WO2016117853A1 - 수직자기이방성을 갖는 mtj 구조 및 이를 포함하는 자성소자 - Google Patents

수직자기이방성을 갖는 mtj 구조 및 이를 포함하는 자성소자 Download PDF

Info

Publication number
WO2016117853A1
WO2016117853A1 PCT/KR2016/000107 KR2016000107W WO2016117853A1 WO 2016117853 A1 WO2016117853 A1 WO 2016117853A1 KR 2016000107 W KR2016000107 W KR 2016000107W WO 2016117853 A1 WO2016117853 A1 WO 2016117853A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
magnetic anisotropy
ferromagnetic layer
ferromagnetic
mtj structure
Prior art date
Application number
PCT/KR2016/000107
Other languages
English (en)
French (fr)
Inventor
홍진표
이자빈
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to US15/544,356 priority Critical patent/US10700266B2/en
Publication of WO2016117853A1 publication Critical patent/WO2016117853A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/123Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys having a L10 crystallographic structure, e.g. [Co,Fe][Pt,Pd] thin films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3272Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn by use of anti-parallel coupled [APC] ferromagnetic layers, e.g. artificial ferrimagnets [AFI], artificial [AAF] or synthetic [SAF] anti-ferromagnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/329Spin-exchange coupled multilayers wherein the magnetisation of the free layer is switched by a spin-polarised current, e.g. spin torque effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials

