WO2016119545A1 - 一种有机半导体材料及其制备方法与应用 - Google Patents

一种有机半导体材料及其制备方法与应用 Download PDF

Info

Publication number
WO2016119545A1
WO2016119545A1 PCT/CN2015/098530 CN2015098530W WO2016119545A1 WO 2016119545 A1 WO2016119545 A1 WO 2016119545A1 CN 2015098530 W CN2015098530 W CN 2015098530W WO 2016119545 A1 WO2016119545 A1 WO 2016119545A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
semiconductor material
organic semiconductor
ester
carbon atoms
Prior art date
Application number
PCT/CN2015/098530
Other languages
English (en)
French (fr)
Inventor
黄飞
谢锐浩
曹镛
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2016119545A1 publication Critical patent/WO2016119545A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule

Definitions

  • the invention relates to the technical field of organic photoelectric materials, in particular to an organic semiconductor material, a preparation method thereof and an application thereof.
  • the mobility of field effect transistors based on BDT units reaches 0.25cm 2 V -1 s -1 , based on BDT.
  • the unit's single-layer polymer solar cells have reached an efficiency of 8-9% (Energy Environ. Sci., 2012, 5, 8208; Nat. Photon. 2012, 6, 591; Adv. Mater. 2013, 25, 4944–4949 ; J. Am. Chem. Soc. 2013, 135, 17060-17068; J. Am. Chem. Soc. 2013, 135, 4656-4659). Therefore, the design and development of new conjugated polymer units and materials is critical to the development of polymer solar cells, which will lay a firm foundation for the commercialization of organic photovoltaic cells in the near future.
  • one of the objects of the present invention is to provide a The semiconductor material makes the polymer more planar, increases the mobility of its charge, facilitates the transfer of charge, and is expected to obtain better device performance.
  • a second object of the present invention is to provide a method for preparing the above organic semiconductor material, which is simple and convenient, has high yield, is simple in post-treatment, and is easy to purify.
  • a third object of the present invention is to provide an application of the above organic semiconductor material.
  • Ar is an electron-deficient conjugated unit
  • is a conjugated unit containing a carbon-carbon double bond or a carbon-nitrogen bond
  • 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, x+y 1
  • m is 0 to 10000 Natural number
  • n is a natural number from 1 to 10000;
  • R 1 is an alkyl chain having 1 to 30 carbon atoms.
  • the Ar is benzothiadiazole, benzotriazole, naphthothiadiazole, naphthotriazole, pyrrolopyrroledione, indigo, isoma blue, quinoxaline, naphthalene diimide, sebacic acid Imine, thienoimide or quinoxaline.
  • the Ar is one of the following structures:
  • R is hydrogen or an alkyl group having 1 to 30 carbon atoms; or an alkyl group having the following structure: one or more carbon atoms in the alkyl group are bonded to an oxygen atom, an alkenyl group, an alkynyl group, an aryl group, a hydroxyl group, Amino group, carbonyl group, The carboxyl group, the ester group, the cyano group or the nitro group are substituted, and the hydrogen atom is substituted by a halogen atom, an oxygen atom, an alkenyl group, an alkynyl group, an aryl group, a hydroxyl group, an amino group, a carbonyl group, a carboxyl group, an ester group, a cyano group or a nitro group.
  • the ⁇ is benzene, naphthalene, thiophene, thiophene, selenophene, porphin, furan, pyrrole, silole, thiazole, oxazole or triazole.
  • the ⁇ is one of the following structures:
  • R is hydrogen or an alkyl group having 1 to 30 carbon atoms; or an alkyl group having the following structure: one or more carbon atoms in the alkyl group are bonded to an oxygen atom, an alkenyl group, an alkynyl group, an aryl group, a hydroxyl group, Substituted with amino, carbonyl, carboxyl, ester, cyano or nitro, hydrogen atom by halogen atom, oxygen atom, alkenyl group, alkynyl group, aryl group, hydroxy group, amino group, carbonyl group, carboxyl group, ester group, cyano group or nitro group Replace.
  • the R 1 is an alkyl chain having 1 to 30 carbon atoms, wherein one or more carbon atoms in the alkyl chain are bonded to an oxygen atom, an alkenyl group, an alkynyl group, an aryl group, a hydroxyl group, an amino group, a carbonyl group or a carboxyl group.
  • the hydrogen atom is substituted by a halogen atom with an oxygen atom, an alkenyl group, an alkynyl group, an aryl group, a hydroxyl group, an amino group, a carbonyl group, a carboxyl group, an ester group, a cyano group or a nitro group.
  • the method for preparing the organic semiconductor material comprises the following steps:
  • Y is a hydrogen atom, trimethylsilyl or triisopropylsilyl
  • X is a hydrogen atom, a halogen atom, a boric acid group, a boronic ester group or a trialkyltin group
  • R 2 is equivalent to the definition of At R 1 ;
  • An organic semiconductor material represented by Formula 1 is synthesized by a polymerization reaction using a compound represented by Formula 4 as a raw material.
  • the present invention has the following advantages and benefits:
  • the organic semiconductor material of the present invention comprising a 4,4'-bis1H-1,2,3-triazolylbenzodithiophene structure, incorporating functionalized aromatic groups Ar and ⁇ units, expands this class Application of materials.
  • the organic semiconductor material of the present invention introduces a 1H-1,2,3-triazole ring into a benzodithiophene unit, and the introduction of a 1H-1,2,3-triazole ring facilitates intermolecular ⁇
  • the - ⁇ stacking makes the polymer more planar, increases the mobility of its charge, facilitates the transfer of charge, and is expected to obtain better device performance.
  • thermogravimetric analysis of the polymers PTRI12-DPP12, PTRI16-DPP12, and PTRI20-DPP12 obtained in the examples of the present invention.
  • Figure 3 is a graph showing the absorption spectra of the polymers PTRI12-DPP12, PTRI16-DPP12, and PTRI20-DPP12 obtained in the examples of the present invention in a CHCl 3 solution.
  • Figure 5 is a graph showing the absorption spectra of the obtained polymers PTRI12-DPP20, PTRI16-DPP20, and PTRI20-DPP20 in a CHCl 3 solution according to an example of the present invention.
