WO2016117589A1 - 基板処理装置、半導体装置の製造方法、及びサセプタ - Google Patents

基板処理装置、半導体装置の製造方法、及びサセプタ Download PDF

Info

Publication number
WO2016117589A1
WO2016117589A1 PCT/JP2016/051531 JP2016051531W WO2016117589A1 WO 2016117589 A1 WO2016117589 A1 WO 2016117589A1 JP 2016051531 W JP2016051531 W JP 2016051531W WO 2016117589 A1 WO2016117589 A1 WO 2016117589A1
Authority
WO
WIPO (PCT)
Prior art keywords
susceptor
substrate
processing
gas
rotation
Prior art date
Application number
PCT/JP2016/051531
Other languages
English (en)
French (fr)
Inventor
稲田 哲明
愛彦 柳沢
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to JP2016570673A priority Critical patent/JP6276428B2/ja
Publication of WO2016117589A1 publication Critical patent/WO2016117589A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping

Definitions

  • the present invention relates to a substrate processing apparatus, a semiconductor device manufacturing method, and a susceptor.
  • substrate processing may be performed while rotating a susceptor on which a substrate is placed in a recess (see Patent Document 1).
  • centrifugal force accompanying rotation of the susceptor is applied to the substrate.
  • An object of the present invention is to provide a technology capable of suppressing the substrate placed in the concave portion of the susceptor from jumping outside due to the centrifugal force accompanying the rotation of the susceptor.
  • a processing chamber for processing a substrate a susceptor provided in the processing chamber, a rotation driving unit for rotating the susceptor, and provided on an upper surface of the susceptor, and disposed around the rotation center of the susceptor.
  • a substrate processing apparatus comprising: a partition part that is divided into two parts; and a notch part that is provided at a position facing the susceptor upper surface of the partition part and through which the convex part passes.
  • the convex part provided on the outer periphery of the concave part and projecting on the upper surface of the susceptor can suppress the substrate placed in the concave part from jumping out to the outside due to the centrifugal force accompanying the rotation of the susceptor.
  • FIG. 1 is a schematic cross-sectional view of a cluster type substrate processing apparatus according to an embodiment of the present invention. It is a schematic perspective view of the reaction container which concerns on one Embodiment of this invention. It is a cross-sectional schematic diagram of the processing furnace which concerns on one Embodiment of this invention. It is a longitudinal section schematic diagram at the time of substrate conveyance of a processing furnace concerning one embodiment of the present invention. It is a longitudinal section schematic diagram at the time of substrate processing of a processing furnace concerning one embodiment of the present invention. It is a schematic block diagram of the controller of the substrate processing apparatus which concerns on one Embodiment of this invention, and is a figure which shows the control system of a controller with a block diagram.
  • FIG. 1 is a cross-sectional view of a cluster type substrate processing apparatus according to the present embodiment.
  • a FOUP Front Opening Unified Pod: hereinafter referred to as a pod
  • the transfer device of the cluster type substrate processing apparatus according to the present embodiment is divided into a vacuum side and an atmosphere side.
  • vacuum means an industrial vacuum.
  • the direction from the vacuum transfer chamber 103 to the atmospheric transfer chamber 121 in FIG. 1 is referred to as the front side.
  • the cluster type substrate processing apparatus 100 includes a vacuum transfer chamber 103 as a first transfer chamber configured in a load lock chamber structure capable of reducing the pressure to a pressure lower than atmospheric pressure (eg, 100 Pa) such as a vacuum state. Yes.
  • the housing 101 of the vacuum transfer chamber 103 is formed in, for example, a box shape with a hexagonal shape in a plan view and closed at both upper and lower ends.
  • the load lock chamber 122 and the load lock chamber 123 are provided on the two side walls located on the front side via the gate valve 126 and the gate valve 127, respectively. Each is provided so as to communicate with the vacuum transfer chamber 103.
  • the process chamber 202a and the process chamber 202b are provided on the two side walls through the gate valve 244a and the gate valve 244b, respectively, so as to communicate with the vacuum transfer chamber 103. It has been.
  • the process chamber 202a and the process chamber 202b are provided with a processing gas supply unit, an inert gas supply unit, an exhaust unit, and the like, which will be described later.
  • a plurality of processing regions and the same number of purge regions as the processing regions are alternately arranged in one reaction vessel.
  • a susceptor (also referred to as a substrate support table or a rotating tray) 217 serving as a substrate support provided in the reaction vessel 203 is rotated so that the substrate 200 as a substrate alternately passes through the processing region and the purge region.
  • the processing gas and the inert gas are alternately supplied to the substrate 200, and the following substrate processing is performed.
  • various substrate processes such as a process of forming a thin film on the substrate 200, a process of oxidizing, nitriding, and carbonizing the surface of the substrate 200, and a process of etching the surface of the substrate 200 are performed.
  • the remaining two side walls of the vacuum transfer chamber 103 are provided with a cooling chamber 202c and a cooling chamber 202d through the gate valve 244c and the gate valve 244d, respectively, so as to be able to communicate with the vacuum transfer chamber 103.
  • a vacuum transfer robot 112 as a first substrate transfer mechanism is provided.
  • the vacuum transfer robot 112 includes, for example, two substrates 200 (dotted lines in FIG. 1) between the load lock chamber 122, the load lock chamber 123, the process chamber 202a, the process chamber 202b, the cooling chamber 202c, and the cooling chamber 202d. Can be conveyed at the same time.
  • the vacuum transfer robot 112 is configured to be moved up and down by an elevator 115 while maintaining the airtightness of the vacuum transfer chamber 103.
  • Substrate detection sensors (not shown) that detect the presence or absence of the substrate 200 are provided in the vicinity of each of 244d.
  • the substrate detection sensor is also called a substrate detection unit.
  • the load lock chamber 122 and the load lock chamber 123 have a load lock chamber structure in which the inside can be depressurized to a pressure (depressurized pressure) lower than atmospheric pressure such as a vacuum state. That is, an atmospheric transfer chamber 121 as a second transfer chamber, which will be described later, is provided through the gate valve 128 and the gate valve 129 on the front side of the load lock chamber. Therefore, after the gate valve 129 is closed from the gate valve 126 and the inside of the load lock chamber 122 and the load lock chamber 123 is evacuated, the vacuum state of the vacuum transfer chamber 103 is maintained by opening the gate valve 126 and the gate valve 127. However, the substrate 200 can be transferred between the load lock chamber 122, the load lock chamber 123, and the vacuum transfer chamber 103.
  • the load lock chamber 122 and the load lock chamber 123 function as a spare chamber for temporarily storing the substrate 200 to be carried into the vacuum transfer chamber 103. At this time, the substrate 200 is placed on the substrate platform 140 in the load lock chamber 122 and on the substrate platform 141 in the load lock chamber 123.
  • an atmosphere transfer chamber 121 is provided as a second transfer chamber that is used at substantially atmospheric pressure.
  • an atmospheric transfer chamber 121 is provided on the front side of the load lock chamber 122 and the load lock chamber 123 (side different from the vacuum transfer chamber 103) via the gate valve 128 and the gate valve 129.
  • the atmospheric transfer chamber 121 is provided so as to communicate with the load lock chamber 122 and the load lock chamber 123.
  • an atmospheric transfer robot 124 as a second substrate transfer mechanism for transferring the substrate 200 is provided.
  • the atmospheric transfer robot 124 is configured to be moved up and down by an elevator (not shown) provided in the atmospheric transfer chamber 121 and is configured to be reciprocated in the left-right direction by a linear actuator (not shown).
  • a substrate detection sensor (not shown) that detects the presence or absence of the substrate 200 is provided in the vicinity of the gate valve 128 and the gate valve 129 of the atmospheric transfer chamber 121.
  • the substrate detection sensor is also called a substrate detection unit.
  • a notch alignment device 106 is provided as a position correction device for the substrate 200.
  • the notch alignment device 106 grasps the crystal direction and alignment of the substrate 200 with the notch of the substrate 200 and corrects the position of the substrate 200 based on the grasped information.
  • an orientation flat aligning device (not shown) may be provided.
  • a clean unit (not shown) that supplies clean air is provided in the upper part of the atmospheric transfer chamber 121.
  • a substrate transfer port 134 for transferring the substrate 200 into and out of the atmospheric transfer chamber 121 and a pod opener 108 are provided on the front side of the casing 125 of the atmospheric transfer chamber 121.
  • a load port (I / O stage) 105 is provided on the opposite side of the pod opener 108 with respect to the substrate transfer port 134, that is, outside the housing 125.
  • a pod 109 for storing a plurality of substrates 200 is placed on the load port 105.
  • a lid for opening and closing the substrate transfer port 134, an opening and closing mechanism (not shown) for opening and closing a cap of the pod 109, and an opening and closing mechanism driving unit (not shown) for driving the opening and closing mechanism. (Not shown).
  • the pod opener 108 opens and closes the cap of the pod 109 placed on the load port 105, thereby enabling the substrate 200 to be taken in and out of the pod 109.
  • the pod 109 is carried in (supplied) and carried out (discharged) with respect to the load port 105 by a conveying device (not shown) (for example, RGV: Rail Guided Vehicle).
  • the vacuum transfer chamber 103, the load lock chamber 122, the load lock chamber 123, the atmospheric transfer chamber 121, and the gate valve 126 to the gate valve 129 constitute the transfer apparatus of the substrate processing apparatus 100 according to this embodiment.
  • control unit 221 to be described later is electrically connected to each component of the transfer device of the substrate processing apparatus 100. And it is comprised so that operation
  • a pod 109 storing 25 unprocessed substrates 200 is carried into the substrate processing apparatus 100 by a transfer device (not shown).
  • the loaded pod 109 is placed on the load port 105.
  • the opening / closing mechanism removes the lid and the cap of the pod 109 to open the substrate transfer port 134 and the substrate entrance / exit of the pod 109.
  • the atmospheric transfer robot 124 installed in the atmospheric transfer chamber 121 picks up one substrate 200 from the pod 109 and places it on the notch alignment device 106.
  • the notch alignment device 106 moves the mounted substrate 200 in the horizontal vertical and horizontal directions (X direction, Y direction) and the circumferential direction, and adjusts the notch position and the like of the substrate 200. While the position of the first substrate 200 is being adjusted by the notch alignment device 106, the atmospheric transfer robot 124 picks up the second substrate 200 from the pod 109 and carries it into the atmospheric transfer chamber 121. Wait within.
  • the atmospheric transfer robot 124 picks up the first substrate 200 on the notch alignment device 106.
  • the atmospheric transfer robot 124 places the second substrate 200 held by the atmospheric transfer robot 124 on the notch alignment device 106 at that time.
  • the notch aligning device 106 adjusts the notch position and the like of the second substrate 200 placed thereon.
  • the gate valve 128 is opened, and the atmospheric transfer robot 124 carries the first substrate 200 into the load lock chamber 122 and places it on the substrate platform 140.
  • the gate valve 126 on the vacuum transfer chamber 103 side is closed, and the reduced pressure atmosphere in the vacuum transfer chamber 103 is maintained.
  • the gate valve 128 is closed and the load lock chamber 122 is exhausted to a negative pressure by an exhaust device (not shown).
  • the atmospheric transfer robot 124 repeats the above-described operation. However, when the load lock chamber 122 is in a negative pressure state, the atmospheric transfer robot 124 does not carry the substrate 200 into the load lock chamber 122 but stops at a position immediately before the load lock chamber 122 and waits.
  • the gate valve 126 is opened, and the load lock chamber 122 and the vacuum transfer chamber 103 are communicated with each other. Subsequently, the vacuum transfer robot 112 disposed in the vacuum transfer chamber 103 picks up the first substrate 200 from the substrate platform 140 and carries it into the vacuum transfer chamber 103.
  • a preset pressure value for example, 100 Pa
  • the gate valve 126 is closed, the inside of the load lock chamber 122 is returned to the atmospheric pressure, and the next inside of the load lock chamber 122 is entered. Preparations for carrying in the substrate 200 are performed.
  • the gate valve 244a of the process chamber 202a at a predetermined pressure (for example, 100 Pa) is opened, and the vacuum transfer robot 112 carries the first substrate 200 into the process chamber 202a. This operation is repeated until an arbitrary number (for example, five) of substrates 200 is carried into the process chamber 202a.
