、LDB、LDG、LDA、LDRに対して駆動電流を出力することで、光源LDV、LDB、LDG、LDA、LDRを発光させる。また光源コントローラ150は、光源LDV、LDB、LDG、LDA、LDRの発光タイミングを同期制御する。即ち、内視鏡スコープが面順次方式である場合、光源コントローラ150は、光源LDV、LDB、LDG、LDA、LDRを、所定の発光シーケンスに従って順次に発光させる。内視鏡スコープの撮像素子が原色ベイヤ型又は補色型である場合、光源コントローラ150は、光源LDV、LDB、LDG、LDA、LDRを同時に発光させる。
光源コントローラ150は、色バランスを調整する色バランス制御回路151と、色表現を調整する色表現制御回路152と、を含む。
色バランス制御回路151は、コネクタ240に接続された導光路214の入射端に入射する照明光の色バランスが、第1光量比となるように、5つの光の光量比を調整する。光IV、IB、IG、IA、IRの光量を、それぞれBpv、Bpb、Gp、Rpa、Rprとする。色バランス制御回路151は、例えば(Bpv+Bpb):Gp:(Rpa+Rpr)=1:1:1となるように光量比を調整する。なお1:1:1は一例である。即ち、第1光量比は、所望の色温度又は所望のカラーバランスとなるように、調整される。色バランスの調整においては、Bpv:Bpb又はRpa:Rprを、任意に設定できる。即ち、何れか一方が消灯していたとしても、色バランスが第1光量比となるように調整すればよい。
色表現制御回路152は、内視鏡スコープ200の撮像素子により撮像される画像の色表現を調整する。即ち、色表現制御回路152は、表示部300に表示される画像の色表現を調整する。色表現制御回路152は、赤色領域に属する2つの光の光量比Rpa:Rprを赤色用光量比に調整することで、所望の色表現を実現する。また色表現制御回路152は、青色領域に属する2つの光の光量比Bpv:Bpbを青色用光量比に調整することで、所望の色表現を実現する。例えば、従来の内視鏡において広く使われているキセノン光源で生体表面を照明したときの生体内面の色表現と略等しい色表現となるように、色表現制御回路152が光量比を制御する。色表現の調整において、たとえば色差ΔE等を指標にすることが可能である。
光量比設定値は、第1光量比と赤色光量比と青色光量比により決まる光量比である。第1実施形態においては、青色光量比が第2光量比であり、赤色光量比が第3光量比である。色バランス及び色表現が調整された結果が、例えば下式(1)~(3)であるとする。
Bp:Gp:Rp=0.9:1.0:0.8 ・・・(1)
Bpv:Bpb=0.4:0.5 ・・・(2)
Rpa:Rpr=0.5:0.3 ・・・(3)
Bp:Gp:Rp=0.9:1.0:0.8 ・・・(1)
Bpv:Bpb=0.4:0.5 ・・・(2)
Rpa:Rpr=0.5:0.3 ・・・(3)
このとき、光量比設定値は下式(4)となる。
Bpv:Bpb:Gp:Rpa:Rpr=0.4:0.5:1.0:0.5:0.3
・・・(4)
Bpv:Bpb:Gp:Rpa:Rpr=0.4:0.5:1.0:0.5:0.3
・・・(4)
光源コントローラ150が、光量比設定値により光源LDV、LDB、LDG、LDA、LDRを発光させることで、光源装置160が、所望の色バランスと色表現を両立した照明光を照射することが可能となる。例えば、キセノン光源等の白色光源によって被写体を照明したときの色バランスと同じ色バランスとなるように、照明光の色バランスが調整される。また例えば、赤い被写体を撮像したときに、画像上において、その被写体が赤く見えるように、画像の色表現が調整される。また例えば、キセノン光源等の白色光源を有する内視鏡装置によって病変部を撮影したときの画像と、同等の色味を有する画像が撮影されるように、画像の色表現が調整される。また例えば、病変部と正常部とが識別しやすいように、画像の色表現が調整される。
図4、図5は、青色光量比Bpv:Bpbと色表現の関係を説明する図である。青色領域における光IVとIBの光量比Bpv:Bpbを変化させることで、画像の青味又は黄色味を調整できる。即ち、図4に示すように、青の光IBの光量を相対的に大きくすることで、画像の青味を強くできる。また、図5に示すように、紫の光IVの光量を相対的に大きくすることで、画像の黄色味を強くできる。
青の領域BBは、紫の領域BVよりも視感度が高い。このため、青色領域の光量Bpv+Bpbを維持した状態で、紫の光IVの光量を相対的に大きくすると、画面上では相対的に青味が減少する。このとき、第1光量比Bp:Gp:Rpにより色バランスは維持されているため、色バランスを保ったまま、青味が減少することになる。青味が減少すると、青と補色関係にある黄色味が強くなると考えられる。一方、青色領域の光量Bpv+Bpbを維持した状態で、青の光IBの光量を相対的に大きくすると、画面上では相対的に青味が増加する。生体において青い被写体が少ないため、青味が増加することで黄色味が減少し、その結果としてピンク色が強くなる。或いは、生体の赤色に青色が加わると、生体は紫がかった赤に見える。これが結果的に、ピンク色が強くなったように見えている可能性もある。以上のように、生体のような赤色から肌色に近い画像において、青色光量比Bpv:Bpbを制御することで、黄色領域から赤色領域における色表現を制御できる。
図6、図7は、赤色光量比Rpa:Rprと色表現の関係を説明する図である。赤色領域における光IAとIRの光量比Rpa:Rprを変化させることで、画像の赤味を調整できる。即ち、図6に示すように、アンバーの光IAの光量を相対的に大きくすることで、画像の赤味を弱くできる。また、図7に示すように、赤の光IRの光量を相対的に大きくすることで、画像の赤味を強くできる。
赤色領域は生体の色に近い波長領域であるため、光の色と画像の色の相関性が高いと考えられる。即ち、赤色領域の光量Rpa+Rprを維持した状態で、アンバーの光IAの光量を相対的に大きくすると、画像の赤味が減少し、画像がオレンジ色に近くなる。一方、赤色領域の光量Rpa+Rprを維持した状態で、赤の光IRの光量を相対的に大きくすると、画像の赤味が増加する。第1光量比Bp:Gp:Rpにより色バランスは維持されているため、色バランスを保ったまま、赤色領域における色表現を調整できる。
例えば、以下の手順により光量比が決定される。まず、本実施形態の内視鏡装置10により、胃の粘膜を模したサンプルを撮影する。また、色表現の目標となる画像、例えばキセノン光源によりサンプルを照明したときの画像を取得する。そして、内視鏡装置10により撮像された画像の色表現が、目標となる画像の色表現と類似したものとなるように、青色光量比Bpv:Bpb及び赤色光量比Rpa:Rprを設定する。これにより、胃の粘膜等を観察対象物としたときの色表現を調整できる。即ち、観察対象物を撮像した画像の青味又は黄色味、赤味を調整できる。なお、これらの光量比は、内視鏡スコープ200が有する撮像素子及び撮像光学系の分光特性に応じて調整されることが望ましい。また、これらの光量比は、観察対象物に応じて調整されてもよい。また、これらの光量比は、ユーザの好みに応じて調整されてもよい。
次に、色バランスを調整する詳細な手法を説明する。
色バランスの調整において、内視鏡スコープ200の撮像素子に搭載されたカラーフィルタの特性と、撮像素子の波長感度特性を考慮して、光量比が設定される。これにより、撮像素子で撮像したときの照明光の色が調整される。
青色領域と緑色領域と赤色領域における撮像素子のカラーフィルタのスペクトル形状を、それぞれB(λ)、G(λ)、R(λ)とする。λは波長である。撮像素子の画素の分光感度特性をIm(λ)とする。光源LDV、LDB、LDG、LDA、LDRの発光スペクトルを、それぞれVL(λ)、BL(λ)、GL(λ)、AL(λ)、RL(λ)とする。最大光量に対する青色領域と緑色領域と赤色領域の光量比を、それぞれPb、Pg、Prとする。ここでの最大光量は、青色領域と緑色領域と赤色領域の光量のうち最大のものである。下式(5)を波長λで積分したものをBpとし、下式(6)を波長λで積分したものをGpとし、下式(7)を波長λで積分したものをRpとする。
B(λ)×Im(λ)×(VL(λ)+BL(λ))×Pb ・・・(5)
G(λ)×Im(λ)×GL(λ)×Pg ・・・(6)
R(λ)×Im(λ)×(AL(λ)+RL(λ))×Pr ・・・(7)
B(λ)×Im(λ)×(VL(λ)+BL(λ))×Pb ・・・(5)