Definitions

  • the present invention relates to an MTJ structure having perpendicular magnetic anisotropy, and more particularly, to an MTJ structure having vertical magnetic anisotropy having thermal stability even at high temperatures, and a magnetic device including the same.
  • Next-generation nonvolatile memories which are attracting attention for the demand for new information storage media, include ferroelectric memory (FeRAM), magnetic memory (MRAM), resistive memory (ReRAM), and phase change memory (PRAM). These memories have their respective advantages, and research and development are being actively conducted in a way that suits their purpose.
  • FeRAM ferroelectric memory
  • MRAM magnetic memory
  • ReRAM resistive memory
  • PRAM phase change memory
  • MRAM Magnetic Random Access Memory
  • Magnetoresistance a memory device using a quantum mechanical effect called magnetoresistance
  • It is a large-capacity memory device that can replace DRAM, which is being used.
  • GMR Giant Magneto Resistive
  • TMR Tunneling Magneto Resistive
  • the GMR element has a low MR (magnetoresistance) ratio indicating the rate of change of the magnetoresistance value as low as 10%, the read signal of the stored information is small, and ensuring the read margin is the biggest problem of realizing the MRAM.
  • MTJ magnetic tunnel junction
  • This MTJ element has a laminated structure of ferromagnetic layer / insulation layer / ferromagnetic layer.
  • the tunnel probability between the two ferromagnetic layers via the tunnel insulating film is maximized, and as a result, the resistance value is minimized.
  • the spin direction is reversed, the tunnel probability is minimized and the resistance value is maximized.
  • one of the ferromagnetic layers has a fixed magnetization direction and is set so as not to be affected by external magnetization.
  • the ferromagnetic layer in which the magnetization direction is fixed is called a pinned layer or pinned layer.
  • the magnetization direction is the same as or opposite to that of the fixed layer depending on the direction of the applied magnetic field.
  • the ferromagnetic layer is generally called a free layer, and is responsible for storing information.
  • the spin transfer torque recording method refers to a method of inducing magnetization reversal by directly injecting a current into a magnetic tunnel junction instead of an external magnetic field. This STT recording method is advantageous in terms of high integration since no separate external conductor is required.
  • This structure typically consists of an L 1 / Ru / L 1 structure in which Ru is inserted between ferromagnetic layers such as CoPd, CoPt, [Co / Pd] or [Co / Pt].
  • Selective junctions such as transistors
  • the process temperature of these selectors is approximately 400 ° C, which has an adverse effect on the above-mentioned artificial antiferromagnetic structures. do.
  • Pd or Pt contained in the perpendicular magnetic anisotropic material used to form an artificial antiferromagnetic bond at 400 ° C to 450 ° C diffuses very rapidly during the high temperature heat treatment process, thereby degrading the overall device characteristics.
  • An object of the present invention is to provide an MTJ structure having vertical magnetic anisotropy having thermal stability at high temperature in a structure including an artificial antiferromagnetic structure and a magnetic device including the same.
  • the MTJ structure has a substrate, an artificial antiferromagnetic layer positioned on the substrate, a buffer layer positioned on the artificial antiferromagnetic layer, comprising W or an alloy comprising W, located on the buffer layer, and having perpendicular magnetic anisotropy. It may include a first ferromagnetic layer, a tunneling barrier layer positioned on the first ferromagnetic layer, and a second ferromagnetic layer positioned on the tunneling barrier layer and having perpendicular magnetic anisotropy.
  • the artificial antiferromagnetic layer may include a third ferromagnetic layer, a separation layer positioned on the third ferromagnetic layer, and a fourth ferromagnetic layer positioned on the separation layer.
  • the third ferromagnetic layer or the fourth ferromagnetic layer has a structure of CoPd, CoPt, [Co / Pd] n , [Co / Pt] n , FePd, FePt, [Fe / Pd] n or [Fe / Pt] n structure It may include.
  • the separation layer may include Ru, Ta or Ir.
  • the buffer layer is characterized in that the thickness of 2 nm to 5 nm.
  • the first ferromagnetic layer may include a CoFeB material.
  • the tunneling barrier layer may include at least one selected from the group consisting of MgO, Al 2 O 3 , HfO 2 , TiO 2 , Y 2 O 3, and Yb 2 O 3 .
  • the MTJ structure has a substrate, a second ferromagnetic layer located on the substrate and having perpendicular magnetic anisotropy, a tunneling barrier layer located on the second ferromagnetic layer and a first magnetic anisotropy located on the tunneling barrier layer.
  • a ferromagnetic layer may be disposed on the first ferromagnetic layer, and may include a buffer layer including W or an alloy including W and an artificial antiferromagnetic layer disposed on the buffer layer.
  • the thickness of the buffer layer is characterized in that 2 nm to 5 nm.
  • the first ferromagnetic layer may include a CoFeB material.
  • the magnetic device may include a plurality of digit lines, a plurality of bit lines crossing the top of the digit lines, and the above-described MTJ structure interposed between the digit line and the bit line.
  • a buffer layer is used therebetween to prevent diffusion of a material such as Pd or Pt in an artificial antiferromagnetic layer into a CoFeB layer.
  • the W-based material as the buffer layer material, by inducing the continuity of the crystal structure can be expected coherent tunneling with the MgO tunnel oxide layer in the real device operation, there is an effect that the magnetoresistance ratio is increased and power consumption can be reduced.
  • FIG. 1 is a cross-sectional view showing an MTJ structure having perpendicular magnetic anisotropy according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing an MTJ structure having perpendicular magnetic anisotropy according to another embodiment of the present invention.
  • Figure 3 is a graph showing the magnetic properties according to the heat treatment temperature of the structure according to Preparation Example 1.
  • Figure 4 is a graph showing the magnetic properties according to the heat treatment temperature of the structure according to Preparation Example 2.
  • FIG. 5 are graphs showing magnetic properties according to heat treatment temperatures of structures according to Preparation Example 3.
  • FIG. 5 are graphs showing magnetic properties according to heat treatment temperatures of structures according to Preparation Example 3.
  • Figure 6 is a graph showing the magnetic properties according to the heat treatment temperature of the structure according to Preparation Example 4.
  • first, second, etc. may be used to describe various elements, components, regions, layers, and / or regions, such elements, components, regions, layers, and / or regions It will be understood that it should not be limited by these terms.
  • a / B / C structure used in the present invention means a structure in which the B layer and the C layer are sequentially stacked on the A layer.
  • [A / B] n structure" used in the present invention means a structure in which the A layer and the B layer are alternately laminated n times. N at this time is an integer of 1 or more.
  • FIG. 1 is a cross-sectional view showing an MTJ structure having perpendicular magnetic anisotropy according to an embodiment of the present invention. At this time, the MTJ structure of FIG. 1 is a bottom pinned structure.
  • an MTJ structure having perpendicular magnetic anisotropy may include a substrate 100, an artificial antiferromagnetic layer 200, a buffer layer 300, a first ferromagnetic layer 400, and a tunneling barrier. Layer 500 and second ferromagnetic layer 600.
  • the substrate 100 may use a substrate of various known materials.
  • a substrate 100 may be implemented as a silicon substrate.
  • the substrate 100 may be implemented as an electrode.
  • the substrate 100 may be omitted in some cases.
  • a seed layer (not shown) may be further included on the substrate 100 to grow an artificial antiferromagnetic layer.
  • the artificial antiferromagnetic layer 200 is located on the substrate 100.
  • the artificial antiferromagnetic layer 200 serves to fix the magnetization direction of the first ferromagnetic layer 300 to be described later.
  • the artificial antiferromagnetic layer 200 may include a third ferromagnetic layer 210, a separation layer 220 disposed on the third ferromagnetic layer 210, and a fourth ferromagnetic layer located on the separation layer 220. 230).
  • the third ferromagnetic layer 210 or the fourth ferromagnetic layer 230 may be CoPd, CoPt, [Co / Pd] n , [Co / Pt] n , FePd, FePt, [Fe / Pd] n , or [Fe / Pt] n structure.
  • the separation layer 220 may include Ru, Ta, or Ir.
  • the artificial antiferromagnetic layer 200 may have a CoPd / Ru / CoPd structure.
  • the artificial antiferromagnetic layer 200 may be formed through a conventional deposition method. For example, physical vapor deposition, chemical vapor deposition or sputtering is possible.
  • the buffer layer 300 may be located on the artificial antiferromagnetic layer 200.
  • the buffer layer 300 may include an alloy including W or W.
  • the buffer layer 300 may include W, WB, or WN.
  • the buffer layer 300 may be formed through a conventional deposition method. For example, physical vapor deposition, chemical vapor deposition or sputtering is possible.
  • the buffer layer 300 serves to prevent diffusion of a material such as Pd or Pt, which is a material in the artificial antiferromagnetic layer 200, into the upper portion of the first ferromagnetic layer 300 at a temperature of about 400 ° C., which is a memory device process temperature. Do it.
  • the magnetic properties of the first ferromagnetic layer 300 positioned thereon may be weakened.
  • the buffer layer 300 between the artificial anti-ferromagnetic layer 200 and the first ferromagnetic layer 400 by inserting the buffer layer 300 between the artificial anti-ferromagnetic layer 200 and the first ferromagnetic layer 400, the interface state between the artificial anti-ferromagnetic layer 200 and the structure located above even at high temperatures By not deteriorating, passion stability can be improved.
  • the W layer structure is a bcc-based crystal structure such as CoFeB, and thus coherent tunneling with the MgO tunnel barrier layer in a later operation of the device. Since it can be expected that the magnetoresistance ratio is increased and the power consumption can be reduced.
  • the thickness of the buffer layer 300 may be 2 nm to 5 nm. If the thickness of the buffer layer 300 is less than 2 nm, there is a fear that crystal growth of the first ferromagnetic layer 400 positioned on the buffer layer 300 may not be performed well. In addition, when the thickness of the buffer layer 300 exceeds 5 nm, the material of the buffer layer 300 itself may be diffused into the first ferromagnetic layer 400 to weaken the magnetic properties.
  • the first ferromagnetic layer 400 is located on the buffer layer 300.
  • the first ferromagnetic layer 400 includes a ferromagnetic material having perpendicular magnetic anisotropy as a main element.
  • the first ferromagnetic layer 400 is selected from the group selected from Fe, Co, Ni, B, Si, Zr, Pt, Tb, Pd, Cu, W, Ta, and mixtures thereof to have perpendicular magnetic anisotropy. It may include at least one.
  • the first ferromagnetic layer 400 may include CoFeB.