  • the gate valve 244a is closed. Then, a processing gas is supplied into the process chamber 202a from a gas supply unit described later, and a predetermined process is performed on the substrate 200.
  • the gate valve 244a is opened. Thereafter, the processed substrate 200 is unloaded from the process chamber 202 a to the vacuum transfer chamber 103 by the vacuum transfer robot 112. After unloading, the gate valve 244a is closed.
  • the gate valve 127 is opened, and the substrate 200 unloaded from the process chamber 202a is loaded into the load lock chamber 123 and placed on the substrate platform 141.
  • the load lock chamber 123 is decompressed to a preset pressure value by an exhaust device (not shown).
  • the gate valve 127 is closed, an inert gas is introduced from an inert gas supply unit (not shown) connected to the load lock chamber 123, and the pressure in the load lock chamber 123 is returned to atmospheric pressure.
  • the gate valve 129 When the pressure in the load lock chamber 123 is returned to atmospheric pressure, the gate valve 129 is opened. Subsequently, after the atmospheric transfer robot 124 picks up the processed substrate 200 from the substrate platform 141 and carries it out into the atmospheric transfer chamber 121, the gate valve 129 is closed. Thereafter, the atmospheric transfer robot 124 stores the processed substrate 200 in the pod 109 through the substrate transfer port 134 of the atmospheric transfer chamber 121.
  • the cap of the pod 109 may be kept open until a maximum of 25 substrates 200 are returned, or may be returned to the pod 109 from which the substrate has been taken out without being stored in the empty pod 109.
  • the cap of the pod 109 and the substrate transfer port The lid 135 of the 134 is closed by the opening / closing mechanism 143. Thereafter, the pod 109 is transferred from the load port 105 to the next process by a transfer device (not shown). By repeating the above operation, 25 substrates 200 are sequentially processed.
  • a process chamber 202a as a processing furnace includes a reaction vessel 203 which is a cylindrical airtight vessel.
  • a processing chamber for processing the substrate 200 is formed in the reaction vessel 203.
  • the partition plate 205 is configured as a partition (divided structure) that divides the processing chamber into a plurality of regions around the rotation center of the susceptor 217. More specifically, the four partition plates 205 partition (divide) the processing chamber into a first processing region 201a, a first purge region 204a, a second processing region 201b, and a second purge region 204b. ) Is configured as follows. Preferably, two or more divided structures are configured to divide the processing chamber into two or more processing regions. Note that the first processing region 201a and the second processing region 201b are also expressed as a processing gas supply region, and the first purge region 204a and the second purge region 204b are also expressed as an inert gas supply region.
  • the first processing region 201a, the first purge region 204a, the second processing region 201b, and the second purge region 204b are arranged in this order along the rotation direction of a susceptor 217 described later. That is, the processing area and the purge area are arranged alternately. In other words, the first processing region 201a, the first purge region 204a, the second processing region 201b, and the second purge region 204b, which are gas supply regions, are arranged between the adjacent divided structures.
  • the substrate 200 placed on the susceptor 217 has a first processing region 201a, a first purge region 204a, a second processing region 201b, and a second purge. It moves in the order of the area 204b.
  • the first processing gas as the first gas is supplied into the first processing region 201a
  • the second processing as the second gas is supplied into the second processing region 201b.
  • a gas is supplied, and an inert gas is supplied into the first purge region 204a and the second purge region 204b. Therefore, by rotating the susceptor 217, the first processing gas, the inert gas, the second processing gas, and the inert gas are supplied onto the substrate 200 in this order.
  • the configurations of the susceptor 217 and the gas supply system will be described later.
  • a gap having a predetermined width is provided between the end of the partition plate 205 and the side wall of the reaction vessel 203 so that gas can pass through the gap.
  • an inert gas is ejected from the first purge region 204a and the second purge region 204b into the first processing region 201a and the second processing region 201b.
  • a notch portion 291 for allowing a later-described pop-out prevention pin 281 to pass is provided on the surface of the partition plate 205 facing the upper surface of the susceptor 217.
  • the partition plate 205 and the susceptor 217 are sufficiently close to each other while preventing the jump-out prevention pin 281 and the partition plate 205 from interfering during substrate processing. Can do.
  • the lower side of the partition plate 205 that is, the bottom center in the reaction vessel 203, has the center of the rotation axis at the center of the reaction vessel 203 and rotates at a desired angular velocity.
  • a susceptor 217 configured as described above is provided.
  • the susceptor 217 is also called a substrate support part.
  • the susceptor 217 is formed of a non-metallic material such as aluminum nitride (AlN), ceramics, or quartz so that the metal contamination of the substrate 200 can be reduced.
  • the susceptor 217 is electrically insulated from the reaction vessel 203.
  • the susceptor 217 is configured to support a plurality of (for example, five in the present embodiment) substrates 200 on the same surface and support the centers of the substrates on the same circumference in the reaction vessel 203.
  • “on the same plane” is not limited to the same plane.
  • a plurality of substrates 200 may be arranged so as not to overlap each other as shown in FIGS.
  • a substrate placement portion 217 b is provided as a recess for placing the substrate 200 at a support position of the substrate 200.
  • the substrate mounting portion 217b may be referred to as a counterbore portion 217b.
  • a plurality of substrate platforms 217b are arranged around the rotation center of the susceptor 217, and preferably a plurality of substrate platforms 217b are provided so as to support a plurality of substrates 200.
  • a plurality of substrate placement portions 217b are provided on the same circumference.
  • Each substrate mounting portion 217 b has a shape corresponding to the substrate 200, for example, a circular shape, and is configured such that its diameter is slightly larger than the diameter of the substrate 200.
  • the substrate 200 By placing the substrate 200 in the substrate placement portion 217b, the substrate 200 can be easily positioned. Since the substrate platform 217 b is provided in a counterbore shape, the surface (bottom surface) on which the substrate 200 is placed of the substrate platform 217 b is disposed at a position lower than the upper surface of the susceptor 217.
  • the susceptor 217 is provided with an elevating mechanism 268 as an elevating drive unit that elevates and lowers the susceptor 217.
  • the susceptor 217 is provided with a plurality of through holes 217a in the substrate platform 217b.
  • a plurality of push-up pins 266 are provided on the bottom surface of the reaction vessel 203.
  • a lift pin 280 is provided above each push-up pin 266 so as to penetrate the through hole 217a.
  • lift pins 280 supported on the push-up pins 266 as shown in FIG. However, it penetrates the susceptor 217 from below and protrudes from the upper surface of the susceptor 217 to support the substrate 200 from below.
  • the upper end portion of the lift pin 280 is the bottom surface of the substrate mounting portion (counterbore portion) 217b. It is buried in the following position, and the bottom surface of the substrate platform 217b supports the substrate 200 from below.
  • the case where the height of the upper surface of the substrate 200 placed on the susceptor 217 is equal to the height of the upper surface of the susceptor 217 is exemplified.
  • the upper surface of the substrate may be higher or lower than the upper surface of the susceptor.
  • the elevating mechanism 268 is provided with a rotation mechanism 267 as a rotation drive unit that rotates the susceptor 217.
  • the susceptor 217 and the rotation mechanism 267 are collectively expressed as a susceptor mechanism 220.
  • the susceptor mechanism 220 may include an elevating mechanism 268 and the like.
  • a rotation shaft (not shown) of the rotation mechanism 267 is connected to the susceptor 217, and the susceptor 217 can be rotated by operating the rotation mechanism 267.
  • a control unit 221 to be described later is connected to the rotation mechanism 267 via a coupling unit.
  • the coupling portion is configured as a slip ring mechanism that electrically connects the rotating side and the fixed side with a metal brush or the like.
  • the control unit 221 is configured to control the state of energization to the rotation mechanism 267 so that the susceptor 217 is rotated at a predetermined speed for a predetermined time. As described above, when the susceptor 217 is rotated, the substrate 200 placed on the substrate placement portion 217b on the susceptor 217 is changed into the first processing region 201a, the first purge region 204a, and the second processing region. 201b and the second purge area 204b are moved in this order.
  • the susceptor 217 is arranged so as to be in contact with the outer periphery of the substrate mounting portion 217b with respect to each substrate mounting portion 217b, and as a protruding portion protruding on the upper surface of the susceptor 217, for example, a protrusion that is a pin-shaped member A prevention pin 281 is provided.
  • the pop-out prevention pin 281 is provided at a position on the outer side in the radial direction of the rotation of the susceptor 217 from the center of the substrate platform 217b. Further, the pop-out prevention pin 281 is preferably provided at a position on a straight line passing through the center of the substrate platform 217b and the rotation center of the susceptor 217, and passes through the center of the substrate platform 217b and the rotation center of the susceptor 217. More preferably, at least one set (two) is provided at a position that is line-symmetric with respect to the straight line. As shown in FIG. 3 and the like, here, a case where one set (two) of pop-out prevention pins 281 is provided is illustrated.
  • the overall planar arrangement of the plurality of pop-out prevention pins 281 provided on the susceptor 217 on the susceptor 217 is preferably provided on the same circumference around the rotation center of the susceptor 217.
  • a notch 291 formed in the partition plate 205 is also provided on the same circumference.
  • the substrate 200 and the vacuum transfer robot 112 do not interfere with the pop-out prevention pin 281 in a state where the susceptor 217 is lowered to the substrate transfer position when the substrate 200 is transferred into and out of the reaction vessel 203.
  • the height of the pop-out prevention pin 281 is set so that the height of the pop-out prevention pin 281 is lower than the height of the lift pin 280 protruding from the upper surface of the susceptor 217.
  • the height of the lift pins 280 is set such that the height of the lift pins 280 is higher than the height of the jump-out prevention pins 281 when the substrate 200 is loaded / unloaded.
  • the distance between the partition plate 205 and the upper surface of the susceptor 217 is preferably set to a height in the range of 1 mm to 5 mm.
  • a heater 218 as a heating unit is integrally embedded so that the substrate 200 can be heated.
  • a predetermined temperature for example, room temperature to about 1000 ° C.
  • a plurality (for example, five) of heaters 218 may be provided on the same surface so as to individually heat the respective substrates 200 placed on the susceptor 217.
  • the susceptor 217 is provided with a temperature sensor 274.
  • a temperature regulator 223, a power regulator 224, and a heater power source 225 are electrically connected to the heater 218 and the temperature sensor 274 via a power supply line 222. Based on the temperature information detected by the temperature sensor 274, the power supply to the heater 218 is controlled.
  • a gas supply mechanism that includes a first process gas introduction mechanism 251, a second process gas introduction mechanism 252, and an inert gas introduction mechanism 253 above the reaction vessel 203 and supplies various gases into the process chamber. 250 is provided.
  • the gas supply mechanism 250 is airtightly provided in an opening opened on the upper side of the reaction vessel 203.
  • a first gas outlet 254 is provided on the side wall of the first processing gas introduction mechanism 251.
  • a second gas outlet 255 is provided on the side wall of the second processing gas introduction mechanism 252.
  • a first inert gas outlet 256 and a second inert gas outlet 257 are provided on the side wall of the inert gas introduction mechanism 253 so as to face each other.
  • the gas supply mechanism 250 supplies the first processing gas from the first processing gas introduction mechanism 251 into the first processing region 201a, and the second processing gas introduction mechanism 252 supplies the first processing gas into the second processing region 201b.
  • the second processing gas is supplied, and the inert gas is supplied from the inert gas introduction mechanism 253 into the first purge region 204a and the second purge region 204b.
  • the gas supply mechanism 250 can supply each processing gas and inert gas individually without mixing. Further, the gas supply mechanism 250 is configured to supply each processing gas and inert gas in parallel.
  • the gas supply mechanism 250 is provided above the center of the reaction vessel 203, that is, above the center of the susceptor 217. Thereby, each processing gas and inert gas are supplied from the center side of the susceptor 217 toward the outer peripheral side.
  • the gas supply mechanism 250 is configured so that the outer periphery of the first processing region 201a, the first purge region 204a, the second processing region 201b, and the second purge region 204b partitioned by the partition plate 205 from the center side. It is comprised so that gas may be supplied toward the side.
  • each processing gas and inert gas are exhausted from the outer peripheral side of the susceptor 217.
  • a first gas supply pipe 232 a is connected to the upstream side of the first processing gas introduction mechanism 251.