G(λ)×Im(λ)×GL(λ)×Pg ・・・(6)
R(λ)×Im(λ)×(AL(λ)+RL(λ))×Pr ・・・(7)
Bpは、白色の被写体を撮像したときに、青色領域において撮像素子が受光する光量である。Gpは、白色の被写体を撮像したときに、緑色領域において撮像素子が受光する光量である。Rpは、白色の被写体を撮像したときに、赤色領域において撮像素子が受光する光量である。Bp:Gp:Rpは色バランスを表す。即ち、光源コントローラ150は、撮像素子が受光する照明光の色が所望の色となるように、Bp:Gp:Rpを調整することで、色バランスを調整する。このとき、VL(λ)とBL(λ)の大きさの比が変わっても、積分したBpが同じ光量であれば、色バランスは変わらない。言い換えるとBpが一定の範囲で、VL(λ)とBL(λ)の大きさの比を調整しても色バランスに影響を与えない。
以上では、撮像素子やカラーフィルタの分光特性も考慮して設定する方法を記載した。これは精密な色バランス調整が必要な場合に行うもので、必須ではない。例えば、撮像素子の特性が異なる複数種類の内視鏡スコープと光源装置160とが組み合わされる場合、代表的な撮像素子を想定してひとつの色バランスを代表値として取得し、それを使いまわしても良い。このようにすることで、色バランスのパターンを減らすことが出来る。逆に、撮像素子の種類だけでなく固体ごとに色バランスを取得しても良い。このようにすることで、個体ごとに精密な色バランスを取得、設定することが可能となる。
次に、色表現を調整する詳細な手法を説明する。
最大光量に対する光IV、IB、IG、IA、IRの光量比を、それぞれPbv、Pbb、Pg、Pra、Prrとする。ここでの最大光量は、光IV、IB、IG、IA、IRの光量のうち最大のものである。第1調整状態におけるPbv、Pbb、Pra、PrrをPbv1、Pbb1、Pra1、Prr1とする。また第2調整状態におけるPbv、Pbb、Pra、PrrをPbv2、Pbb2、Pra2、Prr2とする。
青色領域における色表現の調整において、下式(8)を満足する範囲で、Pbv、Pbbが調整されることで、所望の色表現が実現される。
B(λ)×Im(λ)×(VL(λ)×Pbv1+BL(λ)×Pbb1)=B(λ)×Im(λ)×(VL(λ)×Pbv2+BL(λ)×Pbb2) ・・・(8)
B(λ)×Im(λ)×(VL(λ)×Pbv1+BL(λ)×Pbb1)=B(λ)×Im(λ)×(VL(λ)×Pbv2+BL(λ)×Pbb2) ・・・(8)
ここでB(λ)×Im(λ)は互いに等しいので、結局、下式(9)を満たすように調整されればよい。
VL(λ)×Pbv1+BL(λ)×Pbb1=VL(λ)×Pbv2+BL(λ)×Pbb2 ・・・(9)
VL(λ)×Pbv1+BL(λ)×Pbb1=VL(λ)×Pbv2+BL(λ)×Pbb2 ・・・(9)
赤色領域における色表現の調整において、下式(10)を満足する範囲で、Pra、Prrが調整されることで、所望の色表現が実現される。なお、ここでは青色帯域における色表現の調整と同様にR(λ)×Im(λ)は変化しないことを用いている。
AL(λ)×Pba1+RL(λ)×Pbr1=AL(λ)×Pba2+RL(λ)×Pbr2 ・・・(10)
AL(λ)×Pba1+RL(λ)×Pbr1=AL(λ)×Pba2+RL(λ)×Pbr2 ・・・(10)
このように調整されることで、色バランスを崩すことなく、色表現が調整される。なお、内視鏡装置10の製造時等において作業者が、或いは実使用時においてユーザが、実際に画像を確認しながら微調整を行ってもよい。
下式(11)を波長λで積分したものをBpvとし、下式(12)を波長λで積分したものをBpbとし、下式(13)を波長λで積分したものをRpaとし、下式(14)を波長λで積分したものをRprとする。
B(λ)×Im(λ)×VL(λ)×Pbv ・・・(11)
B(λ)×Im(λ)×BL(λ)×Pbb ・・・(12)
R(λ)×Im(λ)×AL(λ)×Pba ・・・(13)
R(λ)×Im(λ)×RL(λ)×Pbr ・・・(14)
B(λ)×Im(λ)×VL(λ)×Pbv ・・・(11)
B(λ)×Im(λ)×BL(λ)×Pbb ・・・(12)
R(λ)×Im(λ)×AL(λ)×Pba ・・・(13)
R(λ)×Im(λ)×RL(λ)×Pbr ・・・(14)
このとき、下式(15)、(16)が成り立つ。
Bp=Bpv+Bpb ・・・(15)
Rp=Rpa+Rpr ・・・(16)
Bp=Bpv+Bpb ・・・(15)
Rp=Rpa+Rpr ・・・(16)
光量比設定値は、Bpv:Bpb:Gp:Rpa:Rprである。これは、第1光量比Bp:Gp:Rpと青色光量比Bpv:Bpbと赤色光量比Rpa:Rprとを含んでいる。このようにすることで、光量比としてパラメータをまとめて取り扱うことが出来る。或いは、光量比設定値として、第1光量比Bp:Gp:Rpと青色光量比Bpv:Bpbと赤色光量比Rpa:Rprとが別々に設定されてもよい。このようにすることで、色バランスと色表現のパラメータを独立に扱いやすい。たとえば、色バランスを維持したまま色表現のみを変更したい場合、青色光量比Bpv:Bpb又は赤色光量比Rpa:Rprを変更すればよい。
光量比設定値は、内視鏡装置10に装着された内視鏡スコープの種類に応じて設定されてもよい。例えば、内視鏡スコープ200は、IDを記憶した不図示のメモリ等を含み、光源コントローラ150が、そのIDを取得する。光源コントローラ150は、IDに基づいて撮像素子を識別し、それに対応した光量比設定値に基づいて光源部140を制御する。或いは、内視鏡スコープ200が、光量設定値を記憶した不図示のメモリ等を含み、光源コントローラ150が、その光量比設定値を取得し、その取得した光量比設定値に基づいて光源部140を制御してもよい。
次に、光源装置160の動作を説明する。光源装置160は、設定モードと通常動作モードを有する。
設定モードは、例えば内視鏡装置10の製造時等において設定される。設定モードにおいて、作業者が、入力部600を操作して色バランス及び色表現を設定する。処理回路110は、その設定情報を光源コントローラ150に出力する。色バランス制御回路151及び色表現制御回路152は、設定情報に基づいて光量比設定値を設定し、光源コントローラ150は、光量比設定値に対応した光量比で光源部140を発光させる。作業者は、所望の色バランス及び色表現となるように、色バランス及び色表現を調整する。光源コントローラ150は、最終的に決定された光量比設定値を記憶部170に書き込む。なお、設定モードにおいて光量比設定値が自動設定されてもよい。即ち、色表現制御回路152は、光源部の各LEDの発光スペクトルが測定された測定結果に基づいて、所望の色バランスおよび色表現となるように光量比設定値を導出し、その光量比設定値を記憶部170に書き込んでもよい。
通常動作モードは、内視鏡装置10の通常動作時、即ちユーザが内視鏡装置10を用いる際のモードである。通常動作モードにおいて、光源装置160に電源が投入され、通常の立上シーケンスに従って光源装置160が立ち上がる。光源装置160に内視鏡スコープ200が接続されると、光源コントローラ150は、接続された内視鏡スコープ200に対応した光量比設定値を記憶部170から読み出し、その光量比設定値に対応した光量比で光源部140を発光させる。
光源コントローラ150は、いわゆる調光回路を含む。調光回路は、画像の明るさに基づいて、画像の明るさを一定に保つように光源部140の発光量を制御する。発光量は、光源LDV、LDB、LDG、LDA、LDRの総発光量である。このとき、光源コントローラ150は、光量比Bpv:Bpb:Gp:Rpa:Rprを変化させないように発光量を制御する。即ち、色バランス及び色表現が変化しないように画像の明るさが調光される。例えば、光源コントローラ150は、Bpv、Bpb、Gp、Rpa、Rprに同一のゲインを乗じることで各光源の発光量を決める。
以上の第1実施形態によれば、光源部140は、第1~第5の光(IV、IB、IG、IA、IR)を射出する第1~第5の光源(LDV、LDB、LDG、LDA、LDR)を含む。光量比設定値は、第1光量比(Bp:Gp:Rp)と第2光量比(青色光量比Bpv:Bpb)と第3光量比(赤色光量比Rpa:Rpr)とを設定するための設定値である。光源コントローラ150は、光量比設定値に基づいて、第1の光(IV)と第2の光(IB)の光量比を第2光量比に調整することで、画像の青色又は黄色の度合いを調整する。また光源コントローラ150は、光量比設定値に基づいて、第4の光(IA)と第5の光(IR)の光量比を第3光量比に調整することで、画像の赤色の度合いを調整する。