  • the first ferromagnetic layer 400 including CoFeB may be formed to a thickness of 1.5 nm or less in order to have perpendicular magnetic anisotropy.
  • the first ferromagnetic layer 400 may be formed through a conventional deposition method. For example, physical vapor deposition, chemical vapor deposition or sputtering is possible.
  • the first ferromagnetic layer 400 may have perpendicular magnetic anisotropy at the time of forming the layer, but may also have vertical magnetic anisotropy through a heat treatment method after the formation of the layer.
  • the first ferromagnetic layer 400 is fixed by the magnetization direction is fixed by the artificial anti-ferromagnetic layer.
  • the tunneling barrier layer 500 is located on this first ferromagnetic layer 400. That is, the tunneling barrier layer 500 is interposed between the first ferromagnetic layer 400 and the second ferromagnetic layer 600 described later.
  • the material of the tunneling barrier layer 500 may be any material as long as it is an insulating material.
  • the insulating material may be at least one selected from the group consisting of MgO, Al 2 O 3 , HfO 2 , TiO 2 , Y 2 O 3, and Yb 2 O 3 .
  • the tunneling barrier layer 500 may be an MgO layer.
  • the tunneling barrier layer 500 may be formed through a conventional deposition method. For example, physical vapor deposition, chemical vapor deposition or sputtering is possible.
  • the second ferromagnetic layer 600 is located on the tunneling barrier layer 500. As described above, when the first ferromagnetic layer 400 is a fixed layer, the second ferromagnetic layer 600 may be a free layer.
  • the free layer 600 may store the information by allowing the magnetization direction to be the same as or opposite to the magnetization direction of the fixed layer 400 according to the direction of the applied magnetic field.
  • the second ferromagnetic layer 600 includes a ferromagnetic material having perpendicular magnetic anisotropy as a main element. Accordingly, the second ferromagnetic layer 600 is selected from the group selected from Fe, Co, Ni, B, Si, Zr, Pt, Tb, Pd, Cu, W, Ta, and mixtures thereof to have perpendicular magnetic anisotropy. It may include at least one.
  • the second ferromagnetic layer 600 may include CoFeB.
  • the CoFeB layer may be set to a thin thickness in order to have a perpendicular magnetic anisotropy.
  • the thickness of the CoFeB layer may be set to 1.5 nm or less.
  • the second ferromagnetic layer 600 may be formed through a conventional deposition method. For example, physical vapor deposition, chemical vapor deposition or sputtering is possible.
  • the second ferromagnetic layer 600 may have perpendicular magnetic anisotropy at the time of forming the layer, but may have vertical magnetic anisotropy through a heat treatment method after the formation of the layer.
  • a capping layer (not shown) positioned on the second ferromagnetic layer 600 may be further included.
  • the capping layer functions as a protective layer and may protect the second ferromagnetic layer 600 from being oxidized.
  • FIG. 2 is a cross-sectional view showing an MTJ structure having perpendicular magnetic anisotropy according to an embodiment of the present invention. At this time, the MTJ structure of FIG. 2 is a top pinned structure.
  • the MTJ structure having perpendicular magnetic anisotropy may include a substrate 100, a second ferromagnetic layer 600, a tunneling barrier layer 500, and a first ferromagnetic layer 400.
  • the buffer layer 300 and the artificial antiferromagnetic layer 200 may be included.
  • the substrate 100 may use a substrate of various known materials.
  • a substrate 100 may be implemented as a silicon substrate.
  • the substrate 100 may be implemented as an electrode. Meanwhile, the substrate 100 may be omitted in some cases.
  • the second ferromagnetic layer 600 is located on the substrate 100.
  • the MTJ structure of FIG. 2 is a top pinned structure, the upper part of which is a fixed layer and the lower part of a free layer.
  • the second ferromagnetic layer 600 is a free layer, and the first ferromagnetic layer 300 to be described later will be a fixed layer.
  • the second ferromagnetic layer 600 includes a ferromagnetic material having perpendicular magnetic anisotropy as a main element. Accordingly, the second ferromagnetic layer 600 is selected from the group selected from Fe, Co, Ni, B, Si, Zr, Pt, Tb, Pd, Cu, W, Ta, and mixtures thereof to have perpendicular magnetic anisotropy. It may include at least one.
  • the tunneling barrier layer 500 is located on this second ferromagnetic layer 600.
  • the material of the tunneling barrier layer 500 may be any material as long as it is an insulating material.
  • the insulating material may be at least one selected from the group consisting of MgO, Al 2 O 3 , HfO 2 , TiO 2 , Y 2 O 3, and Yb 2 O 3 .
  • the tunneling barrier layer 500 may be an MgO layer.
  • the first ferromagnetic layer 400 is located on the buffer layer 300.
  • the first ferromagnetic layer 400 includes a ferromagnetic material having perpendicular magnetic anisotropy as a main element.
  • the first ferromagnetic layer 400 is selected from the group selected from Fe, Co, Ni, B, Si, Zr, Pt, Tb, Pd, Cu, W, Ta, and mixtures thereof to have perpendicular magnetic anisotropy. It may include at least one.
  • the first ferromagnetic layer 400 may include CoFeB.
  • the first ferromagnetic layer 400 including CoFeB may be formed to a thickness of 1.5 nm or less in order to have perpendicular magnetic anisotropy.
  • the buffer layer 300 may be located on the first ferromagnetic layer 400.
  • the buffer layer 300 may include an alloy including W or W.
  • the buffer layer 300 may include W, WB, or WN.
  • the buffer layer 300 prevents diffusion of a material such as Pd or Pt, which is a material in the artificial antiferromagnetic layer 200 described below, into the lower ferromagnetic layer 300 at a temperature of about 400 ° C., which is a memory device process temperature. It plays a role.
  • the W-based material as the buffer layer 300, it is possible to induce continuity of the crystal structure.
  • the crystallinity of the artificial antiferromagnetic layer 200 positioned on the upper portion is determined by the second ferromagnetic layer 600, the tunneling barrier layer 500, and the first. So-called reverse texturing may occur, affecting the ferromagnetic layer 400.
  • W-based material when the W-based material is used as the buffer layer 300, W has a bcc structure, thereby preventing such reverse texturing.
  • the thickness of the buffer layer 300 may be 2 nm to 5 nm.
  • the artificial antiferromagnetic layer 200 may be located on the buffer layer 300.
  • the artificial antiferromagnetic layer 200 serves to fix the magnetization direction of the first ferromagnetic layer 300.
  • the artificial antiferromagnetic layer 200 may include a third ferromagnetic layer 210, a separation layer 220 disposed on the third ferromagnetic layer 210, and a fourth ferromagnetic layer located on the separation layer 220. 230).
  • the third ferromagnetic layer 210 or the fourth ferromagnetic layer 230 may be CoPd, CoPt, [Co / Pd] n , [Co / Pt] n , FePd, FePt, [Fe / Pd] n , or [Fe / Pt] n structure.
  • the separation layer 220 may include Ru, Ta, or Ir.
  • the artificial antiferromagnetic layer 200 may have a CoPd / Ru / CoPd structure.
  • Such a magnetic element may include a plurality of digit lines, a plurality of bit lines across the top of the digit lines, and a magnetic tunnel junction interposed between the digit line and the bit line.
  • the magnetic tunnel junction may have the structure of FIG. 1 or the structure of FIG. 2. Therefore, the magnetic tunnel junction has already been described above, a detailed description thereof will be omitted.
  • the magnetic tunnel junction at this time will be used as a structure for storing information in the MRAM. Therefore, it is possible to provide a magnetic device including an MTJ structure with improved thermal stability and magnetoresistance ratio at the same time.
  • a substrate / seed layer / artificial antiferromagnetic layer / buffer layer structure which is a part of the MTJ structure of the bottom pinned structure, was prepared.
  • Ta was used as the buffer layer material.
  • a seed layer of Ta (3 nm) / Ru (5 nm) / Pd (3 nm) was deposited on a silicon substrate by using a sputtering method.
  • the number in parentheses at this time means the thickness of the layer.
  • the sputtering gas used at this time was performed at 20 mTorr of deposition pressure using 20 sccm of Ar gas which is an inert gas.
  • An artificial antiferromagnetic layer of [Co (0.3 nm) / Pd (0.3 nm)] 3 / Ru / [Co (0.3 nm) / Pd (0.3 nm)] 7 structure was then formed on this seed layer.
  • [Co (0.3 nm) / Pd (0.3 nm)] 3 ferromagnetic layer was deposited on the seed layer by using an alternate deposition method at 30 sccm of Ar gas and a deposition pressure of 6.8 mTorr.
  • Ru used as a separation layer was again deposited to a thickness of 1.3 nm using Ar gas 20 sccm, deposition pressure 5 mTorr, and then [Co (0.3 nm) / Pd (0.3 nm)] 7 ferromagnetic layer described above.
  • Ar gas was deposited by alternating deposition at 30 sccm and deposition pressure of 6.8 mTorr.
  • a 3 nm thick Ta buffer layer was then deposited on the artificial antiferromagnetic layer at 20 sccm of Ar gas and 5 mTorr of deposition pressure.
  • a substrate / seed layer / artificial antiferromagnetic layer / buffer layer structure was prepared in the same manner as in Preparation Example 1, except that Pd was used as the buffer layer material.
  • a substrate / seed layer / artificial antiferromagnetic layer / buffer layer structure was prepared in the same manner as in Preparation Example 1, except that Ru was used as the buffer layer material.
  • a substrate / seed layer / artificial antiferromagnetic layer / buffer layer structure was prepared in the same manner as in Preparation Example 1, except that W was used as the buffer layer material.
  • Figure 3 is a graph showing the magnetic properties according to the heat treatment temperature of the structure according to Preparation Example 1.
  • Figure 3 (a) is a room temperature
  • Figure 3 (b) is a graph analyzing the magnetic properties at the heat treatment temperature of 350 °C
  • Figure 4 is a graph showing the magnetic properties according to the heat treatment temperature of the structure according to Preparation Example 2.
  • Figure 4 (a) is a room temperature
  • Figure 4 (b) is a graph analyzing the magnetic properties at the heat treatment temperature of 350 °C
  • FIG. Figure 5 are graphs showing magnetic properties according to heat treatment temperatures of structures according to Preparation Example 3.
  • FIG. Figure 5 (a) is a room temperature
  • Figure 5 (b) is a graph analyzing the magnetic properties at the heat treatment temperature of 350 °C
  • Figure 6 is a graph showing the magnetic properties according to the heat treatment temperature of the structure according to Preparation Example 4.
  • 6 (a) is a graph of the magnetic properties at room temperature
  • 6 (b) is 350 °C
  • 6 (c) at 400 °C °C heat treatment temperature.
  • a buffer layer is used therebetween to prevent diffusion of a material such as Pd or Pt in an artificial antiferromagnetic layer into a CoFeB layer.
  • the continuity of the crystal structure can be induced, so that the MgO tunnel oxide layer and the coherent tunneling can be expected in the real device operation, thereby increasing the magnetoresistance ratio and reducing the power consumption.
  • substrate 200 artificial antiferromagnetic layer
  • third ferromagnetic layer 220 separation layer
  • first ferromagnetic layer 500 tunneling barrier layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