  • Figure 6 is a graph showing the absorption spectra of the obtained polymers PTRI12-DPP20, PTRI16-DPP20, and PTRI20-DPP20 of the examples of the present invention.
  • Figure 7 is a graph comparing the oxidation potential curves of the polymers PTRI12-DPP12, PTRI16-DPP12, PTRI20-DPP12, PTRI12-DPP20, PTRI16-DPP20, and PTRI20-DPP20 obtained in the examples of the present invention.
  • FIG. 8 is a J-V graph of a solar cell device prepared by the polymers PTRI12-DPP12, PTRI16-DPP12, PTRI20-DPP12, PTRI12-DPP20, PTRI16-DPP20, and PTRI20-DPP20 obtained in the examples of the present invention.
  • the practice of the present invention may employ conventional techniques of polymer chemistry within the skill of the art.
  • efforts are made to ensure the accuracy of the numbers used (including amounts, temperatures, reaction times, etc.), but some experimental errors and deviations should be considered.
  • the temperatures used in the following examples are expressed in ° C and the pressure is at or near atmospheric pressure. All solvents were purchased at analytical or chromatographic grades and all reactions were carried out under an inert atmosphere of argon. All reagents are commercially available unless otherwise indicated.
  • the nuclear magnetic data of the product are as follows: 1 H NMR (600 MHz, CDCl 3 ), ⁇ (ppm): 7.52 (s, 2H), 0.35 (s, 18H). 13 C NMR (150 MHz, CDCl 3 ), ⁇ (ppm): 141.76, 137.63, 125.92, 117.60, 110.21, 106.40, 99.47, 0.0005.
  • the nuclear magnetic data of the product are as follows: 1 H NMR (600 MHz, CDCl 3 ), ⁇ (ppm): 8.05 (s, 2H). 7.95 (s, 2H), 4.44 (d, 4H), 2.07 (m, 2H), 1.36 -1.25 (m, 32H), 0.93-0.87 (m, 12H). 13 C NMR (150 MHz, CDCl 3 ), ⁇ (ppm): 144.27, 138.53, 135.09, 126.10, 123.15, 118.18, 117.45, 54.36, 39.22, 31.77, 31.45, 31.13, 29.55, 28.57, 26.37, 22.93, 22.65, 14.09, 14.05.
  • Example 2 The synthesis method was identical to that of Example 1. A pale yellow powder (DBrTRI16, 1.7 g, 92%) was obtained.
  • the nuclear magnetic data of the product are as follows: 1 H NMR (600 MHz, CDCl 3 ), ⁇ (ppm): 8.05 (s, 2H). 7.96 (s, 2H), 4.44 (d, 4H), 2.07 (m, 2H), 1.36 -1.25 (m, 48H), 0.89-0.85 (m, 12H).
  • Example 2 The synthesis method was identical to that of Example 1. A pale yellow powder (DBrTRI 20, 2.0 g, 95%) was obtained.
  • the nuclear magnetic data of the product are as follows: 1 H NMR (600 MHz, CDCl 3 ), ⁇ (ppm): 8.05 (s, 2H), 7.96 (s, 2H), 4.44 (d, 4H), 2.07 (m, 2H), 1.36 -1.25 (m, 64H), 0.89-0.85 (m, 12H).
  • the polymerization conditions are in agreement with the above.
  • the yield was 86%.
  • the polymerization conditions are in agreement with the above.
  • the yield was 85%.
  • the polymerization conditions are in agreement with the above.
  • the yield was 85%.
  • the polymerization conditions are in agreement with the above.
  • the yield was 82%.
  • the polymerization conditions are in agreement with the above.
  • the yield was 82%.
  • all of the polymers have good thermal stability, and the decomposition temperatures are: 327 ° C, 323 ° C, 315 ° C, 340 ° C, 336 ° C, 311 ° C.
  • FIG. 3 and FIG. 4 are respectively a solution and a film absorption spectrum of the polymers PTRI12-DPP12, PTRI16-DPP12, and PTRI20-DPP12 obtained in Example 4.
  • the polymer exhibits a similar absorption peak, and the solution thereof
  • the absorption peaks are about 410 nm and 680 nm; the absorption peaks in the film are 420 nm and 700 nm, respectively.
  • the absorption edge of the absorption spectrum of the film is close to 900 nm, and the absorption edge of the corresponding film of each polymer has a significant red shift than the absorption edge of the solution, and the red shift spectrum will be beneficial to the improvement of photoelectric conversion efficiency.
  • FIG. 5 and FIG. 6 are solution and film absorption spectra of the polymers PTRI12-DPP20, PTRI16-DPP20, and PTRI20-DPP20 obtained in Example 4, respectively.
  • the optical entangles E g of the polymers PTRI12-DPP20, PTRI16-DPP20, PTRI20-DPP20, PTRI12-DPP12, PTRI16-DPP12, and PTRI20-DPP12 were calculated from the formula: 1.37 eV, 1.39 eV, 1.37 eV, 1.38 eV, 1.37. eV, 1.39eV.
  • FIG. 7 is a graph comparing the oxidation potential curves of the polymers PTRI12-DPP12, PTRI16-DPP12, PTRI20-DPP12, PTRI12-DPP20, PTRI16-DPP20, and PTRI20-DPP20 obtained in Example 4.
  • the HOMO energy levels of the polymers PTRI12-DPP20, PTRI16-DPP20, PTRI20-DPP20, PTRI12-DPP12, PTRI16-DPP12, and PTRI20-DPP12 were -5.41 eV, -5.42 eV, -5.41 eV, -5.37 eV, respectively. -5.39eV, -5.40eV.
  • the LOMO levels are -3.66 eV, -3.66 eV, -3.66 eV, -3.66 eV, -3.95 eV, -3.95 eV, -3.66 eV, respectively. It can be seen that while obtaining a deep HOMO level, the LOMO level is also shifted down at the same time.
  • Example 8 is a JV graph of a solar cell device prepared by the polymers PTRI12-DPP12, PTRI16-DPP12, PTRI20-DPP12, PTRI12-DPP20, PTRI16-DPP20, and PTRI20-DPP20 obtained in Example 4.
  • the device structure is flip-chip structure: ITO/PFN/Polymer: PC 71 BM(1:2)/MoO 3 /Al.
  • the short-circuit current (Jsc) and open circuit voltage (Voc) of the most efficient devices were 2.58 mA/cm 2 and 0.70 V, respectively, and the energy conversion efficiency was 1.01%. See Table 1 for detailed data.
  • the device preparation process is as follows: First, a 5-10 nm PFN film is spin-coated on the cleaned ITO, and then the polymer material and PC 71 BM (mass ratio 1:2, plus 3% DIO) are prepared in advance. The chlorobenzene solution was spin-coated to form a film on the PFN, and then the wet film was dried until the film was dried. Finally, ⁇ 10 nm of MoO 3 and ⁇ 70 nm of Al were vapor-deposited by thermal evaporation as an anode. The effective area of the device is 0.16 cm 2 . The device is packaged and tested for performance in the atmosphere. The energy conversion efficiency and current (J)-voltage (V) characteristics of the device were obtained under an AM 1.5G solar simulator. The power of the simulated solar lamp was calibrated with a standard silicon solar cell prior to testing at 100 mW cm -2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种有机半导体材料,含4,4'-双1H-1,2,3-三唑基苯并二噻吩单元和芳香基团,芳香基团与4,4'-双1H-1,2,3-三唑基苯并二噻吩单元以共轭方式连接。本发明还公开了上述有机半导体材料的制备方法,通过由含双炔基苯并二噻吩单体与含叠氮基的烷基链通过点击化学制备而成。与现有技术相比,本发明的有机半导体材料有利于分子间的π-π堆积,使聚合物的平面性更好,有利于器件性能的提高;本发明的制备方法简单方便,产率高,后处理简单,便于提纯。