このようにすれば、照明光の色バランスと画像の色表現を独立に調整可能である。色バランスを所望の色バランスに調整すると共に、その色バランスを維持しつつ色表現を所望の色表現に調整できる。また、光源装置160が調光機能を有する場合には、上記調整された色バランス及び色表現を維持した状態で調光可能な光源装置を提供できる。
また本実施形態では、光源コントローラ150は、照明光の演色性の目標に対応した光量比設定値に基づいて、第1~第5の光の光量を調整することで、照明光の色バランスを、演色性に対応した色バランスに調整し、画像の色表現を、演色性に対応した色表現に調整する。
このようにすれば、目標とする演色性の照明光によって撮影された画像の色バランス及び色表現を再現する照明光を、本実施形態の光源装置160が発生できるようになる。演色性の目標は、例えば病変部の色を再現するような演色性である。
また本実施形態では、光源コントローラ150は、演色性の目標により特定される第1光量比の許容調整範囲と、演色性の目標により特定される第2光量比の許容調整範囲と、を満たす光量比設定値に基づいて、第1~第5の光の光量を調整する。また光源コントローラ150は、演色性の目標により特定される第2光量比の許容調整範囲を更に満たす光量比設定値に基づいて、第1~第5の光の光量を調整してもよい。
このようにすれば、目標とする演色性の照明光によって撮影された画像の色バランス及び色表現を、ある許容範囲内において再現する照明光を、本実施形態の光源装置160が発生できるようになる。
なお、第1実施形態において、第1光量比の許容調整範囲は、Bp:Gp:RpにおけるBp、Gp、Rp各々の調整範囲である。第2光量比の許容調整範囲は、Bpv:BpbにおけるBpv、Bpb各々の調整範囲である。第3光量比の許容調整範囲は、Rpa:RprにおけるRpa、Rpr各々の調整範囲である。これらの調整範囲は、目標とする演色性が実現される範囲である。
また本実施形態では、演色性の目標は、キセノン光源の色バランス、及びキセノン光源を用いて撮像される画像の色表現である。キセノン光源の色バランス、色表現とは、キセノン光源を用いて撮像された画像の色表現である。特に、癌に代表される病変組織と正常組織との色味を再現できる色バランス、色表現となるように調整することが望ましい。また、内視鏡の用途に応じて、胃炎やピロリ菌の有無や除去状況など、内視鏡で観察、診断対象とする特徴部の、正常組織との色味の違いについて、キセノン光源の色バランス、色表現を再現できるように調整することが望ましい。
このようにすれば、キセノン光源によって撮影された画像の色バランス及び色表現を再現する照明光を、本実施形態の光源装置160が発生できるようになる。
また本実施形態では、光源コントローラ150は、撮像素子の分光感度特性と、第1~第5の光の分光特性とにより設定される光量比設定値に基づいて、第1~第5の光の光量を調整する。
このようにすれば、撮像素子によって撮像された画像における色バランス及び色表現を、撮像素子の分光感度特性を考慮した正確な色バランス及び色表現に調整できる。
また本実施形態では、光源コントローラ150は、記憶部170に記憶された光量比設定値に基づいて、第1~第5の光の光量を調整する。
このようにすれば、光源コントローラ150は、記憶部170に記憶された光量比設定値により指定される第1光量比及び第2光量比で第1~第5の光源を発光させることができる。これにより、照明光が所望の色バランスに調整され、画像が所望の色表現に調整される。
また本実施形態では、光源コントローラ150は、色バランス制御回路151により設定された第1光量比と、色表現制御回路152により設定された第2光量比とに基づいて、光量比設定値を設定する。
このようにすれば、色バランス制御回路151が照明光の色バランスを調整し、色表現制御回路152が画像の色バランスを調整できる。
また本実施形態では、色バランス制御回路151は、内視鏡装置10の入力部600から入力される情報に基づいて第1光量比を設定する。色表現制御回路152は、入力部600から入力される情報に基づいて第2光量比を設定する。
このようにすれば、作業者又はユーザが入力部600を介して色バランス及び色表現を調整できる。
また本実施形態では、光源コントローラ150は、設定モードにおいて、色バランス制御回路151により設定された第1光量比と、色表現制御回路152により設定された第2光量比とに基づいて、光量比設定値を記憶部170に記憶させる。光源コントローラ150は、通常動作モードにおいて、記憶部170に記憶された光量比設定値に基づいて、第1~第5の光の光量を調整する。
このようにすれば、設定モードにおいて、所望の色バランス及び色表現となるように光量比を設定し、その光量比設定値を記憶部170に記憶させることができる。そして、通常動作モードにおいて、記憶部170から読み出した光量比設定値に基づいて、所望の色バランス及び色表現となる照明光を発生できる。
3.第2実施形態
第2実施形態では、通常動作モードにおいてユーザが入力部600を介して色表現を調整できる。即ち、色表現制御回路152は、入力部600から入力される情報に基づいて青色光量比Bpv:Bpbと赤色光量比Rpa:Rprを設定する。また色バランス制御回路151は、記憶部170から読み出した光量比設定値に基づいて第1光量比Bp:Gp:Rpを設定する。
具体的には、ユーザは入力部600から所望の色表現情報を入力する。色表現制御回路152は、所望の色表現となる青色光量比と赤色光量比を算出する。光源コントローラ150は、算出された青色光量比及び赤色光量比と、第1光量比とに基づいて、光源部140を制御する。
色表現制御回路152は、色バランスを変更せず、色表現のみが変更されるように青色光量比と赤色光量比を算出する。例えば、画像の黄色味を増加させる情報が入力部600から入力された場合、色表現制御回路152は、現状のBpv:Bpbに比べて、Bpvを相対的に大きくするように、Bpv:Bpbを変更する。このとき、色表現制御回路152は、Bp=Bpv+Bpbが変化しないようにBpv:Bpbを変更する。なお、入力部600から入力される色表現情報は、色の度合いそのものの情報であってもよいし、色の度合いの変化を示す情報であってもよい。また、希望とする色表現の画像を入力部600に読み込ませてもよい。また入力部600が様々な色表現のサンプルを記憶しており、それを表示部300に表示し、ユーザに希望のサンプルを選択させてもよい。
4.第3実施形態
図8は、第3実施形態における照明光のスペクトル例である。図8に示すように、第3実施形態では、波長領域が隣接する2つの光のスペクトルが、互いに重なっている。図8では、光IVとIBのスペクトルが重なり、光IGとIAのスペクトルが重なり、光IAとIRのスペクトルが重なる場合を示す。なお、スペクトルの重なり方は図8に限定されない。例えば、光IBとIGのスペクトルが重なってもよい。
隣接する2つのスペクトルが重なる場合、重なり部分の光量を考慮して各光の光量を算出する必要がある。光IVのスペクトルが領域BBにはみ出した部分をVb(λ)とし、光IBのスペクトルが領域BVにはみ出した部分をBv(λ)とする。光IAのスペクトルが領域BGにはみ出した部分をAg(λ)とし、光IAのスペクトルが領域BRにはみ出した部分をAr(λ)とする。
色バランスの算出手法を説明する。下式(17)を波長λで積分したものをBp’とし、下式(18)を波長λで積分したものをGp’とし、下式(19)を波長λで積分したものをRp’とする。色バランスに関する第1光量比は、Bp’:Gp’:Rp’である。
B(λ)×Im(λ)×(VL(λ)+BL(λ))×Pb ・・・(17)
G(λ)×Im(λ)×(GL(λ)×Pg+Ag(λ)×Pra) ・・・(18)
R(λ)×Im(λ)×(AL(λ)+RL(λ))×Pr ・・・(19)
B(λ)×Im(λ)×(VL(λ)+BL(λ))×Pb ・・・(17)
G(λ)×Im(λ)×(GL(λ)×Pg+Ag(λ)×Pra) ・・・(18)
R(λ)×Im(λ)×(AL(λ)+RL(λ))×Pr ・・・(19)