수직자기이방성을 갖는 MTJ 구조를 제공한다. 수직자기이방성을 갖는 MTJ 구조는 기판, 상기 기판 상에 위치하는 인위적 반강자성층, 상기 인위적 반강자성층 상에 위치하되, W 또는 W를 포함하는 합금을 포함하는 버퍼층, 상기 버퍼층 상에 위치하고, 수직자기이방성을 갖는 제1 강자성층, 상기 제1 강자성층 상에 위치하는 터널링 배리어층 및 상기 터널링 배리어층 상에 위치하고, 수직자기이방성을 갖는 제2 강자성층을 포함할 수 있다. 따라서, 인위적 반강자성층을 CoFeB/MgO/CoFeB 구조와 접합시키는 적용에 있어서 그 사이에 버퍼층을 사용함으로써 고온에서의 열적 안정성이 향상된 MTJ 구조를 제공할 수 있다.

Description

수직자기이방성을 갖는 MTJ 구조 및 이를 포함하는 자성소자
본 발명은 수직자기이방성을 갖는 MTJ 구조에 관한 것으로, 더욱 자세하게는 고온에서도 열적 안정성을 갖는 수직 자기 이방성을 갖는 MTJ 구조 및 이를 포함하는 자성소자에 관한 것이다.
새로운 정보저장 매체에 대한 요구로 주목받고 있는 차세대 비휘발성 메모리로는 강유전체 메모리(FeRAM), 자기메모리(MRAM), 저항형 메모리(ReRAM), 상변화메모리(PRAM) 등이 있다. 이들 메모리는 각각의 장점을 가지고 있으며, 그 용도에 맞는 방향으로 연구개발이 활발하게 진행되고 있다.
이 중 MRAM(Magnetic Random Access Memory)은 자기저항(Magnetoresistance)이라는 양자역학적 효과를 이용한 기억소자로서, 저소비 전력으로 고밀도성 및 고응답성의 특징으로 비휘발적인 데이터의 기억이 가능한 장치로, 현재 널리 이용되고 있는 기억소자인 DRAM을 대체할 수 있는 대용량용 기억소자이다.
자기 저항 효과로는, 거대자기저항(Giant Magneto Resistive, GMR)과 터널자기저항(Tunneling Magneto Resistive, TMR)의 2가지 효과가 알려져 있다.
GMR 효과를 이용하는 소자는 2개의 강자성층의 사이에 위치한 도체의 저항이 상하의 강자성층의 스핀 방향에 따라 변화되는 현상을 이용하여 정보를 기억하는 것이다. 그러나, GMR 소자는 자기 저항값의 변화의 비율을 나타내는 MR(magnetoresistance)비가 10% 정도로 낮기 때문에, 기억 정보의 판독 신호가 작아서, 판독 마진의 확보가 MRAM 실현의 최대 과제이다.
한편, TMR 효과를 이용하는 대표적인 소자로서는, 자기터널접합효과에 따른 자기 저항의 변화를 이용하는 자기터널접합(Magnetic Tunnel Junction, MTJ) 소자가 알려져 있다.
이 MTJ 소자는 강자성층/절연층/강자성층의 적층 구조로 되어있다. MTJ 소자에서는, 상하의 강자성층의 스핀 방향이 동일한 경우에는, 터널 절연막을 개재한 2개의 강자성층간의 터널 확률이 최대로 되어, 그 결과 저항값이 최소로 된다. 이에 대하여, 스핀 방향이 반대인 경우에는, 그 터널 확률이 최소로 됨으로써 저항값이 최대로 된다.
이러한 2가지 스핀 상태를 실현하기 위해, 강자성층(자성체막) 중 어느 한쪽은 그 자화 방향이 고정되어 있어 외부 자화의 영향을 받지 않도록 설정되어 있다. 일반적으로, 이 자화 방향이 고정되어 있는 강자성층을 고정층 또는 핀드층(Pinned layer)이라 한다.
다른 쪽 강자성층(자성체막)은 인가되는 자계의 방향에 따라 자화 방향이 고정층의 자화 방향과 동일하거나 반대가 가능하게 되어 있다. 이때의 강자성층을 일반적으로 자유층(Free layer)이라 하며, 정보를 저장하는 역할을 담당하고 있다.
MTJ 소자의 경우, 현재, 저항 변화율로서의 MR비가 50%를 초과하는 것도 얻어지고 있으며, MRAM 개발의 주류가 되고 있다.
한편, 이러한 MTJ 소자 중 수직자기이방성 물질을 이용한 MTJ 소자가 주목받고 있다.
특히, 이러한 수직자기이방성 물질을 이용한 MTJ 소자를 수직스핀전달토크형 자기저항메모리(STT-MRAM) 등에 적용을 위한 연구가 활발히 진행되고 있다.
스핀전달토크형 기록방식은 외부 자기장이 아닌 자기터널접합에 직접 전류를 주입하여 자화반전을 유도하는 방식을 말한다. 이러한 STT 기록방식은 별도의 외부 도선이 필요없어 고집적화에 유리한 특징이 있다.
이러한 수직자기이방성을 이용한 자기터널접합 (MTJ) 소자에 있어서 피닝층(pinning layer)으로 사용되는 물질로써 인위적 반강자성체 구조가 있다. 본 구조는 통상적으로 CoPd, CoPt, [Co/Pd] 또는 [Co/Pt]와 같은 강자성층 사이에 Ru 이 삽입되어진 L1 / Ru / L1 구조로 이루어진다.
현재 STT-MRAM 소자 적용을 위해서는 궁극적으로 트랜지스터와 같은 선택소자 접합이 필수적인데, 이와 같은 선택소자의 공정온도는 대략 400 ℃이고, 이러한 온도는 상기 언급한 인위적 반강자성체 구조에 있어서 안 좋은 영향을 미치게 된다.
현재까지 보고된 바에 따르면 400 ℃ 내지 450 ℃에서 인위적 반강자성체 결합을 구성하기 위해 사용된 수직자기이방성 물질에 포함된 Pd 혹은 Pt 가 고온 열처리 공정 중에서 매우 빠르게 확산됨으로써 전체적인 소자의 특성이 저하된다.
이러한 Pd 혹은 Pt 의 확산은 인위적 반강자성층 내부로의 확산뿐만 아니라, 그에 사용된 씨앗층 및 캡핑층(capping layer) 방향으로도 이루어지게 되는데, 이러한 씨앗층 및 캡핑층으로의 확산은 잠재적으로 CoFeB/MgO/CoFeB 접합과의 계면 상태를 악화시킬 가능성을 내포하고 있다.
따라서, 인위적 반강자성체 구조를 포함하는 구조에서 고온에서 열적 안정성을 갖는 수직 자기 이방성을 갖는 MTJ 구조를 개발할 필요성이 있다.
[선행기술문헌]
[특허문헌]
대한민국 공개특허 제10-1999-0077377호
본 발명이 해결하고자 하는 과제는 인위적 반강자성체 구조를 포함하는 구조에서 고온에서 열적 안정성을 갖는 수직 자기 이방성을 갖는 MTJ 구조 및 이를 포함하는 자성소자를 제공함에 있다.
상기 과제를 이루기 위하여 본 발명의 일 측면은 수직자기이방성을 갖는 MTJ 구조를 제공한다. 이러한 MTJ 구조는 기판, 상기 기판 상에 위치하는 인위적 반강자성층, 상기 인위적 반강자성층 상에 위치하되, W 또는 W를 포함하는 합금을 포함하는 버퍼층, 상기 버퍼층 상에 위치하고, 수직자기이방성을 갖는 제1 강자성층, 상기 제1 강자성층 상에 위치하는 터널링 배리어층 및 상기 터널링 배리어층 상에 위치하고, 수직자기이방성을 갖는 제2 강자성층을 포함할 수 있다.
또한, 상기 인위적 반강자성층은, 제3 강자성층, 상기 제3 강자성층 상에 위치하는 분리층 및 상기 분리층 상에 위치하는 제4 강자성층을 포함할 수 있다.
또한, 상기 제3 강자성층 또는 상기 제4 강자성층은 CoPd, CoPt, [Co/Pd]n, [Co/Pt]n, FePd, FePt, [Fe/Pd]n 또는 [Fe/Pt]n 구조를 포함할 수 있다. 또한, 상기 분리층은 Ru, Ta 또는 Ir을 포함할 수 있다.
또한, 상기 버퍼층의 두께는 2 nm 내지 5 nm 인 것을 특징으로 한다
또한, 상기 제1 강자성층 CoFeB 물질을 포함할 수 있다. 또한, 상기 터널링 배리어층은 상기 터널링 배리어층은 MgO, Al2O3, HfO2, TiO2, Y2O3 및 Yb2O3로 이루어진 군에서 선택된 적어도 어느 하나를 포함할 수 있다.
상기 과제를 이루기 위하여 본 발명의 다른 측면은 수직자기이방성을 갖는 MTJ 구조를 제공한다. 이러한 MTJ 구조는 기판, 상기 기판 상에 위치하고, 수직자기이방성을 갖는 제2 강자성층, 상기 제2 강자성층 상에 위치하는 터널링 배리어층, 상기 터널링 배리어층 상에 위치하고, 수직자기이방성을 갖는 제1 강자성층, 상기 제1 강자성층 상에 위치하되, W 또는 W를 포함하는 합금을 포함하는 버퍼층 및 상기 버퍼층 상에 위치하는 인위적 반강자성층을 포함할 수 있다.
또한, 상기 버퍼층의 두께는 2 nm 내지 5 nm 인 것을 특징으로 한다.
또한, 상기 제1 강자성층은 CoFeB 물질을 포함할 수 있다.
상기 과제를 이루기 위하여 본 발명의 또 다른 측면은 자성소자를 제공한다. 이러한 자성소자는 복수개의 디짓 라인들, 상기 디짓 라인들의 상부를 가로지르는 복수개의 비트 라인들 및 상기 디짓 라인과 상기 비트 라인 사이에 개재된 상술한 MTJ 구조를 포함할 수 있다.
본 발명에 따르면, 인위적 반강자성층을 CoFeB/MgO/CoFeB 구조와 접합시키는 적용에 있어서 그 사이에 버퍼층을 사용함으로써 인위적 반강자성층 내의 Pd 혹은 Pt 등의 물질이 CoFeB 층으로의 확산을 방지할 수 있다.
나아가, 이러한 버퍼층 물질로 W 계열 물질을 사용함으로써, 결정구조의 연속성을 유도함으로써 실 소자 작동에 있어서 MgO 터널 산화층과 coherent tunneling 을 기대할 수 있기에 자기저항비가 높아지고 소모 전력을 감소시킬 수 있는 효과가 있다.
따라서, 고온에서도 열적 안정성이 향상된 수직자기이방성을 갖는 MTJ 구조를 제공할 수 있다.
본 발명의 기술적 효과들은 이상에서 언급한 것들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 효과들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따른 수직자기이방성을 갖는 MTJ 구조를 나타낸 단면도이다.
도 2는 본 발명의 다른 실시예에 따른 수직자기이방성을 갖는 MTJ 구조를 나타낸 단면도이다.
도 3은 제조예 1에 따른 구조의 열처리 온도에 따른 자성특성을 나타낸 그래프들이다.
도 4는 제조예 2에 따른 구조의 열처리 온도에 따른 자성특성을 나타낸 그래프들이다.
도 5는 제조예 3에 따른 구조의 열처리 온도에 따른 자성특성을 나타낸 그래프들이다.
도 6은 제조예 4에 따른 구조의 열처리 온도에 따른 자성특성을 나타낸 그래프들이다.
이하, 첨부된 도면을 참고하여 본 발명에 의한 실시예를 상세히 설명하면 다음과 같다.