  • a source gas supply source 233a On the upstream side of the first gas supply pipe 232a, a source gas supply source 233a, a mass flow controller (MFC) 234a that is a flow rate controller (flow rate control unit), and a valve 235a that is an on-off valve are provided in order from the upstream direction. It has been.
  • MFC mass flow controller
  • the first gas for example, a silicon-containing gas is supplied from the mass flow controller 234a, the valve 235a, the first gas introduction unit 251, and the first gas jet. It is supplied into the first processing region 201a via the outlet 254.
  • the silicon-containing gas for example, trisilylamine ((SiH 3 ) 3 N, abbreviation: TSA) gas can be used.
  • TSA trisilylamine
  • the first processing gas may be any of solid, liquid, and gas at normal temperature and pressure, but will be described as a gas here.
  • a vaporizer (not shown) may be provided between the source gas supply source 233a and the mass flow controller 234a.
  • HMDS hexamethyldisilazane
  • 3DMAS trisdimethylaminosilane
  • BTBAS bistally butylaminosilane
  • a second gas supply pipe 232b is connected to the upstream side of the second processing gas introduction mechanism 252.
  • a source gas supply source 233b On the upstream side of the second gas supply pipe 232b, a source gas supply source 233b, a mass flow controller (MFC) 234b that is a flow rate controller (flow rate control unit), and a valve 235b that is an on-off valve are provided in order from the upstream direction. It has been.
  • MFC mass flow controller
  • the second gas for example, oxygen (O 2 ) gas which is an oxygen-containing gas is introduced into the mass flow controller 234b, the valve 235b, and the second processing gas.
  • the gas is supplied into the second processing region 201b via the mechanism 252 and the second gas ejection port 255.
  • Oxygen gas, which is the second processing gas is brought into a plasma state by a plasma generation unit 206 described later, and is supplied to the substrate 200.
  • the oxygen gas which is the second processing gas may be activated by adjusting the temperature of the heater 218 and the pressure in the reaction vessel 203 within a predetermined range.
  • ozone (O 3 ) gas or water vapor (H 2 O) may be used as the oxygen-containing gas.
  • a first process gas supply unit (also referred to as a silicon-containing gas supply system) is mainly configured by the first process gas introduction mechanism 251, the first gas supply pipe 232a, the mass flow controller 234a, and the valve 235a.
  • the source gas supply source 233a, the first processing gas introduction mechanism 251, and the first gas outlet 254 may be included in the first processing gas supply unit.
  • a second processing gas supply unit (also referred to as an oxygen-containing gas supply system) is mainly configured by the second processing gas introduction mechanism 252, the second gas supply pipe 232b, the mass flow controller 234b, and the valve 235b.
  • the source gas supply source 233b, the second processing gas introduction mechanism 252, and the second gas outlet 255 may be included in the second processing gas supply unit.
  • the process gas supply part is mainly comprised by the 1st gas supply system and the 2nd gas supply system.
  • the first processing gas supply unit and the second processing gas supply unit are also collectively referred to as a processing gas supply unit.
  • a first inert gas supply pipe 232 c is connected to the upstream side of the inert gas introduction mechanism 253.
  • an inert gas supply source 233c On the upstream side of the first inert gas supply pipe 232c, in order from the upstream direction, a mass flow controller (MFC) 234c that is a flow rate controller (flow rate control unit), and a valve that is an on-off valve 235c is provided.
  • MFC mass flow controller
  • nitrogen (N 2 ) gas is used as an inert gas, such as a mass flow controller 234c, a valve 235c, an inert gas introduction mechanism 253, a first inert gas outlet 256, and The gas is supplied into the first purge region 204a and the second purge region 204b through the second inert gas outlet 257, respectively.
  • the inert gas supplied into the first purge region 204a and the second purge region 204b acts as a purge gas in the film forming step (S106) described later.
  • a rare gas such as He gas, Ne gas, Ar gas, or the like can be used as the inert gas.
  • the downstream end of the second inert gas supply pipe 232d is connected to the downstream side of the valve 235a of the first gas supply pipe 232a.
  • the upstream end of the second inert gas supply pipe 232d is connected between the mass flow controller 234c and the valve 235c of the first inert gas supply unit.
  • the second inert gas supply pipe 232d is provided with a valve 235d that is an on-off valve.
  • the downstream end of the third inert gas supply pipe 232e is connected to the downstream side of the valve 235b of the second gas supply pipe 232b.
  • the upstream end of the third inert gas supply pipe 232e is connected between the mass flow controller 234c and the valve 235c of the first inert gas supply unit.
  • the third inert gas supply pipe 232e is provided with a valve 235e that is an on-off valve.
  • N 2 gas is a mass flow controller 234c, a valve 235e, a second gas supply pipe 232b, a second process gas introduction mechanism 252 and a second gas.
  • the gas is supplied into the second processing region 201b via the gas outlet 255.
  • the inert gas supplied into the second processing region 201b acts as a carrier gas or a dilution gas in the film forming step (S106), similarly to the inert gas supplied into the first processing region 201a.
  • the first inert gas supply unit is configured by the first inert gas supply pipe 232c, the mass flow controller 234c, and the valve 235c.
  • the inert gas supply source 233c, the inert gas introduction mechanism 253, the first inert gas outlet 256, and the second inert gas outlet 257 are included in the first inert gas supply unit.
  • a second inert gas supply unit is mainly configured by the second inert gas supply pipe 232d and the valve 235d. Note that the inert gas supply source 233c, the mass flow controller 234c, the first gas supply pipe 232a, the first gas inlet 251 and the first gas outlet 254 are included in the second inert gas supply. May be.
  • a third inert gas supply unit is mainly configured by the third inert gas supply pipe 232e and the valve 235e.
  • the inert gas supply source 233c, the mass flow controller 234c, the second gas supply pipe 232b, the second processing gas introduction mechanism 252 and the second gas outlet 255 are included in the third inert gas supply unit. You may think.
  • an inert gas supply part is mainly comprised by the 1st inert gas supply part, the 2nd inert gas supply part, and the 3rd inert gas supply part.
  • a plasma generation unit 206 is provided above the second processing region 201a to bring the supplied processing gas into a plasma state.
  • the plasma generation unit 206 includes, for example, at least a pair of opposed electrodes.
  • An insulating transformer is electrically connected to the electrode.
  • the electrode is preferably disposed at a height of 5 mm to 25 mm from the processing surface of the substrate 200 supported by the susceptor 217 so as to face the processing surface of the substrate 200. As described above, when the electrode is provided in the vicinity of the processing surface of the substrate 200, it can be suppressed that the activated processing gas is deactivated before reaching the substrate 200.
  • the reaction vessel 203 is provided with an exhaust pipe 231 for exhausting the atmosphere in the processing regions 201 a and 201 b and the purge regions 204 a and 204 b.
  • the exhaust pipe 231 includes a pressure sensor 245 as a pressure detector (pressure detector) for detecting the pressure in the reaction vessel 203 (in the processing regions 201a and 201b and in the purge regions 204a and 204b), and a pressure regulator (pressure).
  • a vacuum pump 246 as an evacuation device is connected via an APC (Auto Pressure Controller) valve 243 as an adjustment unit, and evacuation is performed so that the pressure in the reaction vessel 203 becomes a predetermined pressure (degree of vacuum). It is configured to be able to.
  • each processing gas and inert gas introduced into the reaction vessel 203 is exhausted from the outer periphery of the susceptor 217 to the exhaust pipe 231.
  • the APC valve 243 is an open / close valve that can open and close the valve to stop evacuation and evacuation in the reaction vessel 203, and further adjust the valve opening to adjust the pressure.
  • the exhaust part is mainly configured by the exhaust pipe 231, the APC valve 243, and the pressure sensor 245.
  • the vacuum pump 246 may be included in the exhaust part.
  • controller 221 that is a control unit (control means) of the present embodiment will be described with reference to FIG.
  • the controller 221 that is a control unit (control means) includes a CPU (Central Processing Unit) 221a, a RAM (Random Access Memory) 221b, a storage device 221c, and an I / O port 221d. It is configured as a computer.
  • the RAM 221b, the storage device 221c, and the I / O port 221d are configured to exchange data with the CPU 221a via the internal bus 221e.
  • an input / output device 226 configured as a touch panel or the like is connected to the controller 221.
  • the storage device 221c includes, for example, a flash memory, a HDD (Hard Disk Drive), and the like.
  • a control program for controlling the operation of the substrate processing apparatus 100 and a process recipe in which a procedure and conditions for substrate processing such as film formation processing described later are described in a readable manner.
  • the process recipe is a combination of functions so that a predetermined result can be obtained by causing the controller 221 to execute each procedure in a substrate processing step to be described later, and functions as a program.
  • the process recipe, the control program, and the like are collectively referred to as simply a program.
  • the RAM 221b is configured as a memory area (work area) in which a program, data, and the like read by the CPU 221a are temporarily stored.
  • the I / O port 221d includes the above-described mass flow controllers 234a, 234b, 234c, valves 235a, 235b, 235c, 235d, 235e, pressure sensor 245, APC valve 243, vacuum pump 246, heater 218, temperature sensor 274, power regulator. 224, heater power supply 225, temperature regulator 223, rotation mechanism 267, elevating mechanism 268, and the like.
  • the CPU 221a is configured to read and execute a control program from the storage device 221c, and to read a process recipe from the storage device 221c in response to an operation command input from the input / output device 226 or the like. Then, the CPU 221a adjusts the flow rates of various gases by the mass flow controllers 234a, 234b, 234c, the opening / closing operations of the valves 235a, 235b, 235c, 235d, 235e, and the opening / closing of the APC valve 243 in accordance with the contents of the read process recipe.
  • APC valve 243 Operation and pressure adjustment operation by APC valve 243 based on pressure sensor 245, temperature adjustment operation of heater 218 based on temperature sensor 274, start and stop of vacuum pump 246, rotation and rotation speed adjustment operation of susceptor 217 by rotation mechanism 267, elevation
  • the mechanism 268 is configured to control the lifting and lowering operation of the susceptor 217 and the like.
  • the controller 221 is not limited to being configured as a dedicated computer, and may be configured as a general-purpose computer.
  • an external storage device storing the above-described program for example, magnetic tape, magnetic disk such as a flexible disk or hard disk, optical disk such as CD or DVD, magneto-optical disk such as MO, semiconductor memory such as USB memory or memory card
  • the controller 221 according to the present embodiment can be configured by preparing 227 and installing a program in a general-purpose computer using the external storage device 227.
  • the means for supplying the program to the computer is not limited to supplying the program via the external storage device 227.
  • the program may be supplied without using the external storage device 227 by using communication means such as the Internet or a dedicated line.
  • the storage device 221c and the external storage device 227 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as a recording medium. Note that in this specification, the term recording medium may include only the storage device 221c, only the external storage device 227, or both.
  • trisilylamine that is a silicon-containing gas is used as the first gas
  • oxygen gas that is an oxygen-containing gas is used as the second processing gas
  • a silicon oxide film is formed as an insulating film on the substrate 200.
  • SiO 2 film hereinafter, also simply referred to as SiO film
  • Substrate loading / placement step (S102) First, by lowering the susceptor 217 to the transfer position of the substrate 200, the upper end of the lift pin 280 is raised relative to the susceptor 217, and the upper end of the lift pin 280 protrudes from the upper surface of the susceptor 217. . As described above, at this time, the height of the lift pin 280 is higher than the height of the pop-out prevention pin 281. Subsequently, the gate valve 244a is opened, and a predetermined number (for example, five) of substrates 200 (processing substrates) is carried into the reaction vessel 203 using the first substrate transfer machine 112.
  • a predetermined number for example, five
  • the first substrate transfer machine 112 places the loaded substrate 200 on each lift pin 280 provided in each of a plurality (for example, five) of substrate placement units 217b in a horizontal posture. At this time, the substrate 200 is placed on the lift pins 280 from the outer peripheral side of the reaction vessel 203, passing over the pop-out prevention pins 280.