色表現の算出手法を説明する。下式(20)を領域BV内の波長λで積分したものをBpv’とし、下式(22)を領域BB内の波長λで積分したものをBpb’とし、下式(22)を領域BA内の波長λで積分したものをRpa’とし、下式(23)を領域BR内の波長λで積分したものをRpr’とする。色表現に関する光量比は、青色光量比Bpv’:Bpb’、及び赤色光量比Rpa’:Rpr’である。
B(λ)×Im(λ)×VL(λ)×Pbv+BL(λ)×Pbb ・・・(20)
B(λ)×Im(λ)×BL(λ)×Pbb+VL(λ)×Pbv ・・・(21)
R(λ)×Im(λ)×AL(λ)×Pba ・・・(22)
R(λ)×Im(λ)×RL(λ)×Pbr+AL(λ)×Pba ・・・(23)
B(λ)×Im(λ)×VL(λ)×Pbv+BL(λ)×Pbb ・・・(20)
B(λ)×Im(λ)×BL(λ)×Pbb+VL(λ)×Pbv ・・・(21)
R(λ)×Im(λ)×AL(λ)×Pba ・・・(22)
R(λ)×Im(λ)×RL(λ)×Pbr+AL(λ)×Pba ・・・(23)
このとき、下式(24)、(25)が成り立つ。
Bp’=Bpv’+Bpb’ ・・・(24)
Rp’=Rpa’+Rpr’ ・・・(25)
Bp’=Bpv’+Bpb’ ・・・(24)
Rp’=Rpa’+Rpr’ ・・・(25)
以上より、Bpv’:Bpb’:Gp’:Rpa’:Rpr’が所望の色バランス及び色表現となるように、光IV、IB、IG、IA、IRの光量比が調整される。調整手法は、第1実施形態等で説明した手法と同様である。
5.第4実施形態
図9は、第4実施形態における照明光のスペクトル例である。第4実施形態では、赤色領域のみが領域BAと領域BRに分割され、青色領域は分割されない。照明光は、領域BBXを有する光IBXと、領域BGを有する光IGと、領域BAを有する光IAと、領域BRを有する光IRと、により構成されている。光IA、IRは、狭帯域光である。青色領域に属する光IBXは、青色領域と同じ領域BBXを有する広帯域光である。なお、光IBXは、青色領域より狭い波長領域を有する狭帯域光であってもよい。
第4実施形態によれば、光源部140は、第1~第4の光(IBX、IG、IA、IR)を射出する第1~第4の光源を含む。第1光量比は、第1の光(IBX)の光量と、第2の光(IG)の光量と、第3の光(IA)及び第4の光(IR)の光量が加算された光量と、の比である。第2光量比は、第3の光(IA)と第4の光(IR)の光量比(赤色光量比Rpa:Rpr)である。光源コントローラ150は、光量比設定値に基づいて、第3の光(IA)と第4の光(IR)の光量比を第2光量比に調整することで、画像の赤色の度合いを調整する。
このようにすれば、照明光の色バランスと画像の赤味を独立に調整可能である。また、赤色領域における色表現のみを調整可能とすることで、シンプルな構成の光源装置160で色表現を調整できる。
6.第5実施形態
図10は、第5実施形態における照明光のスペクトル例である。第5実施形態では、青色領域のみが領域BVと領域BBに分割され、赤色領域は分割されない。照明光は、領域BVを有する光IVと、領域BBを有する光IBと、領域BGを有する光IGと、領域BRXを有する光IRXと、により構成されている。光IV、IBは、狭帯域光である。赤色領域に属する光IRXは、赤色領域と同じ領域BRXを有する広帯域光である。なお、光IRXは、赤色領域より狭い波長領域を有する狭帯域光であってもよい。
第5実施形態によれば、光源部140は、第1~第4の光(IV、IB、IG、IRX)を射出する第1~第4の光源を含む。第1光量比は、第1の光(IV)及び第2の光(IB)の光量が加算された光量と、第3の光(IG)の光量と、第4の光(IRX)の光量と、の比である。第2光量比は、第1の光(IV)と第2の光(IB)の光量比(青色光量比Bpv:Bpb)である。光源コントローラ150は、光量比設定値に基づいて、第1の光(IV)と第2の光(IB)の光量比を第2光量比に調整することで、画像の青色又は黄色の度合いを調整する。
このようにすれば、照明光の色バランスと画像の青味又は黄色味を独立に調整可能である。また、青色領域における色表現のみを調整可能とすることで、シンプルな構成の光源装置160で色表現を調整できる。
7.第6実施形態
図11は、第6実施形態における照明光のスペクトル例である。第6実施形態では、青色領域及び緑色領域、赤色領域の全てが、2つの領域に分割されている。照明光は、領域BVを有する光IVと、領域BBを有する光IBと、領域BG1を有する光IG1と、領域BG2を有する光IG2と、領域BAを有する光IAと、領域BRを有する光IRと、により構成されている。光IV、IB、IG1、IG2、IA、IRは、狭帯域光である。
第6実施形態によれば、光源部140は、第1~第6の光(IV、IB、IG1、IG2、IA、IR)を射出する第1~第6の光源を含む。光量比設定値は、第1~第4光量比を設定するための設定値である。第1光量比は、第1の光(IV)及び第2の光(IB)の光量が加算された光量と、第3の光(IG1)及び第4の光(IG2)の光量が加算された光量と、第5の光(IA)及び第6の光(IR)の光量が加算された光量と、の比である。第2光量比は、第1の光(IV)と第2の光(IB)の光量比(青色光量比Bpv:Bpb)である。第3光量比は、第3の光(IG1)と第4の光(IG2)の光量比(Gpg1:Gpg2)である。Gpg1は第3の光(IG1)の光量であり、Gpg2は第4の光(IG2)の光量である。第4光量比は、第5の光(IA)と第6の光(IR)の光量比(赤色光量比Rpa:Rpr)である。光源コントローラ150は、光量比設定値に基づいて、第1の光(IV)と第2の光(IB)の光量比を第2光量比に調整することで、画像の青色又は黄色の度合いを調整する。光源コントローラ150は、光量比設定値に基づいて、第3の光(IG1)と第4の光(IG2)の光量比を第3光量比に調整することで、画像の緑色の度合いを調整する。光源コントローラ150は、光量比設定値に基づいて、第5の光(IA)と第6の光(IR)の光量比を第4光量比に調整することで、画像の赤色の度合いを調整する。
このようにすれば、照明光の色バランスと、青色領域及び緑色領域、赤色領域の各々における画像の色表現とを、独立に調整可能である。青色領域及び緑色領域、赤色領域の各々における画像の色表現が調整可能であるため、画像における様々な色の度合いを調整できる。
図12を用いて、緑色の度合い調整について説明する。図12には、内視鏡分野で一般的に用いられる散布薬剤であるインジゴカルミン及びクリスタルバイオレット、トルイジンブルーの分光吸収率特性を示す。図12に示すように、これらの薬剤は緑色領域において急峻な分光吸収率特性を有する。このため、緑色領域に属し且つ波長が異なる光IG1、IG2の光量比を調整することで、薬剤が散布された被写体における色表現を調整できる。例えば、短波長側の緑である光IG1の光量を相対的に上げると、薬剤が散布された被写体は青みを帯びた緑色となる。長波長側の緑である光IG2の光量を相対的に上げると、薬剤が散布された被写体は黄色みを帯びた緑色の色表現となる。薬剤の見え方をキセノン光源による色表現に近づけるように、色表現を調整することが可能となる。
8.第7実施形態
図13は、第7実施形態における照明光のスペクトル例である。第7実施形態では、赤色領域が3つの領域BA、BR1、BR2に分割されている。領域BV、BB、BG、BA、BR1、BR2には、それぞれ、光IV、IB、IG、IA、IR1、IR2が属する。図13には、光源がレーザである場合のスペクトル例を示している。即ち、光IV、IB、IG、IA、IR1、IR2は、レーザ光による狭帯域光である。
光源コントローラ150は、光IVとIBの光量比を調整することで、画像の青味又は黄色味を調整する。また光源コントローラ150は、領域BAとBR1とBR2の光量比を調整することで、画像の赤味を調整する。赤色領域において3つの光の光量比が調整されることで、赤色領域における色表現を精密に調整できる。生体の画像は赤色成分が多いため、赤色領域における色表現を精密に調整できることで、生体の色表現をより精密に調整できる。
なお第7実施形態では光源がレーザである場合を例に説明したが、光源はレーザに限定さない。また第1~第6実施形態では光源が発光ダイオードである場合を例に説明したが、光源は発光ダイオードに限定されない。即ち、第1~第7実施形態において、種々の光源を採用可能である。例えば光源として、レーザ、又は発光ダイオード、又はレーザと発光ダイオードのハイブリッド光源、又はスーパールミネッセントダイオード、レーザと蛍光体を組み合わせた光源、又は発光ダイオードと蛍光体を組み合わせた光源、又はこれらを組み合わせた光源等を採用できる。