Description

一种有机半导体材料及其制备方法与应用 技术领域
本发明涉及有机光电材料技术领域,特别涉及一种有机半导体材料及其制备方法及应用。
背景技术
在当今世界,能源问题已成为全人类共同关注的问题。随着不可再生化石能源的不断消耗,环境污染问题的不断恶化,人们急切地寻求并开发利用各种可再生的清洁能源。其中,由于太阳能是取之不竭,用之不尽的清洁能源,将太阳能转化为电能的太阳电池的研究受到了各国的高度重视。近年来,有机光伏器件因其具有质量轻,加工简易,成本低以及能制成大面积的柔性器件等诸多优点,成为太阳电池的研究热点,其中单层聚合物太阳电池最高能量转换效率已经超过10%(DOI:10.1038/ncomms6293),具有十分广大的商业应用前景。
相对于无机半导体太阳电池,有机太阳电池的效率还是偏低。为了提高其光电转换效率,科学家们通过材料化学结构的优化,器件结构的优化,器件制备条件的调控多角度入手,进行了深入的研究。其中,光活性层材料的改进,尤其是对共轭聚合物结构的优化与调整,是聚合物太阳电池的研究重点。近年来,大量应用于聚合物太阳电池光活性层的共轭聚合物被设计与合成出来,并取得了相应的进展与突破。如苯并二噻吩(BDT)单元作为一种对称性的共轭分子结构,广泛应用于光电领域,基于BDT单元的场效应晶体管的迁移率达到了0.25cm2V-1s-1,基于BDT单元的单层聚合物太阳电池发展到目前效率已经达到8-9%(Energy Environ.Sci.,2012,5,8208;Nat.Photon.2012,6,591;Adv.Mater.2013,25,4944–4949;J.Am.Chem.Soc.2013,135,17060-17068;J.Am.Chem.Soc.2013,135,4656-4659)。因此,设计和开发新型的共轭聚合物单元及材料对发展聚合物太阳电池是至关重要的,这将为不久的将来有机光伏电池的商业化打下坚定的基础。
发明内容
为了克服现有技术的上述缺点与不足,本发明的目的之一在于提供一种有 机半导体材料,使聚合物的平面性更好,提高其电荷的迁移率,有利于电荷的传输,有望得到更好的器件性能。
本发明的目的之二在于提供上述有机半导体材料的制备方法,简单方便,产率高,后处理简单,便于提纯。
本发明的目的之三在于提供上述有机半导体材料的应用。
本发明的目的通过以下技术方案实现:
一种有机半导体材料,其结构式如下:
Figure PCTCN2015098530-appb-000001
其中,Ar为缺电子性共轭单元;π为含有碳碳双键、碳氮键的共轭单元;0<x<1,0<y<1,x+y=1;m为0到10000的自然数;n为1到10000的自然数;
R1为具有1到30碳原子数的烷基链。
所述Ar为亚乙烯基、亚乙炔基、亚芳基、杂亚芳基或通过单键连接的2-6个亚芳基所形成的基团;或者,Ar为亚乙烯基、亚乙炔基、亚芳基、杂亚芳基或通过单键连接的2-6个亚芳基中的一个或多个碳原子被氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基或硝基取代,氢原子被卤原子、氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基或硝基取代形成的基团。
所述Ar为苯并噻二唑、苯并三唑、萘并噻二唑、萘并三唑、吡咯并吡咯二酮、靛蓝、异靛蓝、喹喔啉、萘二酰亚胺、苝二酰亚胺、噻吩并酰亚胺或喹喔啉。
所述Ar为以下结构中的一种:
Figure PCTCN2015098530-appb-000002
其中,R为氢或具有1~30个碳原子的烷基;或者为具有以下结构的烷基:烷基中一个或多个碳原子被氧原子、烯基、炔基、芳基、羟基、氨基、羰基、 羧基、酯基、氰基或硝基取代,氢原子被卤原子、氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基或硝基取代。
所述π为苯、萘、噻吩、并噻吩、硒吩、碲吩、呋喃、吡咯、噻咯、噻唑、恶唑或三唑。
所述π为以下结构中的一种:
Figure PCTCN2015098530-appb-000003
其中,R为氢或具有1~30个碳原子的烷基;或者为具有以下结构的烷基:烷基中一个或多个碳原子被氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基或硝基取代,氢原子被卤原子、氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基或硝基取代。
所述R1为具有1到30碳原子数的烷基链,其中,烷基链中的一个或多个碳原子被氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基或硝基取代,氢原子被卤原子被氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基或硝基取代。