  • the first substrate transfer machine 112 When the substrate 200 is loaded into the reaction vessel 203 and placed on the lift pins 280, the first substrate transfer machine 112 is moved out of the reaction vessel 203, the gate valve 244a is closed, and the inside of the reaction vessel 203 is sealed. Thereafter, by raising the susceptor 217 to the processing position of the substrate 200, the upper end portion of the lift pin 280 is lowered relative to the susceptor 217. That is, the substrate 200 is lowered relative to the susceptor 217. In this way, on the substrate platform 217b provided on the susceptor 217 on each bottom surface of the first processing region 201a, the first purge region 204a, the second processing region 201b, and the second purge region 204b, Each substrate 200 is placed.
  • N 2 gas as a purge gas is supplied from the inert gas supply unit into the reaction vessel 203 while the reaction vessel 203 is exhausted by the exhaust unit.
  • N 2 gas as a purge gas is supplied from the inert gas supply unit into the reaction vessel 203 while the reaction vessel 203 is exhausted by the exhaust unit.
  • the vacuum pump 246 by operating the vacuum pump 246 and opening the APC valve 243, while evacuating the inside of the reaction vessel 203, at least the valve 235 c of the first inert gas supply unit is opened, so that N 2 is introduced into the reaction vessel 203.
  • an inert gas may be further supplied from the second inert gas supply unit and the third inert gas supply unit.
  • the vacuum pump 246 is always operated at least from the substrate loading / mounting step (S102) to the substrate unloading step (S108) described later.
  • the surface temperature is heated to 750 ° C. or higher, impurities are diffused in a source region, a drain region, or the like formed on the surface of the substrate 200, so that circuit characteristics deteriorate.
  • the performance of the semiconductor device may be degraded.
  • diffusion of impurities in the source region and drain region formed on the surface of the substrate 200, deterioration in circuit characteristics, and reduction in performance of the semiconductor device can be suppressed.
  • the rotation mechanism 267 is operated to start the rotation of the susceptor 217.
  • the rotation speed of the susceptor 217 is controlled by the controller 221.
  • the substrate 200 starts moving in the order of the first processing region 201a, the first purge region 204a, the second processing region 201b, and the second purge region 204b. 200 passes.
  • the rotation speed gradually increases, and when the rotation stops, the rotation speed gradually decreases.
  • the speed is linearly increased between 0 and 120 rpm. This is continued for about 30 seconds to 1 minute.
  • the pressure in the reaction vessel 203 is increased to the first pressure while increasing the rotation speed of the susceptor 217.
  • the pressure in the reaction vessel 203 rises, the substrate 200 is pressed against the bottom surface of the substrate platform 217b, and the position movement of the substrate 200 accompanying rapid acceleration due to centrifugal force is less likely to occur. Further, even when the substrate 200 moves on the substrate platform 217b and particles are generated due to friction between the substrate 200 and the substrate platform 200b, the scattering of the particles can be suppressed.
  • the inside of the reaction vessel 203 is set so that the inside of the reaction vessel 203 has a desired pressure (for example, 0.1 Pa to 300 Pa, preferably 20 Pa to 40 Pa).
  • the vacuum pump 246 is evacuated.
  • the pressure in the reaction vessel 203 is measured by a pressure sensor (not shown), and the opening degree of the APC valve 243 is feedback controlled based on the measured pressure information.
  • the valve 235a of the first gas supply unit and the valve 235b of the second gas supply unit are closed.
  • the valve 235c of the first inert gas supply unit, the valve 235d of the second inert gas supply unit, and the valve 235e of the third inert gas supply unit are opened.
  • the substrate 200 moves over a predetermined time (the time until the substrate 200 gradually moves by the centrifugal force in the substrate platform 217b and contacts the peripheral side surface of the substrate platform 217b). It is possible to suppress the generation of particles due to friction. Furthermore, the peripheral surface of the substrate platform 217b supports the substrate 200, so that it is possible to prevent the substrate 200 from being displaced during rotation of the susceptor and the substrate 200 from jumping out of the substrate platform 217b.
  • the time (predetermined time) until the substrate 200 gradually moves by the centrifugal force in the substrate platform 217b and contacts the side surface of the peripheral portion of the substrate platform 217b is called an initial rotation process.
  • the valve 235d when the first gas is a raw material gas that becomes liquid at room temperature, the valve 235d is opened and N 2 gas is used as the carrier gas. When the first gas is other than that, the valve 235d is closed to prevent dilution of the first gas. In order to prevent dilution of the second gas, the valve 235e of the third inert gas supply unit is closed. At this time, since the substrate temperature is lower than the reaction temperature of the processing gas, the first gas and the second gas do not react.
  • the pressure in the reaction vessel 203 while the rotation speed of the susceptor 217 is constant is a second pressure lower than the first pressure when the rotation speed of the susceptor 217 is increasing (changing). Pressure.
  • the pressure of the reaction vessel 203 is set to the first pressure, and while the rotation speed of the susceptor 217 is constant, the pressure of the reaction vessel 203 is lower than the first pressure.
  • the second pressure is assumed. (See Figure 9)
  • the constant rotation speed of the susceptor 217 in the film forming process is, for example, 120 rpm, and is, for example, a high speed of 60 rpm or more.
  • the rotational speed of the susceptor 217 is higher, the number of film formation cycles per unit time increases, the film thickness increases, and the number of processed sheets per unit time can be increased.
  • the rotation speed is set to such a high speed, the centrifugal force in the outer peripheral direction of the susceptor increases, so that the possibility that the substrate 200 jumps out from the substrate mounting portion 217b to the outer peripheral side increases.
  • the pop-out prevention pin 281 is disposed so as to be in contact with the outer periphery of the substrate platform 217 b and is provided so as to protrude from the upper surface of the susceptor 217. Thereby, it can prevent more reliably that the board
  • a TSA gas as a first processing gas is supplied into the first processing region 201a
  • an oxygen gas as a second processing gas is supplied into the second processing region 201b
  • an SiO film is formed on the substrate 200.
  • the film forming process will be described by taking the film forming process as an example.
  • TSA gas, oxygen gas, and inert gas are supplied to each region in parallel. In other words, the supply of the TSA gas, the supply of the oxygen gas, and the supply of the inert gas are continuously performed at least while the processing on the substrate is completed.
  • the substrate 200 is heated to reach a desired temperature, and the susceptor 217 reaches a desired rotational speed (predetermined time: the substrate 200 is gradually moved by the centrifugal force in the substrate platform 217b, and the substrate platform is At the same time, at least the valve 235a, the valve 235b, and the valve 235c are simultaneously opened, and supply of the processing gas and the inert gas to the processing region 201 and the purge region 204 is started.
  • the processing gas is supplied from the processing gas supply unit.
  • the inert gas is supplied from the inert gas supply unit by opening the valve 235c and supplying N 2 gas which is an inert gas into the first purge region 204a and the second purge region 204b.
  • the supply amount of the processing gas is adjusted so that an amount of inert gas that affects the substrate processing is not mixed into the first processing region 201a and the second processing region 201b.
  • the inert gas does not interfere with the reaction between the film formed on the substrate 200 and the supplied gas, so that the inert gas is supplied to the processing region.
  • rate can be made high.
  • the APC valve 243 is appropriately adjusted so that the pressure in the reaction vessel 203 is, for example, a pressure in the range of 10 Pa to 1000 Pa.
  • the temperature of the heater 218 is set to such a temperature that the temperature of the substrate 200 becomes a temperature within the range of 200 ° C. to 400 ° C., for example.
  • the valve 235a When adjusting the pressure, the valve 235a is opened, and TSA gas is supplied from the first gas supply pipe 232a to the first processing region 201a through the first gas introduction mechanism 251 and the first gas outlet 254. Then, the exhaust pipe 231 is exhausted. At this time, the mass flow controller 232c is adjusted so that the flow rate of the TSA gas becomes a predetermined flow rate.
  • the supply flow rate of the TSA gas controlled by the mass flow controller 232c is, for example, a flow rate in the range of 100 sccm to 5000 sccm.
  • the exhaust pipe 231 is opened while the valve 235b is opened and oxygen gas is supplied from the second gas supply pipe 233a to the second processing region 201b through the second gas introduction mechanism 252 and the second gas jet outlet 255. Exhaust from. At this time, the mass flow controller 233c is adjusted so that the flow rate of the oxygen gas becomes a predetermined flow rate. Note that the supply flow rate of the oxygen gas controlled by the mass flow controller 233c is, for example, a flow rate in the range of 1000 sccm to 10,000 sccm.
  • valve 235a, the valve 235b, and the valve 235c are opened, and N 2 gas that is an inert gas as a purge gas is supplied from the first inert gas supply pipe 234a to the inert gas introduction mechanism 253 and the first inert gas jet.
  • the exhaust gas is exhausted while being supplied to the first purge region 204a and the second purge region 204b through the outlet 256 and the second inert gas outlet 257, respectively.
  • the mass flow controller 234c is adjusted so that the flow rate of the N 2 gas becomes a predetermined flow rate.
  • the first processing region 201a and the second processing region 201b from the first purge region 204a and the second purge region 204b.
  • the intrusion of the processing gas into the first purge region 204a and the second purge region 204b can be suppressed.
  • high-frequency power is supplied from a high-frequency power source to the plasma generation unit 206 provided above the second processing region 201b.
  • the oxygen gas supplied into the second processing region 201b and having passed under the plasma generation unit 206 is in a plasma state in the second processing region 201b, and the active species contained therein are supplied to the substrate 200.
  • Oxygen gas has a high reaction temperature, and it is difficult to react at the processing temperature of the substrate 200 and the pressure in the reaction vessel 203 as described above. However, as in this embodiment, the oxygen gas is brought into a plasma state and the active species contained therein are changed. When supplied, the film forming process can be performed even in a temperature range of 400 ° C. or less, for example. In addition, when the process temperature requested
  • the substrate 200 can be processed at a low temperature, and for example, thermal damage to the substrate 200 having a wiring weak to heat such as aluminum can be suppressed.
  • generation of foreign substances such as products due to incomplete reaction of the processing gas can be suppressed, and the uniformity and withstand voltage characteristics of the thin film formed on the substrate 200 can be improved.
  • productivity of substrate processing can be improved, for example, the oxidation processing time can be shortened by the high oxidizing power of oxygen gas in a plasma state.
  • the substrate 200 by rotating the susceptor 217, the substrate 200 repeatedly moves in the order of the first processing region 201a, the first purge region 204a, the second processing region 201b, and the second purge region 204b.
  • the substrate 200 When passing through each region, the substrate 200 is alternately supplied with a TSA gas, an N 2 gas (purge), a plasma oxygen gas, and an N 2 gas (purge) alternately for a predetermined number of times. Will be.
  • a TSA gas an N 2 gas (purge)
  • a plasma oxygen gas an N 2 gas (purge)
  • an N 2 gas purge
  • TSA gas is supplied to the surface of the substrate 200 that has passed through the first processing region 201 a and the portion of the susceptor 217 where the substrate is not placed, and a silicon-containing layer is formed on the substrate 200.
  • a gas is ejected in the horizontal direction from the first processing gas introduction mechanism 251 through the first gas ejection port 254 into the first processing region 201a.
  • one rotation of the susceptor 217 is defined as one cycle, that is, one cycle passes through the substrate 200 through the first processing region 201a, the first purge region 204a, the second processing region 201b, and the second purge region 204b.
  • a SiO film having a predetermined thickness can be formed on the substrate 200.
  • the cycle is performed a predetermined number of times, it is determined that the desired film thickness has been reached, and the film forming process is terminated. If the cycle has not been performed a predetermined number of times, that is, it is determined that the desired film thickness has not been reached, the process returns to S202 and the cycle process is continued.
  • the above-described cycle is performed a predetermined number of times, and after determining that the SiO film having a desired film thickness is formed on the substrate 200, at least the valve 235a and the valve 235b are closed, and the first TSA gas and oxygen gas first Supply to the processing area 201a and the second processing area 201b is stopped. At this time, power supply to the plasma generation unit 206 is also stopped. Further, the energization amount of the heater 218 is controlled to lower the temperature, or the energization to the heater 218 is stopped. Further, the rotation speed of the susceptor 217 is gradually lowered to stop the rotation. At this time, if the substrate 200 is displaced due to the rotational speed, the pressure is further increased to prevent the substrate 200 from being displaced.