본 발명이 여러 가지 수정 및 변형을 허용하면서도, 그 특정 실시예들이 도면들로 예시되어 나타내어지며, 이하에서 상세히 설명될 것이다. 그러나 본 발명을 개시된 특별한 형태로 한정하려는 의도는 아니며, 오히려 본 발명은 청구항들에 의해 정의된 본 발명의 사상과 합치되는 모든 수정, 균등 및 대용을 포함한다.
층, 영역 또는 기판과 같은 요소가 다른 구성요소 "상(on)"에 존재하는 것으로 언급될 때, 이것은 직접적으로 다른 요소 상에 존재하거나 또는 그 사이에 중간 요소가 존재할 수도 있다는 것을 이해할 수 있을 것이다.
비록 제1, 제2 등의 용어가 여러 가지 요소들, 성분들, 영역들, 층들 및/또는 지역들을 설명하기 위해 사용될 수 있지만, 이러한 요소들, 성분들, 영역들, 층들 및/또는 지역들은 이러한 용어에 의해 한정되어서는 안 된다는 것을 이해할 것이다.
또한, 본 발명에서 사용하는 용어 "A/B/C 구조"는 A층 상에 B층 및 C층이 차례로 적층된 구조를 의미한다.
또한, 본 발명에서 사용하는 용어 "[A/B]n 구조"는 A층과 B층이 교대로 n회 반복적층된 구조를 의미한다. 이때의 n은 1 이상의 정수이다.
본 발명의 일 실시예에 따른 수직자기이방성을 갖는 MTJ 구조를 설명한다.
도 1은 본 발명의 일 실시예에 따른 수직자기이방성을 갖는 MTJ 구조를 나타낸 단면도이다. 이때의 도 1의 MTJ 구조는 bottom pinned 구조이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 수직자기이방성을 갖는 MTJ 구조는 기판(100), 인위적 반강자성층(200), 버퍼층(300), 제1 강자성층(400), 터널링 배리어층(500) 및 제2 강자성층(600)을 포함한다.
기판(100)은 공지된 다양한 물질의 기판을 이용할 수 있다. 예를 들어, 이러한 기판(100)은 실리콘 기판으로 구현될 수 있다. 또한, 이러한 기판(100)은 전극으로 구현될 수도 있다. 한편, 이러한 기판(100)은 경우에 따라 생략될 수 있다. 한편, 이러한 기판(100) 상부에 인위적 반강자성층을 성장시키기 위한 씨앗층(미도시)을 더 포함할 수도 있다.
인위적 반강자성층(200)은 기판(100) 상에 위치한다. 이러한 인위적 반강자성층(200)은 후술하는 제1 강자성층(300)의 자화 방향을 고정시키는 역할을 한다.
이러한 인위적 반강자성층(200)은 제3 강자성층(210), 상기 제3 강자성층(210) 상에 위치하는 분리층(220) 및 상기 분리층(220) 상에 위치하는 제4 강자성층(230)을 포함할 수 있다.
상기 제3 강자성층(210) 또는 상기 제4 강자성층(230)은 CoPd, CoPt, [Co/Pd]n, [Co/Pt]n, FePd, FePt, [Fe/Pd]n, 또는 [Fe/Pt]n 구조를 포함할 수 있다. 그리고, 이때의 분리층(220)은 Ru, Ta 또는 Ir을 포함할 수 있다.
예를 들어, 인위적 반강자성층(200)은 CoPd/Ru/CoPd 구조일 수 있다.
이러한 인위적 반강자성층(200)은 통상의 증착 방법을 통해 형성될 수 있다. 예를 들어, 물리적 기상 증착법, 화학적 기상 증착법 또는 스퍼터링법이 가능하다.
버퍼층(300)은 인위적 반강자성층(200) 상에 위치할 수 있다. 이러한 버퍼층(300)은 W 또는 W를 포함하는 합금을 포함할 수 있다. 예를 들어, 버퍼층(300)은 W, WB 또는 WN 를 포함할 수 있다.
이러한 버퍼층(300)은 통상의 증착 방법을 통해 형성될 수 있다. 예를 들어, 물리적 기상 증착법, 화학적 기상 증착법 또는 스퍼터링법이 가능하다.
이러한 버퍼층(300)은 메모리 소자 공정 온도인 약 400℃ 온도에서, 인위적 반강자성층(200) 내의 물질인 Pd 또는 Pt 등의 물질이 상부 예컨대 제1 강자성층(300)으로 확산되는 것을 방지하는 역할을 한다.
만일, 인위적 반강자성층(200) 내의 물질인 Pd 또는 Pt 등의 물질이 상부로 확산될 경우, 상부에 위치하는 제1 강자성층(300)의 자성 특성을 약화시킬 수 있다.
따라서, 본 발명에서는 인위적 반강자성층(200) 및 제1 강자성층(400) 사이에 버퍼층(300)을 삽입함으로써, 고온에서도 인위적 반강자성층(200)과 상부에 위치하는 구조와의 계면 상태를 악화시키지 않음으로써 열정 안정성을 향상시킬 수 있다.
또한, 버퍼층(300) 물질로 W 또는 W를 포함하는 합금을 사용할 경우 결정구조의 연속성을 유도할 수 있다. 예컨대, 이러한 W 물질을 포함하는 버퍼층(300) 상에 CoFeB/MgO/CoFeB 구조가 위치할 경우, W층의 구조가 CoFeB와 같은 bcc 기반 결정구조이므로 추후 소자 작동에 있어서 MgO 터널 배리어층과 coherent tunneling을 기대할 수 있기에 자기저항비가 높아지고 소모 전력을 감소시킬 수 있는 효과가 있다.
또한, 이러한 버퍼층(300)의 두께는 2 nm 내지 5 nm일 수 있다. 만일, 버퍼층(300)의 두께가 2 nm 미만일 경우, 버퍼층(300) 상에 위치하는 제1 강자성층(400)의 결정 성장이 잘 이루어지지 않을 염려가 있다. 또한, 이러한 버퍼층(300)의 두께가 5 nm를 초과하는 경우, 버퍼층(300) 자체의 물질이 제1 강자성층(400)으로 확산되어 자성특성을 약화시킬 염려가 있다.
제1 강자성층(400)은 버퍼층(300) 상에 위치한다. 이 때의 제1 강자성층(400)은 수직자기이방성을 갖는 강자성 물질을 주 원소로 한다.
예컨대, 이러한 제1 강자성층(400)은 수직자기이방성을 갖기 위하여 Fe, Co, Ni, B, Si, Zr, Pt, Tb, Pd, Cu, W, Ta 및 이들의 혼합물 중에서 선택되는 군에서 선택된 적어도 어느 하나를 포함할 수 있다.
예를 들어, 이러한 제1 강자성층(400)은 CoFeB를 포함할 수 있다. 이때의 CoFeB를 포함하는 제1 강자성층(400)은 수직자기이방성을 갖기 위하여 1.5 nm 이하의 두께로 형성될 수 있다.
이러한 제1 강자성층(400)은 통상의 증착 방법을 통해 형성될 수 있다. 예를 들어, 물리적 기상 증착법, 화학적 기상 증착법 또는 스퍼터링법이 가능하다.
한편, 이러한 제1 강자성층(400)은 층의 형성시에 이미 수직자기이방성을 가질 수도 있겠지만, 층의 형성 이후에 열처리 등의 기법을 통해 수직자기이방성을 가질 수도 있다.
이러한 제1 강자성층(400)은 인위적 반강자성층에 의해 자화 방향이 고정되어 고정층 역할을 하게 된다.
터널링 배리어층(500)은 이러한 제1 강자성층(400) 상에 위치한다. 즉, 터널링 배리어층(500)은 제1 강자성층(400)과 후술하는 제2 강자성층(600) 사이에 개재된다.
이러한 터널링 배리어층(500)의 물질은 절연물질인 것이면 어느 것이나 가능할 것이다. 예를 들어, 이러한 절연물질은 MgO, Al2O3, HfO2, TiO2, Y2O3 및 Yb2O3로 이루어진 군에서 선택된 적어도 어느 하나일 수 있다. 바람직하게 터널링 배리어층(500)은 MgO층일 수 있다.
이러한 터널링 배리어층(500)은 통상의 증착 방법을 통해 형성될 수 있다. 예를 들어, 물리적 기상 증착법, 화학적 기상 증착법 또는 스퍼터링법이 가능하다.
제2 강자성층(600)은 터널링 배리어층(500) 상에 위치한다. 상술한 바와 같이 제1 강자성층(400)이 고정층인 경우, 제2 강자성층(600)은 자유층일 것이다.
따라서, 이러한 자유층(600)은 인가되는 자계의 방향에 따라 자화 방향이 고정층(400)의 자화 방향과 동일하거나 반대가 가능하게 됨으로써, 정보를 저장하는 역할을 한다.
이 때의 제2 강자성층(600)은 수직자기이방성을 갖는 강자성 물질을 주 원소로 한다. 따라서, 이러한 제2 강자성층(600)은 수직자기이방성을 갖기 위하여 Fe, Co, Ni, B, Si, Zr, Pt, Tb, Pd, Cu, W, Ta 및 이들의 혼합물 중에서 선택되는 군에서 선택된 적어도 어느 하나를 포함할 수 있다.
예를 들어, 이러한 제2 강자성층(600)은 CoFeB를 포함할 수 있다. 이때의 CoFeB층은 수직자기이방성을 갖기 위하여 얇은 두께로 설정될 수 있다. 예를 들어, 수직자기이방성을 갖기 위하여 CoFeB층의 두께는 1.5 nm 이하로 설정될 수 있다.
이러한 제2 강자성층(600)은 통상의 증착 방법을 통해 형성될 수 있다. 예를 들어, 물리적 기상 증착법, 화학적 기상 증착법 또는 스퍼터링법이 가능하다.
한편, 이러한 제2 강자성층(600)은 층의 형성시에 이미 수직자기이방성을 가질 수도 있겠지만, 층의 형성 이후에 열처리 등의 기법을 통해 수직자기이방성을 가질 수도 있다.
한편, 이러한 제2 강자성층(600) 상에 위치하는 캡핑층(미도시)을 더 포함할 수 있다. 이러한 캡핑층은 보호층으로서 기능하며, 제2 강자성층(600)이 산화되는 것을 보호할 수 있다.
본 발명의 다른 실시예에 따른 수직자기이방성을 갖는 MTJ 구조를 설명한다.
도 2는 본 발명의 일 실시예에 따른 수직자기이방성을 갖는 MTJ 구조를 나타낸 단면도이다. 이때의 도 2의 MTJ 구조는 top pinned 구조이다.
도 2를 참조하면, 본 발명의 일 실시예에 따른 수직자기이방성을 갖는 MTJ 구조는 기판(100), 제2 강자성층(600), 터널링 배리어층(500), 제1 강자성층(400), 버퍼층(300) 및 인위적 반강자성층(200)을 포함할 수 있다.
기판(100)은 공지된 다양한 물질의 기판을 이용할 수 있다. 예를 들어, 이러한 기판(100)은 실리콘 기판으로 구현될 수 있다. 또한, 이러한 기판(100)은 전극으로 구현될 수도 있다. 한편, 이러한 기판(100)은 경우에 따라 생략될 수 있다.
제2 강자성층(600)은 기판(100) 상에 위치한다. 도 2의 MTJ 구조는 top pinned 구조로서, 상부가 고정층이고 하부가 자유층인 구조인바, 제2 강자성층(600)은 자유층이고, 후술하는 제1 강자성층(300)이 고정층일 것이다.