所述有机半导体材料的制备方法,包括以下步骤:
(1)将式2所示的化合物和式3所示的化合物在一价铜的催化作用下发生点击化学反应,得到式4所示的化合物;
Figure PCTCN2015098530-appb-000004
其中,Y为氢原子、三甲基硅基或者三异丙基硅基,X为氢原子、卤原子、硼酸基团、硼酸酯基团或三烷基锡基团;R2的定义等同于R1
(2)以式4所示的化合物为原料,通过聚合反应合成如式1所示的有机半导体材料。
所述有机半导体材料在有机光电器件中的应用。
与现有技术相比,本发明具有以下优点和有益效果:
1、本发明的有机半导体材料,含4,4’-双1H-1,2,3-三唑基苯并二噻吩结构,引入了功能化的芳香基团Ar和π单元,拓展了这类材料的应用。
2、本发明的有机半导体材料,将1H-1,2,3-三唑环引入到苯并二噻吩单元中,1H-1,2,3-三唑环的引入,有利于分子间的π-π堆积,使聚合物的平面性更好,提高其电荷的迁移率,有利于电荷的传输,有望得到更好的器件性能。
3、本发明的有机半导体材料的制备方法,巧妙地应用点击化学(Click Chemistry)将1H-1,2,3-三唑环引入到共轭聚合物中,合成方法采用“一锅法”,简单方便,产率高(90%以上),后处理简单,便于提纯。
附图说明
图1为本发明的实施例所得聚合物PTRI12-DPP12、PTRI16-DPP12、PTRI20-DPP12的热失重分析图。
图2为本发明的实施例所得聚合物PTRI12-DPP20、PTRI16-DPP20、PTRI20-DPP20的热失重分析图。
图3为本发明的实施例所得聚合物PTRI12-DPP12、PTRI16-DPP12、PTRI20-DPP12在CHCl3溶液中的吸收光谱图。
图4为本发明的实施例所得聚合物PTRI12-DPP12、PTRI16-DPP12、PTRI20-DPP12的薄膜吸收光谱图。
图5为本发明的实施例所得聚合物PTRI12-DPP20、PTRI16-DPP20、PTRI20-DPP20在CHCl3溶液中的吸收光谱图。
图6为本发明的实施例所得聚合物PTRI12-DPP20、PTRI16-DPP20、PTRI20-DPP20的薄膜吸收光谱图。
图7为本发明的实施例所得聚合物PTRI12-DPP12、PTRI16-DPP12、PTRI20-DPP12、PTRI12-DPP20、PTRI16-DPP20、PTRI20-DPP20的氧化电势曲线比较图。
图8为本发明的实施例所得聚合物PTRI12-DPP12、PTRI16-DPP12、PTRI20-DPP12、PTRI12-DPP20、PTRI16-DPP20、PTRI20-DPP20制备的太阳电池器件J-V曲线图。
具体实施方式
下面结合实施例,对本发明作进一步地详细说明,但本发明的实施方式不限于此。
本发明的实践可采用本领域技术内的聚合物化学的常规技术。在以下实施例中,努力确保所用数字(包括量、温度、反应时间等)的准确性,但应考虑一些实验误差和偏差。在以下实施例中所用的温度以℃表示,压力为大气压或接近大气压。所有溶剂为分析级或色谱级购买,并且所有反应在氩气惰性气氛下进行。除非另外指出,否则所有试剂都是商业获得的。
实施例1、4,4’-(2,6-二溴苯并[1,2-B:4,5-B']二噻吩-4,8-二基)双(1-2-丁基辛基)-1H-1,2,3-三唑)(简称为DBrTRI12)的合成
化学反应流程如下式所示,具体反应步骤和反应条件如下:
Figure PCTCN2015098530-appb-000005
其 中,(Ⅰ)草酰氯、二氯甲烷,室温12小时;(Ⅱ)二甲胺盐酸盐、三乙,二氯甲烷,室温12小时;(Ⅲ)NBS、DMF,室温6小时;(Ⅳ)-78℃,四氢呋喃,正丁基锂,室温12小时;(Ⅴ)-78℃,三甲基硅基乙炔,四氢呋喃,恢复至室温1小时,然后加入无水氯化亚锡,50℃,12小时;(Ⅵ)叠氮基烷基链,无水碳酸钾,碘化亚铜,四氢呋喃,水,乙腈,回流。
(1)将根据Long Liang公开的方法[Polymer 54,(2013),2278-2284]合成的2,5-二溴噻吩-3-甲酸二甲基酰胺(化合物3,15.6g,50mmol)溶解到无水四氢呋喃(120mL)中,在-78℃条件下,将正丁基锂(20mL,2.5M)逐滴加入到上述反应体系中,然后慢慢升至室温并保持搅拌过夜。反应结束,将反应液直接倒入饱和的氯化铵水溶液中,抽滤并用乙腈洗涤3次。在去除溶剂之后用THF:乙腈(1:1)进行重结晶,得到橙黄色针状晶体(化合物4,3.8g,产率40.2%)。
产物的核磁数据如下:1H NMR(300MHz,CDCl3),δ(ppm):7.60(s,2H).
(2)在氩气保护下,将三甲基硅基乙炔(2.3g,22.5mmol)溶于无水四氢呋喃(50mL)中。在-78℃条件下,将正丁基锂(9mL,2.5M)逐滴加入到上述反应体系中,于-78℃下反应2小时,然后加入化合物4(1.89g,5mmol),慢慢升至室温并保持搅拌5个小时。随后在室温加入无水氯化亚锡(7.56g,40mmol),升温至50℃反应过夜。反应结束,反应液直接旋干,所得固体以石油醚为洗脱剂,硅胶过柱,得到黄绿色固体(化合物5,1.62g,产率60%)。