  • the substrate unloading step (S108) When the film forming step 106 is completed, the substrate is unloaded as follows. First, by lowering the susceptor 217 to the transfer position of the substrate 200, the upper end portion of the lift pin 280 is raised relative to the susceptor 217, and the substrate 200 is supported on the lift pin 280. Then, the gate valve 244a is opened, the substrate 200 is carried out of the reaction vessel 203 using the first substrate transfer machine 112, and the substrate processing step according to this embodiment is completed. At this time, the substrate 200 supported on the lift pins 280 passes over the pop-out prevention pins 280 and is unloaded from the gate valve 244 a provided on the outer peripheral side of the reaction vessel 203.
  • the processing conditions such as the temperature of the substrate 200, the pressure in the reaction vessel 203, the flow rate of each gas, the power applied to the plasma generation unit 206, the processing time, and the like are the material and thickness of the film to be modified. Adjust as desired.
  • the substrate 200 placed on the substrate placement portion (counterbore portion) 217b is disposed in the recess, the substrate 200 is prevented from jumping out by the centrifugal force accompanying the rotation of the susceptor 217.
  • the rotation speed is high (for example, 60 rpm or more)
  • the possibility that the substrate 200 jumps out of the substrate platform 217b increases.
  • the substrate 200 placed on the substrate platform 217b is provided by the jump prevention pin 281 that is provided so as to be in contact with the outer periphery of the substrate platform 217b and protrudes from the upper surface of the susceptor 217. Jumping out to the outside due to the centrifugal force accompanying the rotation of can be more reliably prevented.
  • the susceptor 217 can be rotated at high speed, the number of film formation cycles per unit time can be increased, the film thickness can be increased, and the number of processed sheets per unit time can be increased.
  • the pop-out prevention pin 281 is preferably provided at a position in contact with the outer periphery of the substrate platform 217b and outside the center of the substrate platform 217b in the radial direction of rotation of the susceptor 217. It is done. Further, the pop-out prevention pin 281 is preferably provided at a position in contact with the outer periphery of the substrate platform 217b and on a straight line passing through the center of the substrate platform 217b and the rotation center of the susceptor 217.
  • the jump-out prevention pin 280 By providing the jump-out prevention pin 280 at such a position, even if the substrate 200 receives a centrifugal force directed outward in the radial direction of the susceptor 217, the jump-out prevention pin 280 does not deviate from the inside of the substrate mounting portion 217 b. Supported. Therefore, jumping out of the substrate 200 can be effectively suppressed.
  • the jump-out prevention pin 281 is more preferably a position that is in contact with the outer periphery of the substrate platform 217b, and is symmetrical with respect to a straight line passing through the center of the substrate platform 217b and the rotation center of the susceptor 217. At least one set (two) is provided at the position.
  • the height of the pop-out prevention pin 281 from the upper surface of the susceptor 217 is preferably a height in the range of 1 mm to 5 mm.
  • the notch part 291 of the partition plate 205 can be made small enough by making the protrusion prevention pin 281 into 5 mm or less. If the notch 291 of the partition plate 205 becomes too large, the airtightness between the adjacent regions across the partition plate 20 is lowered, but the notch 291 is reduced by setting the pop-out prevention pin 281 to 5 mm or less. By doing so, sufficient airtightness can be obtained.
  • a notch 291 for allowing the jump-out prevention pin 281 to pass through is provided on the surface of the partition plate 205 facing the upper surface of the susceptor 217.
  • the notch 291 allows the partition plate 205 and the susceptor 217 to be sufficiently close to each other so that the pop-out prevention pin 281 and the partition plate 205 do not interfere during substrate processing.
  • region 204a, 204b can be made high enough. Diffusion between regions such as processing gas can be suppressed, and high-quality film formation with few impurities can be performed.
  • the pop-out prevention pin 281 and the notch 291 are preferably provided on the same circumference with the rotation center of the susceptor 217 as the center. Since all the pop-out prevention pins 281 are arranged on the same circumference, the cutout portions 291 provided in the partition plate 205 can be arranged at only one place in the radial direction. Thereby, since the number of the notch parts 291 can be reduced and the part which communicates between each area
  • the pop-out prevention pin 281 is preferably provided at a position outside the center of the substrate platform 217b in the radial direction of rotation of the susceptor 217. Since the pop-out prevention pin 281 is provided at the outer position of the susceptor 217, the gas flow from the central side of the susceptor to the outer peripheral side jumps out on the substrate trajectory region (region through which the substrate 200 passes). Disturbance due to the influence of the prevention pin 281 can be suppressed. A reduction in the uniformity of the gas flow in the substrate surface can be suppressed, and the film thickness in the substrate surface can be made uniform.
  • the substrate 200 jumps out so as to be lower than the height of the lift pin 280 protruding from the upper surface of the susceptor 217 when the susceptor 217 is lowered to the substrate transfer position.
  • the height of the prevention pin 281 is set. Thereby, it is possible to prevent the jump-out prevention pin 281 from interfering with the substrate 200 and the vacuum transfer robot 112 when the substrate 200 is transferred.
  • FIGS. 10 (a) to 10 (d) a substrate mounting unit 217b, a substrate 200 mounted on the substrate mounting unit 217b, and a substrate mounting unit for some examples of various modes.
  • Schematic top view of the pop-out prevention pin 281 provided on the outer periphery of 217b is shown.
  • the plurality of substrate platforms 217b provided in the susceptor 217 one substrate platform 217b is typically shown.
  • 10A to 10D show a straight line 301 that passes through the rotation center 300 of the susceptor 217 and the center of the substrate platform 217b.
  • the pop-out prevention pin 281 is provided at a position outside the center of the substrate platform 217b in the radial direction of rotation of the susceptor 217. Yes.
  • FIG. 10A shows a mode similar to that exemplified in the above embodiment.
  • the substrate 200 and the substrate mounting portion 217b are circular, and one set (two) of jump-out prevention pins 281 are provided at positions that are line-symmetric with respect to the straight line 301.
  • a set of pop-out prevention pins 281 is arranged on the same circumference 302 with the rotation center 300 of the susceptor 217 as the center. Note that the pop-out prevention pins 281 provided on the outer periphery of the other substrate mounting portion 217 b can also be disposed on the same circumference 302.
  • FIG. 10B shows a first modification.
  • the substrate 200 and the substrate mounting portion 217 b are circular, and one jump-out prevention pin 281 is provided on the straight line 301.
  • the jump-out prevention pin 281 provided on the outer periphery of the illustrated substrate mounting portion 217b and the jump-out prevention pin 281 provided on the outer periphery of the other substrate mounting portion 217b are provided on the susceptor 217. They can be arranged on the same circumference 302 with the rotation center 300 as the center.
  • FIG. 10C shows a second modification.
  • the substrate 200 and the substrate mounting portion 217 b are circular, and two sets (four) of pop-out prevention pins 281 are provided at positions that are line-symmetric with respect to the straight line 301.
  • One set of pop-out prevention pins 281 is arranged on the same circumference 302 with the rotation center 300 of the susceptor 217 as the center, and the other set of jump-out prevention pins 281 is the rotation center of the susceptor 217.
  • the pop-out prevention pins 281 provided on the outer periphery of the other substrate mounting portion 217b can also be disposed on the same circumference 302 or the same circumference 303.
  • FIG. 10D shows a third modification.
  • the substrate 200 and the substrate platform 217b are square.
  • the substrate platform 217b is preferably provided so that one of the diagonal lines of the substrate platform 217b coincides with the radial direction of rotation of the susceptor 217.
  • One set (two pieces) of jump-out preventing pins 281 is provided at a position that is line-symmetric with respect to the straight line 301.
  • a set of pop-out prevention pins 281 is arranged on the same circumference 302 with the rotation center 300 of the susceptor 217 as the center.
  • the pop-out prevention pins 281 provided on the outer periphery of the other substrate mounting portion 217 b can also be disposed on the same circumference 302. Note that, as in the third modification, even when the substrate 200 and the substrate mounting portion 217b are square, two sets (four) or more of the pop-out prevention pins 281 may be provided.
  • the partition plate is provided on the same circumference 302 where the pop-out prevention pins 281 are arranged, that is, at only one place in the radial direction.
  • 205 cutouts 291 can be arranged.
  • the notches of the partition plate 205 are formed on the same circumference 302 where the pop-out prevention pins 281 are arranged and on the same circumference 303, that is, at two places in the radial direction. Can be arranged.
  • the partition portion may have any structure that does not mix gas between adjacent processing gas supply regions.
  • the partition portion may have any structure that does not mix gas between adjacent processing gas supply regions.
  • the pop-out prevention pin 281 is used as a structure for preventing the substrate 200 from popping out.
  • the structure is not limited to the pin shape, and any structure having a convex shape for preventing the substrate from popping out. good.
  • the susceptor 217 has a size in the plane direction, it is necessary to disturb the gas flow in the reaction vessel 203 or to enlarge the notch provided in the partition part, so that it has a thin shape like a pin. Is more preferable.
  • the lift pin 280 is moved up and down relative to the susceptor 217 by moving the susceptor 217 up and down has been described.
  • the structure of the lift pin is not particularly limited, and the lift pin itself moves up and down. It may be a thing.
  • gas is supplied from the center of the susceptor toward the outside. It is also possible to provide a span nozzle and supply gas from a plurality of gas supply ports provided in the nozzle.
  • a processing chamber for processing the substrate A susceptor provided in the processing chamber; A rotation drive unit for rotating the susceptor; A concave portion (counterbore portion) for placing a substrate, provided on the upper surface of the susceptor and disposed around the rotation center of the susceptor; A convex portion provided on the outer periphery of the concave portion and protruding on the upper surface of the susceptor; A partition that divides the processing chamber into a plurality of processing regions around the rotation center of the susceptor; A notch for passing the convex part, provided at a position facing the susceptor upper surface of the partition part; A substrate processing apparatus is provided.
  • Appendix 2 The substrate processing apparatus according to appendix 1, preferably, The convex part and the notch part are provided on the same circumference centering on the rotation center of the susceptor.
  • the substrate processing apparatus preferably, An elevating drive unit for elevating the susceptor; In a state where the susceptor is lowered, a lift pin configured to penetrate the susceptor from below and protrude from the upper surface of the susceptor; A substrate transport mechanism for placing the substrate on the lift pins; A controller configured to control the lift drive unit to lower the susceptor and to control the substrate transport mechanism to place the substrate on the lift pins protruding from the upper surface of the susceptor, The height of the convex portion is lower than the height of the lift pin protruding from the upper surface of the susceptor.
  • At least one set (two) of the convex portions is provided at positions that are line-symmetric with respect to a straight line passing through the center of the concave portion and the rotation center of the susceptor.
  • Appendix 7 The substrate processing apparatus according to appendix 1, preferably, A plurality of the recesses are provided on the upper surface of the susceptor.
  • Appendix 8 The substrate processing apparatus according to appendix 1, preferably, The recess is circular.
  • At least one set (two) of the convex portions is provided at positions that are line-symmetric with respect to the diagonal line of the concave portion.
  • Appendix 12 The substrate processing apparatus according to appendix 1, preferably, A plurality of the convex portions are provided, and the plurality of convex portions are provided on the same circumference around the rotation center of the susceptor.
  • a processing chamber for processing the substrate A susceptor configured to be rotatable in the processing chamber; A recess for placing the substrate, provided on an upper surface of the susceptor and disposed around the rotation center of the susceptor; A convex portion provided on the outer periphery of the concave portion and protruding on the upper surface of the susceptor; A partition that divides the processing chamber into a plurality of processing regions around the rotation center of the susceptor; A notch for passing the convex part, provided at a position facing the susceptor upper surface of the partition part; Preparing (providing) a substrate processing apparatus having: Placing the substrate in the recess; Rotating the susceptor; Supplying at least one of an inert gas and a processing gas to each of the plurality of processing regions; A method of manufacturing a semiconductor device having the above is provided.
  • a method of manufacturing a semiconductor device includes a step of projecting a lift pin on the upper surface of the susceptor so as to be higher than a height of the convex portion, and a step of placing the substrate on the lift pin in a projecting state. And including.