9.第8実施形態
第8実施形態では、光源コントローラ150は、内視鏡装置10に装着された内視鏡スコープの撮像素子に応じて、光量比設定値を変更する。撮像素子はモノクロ撮像素子又は原色ベイヤ撮像素子又は補色撮像素子である。モノクロ撮像素子はUVフィルタ又はIRフィルタ等を含むが、各画素で色が異なるカラーフィルタを含まない。原色ベイヤ撮像素子は、ベイヤ型カラーフィルタが設けられた撮像素子である。補色撮像素子は、補色カラーフィルタが設けられた撮像素子である。
光源装置160と内視鏡スコープ200が接続されると、光源コントローラ150は、光源装置160に接続された内視鏡スコープ200の撮像素子に対応した光量比設定値を読み出す。撮像素子に対応した光量比設定値は、例えば内視鏡スコープ200に搭載されたメモリ、又は光源装置160の記憶部170に記憶されている。光源コントローラ150は、読み出された光量比設定値から光源の光量比を決定する。これにより、光源装置160に接続された内視鏡スコープ200の撮像素子に対応した第1光量比及び第2光量比が設定される。即ち、光源装置160に接続された内視鏡スコープ200の撮像素子に対応した色バランス及び色表現を実現する光量比が設定される。
また第8実施形態では、光源コントローラ150は、内視鏡装置10に装着された内視鏡スコープの撮像素子に応じて、更に光源の発光タイミングを変更してもよい。光源の発光タイミングとして、面順次方式及び同時方式がある。面順次方式は、時分割に射出される複数の光により照明される被写体を、モノクロ撮像素子が撮像する方式である。同時方式は、同時に射出される複数の光により照明される被写体を、撮像素子が撮像する方式である。
光源装置160と内視鏡スコープ200が接続されると、光源コントローラ150は、光源装置160に接続された内視鏡スコープ200に搭載された撮像素子の種類に関する情報を読み出す。撮像素子の種類に関する情報は、例えば内視鏡スコープ200に搭載されたメモリ、又は光源装置160の記憶部170に記憶されている。光源コントローラ150は、読み出された撮像素子の種類に関する情報から光源の発光タイミングを決定する。即ち、光源コントローラ150は、同時式発光か、面順次式発光か、を決定する。
撮像素子がモノクロ撮像素子であった場合、光源コントローラ150は、モノクロ撮像素子に対応して決定された光量比に基づいて複数の光源を順次に発光させる。例えば、赤の光源LDR及びアンバーの光源LDAを同時に発光させ、次に緑の光源LDGを発光させ、次に青の光源LDB及び紫の光源LDVを同時に発光させる。撮像素子が原色ベイヤ撮像素子又は補色撮像素子であった場合、光源コントローラ150は、原色ベイヤ撮像素子又は補色撮像素子に対応して決定された光量比に基づいて複数の光源を同時に発光させる。
第8実施形態によれば、内視鏡装置10に第1内視鏡スコープが装着されたとき、光源コントローラ150は、第1内視鏡スコープに対応した第1光量比設定値に基づいて、照明光を構成する4以上の光の光量を調整する。内視鏡装置10に第2内視鏡スコープが装着されたとき、光源コントローラ150は、第2内視鏡スコープに対応し且つ第1光量比設定値とは異なる第2光量比設定値に基づいて、照明光を構成する4以上の光の光量を調整する。なお、上記では内視鏡スコープの撮像素子に応じて光量比設定値が設定される場合を例に説明したが、内視鏡スコープの機種等に応じて光量比設定値が設定されてもよい。
このようにすれば、内視鏡装置10に装着された内視鏡スコープの撮像素子又は内視鏡スコープの機種等に応じて、照明光の色バランス及び画像の色表現を調整することができる。
10.第9実施形態
図14は、第9実施形態における光源装置160の詳細な構成例である。第9実施形態では、光源部140は、光源LDV、LDB、LDG、LDA、LDRと、光センサSS1~SS5と、レンズLN1~LN6と、光合波部141と、を含む。光合波部141は、ダイクロイックミラーDC1~DC4を含む。
内視鏡スコープが接続されるコネクタ240から遠い側から近い側に向かって、短波長側の光源から順に配置されている。レンズLN1は、光源LDVが射出する光をダイクロイックミラーDC1に入射させる。同様に、レンズLN2、LN3、LN4、LN5は、それぞれ、光源LDB、LDG、LDA、LDRが射出する光を、ダイクロイックミラーDC1、DC2、DC3、DC4に入射させる。ダイクロイックミラーDC1~DC4は、光源LDB、LDG、LDA、LDRが射出する光を合波する。レンズLN6は、合波された光をコネクタ240に入射させる。
光センサSS1は、光源LDVからレンズLN1に向かう光路の外に配置される。即ち、光センサSS1は、光源LDVから射出される光のうち、光路外の漏れ光を検出する。同様に、光センサSS2、SS3、SS4、SS5は、それぞれ、光源LDB、LDG、LDA、LDRからレンズLN2、LN3、LN4、LN5に向かう光路の外に配置される。即ち、光センサSS2、SS3、SS4、SS5は、それぞれ、光源LDB、LDG、LDA、LDRから射出される光のうち、光路外の漏れ光を検出する。光センサSS1~SS5の受光面は、光源の射出面に対向している。このため、光センサSS1~SS5は、レンズ又はダイクロイックミラーからの反射散乱光を受光しにくい。光センサSS1は、光源LDVからの光が光合波部141を通過するときの減衰と等しい波長特性を有する光学フィルタを有する。同様に、光センサSS2~SS5は、光源LDB、LDG、LDA、LDRからの光が光合波部141を通過するときの減衰と等しい波長特性を有する光学フィルタを有する。「等しい」は略等しい場合を含む。即ち、光学フィルタの波長特性が、光合波部141を通過するときの減衰と厳密に等しい場合に限定されない。なお、光センサSS1~SS5は、受光量のレンジを適正化するためのND(Neutral Density)フィルタを含んでもよい。
図15は、ダイクロイックミラーDC1~DC4の分光透過率特性である。ダイクロイックミラーDC1~DC4は、誘電体多層ミラーである。ダイクロイックミラーDC1~DC4の分光透過率特性は、いずれも短波長側の透過率が高く(略100%)、且つ長波長側が低い(略0%)。誘電体多層膜ミラーは、透過しない光を、ほぼ全て反射する。即ち、100%から透過率を減じた値が、略反射率となる。各ダイクロイックミラーにおける透過率の変化は、なるべく急峻になるように設計されることが望ましい。ただし、コストなどを考慮して、適当な傾きとなるようにすることも好適である。
図15の分光透過率特性によれば、全てのダイクロイックミラーの透過率特性が、短波長側が高く長波長側が低い特性となっている。このため、たとえば雰囲気温度が変化した場合でも全てのダイクロイックミラーの透過率特性が同じ方向に波長シフトするため、光源装置160から射出される照明光の光量の変化を小さくできる。また、同様の理由から、雰囲気温度が変化した場合でも光量比の変化を小さくすることも出来る。
光源コントローラ150は、内視鏡スコープから被写体に照射される照明光が、光量比設定値が示す光量比となるように、光センサSS1~SS5によりセンシングされた光量に基づいて、光源LDV、LDB、LDG、LDA、LDRの発光量を調整する。
即ち、光源コントローラ150は、光センサSS1~SS5によりセンシングされた光量に基づいて、実際の光量比を算出し、その算出した光量比と光量比設定値とを比較し、その比較結果に基づいて、光源LDV、LDB、LDG、LDA、LDRの発光量をフィードバック制御する。このようにすれば、光源の個体差による発光量のばらつき、又は光源の経年劣化による発光量の変化を、フィードバック制御により補正できる。これにより、正確な光量比を実現できるので、正確な色バランス及び色表現を実現できる。
また光センサSS1~SS5は、光学フィルタを有し、光学フィルタは、光源LDV、LDB、LDG、LDA、LDRから射出される光が光合波部141を通過するときの減衰と等しい波長特性を有する。上述のように、「等しい」は略等しい場合を含む。光源コントローラ150は、光センサSS1~SS5からの出力に基づいて、それらの光の光量を調整する。