이 때의 제2 강자성층(600)은 수직자기이방성을 갖는 강자성 물질을 주 원소로 한다. 따라서, 이러한 제2 강자성층(600)은 수직자기이방성을 갖기 위하여 Fe, Co, Ni, B, Si, Zr, Pt, Tb, Pd, Cu, W, Ta 및 이들의 혼합물 중에서 선택되는 군에서 선택된 적어도 어느 하나를 포함할 수 있다.
터널링 배리어층(500)은 이러한 제2 강자성층(600) 상에 위치한다. 이러한 터널링 배리어층(500)의 물질은 절연물질인 것이면 어느 것이나 가능할 것이다. 예를 들어, 이러한 절연물질은 MgO, Al2O3, HfO2, TiO2, Y2O3 및 Yb2O3로 이루어진 군에서 선택된 적어도 어느 하나일 수 있다. 바람직하게 터널링 배리어층(500)은 MgO층일 수 있다.
제1 강자성층(400)은 버퍼층(300) 상에 위치한다. 이 때의 제1 강자성층(400)은 수직자기이방성을 갖는 강자성 물질을 주 원소로 한다.
예컨대, 이러한 제1 강자성층(400)은 수직자기이방성을 갖기 위하여 Fe, Co, Ni, B, Si, Zr, Pt, Tb, Pd, Cu, W, Ta 및 이들의 혼합물 중에서 선택되는 군에서 선택된 적어도 어느 하나를 포함할 수 있다. 예를 들어, 이러한 제1 강자성층(400)은 CoFeB를 포함할 수 있다. 이때의 CoFeB를 포함하는 제1 강자성층(400)은 수직자기이방성을 갖기 위하여 1.5 nm 이하의 두께로 형성될 수 있다.
버퍼층(300)은 제1 강자성층(400) 상에 위치할 수 있다. 이러한 버퍼층(300)은 W 또는 W를 포함하는 합금을 포함할 수 있다. 예를 들어, 버퍼층(300)은 W, WB 또는 WN 를 포함할 수 있다.
이러한 버퍼층(300)은 메모리 소자 공정 온도인 약 400℃ 온도에서, 후술하는 인위적 반강자성층(200) 내의 물질인 Pd 또는 Pt 등의 물질이 하부 예컨대 제1 강자성층(300)으로 확산되는 것을 방지하는 역할을 한다.
또한, 버퍼층(300)으로 W 계열 물질을 사용함으로써, 결정구조의 연속성을 유도할 수 있다. 예컨대, top pinned 구조에 있어서 공정 시에 포함되는 고온 열처리를 거칠 경우, 상부에 위치하는 인위적 반강자성층(200)의 결정성이 제2 강자성층(600), 터널링 배리어층(500) 및 제1 강자성층(400)에 영향을 미치는, 소위 역 texturing 이 일어날 수가 있다. 이때, 버퍼층(300)으로 W 계열 물질을 사용할 경우 W은 bcc 구조를 가지므로 이러한 역 texturing을 방지할 수 있는 효과가 있다.
또한, 이러한 버퍼층(300)의 두께는 2 nm 내지 5 nm 일 수 있다.
인위적 반강자성층(200)은 버퍼층(300) 상에 위치할 수 있다. 이러한 인위적 반강자성층(200)은 제1 강자성층(300)의 자화 방향을 고정시키는 역할을 한다.
이러한 인위적 반강자성층(200)은 제3 강자성층(210), 상기 제3 강자성층(210) 상에 위치하는 분리층(220) 및 상기 분리층(220) 상에 위치하는 제4 강자성층(230)을 포함할 수 있다.
상기 제3 강자성층(210) 또는 상기 제4 강자성층(230)은 CoPd, CoPt, [Co/Pd]n, [Co/Pt]n, FePd, FePt, [Fe/Pd]n, 또는 [Fe/Pt]n 구조를 포함할 수 있다. 그리고, 이때의 분리층(220)은 Ru, Ta 또는 Ir을 포함할 수 있다.
예를 들어, 인위적 반강자성층(200)은 CoPd/Ru/CoPd 구조일 수 있다.
이하, 본 발명의 일 실시예에 따른 수직자기이방성을 갖는 MTJ 구조를 포함하는 자성소자를 설명한다.
이러한 자성소자는 복수개의 디짓 라인들, 이러한 디짓 라인들의 상부를 가로지르는 복수개의 비트 라인들 및 디짓 라인과 비트 라인 사이에 개재된 자기 터널 접합을 포함할 수 있다.
이 때의 자기 터널 접합은 상술한 도 1의 구조 또는 도 2의 구조일 수 있다. 따라서, 이러한 자기 터널 접합은 이미 상술한 바, 이에 대한 구체적인 설명은 생략한다.
따라서, 이 때의 자기터널접합은 MRAM에서 정보 저장을 위한 구조로 사용될 것이다. 따라서, 열적 안정성과 자기저항비가 동시에 향상된 MTJ 구조를 포함하는 자성소자를 제공할 수 있다.
제조예 1
실험 편의상 bottom pinned 구조의 MTJ 구조 중 일부인 기판/씨앗층/인위적반강자성층/버퍼층 구조를 제조하였다. 이때 버퍼층 물질로 Ta를 사용하였다.
이하, 구체적으로 설명하면, 먼저, 실리콘 기판 상에 스퍼터링법을 사용하여 Ta (3nm)/Ru (5nm)/Pd (3nm)의 씨앗층을 증착하였다. 이때의 괄호 안의 숫자는 층의 두께를 의미한다. 이 때 사용되는 스퍼터링 기체는 비활성 기체인 Ar 가스 20 sccm 을 사용하여 증착 압력 5 mTorr 에서 실시하였다.
그 다음에, 이러한 씨앗층 상에 [Co (0.3nm)/Pd (0.3nm)]3/Ru/[Co (0.3nm)/Pd (0.3nm)]7 구조의 인위적 반강자성층을 형성하였다. 구체적으로 설명하면, 교대증착법을 이용하여 Ar 가스 30 sccm, 증착 압력 6.8 mTorr 에서 씨앗층 상에 [Co (0.3nm)/Pd (0.3nm)]3 강자성층을 증착하였다. 그 다음에 분리층으로 사용되는 Ru 은 다시 Ar 가스 20 sccm, 증착 압력 5 mTorr 을 사용하여 1.3 nm 두께로 증착된 후, [Co (0.3nm)/Pd (0.3nm)]7 강자성층이 상기 서술한 Ar 가스 30 sccm, 증착 압력 6.8 mTorr 에서 교대증착법을 통하여 증착되었다.
그 다음에, 인위적 반강자성층 상에 Ar 가스 20 sccm, 증착 압력 5 mTorr 에서 3 nm 두께의 Ta 버퍼층을 증착하였다.
상기 서술한 모든 층들은 dc 및 rf 스퍼터링을 통해 증착되었으며, Ta, Ru 의 경우 dc 8 Watt 를 이용하였고, Co 의 경우 dc 25 Watt 에서 증착이 이루어졌다. Pd의 경우는 rf 17 Watt 에서 증착되었다. 상기 모든 층들은 매끄러운 계면과 좋은 결정성을 위하여 최대한 낮은 증착속도 조건 하에서 증착되었다.
제조예 2
버퍼층 물질로 Pd를 사용한 것을 제외하고, 제조예 1과 동일하게 수행하여 기판/씨앗층/인위적반강자성층/버퍼층 구조를 제조하였다.
제조예 3
버퍼층 물질로 Ru를 사용한 것을 제외하고, 제조예 1과 동일하게 수행하여 기판/씨앗층/인위적반강자성층/버퍼층 구조를 제조하였다.
제조예 4
버퍼층 물질로 W를 사용한 것을 제외하고, 제조예 1과 동일하게 수행하여 기판/씨앗층/인위적반강자성층/버퍼층 구조를 제조하였다.
실험예
제조예 1 내지 4의 구조를 상온, 350 ℃ 및 400 ℃의 열처리 온도에 따른 자성특성을 분석하였다.
도 3은 제조예 1에 따른 구조의 열처리 온도에 따른 자성특성을 나타낸 그래프들이다. 도 3(a)는 상온, 도 3(b)는 350 ℃ 및 도 3(c)는 400 ℃의 열처리 온도에서 자성특성을 분석한 그래프이다.
도 4는 제조예 2에 따른 구조의 열처리 온도에 따른 자성특성을 나타낸 그래프들이다. 도 4(a)는 상온, 도 4(b)는 350 ℃ 및 도 4(c)는 400 ℃의 열처리 온도에서 자성특성을 분석한 그래프이다.
도 5는 제조예 3에 따른 구조의 열처리 온도에 따른 자성특성을 나타낸 그래프들이다. 도 5(a)는 상온, 도 5(b)는 350 ℃ 및 도 5(c)는 400 ℃의 열처리 온도에서 자성특성을 분석한 그래프이다.
도 6은 제조예 4에 따른 구조의 열처리 온도에 따른 자성특성을 나타낸 그래프들이다. 도 6(a)는 상온, 도 6(b)는 350 ℃ 및 도 6(c)는 400 ℃의 열처리 온도에서 자성특성을 분석한 그래프이다.
도 3 내지 도 5를 참조하면, 버퍼층 물질로 Ta, Pd 및 Ru를 사용한 경우, 350 ℃ 및 400 ℃에서 인위적 반강자성층의 자성 특성이 약화됨을 알 수 있다. 이는 Ta, Pd 및 Ru 그 자체만으로도 고온 열처리 공정에서 확산 가능성을 갖고 있는 바, 이러한 확산에 의해 인위적 반강자성층의 자성특성을 약화시킨 것으로 보인다.
나아가 Ta, Pd 및 Ru와 같은 물질들은 대부분 fcc 혹은 hcp의 결정구조를 가지고 있기에 bcc 구조의 CoFeB와 적절한 결정구조 연속성을 가지는 데에 문제가 존재한다.
이에 반하여, 도 6을 참조하면, 버퍼층 물질로 W를 사용한 경우, 350 ℃ 및 400 ℃에서도 인위적 반강자성층의 자성 특성이 유지됨을 알 수 있다. 따라서, W 계열 물질을 버퍼층 물질로 사용할 경우 고온에서 W 이 쉽게 확산되지 않기 때문에 고온에서도 열적 안정성을 유지시킬 수 있음을 알 수 있다. 이는 W 물질 자체의 응집 에너지가 다른 물질들에 비해 높기 때문에 열적 안정성이 뛰어난 이유 때문이다.
본 발명에 따르면, 인위적 반강자성층을 CoFeB/MgO/CoFeB 구조와 접합시키는 적용에 있어서 그 사이에 버퍼층을 사용함으로써 인위적 반강자성층 내의 Pd 혹은 Pt 등의 물질이 CoFeB 층으로의 확산을 방지할 수 있다.
나아가, 이러한 버퍼층 물질로 W계열 물질로 사용함으로써, 결정구조의 연속성을 유도함으로써 실 소자 작동에 있어서 MgO 터널 산화층과 coherent tunneling 을 기대할 수 있기에 자기저항비가 높아지고 소모 전력을 감소시킬 수 있는 효과가 있다.
따라서, 고온에서도 열적 안정성이 향상된 수직자기이방성을 갖는 MTJ 구조를 제공할 수 있다.
본 명세서와 도면에 개시된 본 발명의 실시 예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시 예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.
[부호의 설명]
100: 기판 200: 인위적 반강자성층
210: 제3 강자성층 220: 분리층
230: 제4 강자성층 300: 버퍼층
400: 제1 강자성층 500: 터널링 배리어층
600: 제2 강자성층