  • a processing chamber for processing the substrate A susceptor configured to be rotatable in the processing chamber; A recess for placing the substrate, provided on the upper surface of the susceptor, and disposed around the rotation center of the susceptor; A convex portion provided on the outer periphery of the concave portion and protruding on the upper surface of the susceptor; A partition that divides the processing chamber into a plurality of processing regions around the rotation center of the susceptor; A notch for passing the convex part, provided at a position facing the susceptor upper surface of the partition part;
  • a substrate processing apparatus having Placing the substrate in the recess; Rotating the susceptor; A procedure of supplying at least one of an inert gas and a processing gas to each of the plurality of processing regions; A program for causing a computer to execute (a computer-readable recording medium on which is recorded) is provided.
  • a susceptor mounted on a substrate processing apparatus and provided to rotate, A concave portion (a counterbore portion) for placing a substrate, which is provided on the upper surface of the susceptor and is arranged around the rotation center of the susceptor; A convex portion provided on the outer periphery of the concave portion and protruding on the upper surface of the susceptor; The susceptor is provided.
  • the convex portion provided on the outer surface of the concave portion and protruding on the upper surface of the susceptor suppresses the substrate placed in the concave portion from jumping to the outside due to the centrifugal force accompanying the rotation of the susceptor. Can do.
  • DESCRIPTION OF SYMBOLS 100 ... Substrate processing apparatus, 200 ... Substrate, 201 ... Processing chamber, 203 ... Reaction container, 205 ... Partition plate (partition part, divided structure), 217 ... Substrate support stand (Susceptor, rotating tray), 217b ... substrate mounting part (concave part, counterbore part), 221 ... controller (control part), 280 ... lift pin, 281 ... jump-out prevention pin (convex part) 291 ... Notch

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

[課題]サセプタの回転に伴う遠心力によりサセプタの凹部に載置された基板が外側に飛び出すことを抑制できる技術を提供する。 [解決手段]基板処理装置に搭載され回転するように設けられるサセプタは、サセプタの上面に設けられ、サセプタの回転の中心に対してその周囲に配置される、基板が載置されるための凹部と、凹部の外周に接するように設けられ、サセプタの上面において突出する凸部と、を備える。

Description

基板処理装置、半導体装置の製造方法、及びサセプタ
 本発明は、基板処理装置、半導体装置の製造方法、及びサセプタに関する。
 例えば、フラッシュメモリやDRAM(Dynamic Random Access  Memory)等の半導体装置の製造工程において、凹部に基板が載置されたサセプタを回転させながら基板処理が行われることがある(特許文献1参照)。このような基板処理を行う際、基板には、サセプタの回転に伴う遠心力が加わる。
 このような基板処理において、サセプタの回転速度を高速にしたい場合がある。しかしながら、サセプタの回転速度を高速にすると、これに伴い遠心力が大きくなるので、基板が載置部から外側へ飛び出してしまう可能性が高くなる。
特開2014-187258号公報
 本発明の一目的は、サセプタの回転に伴う遠心力によりサセプタの凹部に載置された基板が外側に飛び出すことを抑制できる技術を提供することである。
 本発明の一態様によれば、
 基板を処理する処理室と、前記処理室内に設けられるサセプタと、前記サセプタを回転させる回転駆動部と、前記サセプタの上面に設けられ、前記サセプタの回転の中心に対してその周囲に配置される、基板が載置されるための凹部と、前記凹部の外周に接するように設けられ、前記サセプタの上面において突出する凸部と、前記サセプタの回転中心を中心として前記処理室内を複数の処理領域に分割する仕切り部と、前記仕切り部の前記サセプタ上面と対向する位置に設けられる、前記凸部が通過するための切欠き部と、を有する基板処理装置が提供される。
 凹部の外周に接するように設けられ、サセプタの上面において突出する凸部により、凹部に載置された基板がサセプタの回転に伴う遠心力で外側に飛び出すことを抑制することができる。
本発明の一実施形態に係るクラスタ型の基板処理装置の横断面概略図である。 本発明の一実施形態に係る反応容器の概略斜視図である。 本発明の一実施形態に係る処理炉の横断面概略図である。 本発明の一実施形態に係る処理炉の基板搬送時における縦断面概略図である。 本発明の一実施形態に係る処理炉の基板処理時における縦断面概略図である。 本発明の一実施形態に係る基板処理装置のコントローラの概略構成図であり、コントローラの制御系をブロック図で示す図である。 本発明の一実施形態に係る基板処理工程を示すフロー図である。 本発明の一実施形態に係る基板処理工程における成膜工程での基板への処理を示すフロー図である。 本発明の一実施形態による圧力の推移を表す図である。 (a)は、本発明の一実施形態に係る処理炉の横断面概略図であり、(b)~(d)は、本発明の第1~第3の変形例に係る処理炉の横断面概略図である。
<本発明の一実施形態>
 以下に、本発明の一実施形態について、図面を参照しながら説明する。
(1)基板処理装置の構成
 図1は、本実施形態にかかるクラスタ型の基板処理装置の横断面図である。なお、本発明が適用される基板処理装置では、半導体基板としての基板(ウエハ)200を搬送するキャリヤとして、FOUP(Front Opening Unified Pod:以下、ポッドという。)が使用されている。本実施形態にかかるクラスタ型の基板処理装置の搬送装置は、真空側と大気側とに分かれている。本明細書中における「真空」とは工業的真空を意味する。なお、説明の便宜上、図1の真空搬送室103から大気搬送室121へ向かう方向を前側と呼ぶ。
(真空側の構成)
 クラスタ型の基板処理装置100は、その内部を真空状態などの大気圧未満の圧力(例えば100Pa)に減圧可能なロードロックチャンバ構造に構成された第1搬送室としての真空搬送室103を備えている。真空搬送室103の筐体101は、平面視が例えば六角形で、上下両端が閉塞した箱形状に形成されている。
 真空搬送室103の筐体101を構成する六枚の側壁のうち、前側に位置する二枚の側壁には、ゲートバルブ126,ゲートバルブ127を介して,ロードロック室122,ロードロック室123が真空搬送室103と連通可能にそれぞれ設けられている。
 真空搬送室103の他の四枚の側壁のうち、二枚の側壁には、ゲートバルブ244a,ゲートバルブ244bを介して、プロセスチャンバ202a,プロセスチャンバ202bが真空搬送室103と連通可能にそれぞれ設けられている。プロセスチャンバ202a,プロセスチャンバ202bは、後述する処理ガス供給部、不活性ガス供給部、排気部等が設けられている。プロセスチャンバ202a,プロセスチャンバ202bは、後述するように、1つの反応容器内に複数の処理領域及び処理領域と同数のパージ領域が交互に配列されている。そして、反応容器203内に設けられる基板支持部としてのサセプタ(基板支持台、回転トレーともいう)217を回転させて、基板である基板200が処理領域及びパージ領域を交互に通過するように構成されている。このような構成とすることで、基板200に処理ガス及び不活性ガスが交互に供給され、次のような基板処理が為される。具体的には、基板200上へ薄膜を形成する処理や、基板200表面を酸化、窒化、炭化等する処理や、基板200表面をエッチングする処理等の各種基板処理が為される。
 真空搬送室103の残りの二枚の側壁には、ゲートバルブ244c,ゲートバルブ244dを介して、冷却室202c,冷却室202dが真空搬送室103と連通可能にそれぞれ設けられている。
 真空搬送室103内には、第1の基板搬送機構としての真空搬送ロボット112が設けられている。真空搬送ロボット112は、ロードロック室122,ロードロック室123と、プロセスチャンバ202a,プロセスチャンバ202bと、冷却室202c,冷却室202dとの間で、例えば2枚の基板200(図1中、点線で示す)を同時に搬送可能に構成されている。真空搬送ロボット112は、エレベータ115によって、真空搬送室103の気密性を維持しつつ昇降可能に構成されている。また、ロードロック室122,ロードロック室123のゲートバルブ126,ゲートバルブ127、プロセスチャンバ202a,プロセスチャンバ202bのゲートバルブ244a,ゲートバルブ244b、冷却室202c,冷却室202dのゲートバルブ244c,ゲートバルブ244dのそれぞれの近傍には、基板200の有無を検知する図示しない基板検知センサが設けられている。基板検知センサを基板検知部とも呼ぶ。
 ロードロック室122,ロードロック室123は、内部が真空状態などの大気圧未満の圧力(減圧)に減圧可能なロードロックチャンバ構造に構成されている。即ち、ロードロック室の前側には、ゲートバルブ128,ゲートバルブ129を介して、後述する第2搬送室としての大気搬送室121が設けられている。このため、ゲートバルブ126からゲートバルブ129を閉じてロードロック室122,ロードロック室123内部を真空排気した後、ゲートバルブ126,ゲートバルブ127を開けることで、真空搬送室103の真空状態を保持しつつ、ロードロック室122,ロードロック室123と真空搬送室103との間で基板200を搬送可能にしている。また、ロードロック室122,ロードロック室123は、真空搬送室103内へ搬入する基板200を一時的に収納する予備室として機能する。この際、ロードロック室122内では基板載置部140上に、ロードロック室123内では基板載置部141上にそれぞれ基板200が載置されるように構成されている。
(大気側の構成)
 基板処理装置100の大気側には、略大気圧下で用いられる、第2搬送室としての大気搬送室121が設けられている。即ち、ロードロック室122,ロードロック室123の前側(真空搬送室103と異なる側)には、ゲートバルブ128,ゲートバルブ129を介して、大気搬送室121が設けられている。なお、大気搬送室121は、ロードロック室122,ロードロック室123と連通可能に設けられている。
 大気搬送室121には、基板200を移載する第2の基板搬送機構としての大気搬送ロボット124が設けられている。大気搬送ロボット124は、大気搬送室121に設けられた図示しないエレベータによって昇降されるように構成されているとともに、図示しないリニアアクチュエータによって左右方向に往復移動されるように構成されている。また、大気搬送室121のゲートバルブ128,ゲートバルブ129の近傍には、基板200の有無を検知する図示しない基板検知センサが設けられている。基板検知センサを基板検知部とも呼ぶ。
 また、大気搬送室121内には、基板200の位置補正装置として、ノッチ合わせ装置106が設けられている。ノッチ合わせ装置106は、基板200の結晶方向や位置合わせ等を基板200のノッチで把握し、その把握した情報を元に基板200の位置を補正する。なお、ノッチ合わせ装置106の代わりに、図示しないオリフラ(Orientation Flat)合わせ装置が設けられてもよい。そして、大気搬送室121の上部には、クリーンエアを供給する図示しないクリーンユニットが設けられている。