即ち、光源の発光量と、光合波部141における減衰率とを乗算したものが、光合波部141の射出端における光量となる。光センサSS1~SS5に光学フィルタが設けられることで、光センサSS1~SS5の受光量は、光合波部141における減衰が考慮されたものとなる。光源コントローラ150が、この光センサSS1~SS5の出力に基づいて発光量を調整することで、光合波部141の射出端における光量が、光量比設定値を満たす光量となるように、光源の発光量をフィードバック制御する。このようにすれば、光合波部141の射出端において、光量比設定値を満たす光量となるので、正確な色バランス及び色表現を実現できる。なお、光センサSS1~SS5は、波長カットフィルタを含んでもよい。光源LDV、LDB、LDG、LDA、LDRから射出された光がコネクタ240に向かう光路上に、ダイクロイックミラーDC1~DC4が設けられている。波長カットフィルタは、このダイクロイックミラーDC1~DC4によりカットされる波長域の光を、除去する。このようにすることで、光量比設定値に対して、より精密な光源の発光量のフィードバック制御が可能となる。
以上、本発明を適用した実施形態およびその変形例について説明したが、本発明は、各実施形態やその変形例そのままに限定されるものではなく、実施段階では、発明の要旨を逸脱しない範囲内で構成要素を変形して具体化することができる。また、上記した各実施形態や変形例に開示されている複数の構成要素を適宜組み合わせることによって、種々の発明を形成することができる。例えば、各実施形態や変形例に記載した全構成要素からいくつかの構成要素を削除してもよい。さらに、異なる実施の形態や変形例で説明した構成要素を適宜組み合わせてもよい。このように、発明の主旨を逸脱しない範囲内において種々の変形や応用が可能である。また、明細書又は図面において、少なくとも一度、より広義または同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。
10 内視鏡装置、100 制御装置、110 処理回路、140 光源部、141 光合波部、150 光源コントローラ、151 色バランス制御回路、152 色表現制御回路、160 光源装置、170 記憶部、200 内視鏡スコープ、210 挿入部、211,212 照明レンズ、213 撮像ユニット、214 導光路、215 画像信号線、220 操作部、230 接続ケーブル、240 コネクタ、300 表示部、600 入力部、BV,BB,BG,BA,BR 領域、IV,IB,IG,IA,IR 光、LDV,LDB,LDG,LDA,LDR 光源、SS1~SS5 光センサ
Claims (20)
- 互いに波長の異なる4以上の光を射出する4以上の光源を有し、前記4以上の光を照明光として内視鏡スコープに入射する光源部と、
色バランスに関する第1光量比及び色表現に関する第2光量比を設定するための光量比設定値に基づいて、前記4以上の光の各光の光量を調整する光源コントローラと、
を含み、
可視光の波長領域に含まれる青色領域、緑色領域及び赤色領域の各々に、前記4以上の光のうち少なくとも1つずつの光が属し、
前記青色領域、前記緑色領域及び前記赤色領域のいずれかの領域である第1色領域に、前記4以上の光のうち2以上の光が属し、
前記第1色領域に属する前記2以上の光は、狭帯域光であり、
前記第1光量比は、前記青色領域に属する光と前記緑色領域に属する光と前記赤色領域に属する光の光量比であり、
前記第2光量比は、前記第1色領域に属する前記2以上の光の光量比であり、
前記光源コントローラは、
前記光量比設定値に基づいて前記4以上の光の光量比を調整することで、前記照明光の色バランスと、前記内視鏡スコープの撮像素子によって撮像される画像の明度、彩度及び色相の少なくとも一つを含む前記画像の色表現と、を調整することを特徴とする内視鏡用光源装置。 - 請求項1において、
前記光源コントローラは、
前記第1色領域に属する前記2以上の光の光量の和を、前記第1光量比に基づいて所定の範囲内に保つと共に、前記第1色領域に属する前記2以上の狭帯域光の光量を、前記第2光量比に基づいて調整することを特徴とする内視鏡用光源装置。 - 請求項1において、
前記光源部は、前記4以上の光として第1~第5の光を射出する第1~第5の光源を含み、
前記第1の光及び前記第2の光は、前記青色領域に属する狭帯域光であり、
前記第3の光は、前記緑色領域に属し、
前記第4の光及び前記第5の光は、前記赤色領域に属する狭帯域光であり、
前記光量比設定値は、前記第1光量比と前記第2光量比と第3光量比とを設定するための設定値であり、
前記第1光量比は、前記第1の光及び前記第2の光の光量が加算された光量と、前記第3の光の光量と、前記第4の光及び前記第5の光の光量が加算された光量と、の比であり、
前記第2光量比は、前記第1の光と、前記第2の光の光量比であり、
前記第3光量比は、前記第4の光と、前記第5の光の光量比であり、
前記光源コントローラは、
前記光量比設定値に基づいて、前記第1の光と前記第2の光の光量比を前記第2光量比に調整することで、前記画像の青色又は黄色の度合いを調整し、前記光量比設定値に基づいて、前記第4の光と前記第5の光の光量比を前記第3光量比に調整することで、前記画像の赤色の度合いを調整することを特徴とする内視鏡用光源装置。 - 請求項1において、
前記光源部は、前記4以上の光として第1~第4の光を射出する第1~第4の光源を含み、
前記第1の光及び前記第2の光は、前記青色領域に属する狭帯域光であり、
前記第3の光は、前記緑色領域に属し、
前記第4の光は、前記赤色領域に属し、
前記第1光量比は、前記第1の光及び前記第2の光の光量が加算された光量と、前記第3の光の光量と、前記第4の光の光量と、の比であり、
前記第2光量比は、前記第1の光と、前記第2の光の光量比であり、
前記光源コントローラは、
前記光量比設定値に基づいて、前記第1の光と前記第2の光の光量比を前記第2光量比に調整することで、前記画像の青色又は黄色の度合いを調整することを特徴とする内視鏡用光源装置。 - 請求項1において、
前記光源部は、前記4以上の光として第1~第4の光を射出する第1~第4の光源を含み、
前記第1の光は、前記青色領域に属し、
前記第2の光は、前記緑色領域に属し、
前記第3の光及び前記第4の光は、前記赤色領域に属する狭帯域光であり、
前記第1光量比は、前記第1の光の光量と、前記第2の光の光量と、前記第3の光及び前記第4の光の光量が加算された光量と、の比であり、
前記第2光量比は、前記第3の光と、前記第4の光の光量比であり、
前記光源コントローラは、
前記光量比設定値に基づいて、前記第3の光と前記第4の光の光量比を前記第2光量比に調整することで、前記画像の赤色の度合いを調整することを特徴とする内視鏡用光源装置。 - 請求項1において、
前記光源部は、前記4以上の光として第1~第6の光を射出する第1~第6の光源を含み、
前記第1の光及び前記第2の光は、前記青色領域に属する狭帯域光であり、
前記第3の光及び前記第4の光は、前記緑色領域に属する狭帯域光であり、
前記第5の光及び前記第6の光は、前記赤色領域に属する狭帯域光であり、
前記光量比設定値は、前記第1光量比と前記第2光量比と第3光量比と第4光量比とを設定するための設定値であり、
前記第1光量比は、前記第1の光及び前記第2の光の光量が加算された光量と、前記第3の光及び前記第4の光の光量が加算された光量と、前記第5の光及び前記第6の光の光量が加算された光量と、の比であり、
前記第2光量比は、前記第1の光と、前記第2の光の光量比であり、
前記第3光量比は、前記第3の光と、前記第4の光の光量比であり、
前記第4光量比は、前記第5の光と、前記第6の光の光量比であり、
前記光源コントローラは、
前記光量比設定値に基づいて、前記第1の光と前記第2の光の光量比を前記第2光量比に調整することで、前記画像の青色又は黄色の度合いを調整し、
前記光量比設定値に基づいて、前記第3の光と前記第4の光の光量比を前記第3光量比に調整することで、前記画像の緑色の度合いを調整し、
前記光量比設定値に基づいて、前記第5の光と前記第6の光の光量比を前記第4光量比に調整することで、前記画像の赤色の度合いを調整することを特徴とする内視鏡用光源装置。 - 請求項1において、
前記光源コントローラは、
前記照明光の演色性の目標に対応した前記光量比設定値に基づいて、前記4以上の光の各光の光量を調整することで、前記照明光の前記色バランスを、前記演色性に対応した色バランスに調整し、前記画像の前記色表現を、前記演色性に対応した色表現に調整することを特徴とする内視鏡用光源装置。 - 請求項7において、