Claims (11)

  1. 기판;
    상기 기판 상에 위치하는 인위적 반강자성층;
    상기 인위적 반강자성층 상에 위치하되, W 또는 W를 포함하는 합금을 포함하는 버퍼층;
    상기 버퍼층 상에 위치하고, 수직자기이방성을 갖는 제1 강자성층;
    상기 제1 강자성층 상에 위치하는 터널링 배리어층; 및
    상기 터널링 배리어층 상에 위치하고, 수직자기이방성을 갖는 제2 강자성층을 포함하는 수직자기이방성을 갖는 MTJ 구조.
  2. 제1항에 있어서,
    상기 인위적 반강자성층은,
    제3 강자성층;
    상기 제3 강자성층 상에 위치하는 분리층; 및
    상기 분리층 상에 위치하는 제4 강자성층을 포함하는 수직자기이방성을 갖는 MTJ 구조.
  3. 제2항에 있어서,
    상기 제3 강자성층 또는 상기 제4 강자성층은 CoPd, CoPt, [Co/Pd]n, [Co/Pt]n, FePd, FePt, [Fe/Pd]n, 또는 [Fe/Pt]n 구조를 포함하는 수직자기이방성을 갖는 MTJ 구조.
  4. 제2항에 있어서,
    상기 분리층은 Ru, Ta 또는 Ir을 포함하는 수직자기이방성을 갖는 MTJ 구조.
  5. 제1항에 있어서,
    상기 버퍼층의 두께는 2 nm 내지 5 nm인 것을 특징으로 하는 수직자기이방성을 갖는 MTJ 구조.
  6. 제1항에 있어서,
    상기 제1 강자성층은 CoFeB 물질을 포함하는 수직자기이방성을 갖는 MTJ 구조.
  7. 제1항에 있어서,
    상기 터널링 배리어층은 MgO, Al2O3, HfO2, TiO2, Y2O3 및 Yb2O3로 이루어진 군에서 선택된 적어도 어느 하나를 포함하는 수직자기이방성을 갖는 MTJ 구조.
  8. 기판;
    상기 기판 상에 위치하고, 수직자기이방성을 갖는 제2 강자성층;
    상기 제2 강자성층 상에 위치하는 터널링 배리어층;
    상기 터널링 배리어층 상에 위치하고, 수직자기이방성을 갖는 제1 강자성층;
    상기 제1 강자성층 상에 위치하되, W 또는 W를 포함하는 합금을 포함하는 버퍼층; 및
    상기 버퍼층 상에 위치하는 인위적 반강자성층을 포함하는 수직자기이방성을 갖는 MTJ 구조.
  9. 제8항에 있어서,
    상기 버퍼층의 두께는 2 nm 내지 5 nm 인 것을 특징으로 하는 수직자기이방성을 갖는 MTJ 구조.
  10. 제8항에 있어서,
    상기 제1 강자성층은 CoFeB 물질을 포함하는 수직자기이방성을 갖는 MTJ 구조.
  11. 복수개의 디짓 라인들;
    상기 디짓 라인들의 상부를 가로지르는 복수개의 비트 라인들; 및
    상기 디짓 라인과 상기 비트 라인 사이에 개재된 제1항 내지 제10항 중 어느 한 항의 MTJ 구조를 포함하는 자성소자.
PCT/KR2016/000107 2015-01-19 2016-01-06 수직자기이방성을 갖는 mtj 구조 및 이를 포함하는 자성소자 WO2016117853A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/544,356 US10700266B2 (en) 2015-01-19 2016-01-06 MTJ structure having vertical magnetic anisotropy and magnetic element including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0008602 2015-01-19
KR1020150008602A KR101705962B1 (ko) 2015-01-19 2015-01-19 수직자기이방성을 갖는 mtj 구조 및 이를 포함하는 자성소자