 大気搬送室121の筐体125の前側には、基板200を大気搬送室121内外に搬送する基板搬送口134と、ポッドオープナ108とが設けられている。基板搬送口134を挟んで、ポッドオープナ108と反対側、即ち筐体125の外側にはロードポート(I/Oステージ)105が設けられている。ロードポート105上には、複数枚の基板200を収納するポッド109が載置されている。また、大気搬送室121内には、基板搬送口134を開閉する蓋(不図示)や、ポッド109のキャップ等を開閉させる開閉機構(不図示)と、開閉機構を駆動する開閉機構駆動部(不図示)とが設けられている。ポッドオープナ108は、ロードポート105に載置されたポッド109のキャップを開閉することにより、ポッド109に対する基板200の出し入れを可能にする。また、ポッド109は図示しない搬送装置(例えばRGV:Rail Guided Vehicle)によって、ロードポート105に対して、搬入(供給)および搬出(排出)されるようになっている。
 主に、真空搬送室103、ロードロック室122,ロードロック室123、大気搬送室121、及びゲートバルブ126からゲートバルブ129により、本実施形態に係る基板処理装置100の搬送装置が構成される。
 また、基板処理装置100の搬送装置の構成各部には、後述する制御部(コントローラ)221が電気的に接続されている。そして、上述した構成各部の動作を、それぞれ制御するように構成されている。
(基板搬送動作)
 次に、本実施形態に係る基板処理装置100内における基板200の搬送動作を説明する。なお、基板処理装置100の搬送装置の構成各部の動作は、制御部221によって制御される。
 まず、例えば25枚の未処理の基板200を収納したポッド109が、図示しない搬送装置によって基板処理装置100に搬入される。搬入されたポッド109は、ロードポート105上に載置される。開閉機構は、蓋及びポッド109のキャップを取り外し、基板搬送口134及びポッド109の基板出入口を開放する。
 ポッド109の基板出入口を開放すると、大気搬送室121内に設置されている大気搬送ロボット124は、ポッド109から基板200を1枚ピックアップして、ノッチ合わせ装置106上へ載置する。
 ノッチ合わせ装置106は、載置された基板200を、水平の縦横方向(X方向,Y方向)及び円周方向に動かして、基板200のノッチ位置等を調整する。ノッチ合わせ装置106で1枚目の基板200の位置を調整中に、大気搬送ロボット124は、2枚目の基板200をポッド109からピックアップして大気搬送室121内に搬入し、大気搬送室121内で待機する。
 ノッチ合わせ装置106により1枚目の基板200の位置調整が終了した後、大気搬送ロボット124は、ノッチ合わせ装置106上の1枚目の基板200をピックアップする。大気搬送ロボット124は、そのとき大気搬送ロボット124が保持している2枚目の基板200を、ノッチ合わせ装置106上へ載置する。その後、ノッチ合わせ装置106は、載置された2枚目の基板200のノッチ位置等を調整する。
 次に、ゲートバルブ128が開けられ、大気搬送ロボット124は、1枚目の基板200をロードロック室122内に搬入し、基板載置部140上に載置する。この移載作業中には、真空搬送室103側のゲートバルブ126は閉じられており、真空搬送室103内の減圧雰囲気は維持されている。1枚目の基板200の基板載置部140上への移載が完了すると、ゲートバルブ128が閉じられ、ロードロック室122内が図示しない排気装置によって負圧になるよう排気される。
 以降、大気搬送ロボット124は、上述の動作を繰り返す。但し、ロードロック室122が負圧状態の場合、大気搬送ロボット124は、ロードロック室122内への基板200の搬入を実行せず、ロードロック室122の直前位置で停止して待機する。
 ロードロック室122内が予め設定された圧力値(例えば100Pa)に減圧されると、ゲートバルブ126が開けられて、ロードロック室122と真空搬送室103とが連通される。続いて、真空搬送室103内に配置された真空搬送ロボット112は、基板載置部140から1枚目の基板200をピックアップして、真空搬送室103内に搬入する。
 真空搬送ロボット112が基板載置部140から1枚目の基板200をピックアップした後、ゲートバルブ126が閉じられ、ロードロック室122内が大気圧に復帰させられ、ロードロック室122内に次の基板200を搬入するための準備が行われる。それと並行して、所定の圧力(例えば100Pa)にあるプロセスチャンバ202aのゲートバルブ244aが開けられ、真空搬送ロボット112が1枚目の基板200をプロセスチャンバ202a内に搬入する。この動作をプロセスチャンバ202a内に基板200が任意の枚数(例えば5枚)搬入されるまで繰り返す。プロセスチャンバ202a内への任意の枚数(例えば5枚)の基板200の搬入が完了したら、ゲートバルブ244aが閉じられる。そして、プロセスチャンバ202a内に後述するガス供給部から処理ガスが供給され、基板200に所定の処理が施される。
 プロセスチャンバ202aにおいて所定の処理が終了し、後述するようにプロセスチャンバ202a内で基板200の冷却が終了すると、ゲートバルブ244aが開けられる。その後、真空搬送ロボット112によって、処理済の基板200がプロセスチャンバ202a内から真空搬送室103へ搬出される。搬出された後、ゲートバルブ244aが閉じられる。
 続いて、ゲートバルブ127が開けられ、プロセスチャンバ202aから搬出した基板200は、ロードロック室123内へ搬入されて、基板載置部141上に載置される。なお、ロードロック室123は、図示しない排気装置によって、予め設定された圧力値に減圧されている。そして、ゲートバルブ127が閉じられ、ロードロック室123に接続された図示しない不活性ガス供給部から不活性ガスが導入され、ロードロック室123内の圧力が大気圧に復帰させられる。
 ロードロック室123内の圧力が大気圧に復帰させられると、ゲートバルブ129が開けられる。続いて、大気搬送ロボット124が基板載置部141上から処理済みの基板200をピックアップして大気搬送室121内に搬出した後、ゲートバルブ129が閉じられる。その後、大気搬送ロボット124は、大気搬送室121の基板搬送口134を通して、処理済の基板200をポッド109に収納する。ここで、ポッド109のキャップは、最大25枚の基板200が戻されるまでずっと開け続けていてもよく、空きのポッド109に収納せずに基板を搬出してきたポッド109に戻してもよい。
 前述の工程によってポッド109内の全ての基板200に所定の処理が施され、処理済みの25枚の基板200のすべてが所定のポッド109へ収納されると、ポッド109のキャップと、基板搬送口134の蓋135とが開閉機構143によって閉じられる。その後、ポッド109は、ロードポート105上から次の工程へ、図示しない搬送装置によって搬送される。以上の動作が繰り返されることにより、基板200が25枚ずつ順次処理される。
(2)プロセスチャンバの構成
 続いて、本実施形態に係る処理炉としてのプロセスチャンバ202aの構成について、主に図2から図5を用いて説明する。なお、プロセスチャンバ202bについては、プロセスチャンバ202aと同様に構成されているため、説明を省略する。
(反応容器)
 図2から図5に示すように、処理炉としてのプロセスチャンバ202aは、円筒状の気密容器である反応容器203を備えている。反応容器203内には、基板200を処理する処理室が形成されている。反応容器203内の処理室の上側には、中心部から放射状に延びる4枚の仕切り板205が設けられている。
 仕切り板205は、サセプタ217の回転中心を中心として、処理室内を複数の領域に分割する仕切り部(分割構造体)として構成されている。より具体的には、4枚の仕切り板205は、処理室内を、第1の処理領域201a、第1のパージ領域204a、第2の処理領域201b、第2のパージ領域204bに仕切る(分割する)ように構成されている。好適には、処理室を2つ以上の処理領域に分割するように2つ以上の分割構造体が構成されると良い。なお、第1の処理領域201a、第2の処理領域201bを処理ガス供給領域とも表現し、第1のパージ領域204a、第2のパージ領域204bを不活性ガス供給領域とも表現する。
 なお、第1の処理領域201a、第1のパージ領域204a、第2の処理領域201b、第2のパージ領域204bは、後述するサセプタ217の回転方向に沿って、この順番に配列するように、即ち処理領域とパージ領域とが交互に配列されるように構成されている。換言すれば、隣り合う分割構造体の間に、ガス供給領域である第1の処理領域201a、第1のパージ領域204a、第2の処理領域201b、第2のパージ領域204bが配される。
 後述するように、サセプタ217を回転させることで、サセプタ217上に載置された基板200は、第1の処理領域201a、第1のパージ領域204a、第2の処理領域201b、第2のパージ領域204bの順に移動することとなる。また、後述するように、第1の処理領域201a内には第1のガスとしての第1の処理ガスが供給され、第2の処理領域201b内には第2のガスとしての第2の処理ガスが供給され、第1のパージ領域204a内及び第2のパージ領域204b内には、不活性ガスが供給されるように構成されている。そのため、サセプタ217を回転させることで、基板200上には、第1の処理ガス、不活性ガス、第2の処理ガス、不活性ガスがこの順に供給されることとなる。サセプタ217及びガス供給系の構成については後述する。
 仕切り板205の端部と反応容器203の側壁との間には、所定の幅の隙間が設けられており、この隙間をガスが通過できるように構成されている。この隙間を介し、第1のパージ領域204a内及び第2のパージ領域204b内から第1の処理領域201a内及び第2の処理領域201b内に向けて不活性ガスを噴出させるようにする。このようにすることで、第1のパージ領域204a内及び第2のパージ領域204b内への処理ガスの侵入を抑制することができ、処理ガスの反応や、その反応による異物の生成を抑制する。
 仕切り板205のサセプタ217の上面と対向する面には、後述の飛出し防止ピン281が通過するための切欠き部291が設けられている。切欠き部291が設けられていることにより、後述のように、基板処理時に飛出し防止ピン281と仕切り板205とが干渉しないようにしつつ、仕切り板205とサセプタ217とを充分に近接させることができる。
(サセプタ)
 図2から図5に示すように、仕切り板205の下側、即ち反応容器203内の底側中央には、反応容器203の中心に回転軸の中心を有し、所望の角速度で回転するように構成されたサセプタ217が設けられている。サセプタ217を基板支持部とも呼ぶ。サセプタ217は、基板200の金属汚染を低減することができるように、例えば、窒化アルミニウム(AlN)、セラミックス、石英等の非金属材料で形成されている。なお、サセプタ217は、反応容器203とは電気的に絶縁されている。
 サセプタ217は、反応容器203内にて、複数枚(本実施形態では例えば5枚)の基板200を同一面上に、かつ基板の中心を同一円周上に並べて支持するように構成されている。ここで、同一面上とは、完全な同一面に限られるものではない。例えば、サセプタ217を上面から見たときに、図2及び図3に示すように、複数枚の基板200が互いに重ならないように並べられていればよい。
 サセプタ217の上面には、基板200の支持位置に、基板200が載置されるための凹部として、基板載置部217bが設けられている。基板載置部217bを、ザグリ部217bと呼ぶこともある。基板載置部217bは、サセプタ217の回転の中心に対してその周囲に配置されており、複数枚の基板200を支持できるように好ましくは複数設けられている。例えば、複数の基板載置部217bが、同一円周状に設けられている。各基板載置部217bは、基板200に対応する形状、例えば円形状を有し、その直径が基板200の直径よりもわずかに大きくなるように構成されている。基板載置部217b内に基板200を載置することにより、基板200の位置決めを容易に行うことができる。基板載置部217bはザグリ形状で設けられているので、基板載置部217bの、基板200が載置される面(底面)は、サセプタ217の上面よりも低い位置に配置されている。
 図4及び図5に示すように、サセプタ217には、サセプタ217を昇降させる昇降駆動部としての昇降機構268が設けられている。サセプタ217には、基板載置部217b内に貫通孔217aが複数設けられている。反応容器203の底面には、押上げピン266が複数設けられている。それぞれの押上げピン266の上方に、リフトピン280が、貫通孔217aを貫通するように設けられている。
 反応容器203内への基板200の搬入・搬出時には、すなわち、サセプタ217を基板搬送位置まで下降させた状態では、図4に示されているように、押上げピン266上に支持されたリフトピン280が、サセプタ217を下方から貫通し、サセプタ217の上面で突出して、基板200を下方から支持する。一方、基板200の処理時には、すなわち、サセプタ217を基板処理位置まで上昇させた状態では、図5に示されているように、リフトピン280の上端部は基板載置部(ザグリ部)217bの底面以下の位置に埋没して、基板載置部217bの底面が、基板200を下方から支持する。
 なお、本例では、図5に示すように、サセプタ217に載置された基板200の上面の高さと、サセプタ217の上面の高さとが等しい場合を例示するが、例えば処理ガスの種類により、基板上面がサセプタ上面よりも高い場合も低い場合もある。
 昇降機構268には、サセプタ217を回転させる回転駆動部として回転機構267が設けられている。サセプタ217と回転機構267とを合わせてサセプタ機構220とも表現する。サセプタ機構220に、昇降機構268等を含めてもよい。回転機構267の図示しない回転軸は、サセプタ217に接続されており、回転機構267を作動させることでサセプタ217を回転させることができるように構成されている。回転機構267には、後述する制御部221が、カップリング部を介して接続されている。カップリング部は、回転側と固定側との間を金属ブラシ等により電気的に接続するスリップリング機構として構成されている。これにより、サセプタ217の回転が妨げられないようになっている。制御部221は、サセプタ217を所定の速度で所定時間回転させるように、回転機構267への通電具合を制御するように構成されている。上述したように、サセプタ217を回転させることにより、サセプタ217上の基板載置部217bに載置された基板200は、第1の処理領域201a、第1のパージ領域204a、第2の処理領域201b及び第2のパージ領域204bをこの順番に移動することとなる。