前記光源コントローラは、
前記演色性の目標により特定される前記第1光量比の許容調整範囲と、前記演色性の目標により特定される前記第2光量比の許容調整範囲と、を満たす前記光量比設定値に基づいて、前記4以上の光の各光の光量を調整することを特徴とする内視鏡用光源装置。 - 請求項7において、
前記演色性の目標は、キセノン光源の色バランス、及び前記キセノン光源を用いて撮像される画像の色表現であることを特徴とする内視鏡用光源装置。 - 請求項1において、
前記光源コントローラは、
前記撮像素子の分光感度特性と、前記4以上の光の分光特性とにより設定される前記光量比設定値に基づいて、前記4以上の光の各光の光量を調整することを特徴とする内視鏡用光源装置。 - 請求項1において、
前記光量比設定値を記憶する記憶部を含み、
前記光源コントローラは、
前記記憶部に記憶された前記光量比設定値に基づいて、前記4以上の光の各光の光量を調整することを特徴とする内視鏡用光源装置。 - 請求項1において、
前記光源コントローラは、
前記第1光量比を設定する色バランス制御回路と、
前記第2光量比を設定する色表現制御回路と、
を有し、
前記色バランス制御回路により設定された前記第1光量比と、前記色表現制御回路により設定された前記第2光量比とに基づいて、前記光量比設定値を設定することを特徴とする内視鏡用光源装置。 - 請求項12において、
前記色バランス制御回路は、
内視鏡装置の入力部から入力される情報に基づいて前記第1光量比を設定し、
前記色表現制御回路は、
前記入力部から入力される前記情報に基づいて前記第2光量比を設定することを特徴とする内視鏡用光源装置。 - 請求項13において、
記憶部を含み、
前記光源コントローラは、
設定モードにおいて、前記色バランス制御回路により設定された前記第1光量比と、前記色表現制御回路により設定された前記第2光量比とに基づいて、前記光量比設定値を前記記憶部に記憶させ、
通常動作モードにおいて、前記記憶部に記憶された前記光量比設定値に基づいて、前記4以上の光の各光の光量を調整することを特徴とする内視鏡用光源装置。 - 請求項1において、
前記光源コントローラは、
内視鏡装置に第1内視鏡スコープが装着されたとき、前記第1内視鏡スコープに対応した第1光量比設定値に基づいて、前記4以上の光の各光の光量を調整し、
前記内視鏡装置に第2内視鏡スコープが装着されたとき、前記第2内視鏡スコープに対応し且つ前記第1光量比設定値とは異なる第2光量比設定値に基づいて、前記4以上の光の各光の光量を調整することを特徴とする内視鏡用光源装置。 - 請求項15において、
前記第1内視鏡スコープ及び前記第2内視鏡スコープは、
時分割の前記4以上の光に照明される被写体をモノクロ撮像素子が撮像する面順次方式の内視鏡スコープ、及び前記照明光に照明される前記被写体を原色ベイヤ撮像素子が撮像する原色型の内視鏡スコープ、前記照明光に照明される前記被写体を補色撮像素子が撮像する補色型の内視鏡スコープのうちの、いずれか2つであることを特徴とする内視鏡用光源装置。 - 請求項1において、
前記4以上の光の各光の光量をセンシングする光センサを含み、
前記光源コントローラは、
前記内視鏡スコープから被写体に照射される前記照明光が、前記光量比設定値が示す光量比となるように、前記光センサによりセンシングされた光量に基づいて、前記4以上の光の光量を調整することを特徴とする内視鏡用光源装置。 - 請求項17において、
前記光源部は、
前記4以上の光を前記内視鏡スコープに入射させる光合波部を有し、
光センサは、
前記4以上の光が前記光合波部を通過するときの減衰と等しい波長特性を有する光学フィルタを有し、
前記光源コントローラは、
前記光センサからの出力に基づいて、前記4以上の光の光量を調整することを特徴とする内視鏡用光源装置。 - 請求項1に記載された内視鏡用光源装置と、
前記内視鏡スコープと、
を含むことを特徴とする内視鏡装置。 - 可視光の波長領域に含まれる青色領域、緑色領域及び赤色領域の各々に4以上の光のうち少なくとも1つずつの光が属し、前記青色領域、前記緑色領域及び前記赤色領域のいずれかの領域である第1色領域に前記4以上の光のうち2以上の光が属し、前記第1色領域に属する前記2以上の光は、狭帯域光であり、第1光量比は、前記青色領域に属する光と前記緑色領域に属する光と前記赤色領域に属する光の光量比であり、第2光量比は、前記第1色領域に属する前記2以上の光の光量比である場合において、
互いに波長の異なる前記4以上の光を照明光として内視鏡スコープに入射し、
色バランスに関する前記第1光量比及び色表現に関する前記第2光量比を設定するための光量比設定値に基づいて、前記4以上の光の各光の光量を調整することで、前記照明光の色バランスと、前記内視鏡スコープの撮像素子によって撮像される画像の明度、彩度及び色相の少なくとも一つを含む前記画像の色表現と、を調整することを特徴とする内視鏡用光源装置の作動方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020556472A JP7191978B2 (ja) | 2018-11-12 | 2018-11-12 | 内視鏡用光源装置、内視鏡装置及び光量調整方法 |
PCT/JP2018/041802 WO2020100184A1 (ja) | 2018-11-12 | 2018-11-12 | 内視鏡用光源装置、内視鏡装置及び内視鏡用光源装置の作動方法 |
CN201880100583.1A CN113260297B (zh) | 2018-11-12 | 2018-11-12 | 内窥镜装置、内窥镜用光源装置及其工作方法以及光源调整方法 |
US17/315,439 US12078796B2 (en) | 2018-11-12 | 2021-05-10 | Endoscope light source device, endoscope apparatus, operating method of endoscope light source device, and light amount adjusting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/041802 WO2020100184A1 (ja) | 2018-11-12 | 2018-11-12 | 内視鏡用光源装置、内視鏡装置及び内視鏡用光源装置の作動方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/315,439 Continuation US12078796B2 (en) | 2018-11-12 | 2021-05-10 | Endoscope light source device, endoscope apparatus, operating method of endoscope light source device, and light amount adjusting method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020100184A1 true WO2020100184A1 (ja) | 2020-05-22 |
Family
ID=70731366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/041802 WO2020100184A1 (ja) | 2018-11-12 | 2018-11-12 | 内視鏡用光源装置、内視鏡装置及び内視鏡用光源装置の作動方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US12078796B2 (ja) |
JP (1) | JP7191978B2 (ja) |
CN (1) | CN113260297B (ja) |
WO (1) | WO2020100184A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024122280A1 (ja) * | 2022-12-05 | 2024-06-13 | ソニー・オリンパスメディカルソリューションズ株式会社 | 観察システム及び制御装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63271217A (ja) * | 1987-04-30 | 1988-11-09 | Toshiba Corp | 電子内視鏡装置 |