产物的核磁数据如下:1H NMR(600MHz,CDCl3),δ(ppm):7.52(s,2H),0.35(s,18H).13C NMR(150MHz,CDCl3),δ(ppm):141.76,137.63,125.92,117.60,110.21,106.40,99.47,0.0005.
(3)将化合物5(1.08g,2mmol),5-(叠氮甲基)十一烷(1.69g,8mmol),无水碳酸钾(2.2g,16mmol),碘化亚铜(200mg)置于150mL反应瓶中,加入THF(60mL),水(2mL),乙腈(2mL)。在氩气保护下,加热至回流反应3天。利用硅胶板点板,监控反应的情况。最后,反应结束,将反应液快速通过中性氧化铝短柱,去除金属盐。移除溶剂后所得固体用甲醇重结晶,得到淡黄色粉末(DBrTRI12,1.59g,91.5%)。
产物的核磁数据如下:1H NMR(600MHz,CDCl3),δ(ppm):8.05(s,2H).7.95(s,2H),4.44(d,4H),2.07(m,2H),1.36-1.25(m,32H),0.93-0.87(m,12H).13C NMR(150MHz,CDCl3),δ(ppm):144.27,138.53,135.09,126.10,123.15,118.18,117.45,54.36,39.22,31.77,31.45,31.13,29.55,28.57,26.37,22.93,22.65,14.09,14.05.
实施例2、4,4’-(2,6-二溴苯并[1,2-B:4,5-B']二噻吩-4,8-二基)双(1-2-己基癸基)-1H-1,2,3-三唑)(简称为DBrTRI16)的合成
合成方法与实施例1一致。得到淡黄色粉末(DBrTRI16,1.7g,92%)。
产物的核磁数据如下:1H NMR(600MHz,CDCl3),δ(ppm):8.05(s,2H).7.96(s,2H),4.44(d,4H),2.07(m,2H),1.36-1.25(m,48H),0.89-0.85(m,12H).13C NMR(150MHz,CDCl3),δ(ppm):144.23,138.49,135.05,126.10,123.17,118.15,117.42,54.38,39.23,31.88,31.78,31.46,31.45,29.89,29.55,29.54,29.30,26.39,26.36,22.68,22.65,14.11,14.09.
实施例3、4,4’-(2,6-二溴苯并[1,2-B:4,5-B']二噻吩-4,8-二基)双(1-2-辛基十二烷基)-1H-1,2,3-三唑)(简称为DBrTRI20)的合成
合成方法与实施例1一致。得到淡黄色粉末(DBrTRI20,2.0g,95%)。
产物的核磁数据如下:1H NMR(600MHz,CDCl3),δ(ppm):8.05(s,2H),7.96(s,2H),4.44(d,4H),2.07(m,2H),1.36-1.25(m,64H),0.89-0.85(m,12H).13C NMR(150MHz,CDCl3),δ(ppm):144.26,138.51,135.07,126.12,123.14,118.17,117.43,54.38,39.23,31.91,31.88,31.45,29.88,29.65,29.63,29.59,29.54,29.35,29.30,26.40,22.69,22.68,22.65,14.11,14.09.
实施例4、聚合物的合成
聚合反应流程图如下式所示,具体步骤和反应条件如下:
Figure PCTCN2015098530-appb-000006
其中,(Ⅰ)甲苯,Pd2(dba)3,P(o-tol)3,磷酸钾水溶液,A336,微波反应,140℃,45分钟。
(1)聚合物PTRI12-DPP12的合成
称取单体DBrTRI12(163.8mg,0.2mmol),单体DPP12(177.8mg,0.2mmol)于微波反应管中,加入甲苯(3mL),磷酸钾85mg,去离子水(0.5mL),A336(1滴),通氩气20分钟。随后快速加入催化剂及配体,,Pd2(dba)3(3mg),P(o-tol)3(6mg),通氩气使反应管中充满氩气,盖好盖子,进行微波反应,于140℃反应 45分钟。反应结束,将反应液滴入甲醇中析出聚合物,然后将聚合物用丙酮在索氏提取器中洗涤,过滤头,最后将聚合物在真空干燥箱中烘干,最终得到230mg聚合物(PTRI12-DPP12),产率89%。用GPC(聚苯乙烯为标样)测得的分子量为Mn=15.1kDa,PDI=1.8。
(2)聚合物PTRI16-DPP12的合成
聚合条件与上述一致。产率86%。用GPC(聚苯乙烯为标样)测得的分子量为Mn=14.0kDa,PDI=1.5。