Publications (1)

Publication Number Publication Date
WO2016117853A1 true WO2016117853A1 (ko) 2016-07-28

Family

ID=56417333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/000107 WO2016117853A1 (ko) 2015-01-19 2016-01-06 수직자기이방성을 갖는 mtj 구조 및 이를 포함하는 자성소자

Country Status (3)

Country Link
US (1) US10700266B2 (ko)
KR (1) KR101705962B1 (ko)
WO (1) WO2016117853A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101874171B1 (ko) * 2016-03-24 2018-08-03 한양대학교 산학협력단 수직자기이방성을 갖는 mtj 구조 및 이를 포함하는 자성소자
CN109952662B (zh) * 2016-10-25 2023-04-18 三星电子株式会社 自旋器件及其操作方法和制造方法
CN109037434B (zh) * 2018-07-06 2020-07-28 西安交通大学 基于人工反铁磁自由层的隧道结器件及磁性随机存储装置
KR102315910B1 (ko) * 2020-01-28 2021-10-20 한양대학교 산학협력단 자기 터널 접합 소자 및 이의 동작 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120006056A (ko) * 2009-04-14 2012-01-17 콸콤 인코포레이티드 자기 터널 접합(mtj) 및 방법들, 및 이를 이용하는 자기 랜덤 액세스 메모리(mram)
US20130130406A1 (en) * 2009-06-11 2013-05-23 Qualcomm Incorporated Magnetic tunnel junction device and fabrication
KR101476932B1 (ko) * 2013-11-20 2014-12-26 한양대학교 산학협력단 수직 자기 이방성을 갖는 mtj 구조, 이의 제조방법 및 이를 포함하는 자성소자

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100315556B1 (ko) 1996-11-20 2002-01-12 니시무로 타이죠 스퍼터링타겟,그를이용하여형성한반강자성체막및자기저항효과소자
US8445979B2 (en) * 2009-09-11 2013-05-21 Samsung Electronics Co., Ltd. Magnetic memory devices including magnetic layers separated by tunnel barriers
JP5209011B2 (ja) * 2010-09-16 2013-06-12 株式会社東芝 磁気抵抗素子
JP2013115413A (ja) * 2011-12-01 2013-06-10 Sony Corp 記憶素子、記憶装置
US9178137B2 (en) * 2013-03-22 2015-11-03 Youngmin EEH Magnetoresistive element and magnetic memory
US9608197B2 (en) * 2013-09-18 2017-03-28 Micron Technology, Inc. Memory cells, methods of fabrication, and semiconductor devices
US9824711B1 (en) * 2014-02-14 2017-11-21 WD Media, LLC Soft underlayer for heat assisted magnetic recording media
KR101583783B1 (ko) * 2014-04-18 2016-01-13 한양대학교 산학협력단 메모리 소자
US9496489B2 (en) * 2014-05-21 2016-11-15 Avalanche Technology, Inc. Magnetic random access memory with multilayered seed structure
US9349945B2 (en) * 2014-10-16 2016-05-24 Micron Technology, Inc. Memory cells, semiconductor devices, and methods of fabrication
US10546997B2 (en) * 2016-12-02 2020-01-28 Regents Of The University Of Minnesota Magnetic structures including FePd

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120006056A (ko) * 2009-04-14 2012-01-17 콸콤 인코포레이티드 자기 터널 접합(mtj) 및 방법들, 및 이를 이용하는 자기 랜덤 액세스 메모리(mram)
US20130130406A1 (en) * 2009-06-11 2013-05-23 Qualcomm Incorporated Magnetic tunnel junction device and fabrication
KR101476932B1 (ko) * 2013-11-20 2014-12-26 한양대학교 산학협력단 수직 자기 이방성을 갖는 mtj 구조, 이의 제조방법 및 이를 포함하는 자성소자

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHANG, YAO - JEN ET AL.: "Perpendicular Magnetic Tunnel Junctions with Synthetic Antiferromagnetic pinned Layers based on [Co/Pd] Multilayers", JOURNAL OF APPLIED PHYSICS, vol. 113, 12 April 2013 (2013-04-12), pages 17B909 *
JEON, M. S. ET AL.: "Effective of Tungsten Seed Layer on Perpendicular Magnetic Anisotropy for Co2FeAl Full-Heusler Half-Metal Based Perpendicular Magnetic Tunnel Junctions", 226TH MEETING ON THE ELECTROCHEMICAL SOCIETY, 8 October 2014 (2014-10-08) *

Also Published As

Publication number Publication date
KR20160089567A (ko) 2016-07-28
US10700266B2 (en) 2020-06-30
US20180013059A1 (en) 2018-01-11
KR101705962B1 (ko) 2017-02-14

Similar Documents

Publication Publication Date Title
WO2017135767A1 (ko) 메모리 소자
US7601547B2 (en) Magnetic annealing sequences for patterned MRAM synthetic antiferromagnetic pinned layers
US9337415B1 (en) Perpendicular spin transfer torque (STT) memory cell with double MgO interface and CoFeB layer for enhancement of perpendicular magnetic anisotropy
US10559747B1 (en) Topological insulator-based high efficiency switching of magnetic unit, method and applications
KR101658394B1 (ko) 자기터널접합 소자 및 그 제조방법과 자기터널접합 소자를 포함하는 전자소자
US11585874B2 (en) Magnetic tunnel junction device
US8545999B1 (en) Method and system for providing a magnetoresistive structure
JP5040105B2 (ja) 記憶素子、メモリ
WO2011149274A2 (ko) 자기적으로 연결되고 수직 자기 이방성을 갖도록 하는 비정질 버퍼층을 가지는 자기 터널 접합 소자
WO2016117853A1 (ko) 수직자기이방성을 갖는 mtj 구조 및 이를 포함하는 자성소자
JP2002158381A (ja) 強磁性トンネル接合素子およびその製造方法
WO2012009524A2 (en) Magnetic storage element utilizing improved pinned layer stack
US11257516B2 (en) Storage device, storage apparatus, magnetic head, and electronic apparatus
WO2015182889A1 (ko) 자기터널접합 소자 및 그 제조방법
US20220149267A1 (en) HIGH RETENTION STORAGE LAYER USING ULTRA-LOW RA MgO PROCESS IN PERPENDICULAR MAGNETIC TUNNEL JUNCTIONS FOR MRAM DEVICES
WO2020105877A1 (ko) 메모리 소자
KR20230119264A (ko) 조정가능한 높은 수직 자기 이방성을 갖는 자기 터널접합들
WO2015160093A2 (ko) 메모리 소자
WO2015122639A1 (ko) 수직자기이방성을 갖는 mtj 구조
WO2015160092A2 (ko) 메모리 소자
WO2019143052A1 (ko) 메모리 소자
WO2017164646A2 (ko) 수직자기이방성을 갖는 mtj 구조 및 이를 포함하는 자성소자
TW202013779A (zh) 磁穿隧接合元件及半導體裝置
US20220246842A1 (en) Method for manufacturing a magnetic random-access memory device using post pillar formation annealing
WO2016148392A1 (ko) 메모리 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16740326

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15544356

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16740326

Country of ref document: EP

Kind code of ref document: A1