WO2015159676A1 (ja) * | 2014-04-17 | 2015-10-22 | オリンパス株式会社 | 光源装置 |
WO2016120907A1 (ja) * | 2015-01-30 | 2016-08-04 | オリンパス株式会社 | 照明装置、内視鏡システム及び色味補正装置 |
WO2016129162A1 (ja) * | 2015-02-12 | 2016-08-18 | ソニー株式会社 | 画像処理装置、画像処理方法、プログラムおよび画像処理システム |
WO2016194150A1 (ja) * | 2015-06-02 | 2016-12-08 | オリンパス株式会社 | 特殊光内視鏡装置 |
WO2017061003A1 (ja) * | 2015-10-08 | 2017-04-13 | オリンパス株式会社 | 内視鏡装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007227681A (ja) * | 2006-02-23 | 2007-09-06 | Matsushita Electric Works Ltd | 発光ダイオードを用いた白色照明装置 |
JP2012075561A (ja) * | 2010-09-30 | 2012-04-19 | Fujifilm Corp | 内視鏡光源装置及びそれを用いる内視鏡装置 |
JP5326065B2 (ja) * | 2011-08-26 | 2013-10-30 | オリンパスメディカルシステムズ株式会社 | 内視鏡装置 |
CN105407789B (zh) * | 2013-08-01 | 2017-07-14 | 奥林巴斯株式会社 | 内窥镜系统、内窥镜系统的工作方法 |
JP6230409B2 (ja) * | 2013-12-20 | 2017-11-15 | オリンパス株式会社 | 内視鏡装置 |
CN110772205B (zh) * | 2014-03-17 | 2022-04-12 | 直观外科手术操作公司 | 用于组织接触检测和用于自动曝光和照明控制的系统和方法 |
JP6654004B2 (ja) | 2015-01-29 | 2020-02-26 | 富士フイルム株式会社 | 内視鏡光源装置、内視鏡システム、及び内視鏡光源装置の作動方法 |
US9977232B2 (en) | 2015-01-29 | 2018-05-22 | Fujifilm Corporation | Light source device for endoscope, endoscope system, and method for operating light source device for endoscope |
-
2018
- 2018-11-12 JP JP2020556472A patent/JP7191978B2/ja active Active
- 2018-11-12 WO PCT/JP2018/041802 patent/WO2020100184A1/ja active Application Filing
- 2018-11-12 CN CN201880100583.1A patent/CN113260297B/zh active Active
-
2021
- 2021-05-10 US US17/315,439 patent/US12078796B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63271217A (ja) * | 1987-04-30 | 1988-11-09 | Toshiba Corp | 電子内視鏡装置 |
WO2015159676A1 (ja) * | 2014-04-17 | 2015-10-22 | オリンパス株式会社 | 光源装置 |
WO2016120907A1 (ja) * | 2015-01-30 | 2016-08-04 | オリンパス株式会社 | 照明装置、内視鏡システム及び色味補正装置 |
WO2016129162A1 (ja) * | 2015-02-12 | 2016-08-18 | ソニー株式会社 | 画像処理装置、画像処理方法、プログラムおよび画像処理システム |
WO2016194150A1 (ja) * | 2015-06-02 | 2016-12-08 | オリンパス株式会社 | 特殊光内視鏡装置 |
WO2017061003A1 (ja) * | 2015-10-08 | 2017-04-13 | オリンパス株式会社 | 内視鏡装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024122280A1 (ja) * | 2022-12-05 | 2024-06-13 | ソニー・オリンパスメディカルソリューションズ株式会社 | 観察システム及び制御装置 |
Also Published As
Publication number | Publication date |
---|---|
US20210278658A1 (en) | 2021-09-09 |
CN113260297A (zh) | 2021-08-13 |
US12078796B2 (en) | 2024-09-03 |
JPWO2020100184A1 (ja) | 2021-09-24 |
JP7191978B2 (ja) | 2022-12-19 |
CN113260297B (zh) | 2024-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109419484B (zh) | 内窥镜系统 | |
CN107518867B (zh) | 光源装置及内窥镜系统 | |
EP2754379B1 (en) | Endoscope system and image display method | |
WO2015166843A1 (ja) | 内視鏡装置 | |
JP2017012395A (ja) | 内視鏡システム及び内視鏡システムの作動方法 | |
US11044416B2 (en) | Endoscope system, processor device, and endoscope system operation method | |
US11039739B2 (en) | Endoscope system | |
CN106073691A (zh) | 内窥镜用光源装置及内窥镜系统 | |
US9977232B2 (en) | Light source device for endoscope, endoscope system, and method for operating light source device for endoscope | |
JP2019136555A (ja) | 内視鏡光源装置、内視鏡システム、及び内視鏡光源装置の作動方法 | |
WO2020100184A1 (ja) | 内視鏡用光源装置、内視鏡装置及び内視鏡用光源装置の作動方法 | |
JP6891076B2 (ja) | プロセッサ装置とその作動方法、および内視鏡システム | |
JP6905038B2 (ja) | 光源装置及び内視鏡システム | |
WO2020217852A1 (ja) | 内視鏡用光源装置、及び、内視鏡システム | |
JP7159261B2 (ja) | 内視鏡システム | |
JP6874087B2 (ja) | 内視鏡システム及び内視鏡システムの作動方法 | |
JP2019058689A (ja) | 内視鏡システム及び内視鏡システムの作動方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18940213 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020556472 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18940213 Country of ref document: EP Kind code of ref document: A1 |