(3)聚合物PTRI20-DPP12的合成
聚合条件与上述一致。产率85%。用GPC(聚苯乙烯为标样)测得的分子量为Mn=13.0kDa,PDI=1.5。
(4)聚合物PTRI12-DPP20的合成
聚合条件与上述一致。产率85%。用GPC(聚苯乙烯为标样)测得的分子量为Mn=24.2kDa,PDI=1.4。
(5)聚合物PTRI16-DPP20的合成
聚合条件与上述一致。产率82%。用GPC(聚苯乙烯为标样)测得的分子量为Mn=25.4kDa,PDI=1.8。
(6)聚合物PTRI16-DPP20的合成
聚合条件与上述一致。产率82%。用GPC(聚苯乙烯为标样)测得的分子量为Mn=11.2kDa,PDI=1.6。
图1和图2分别为实施例4所得聚合物PTRI12-DPP12、PTRI16-DPP12、PTRI20-DPP12、PTRI12-DPP20、PTRI16-DPP20、PTRI20-DPP20的热失重分析图。从图中可以看出,全部聚合物都具有较好的热稳定性,分解温度分别为:327℃、323℃、315℃、340℃、336℃、311℃。
图3和图4分别是实施例4所得聚合物PTRI12-DPP12、PTRI16-DPP12、PTRI20-DPP12的溶液和薄膜吸收光谱图,从图中可以看出,聚合物表现出相似的吸收峰,其溶液吸收峰约为410纳米、680纳米;在薄膜中的吸收峰分别为420纳米、700纳米。其中,薄膜吸收光谱图的吸收边接近900纳米,每个聚合物对应的薄膜吸收边比溶液吸收边都有明显红移,红移的光谱将有利于光电转换效率的提高。
同样的,图5和图6分别是实施例4所得聚合物PTRI12-DPP20、PTRI16-DPP20、PTRI20-DPP20的溶液和薄膜吸收光谱图。
从公式算得聚合物PTRI12-DPP20、PTRI16-DPP20、PTRI20-DPP20、 PTRI12-DPP12、PTRI16-DPP12、PTRI20-DPP12的光学帯隙Eg分别为:1.37eV、1.39eV、1.37eV、1.38eV、1.37eV、1.39eV。
图7为实施例4所得聚合物PTRI12-DPP12、PTRI16-DPP12、PTRI20-DPP12、PTRI12-DPP20、PTRI16-DPP20、PTRI20-DPP20的氧化电势曲线比较图。从公式算得聚合物PTRI12-DPP20、PTRI16-DPP20、PTRI20-DPP20、PTRI12-DPP12、PTRI16-DPP12、PTRI20-DPP12的HOMO能级分别为-5.41eV、-5.42eV、-5.41eV、-5.37eV、-5.39eV、-5.40eV。LOMO能级分别为-3.96eV、-3.96eV、-3.96eV、-3.95eV、-3.95eV、-3.96eV。可以看出,获得深的HOMO能级同时,LOMO能级也同时下移。
图8为实施例4所得聚合物PTRI12-DPP12、PTRI16-DPP12、PTRI20-DPP12、PTRI12-DPP20、PTRI16-DPP20、PTRI20-DPP20制备的太阳电池器件J-V曲线图。器件结构为倒装结构:ITO/PFN/Polymer:PC71BM(1:2)/MoO3/Al。在添加3%的DIO后,效率最高的器件的短路电流(Jsc)和开路电压(Voc)分别为2.58mA/cm2和0.70V,能量转换效率为1.01%。详细数据见表1。
器件制备过程如下:首先,在清洗好的ITO上旋涂一层5~10nm的PFN薄膜,然后将事先配好的聚合物材料和PC71BM(质量比1:2,加3%DIO)的氯苯溶液通过旋涂成膜甩在PFN上,然后将湿的膜进行干燥,直至膜干燥为止。最后通过热蒸发法蒸镀~10nm的MoO3和~70nm的Al作为阳极。器件的有效面积为0.16cm2。器件经封装后在大气环境中进行性能测试。器件的能量转换效率和电流(J)-电压(V)特性曲线在AM 1.5G太阳模拟器下获得。模拟太阳灯的功率在测试前用标准硅太阳电池进行标定,为100mW cm-2
具体太阳电池器件效率如表1所示(器件结构:ITO/PFN/Polymer:PC71BM(1:2)(CB+3%DIO)(90nm)/MoO3/Al),我们可以看到通过采用本专利的发明,成功将4,4’-双1H-1,2,3-三唑基苯并二噻吩单元引入了聚合物,并且得到一系列聚合物,说明了本发明的可行性和含4,4’-双1H-1,2,3-三唑基苯并二噻吩单元的有机半导体材料在有机光电器件的应用潜力。
表1 器件结构:ITO/PFN/Polymer:PC71BM(1:2)(CB+3%DIO)(90nm)/MoO3/Al
Figure PCTCN2015098530-appb-000007
Figure PCTCN2015098530-appb-000008
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (9)

  1. 一种有机半导体材料,其特征在于,其结构式如下:
    Figure PCTCN2015098530-appb-100001
    其中,Ar为缺电子性共轭单元;π为含有碳碳双键、碳氮键的共轭单元;0<x<1,0<y<1,x+y=1;m为0到10000的自然数;n为1到10000的自然数;
    R1为具有1到30碳原子数的烷基链。
  2. 根据权利要求1所述的有机半导体材料,其特征在于,所述Ar为亚乙烯基、亚乙炔基、亚芳基、杂亚芳基或通过单键连接的2-6个亚芳基所形成的基团;或者,Ar为亚乙烯基、亚乙炔基、亚芳基、杂亚芳基或通过单键连接的2-6个亚芳基中的一个或多个碳原子被氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基或硝基取代,氢原子被卤原子、氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基或硝基取代形成的基团。
  3. 根据权利要求1所述的有机半导体材料,其特征在于,所述Ar为苯并噻二唑、苯并三唑、萘并噻二唑、萘并三唑、吡咯并吡咯二酮、靛蓝、异靛蓝、喹喔啉、萘二酰亚胺、苝二酰亚胺、噻吩并酰亚胺或喹喔啉。
  4. 根据权利要求1所述的有机半导体材料,其特征在于,所述Ar为以下结构中的一种:
    Figure PCTCN2015098530-appb-100002
    其中,R为氢或具有1~30个碳原子的烷基;或者为具有以下结构的烷基:烷基中一个或多个碳原子被氧原子、烯基、炔基、芳基、羟基、氨基、羰基、 羧基、酯基、氰基或硝基取代,氢原子被卤原子、氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基或硝基取代。
  5. 根据权利要求1所述的有机半导体材料,其特征在于,所述π为苯、萘、噻吩、并噻吩、硒吩、碲吩、呋喃、吡咯、噻咯、噻唑、恶唑或三唑。
  6. 根据权利要求1所述的有机半导体材料,其特征在于,所述π为以下结构中的一种:
    Figure PCTCN2015098530-appb-100003
    其中,R为氢或具有1~30个碳原子的烷基;或者为具有以下结构的烷基:烷基中一个或多个碳原子被氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基或硝基取代,氢原子被卤原子、氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基或硝基取代。
  7. 根据权利要求1所述的有机半导体材料,其特征在于,所述R1为具有1到30碳原子数的烷基链,其中,烷基链中的一个或多个碳原子被氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基或硝基取代,氢原子被卤原子被氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基或硝基取代。
  8. 权利要求1~7的所述有机半导体材料的制备方法,其特征在于,包括以下步骤:
    (1)将式2所示的化合物和式3所示的化合物在一价铜的催化作用下发生点击化学反应,得到式4所示的化合物;
    Figure PCTCN2015098530-appb-100004
    其中,Y为氢原子、三甲基硅基或者三异丙基硅基,X为氢原子、卤原子、硼酸基团、硼酸酯基团或三烷基锡基团;R2的定义等同于R1
    (2)以式4所示的化合物为原料,通过聚合反应合成如式1所示的有机半导体材料。
  9. 权利要求1~7所述有机半导体材料在有机光电器件中的应用。
PCT/CN2015/098530 2015-01-27 2015-12-23 一种有机半导体材料及其制备方法与应用 WO2016119545A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510041531.X 2015-01-27
CN201510041531.XA CN104672434B (zh) 2015-01-27 2015-01-27 一种有机半导体材料及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2016119545A1 true WO2016119545A1 (zh) 2016-08-04

Family

ID=53308057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098530 WO2016119545A1 (zh) 2015-01-27 2015-12-23 一种有机半导体材料及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN104672434B (zh)
WO (1) WO2016119545A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104672434B (zh) * 2015-01-27 2017-11-07 华南理工大学 一种有机半导体材料及其制备方法与应用
CN106866700B (zh) * 2017-04-21 2019-04-19 黄河科技学院 2,6二溴苯并[1,2-b:4,5-b]二噻酚-4,8-二酮的高效合成方法
CN107698742A (zh) * 2017-06-14 2018-02-16 中南大学 苯并二噻吩二酮基共轭微孔聚合物制备及其光催化应用
CN107674183B (zh) * 2017-10-20 2019-12-03 华南协同创新研究院 含萘[1,2-c;5,6-c]二[1,2,5]噻二唑的共轭聚合物及制备方法和应用
CN108192084A (zh) * 2018-01-17 2018-06-22 合肥工业大学 一种有机半导体共轭聚合物及其合成方法
CN109535166B (zh) * 2018-11-09 2020-08-18 西安交通大学 一种发光有机半导体骨架材料及其应用
CN109912783B (zh) * 2019-01-15 2022-06-14 华南理工大学 一种聚合物电子受体材料及其制备方法与在聚合物太阳电池中的应用
CN112047958B (zh) * 2020-09-14 2023-01-31 广东技术师范大学 一种含噻蒽端基的有机共轭小分子材料及其制备方法
CN113461923B (zh) * 2021-07-09 2023-01-13 万华化学集团股份有限公司 一种有机半导体引发剂及其在聚乳酸合成中的应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102482421A (zh) * 2009-07-24 2012-05-30 朔荣有机光电科技公司 用于聚合物太阳能电池活性层材料的具有羰基取代噻吩并[3,4-b]噻吩单元的共轭聚合物
CN102844312A (zh) * 2010-04-19 2012-12-26 默克专利股份有限公司 苯并二噻吩的聚合物及其作为有机半导体的用途
JP2013102148A (ja) * 2011-10-21 2013-05-23 Toray Ind Inc 光起電力素子用材料および光起電力素子
CN103159941A (zh) * 2013-04-01 2013-06-19 苏州大学 一种全共轭侧链聚合物及其在聚合物太阳能器件中的应用
WO2013142841A1 (en) * 2012-03-22 2013-09-26 Polyera Corporation Polymeric blends and related optoelectronic devices
CN103597601A (zh) * 2011-03-29 2014-02-19 加利福尼亚大学董事会 用于电光器件的活性材料和电光器件
US20140200322A1 (en) * 2013-01-14 2014-07-17 Xerox Corporation Processes for preparing diketopyrrolopyrrole copolymers
CN104672434A (zh) * 2015-01-27 2015-06-03 华南理工大学 一种有机半导体材料及其制备方法与应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010032737A1 (de) * 2010-07-29 2012-02-02 Merck Patent Gmbh Polymere enthaltend substituierte Benzodithiopheneinheiten, Blends enthaltend diese Polymere sowie Vorrichtungen enthaltend diese Polymere oder Blends
CN102827354A (zh) * 2011-06-13 2012-12-19 中国科学院化学研究所 基于侧链为三烷基硅乙炔的二噻吩并苯共聚物及其制备方法和应用
CN103833991B (zh) * 2014-02-26 2016-07-06 中国科学院化学研究所 一种含有硫取代的二维共轭聚合物,其制备方法及其应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102482421A (zh) * 2009-07-24 2012-05-30 朔荣有机光电科技公司 用于聚合物太阳能电池活性层材料的具有羰基取代噻吩并[3,4-b]噻吩单元的共轭聚合物
CN102844312A (zh) * 2010-04-19 2012-12-26 默克专利股份有限公司 苯并二噻吩的聚合物及其作为有机半导体的用途
CN103597601A (zh) * 2011-03-29 2014-02-19 加利福尼亚大学董事会 用于电光器件的活性材料和电光器件
JP2013102148A (ja) * 2011-10-21 2013-05-23 Toray Ind Inc 光起電力素子用材料および光起電力素子
WO2013142841A1 (en) * 2012-03-22 2013-09-26 Polyera Corporation Polymeric blends and related optoelectronic devices
US20140200322A1 (en) * 2013-01-14 2014-07-17 Xerox Corporation Processes for preparing diketopyrrolopyrrole copolymers
CN103159941A (zh) * 2013-04-01 2013-06-19 苏州大学 一种全共轭侧链聚合物及其在聚合物太阳能器件中的应用
CN104672434A (zh) * 2015-01-27 2015-06-03 华南理工大学 一种有机半导体材料及其制备方法与应用

Also Published As

Publication number Publication date
CN104672434B (zh) 2017-11-07
CN104672434A (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
WO2016119545A1 (zh) 一种有机半导体材料及其制备方法与应用
Tang et al. Significant improvement of photovoltaic performance by embedding thiophene in solution-processed star-shaped TPA-DPP backbone
CN104557968A (zh) 基于二噻吩并引达省的a-d-a共轭分子及其制备方法和应用
JP5859872B2 (ja) 有機光電変換素子組成物、これを含む薄膜、光電池、これに用いられる有機半導体ポリマー、化合物およびポリマーの製造方法
JP5425338B2 (ja) アントラセンとピアセレノール類とを含有する共重合体、その製造方法及びその応用
JP2017224820A (ja) フラーレン誘導体、及びn型半導体材料
Du et al. Conjugated polymers with 2, 7-linked 3, 6-difluorocarbazole as donor unit for high efficiency polymer solar cells
Zhou et al. Enhancing the photovoltaic performance of triphenylamine based star-shaped molecules by tuning the moiety sequence of their arms in organic solar cells
Qian et al. Modulating molecular aggregation by facile heteroatom substitution of diketopyrrolopyrrole based small molecules for efficient organic solar cells
JP2014518562A (ja) 半導体重合体
JP2017206479A (ja) 有機材料および光電変換素子
CN105017264A (zh) 一种有机小分子光电功能材料及其制备方法
Cheon et al. DTBDT-TTPD: a new dithienobenzodithiophene-based small molecule for use in efficient photovoltaic devices
Liu et al. A new highly conjugated crossed benzodithiophene and its donor–acceptor copolymers for high open circuit voltages polymer solar cells
CN104031245A (zh) 一种聚合物光伏材料、制备方法及其用途
Qiu et al. An asymmetric small molecule based on thieno [2, 3-f] benzofuran for efficient organic solar cells
CN108084409B (zh) 一种宽带隙有机半导体材料及其制备方法和应用
CN108192083B (zh) 含三氟甲基的共轭聚合物及其制备方法和应用
JP2012186462A (ja) 有機光電変換素子の製造方法
JP5667693B2 (ja) キノキサリン単位含有ポルフィリン共重合体及びその製造方法、並びにその応用
CN110577548A (zh) 基于二噻吩并吡咯的非对称稠杂环小分子电子受体材料及其应用
KR101495152B1 (ko) 유기 반도체 화합물 및 제조방법과 이를 포함하는 유기전자소자
CN110218296B (zh) 一种咔唑类聚合物空穴传输材料的结构、合成及其应用
CN111978515B (zh) 含苄醇基团的空穴传输高分子及其应用
CN109776767B (zh) 一种含二氟萘并噻吩二酮吸电子单元的共轭聚合物及其合成方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879743

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 15879743

Country of ref document: EP

Kind code of ref document: A1