 サセプタ217には、各基板載置部217bに対して、基板載置部217bの外周に接するように配置され、サセプタ217の上面において突出する凸部として、例えば、ピン形状の部材である飛出し防止ピン281が設けられている。
 飛出し防止ピン281は、基板載置部217bの中心よりもサセプタ217の回転の半径方向において外側となる位置に設けられることが好ましい。また、飛出し防止ピン281は、基板載置部217bの中心とサセプタ217の回転中心を通る直線上の位置に設けられることが好ましく、基板載置部217bの中心とサセプタ217の回転中心を通る直線に対して線対称となる位置に少なくとも1組(2個)設けられることがより好ましい。図3等に示すように、ここでは、1組(2個)の飛出し防止ピン281を設けた場合について例示している。
 サセプタ217に複数設けられた飛出し防止ピン281の、サセプタ217上における全体的な平面配置としては、サセプタ217の回転中心を中心とする同一円周上に設けられていることが好ましい。仕切り板205に形成された切欠き部291も、同じ円周上に設けられる。
 図4に示すように、反応容器203内への基板200の搬入・搬出時に、サセプタ217を基板搬送位置まで下降させた状態で、基板200や真空搬送ロボット112が飛出し防止ピン281と干渉しないよう、サセプタ217の上面で突出したリフトピン280の高さよりも、飛出し防止ピン281の高さが低くなるように、飛出し防止ピン281の高さが設定されている。なお、言い換えると、基板200の搬入・搬出時に、飛出し防止ピン281の高さよりもリフトピン280の高さが高くなるように、リフトピン280の高さが設定されている。
 基板200の処理時には、各処理領域201a,201bや各パージ領域204a,204bの気密性を高めるために、仕切り板205とサセプタ217の上面との距離を短くすることが好ましい。図5に示すように、基板200の処理時に、サセプタ217を基板処理位置まで上昇させた状態では、切欠き部291の内部に飛出し防止ピン281の上端部が入り込むことで、つまり、サセプタ217の回転時に飛出し防止ピン281が切欠き部291を通過することで、飛出し防止ピン281と仕切り板205とが干渉することが抑制されている。飛出し防止ピン281の、サセプタ217の上面からの高さは、1mm以上5mm以下の範囲内の高さとすることが好ましい。
 サセプタが回転する際、基板200に遠心力が発生する。なお、この遠心力により、わずかながら、基板載置部217b内に載置された基板200の外側方向への位置ずれが発生してしまうことがある。また、この位置ずれにより、基板200と基板載置部217bの底面との間及び基板200の周縁部と基板載置部217bの内側面が接触することで、パーティクルが発生してしまうことがある。このような位置ずれや、発生したパーティクルの飛散は、後述のような圧力の制御により、抑制することができる。
(加熱部)
 サセプタ217の内部には、加熱部としてのヒータ218が一体的に埋め込まれており、基板200を加熱できるように構成されている。ヒータ218に電力が供給されると、基板200表面が所定温度(例えば室温~1000℃程度)にまで加熱されるようになっている。なお、ヒータ218は、サセプタ217に載置されたそれぞれの基板200を個別に加熱するように、同一面上に複数(例えば5つ)設けてもよい。
 サセプタ217には温度センサ274が設けられている。ヒータ218及び温度センサ274には、電力供給線222を介して、温度調整器223、電力調整器224及びヒータ電源225が電気的に接続されている。温度センサ274により検出された温度情報に基づいて、ヒータ218への通電具合が制御されるように構成されている。
(ガス供給部)
 反応容器203の上側には、第1の処理ガス導入機構251と、第2の処理ガス導入機構252と、不活性ガス導入機構253と、を備え、処理室内へ各種ガスを供給するガス供給機構250が設けられている。ガス供給機構250は、反応容器203の上側に開設された開口に気密に設けられている。第1の処理ガス導入機構251の側壁には、第1のガス噴出口254が設けられている。第2の処理ガス導入機構252の側壁には、第2のガス噴出口255が設けられている。不活性ガス導入機構253の側壁には、第1の不活性ガス噴出口256及び第2の不活性ガス噴出口257がそれぞれ対向するように設けられている。ガス供給機構250は、第1の処理ガス導入機構251から第1の処理領域201a内に第1の処理ガスを供給し、第2の処理ガス導入機構252から第2の処理領域201b内に第2の処理ガスを供給し、不活性ガス導入機構253から第1のパージ領域204a内及び第2のパージ領域204b内に不活性ガスを供給するように構成されている。ガス供給機構250は、各処理ガス及び不活性ガスを混合させずに個別に供給することができる。また、ガス供給機構250は、各処理ガス及び不活性ガスを併行して供給することができるように構成されている。
 本実施形態によるガス供給機構250は、反応容器203の中央部、すなわち、サセプタ217の中央の上方に設けられている。これにより、各処理ガス及び不活性ガスは、サセプタ217の中央側から外周側に向けて供給される。つまり、ガス供給機構250は、仕切り板205で仕切られた第1の処理領域201a、第1のパージ領域204a、第2の処理領域201b、第2のパージ領域204bのそれぞれにおいて、中央側から外周側に向けてガスを供給するように構成されている。また、本実施形態においては、サセプタ217の外周側から各処理ガス及び不活性ガスが排気されるように構成されている。
(処理ガス供給部)
 第1の処理ガス導入機構251の上流側には、第1のガス供給管232aが接続されている。第1のガス供給管232aの上流側には、上流方向から順に、原料ガス供給源233a、流量制御器(流量制御部)であるマスフローコントローラ(MFC)234a、及び開閉弁であるバルブ235aが設けられている。
 第1のガス供給管232aからは、第1のガス(第1の処理ガス)として、例えば、シリコン含有ガスが、マスフローコントローラ234a、バルブ235a、第1のガス導入部251及び第1のガス噴出口254を介して、第1の処理領域201a内に供給される。シリコン含有ガスとしては、例えばトリシリルアミン((SiHN、略称:TSA)ガスを用いることができる。なお、第1の処理ガスは、常温常圧で固体、液体、及び気体のいずれであっても良いが、ここでは気体として説明する。第1の処理ガスが常温常圧で液体の場合は、原料ガス供給源233aとマスフローコントローラ234aとの間に、図示しない気化器を設ければよい。
 なお、シリコン含有ガスとしては、TSAの他に、例えば有機シリコン材料であるヘキサメチルジシラザン(C19NSi、略称:HMDS)、トリスジメチルアミノシラン(Si[N(CHH、略称:3DMAS)、ビスターシャリブチルアミノシラン(SiH(NH(C))、略称:BTBAS)等を用いることができる。
 第2の処理ガス導入機構252の上流側には、第2のガス供給管232bが接続されている。第2のガス供給管232bの上流側には、上流方向から順に、原料ガス供給源233b、流量制御器(流量制御部)であるマスフローコントローラ(MFC)234b、及び開閉弁であるバルブ235bが設けられている。
 第2のガス供給管232bからは、第2のガス(第2の処理ガス)として、例えば酸素含有ガスである酸素(O)ガスが、マスフローコントローラ234b、バルブ235b、第2の処理ガス導入機構252及び第2のガス噴出口255を介して、第2の処理領域201b内に供給される。第2の処理ガスである酸素ガスは、後述のプラズマ生成部206によりプラズマ状態とされ、基板200に供給される。なお、第2の処理ガスである酸素ガスは、ヒータ218の温度及び反応容器203内の圧力を所定の範囲に調整し、熱で活性化させてもよい。なお、酸素含有ガスとしては、オゾン(O)ガスや水蒸気(HO)を用いてもよい。
 主に、第1の処理ガス導入機構251、第1のガス供給管232a、マスフローコントローラ234a及びバルブ235aにより、第1の処理ガス供給部(シリコン含有ガス供給系ともいう)が構成される。なお、原料ガス供給源233a、第1の処理ガス導入機構251、第1のガス噴出口254を、第1の処理ガス供給部に含めて考えてもよい。また、主に、第2の処理ガス導入機構252、第2のガス供給管232b、マスフローコントローラ234b及びバルブ235bにより、第2の処理ガス供給部(酸素含有ガス供給系ともいう)が構成される。なお、原料ガス供給源233b、第2の処理ガス導入機構252、第2のガス噴出口255を、第2の処理ガス供給部に含めて考えてもよい。そして、主に、第1のガス供給系及び第2のガス供給系により、処理ガス供給部が構成される。第1の処理ガス供給部と第2の処理ガス供給部を合わせて処理ガス供給部とも表現する。
(不活性ガス供給部)
 不活性ガス導入機構253の上流側には、第1の不活性ガス供給管232cが接続されている。第1の不活性ガス供給管232cの上流側には、上流方向から順に、不活性ガス供給源233c、流量制御器(流量制御部)であるマスフローコントローラ(MFC)234c、及び開閉弁であるバルブ235cが設けられている。
 第1の不活性ガス供給管232cからは、不活性ガスとして、例えば窒素(N)ガスが、マスフローコントローラ234c、バルブ235c、不活性ガス導入機構253、第1の不活性ガス噴出口256及び第2の不活性ガス噴出口257を介して、第1のパージ領域204a内及び第2のパージ領域204b内にそれぞれ供給される。第1のパージ領域204a内及び第2のパージ領域204b内に供給される不活性ガスは、後述する成膜工程(S106)ではパージガスとして作用する。なお、不活性ガスとしては、Nガスのほか、例えばHeガス、Neガス、Arガス等の希ガスを用いることができる。
 第1のガス供給管232aのバルブ235aよりも下流側には、第2の不活性ガス供給管232dの下流端が接続されている。第2の不活性ガス供給管232dの上流端は、第1の不活性ガス供給部のマスフローコントローラ234cとバルブ235cとの間に接続されている。第2の不活性ガス供給管232dには、開閉弁であるバルブ235dが設けられている。
 また、第2のガス供給管232bのバルブ235bよりも下流側には、第3の不活性ガス供給管232eの下流端が接続されている。第3の不活性ガス供給管232eの上流端は、第1の不活性ガス供給部のマスフローコントローラ234cとバルブ235cとの間に接続されている。第3の不活性ガス供給管232eには、開閉弁であるバルブ235eが設けられている。
 第3の不活性ガス供給管232eからは、不活性ガスとして、例えばNガスが、マスフローコントローラ234c、バルブ235e、第2のガス供給管232b、第2の処理ガス導入機構252及び第2のガス噴出口255を介して、第2の処理領域201b内に供給される。第2の処理領域201b内に供給される不活性ガスは、第1の処理領域201a内に供給される不活性ガスと同様に、成膜工程(S106)ではキャリアガス或いは希釈ガスとして作用する。
 主に、第1の不活性ガス供給管232c、マスフローコントローラ234c及びバルブ235cにより第1の不活性ガス供給部が構成される。なお、不活性ガス供給源233c、不活性ガス導入機構253、第1の不活性ガス噴出口256、第2の不活性ガス噴出口257を、第1の不活性ガス供給部に含めて考えてもよい。また、主に、第2の不活性ガス供給管232d及びバルブ235dにより第2の不活性ガス供給部が構成される。なお、不活性ガス供給源233c、マスフローコントローラ234c、第1のガス供給管232a、第1のガス導入部251及び第1のガス噴出口254を、第2の不活性ガス供給部に含めて考えてもよい。また、主に、第3の不活性ガス供給管232e及びバルブ235eにより第3の不活性ガス供給部が構成される。なお、不活性ガス供給源233c、マスフローコントローラ234c、第2のガス供給管232b、第2の処理ガス導入機構252及び第2のガス噴出口255を、第3の不活性ガス供給部に含めて考えてもよい。そして、主に、第1の不活性ガス供給部、第2の不活性ガス供給部、第3の不活性ガス供給部により、不活性ガス供給部が構成される。
(プラズマ生成部)
 図3に示すように、第2の処理領域201aの上方には、供給された処理ガスをプラズマ状態とするプラズマ生成部206が設けられている。プラズマ状態とすることで、低温で基板200の処理を行うことができる。プラズマ生成部206は、例えば、少なくとも一対の対向する電極を備えている。該電極には、絶縁トランスが電気的に接続されている。高周波電源の出力する交流電力が、整合器を介して電極に供給されると、電極の周辺にプラズマが生成されるように構成されている。
 電極は、サセプタ217に支持された基板200の処理面から5mm以上25mm以下の高さ位置に、基板200の処理面と対向するように配置することが好ましい。このように、電極を基板200の処理面の極近傍に設けると、活性化させた処理ガスが基板200に到達する前に失活してしまうことを抑制できる。
(排気部)
 図4及び図5に示すように、反応容器203には、処理領域201a,201b内及びパージ領域204a,204b内の雰囲気を排気する排気管231が設けられている。排気管231には、反応容器203内(処理領域201a,201b内及びパージ領域204a,204b内)の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245、及び圧力調整器(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ243を介して、真空排気装置としての真空ポンプ246が接続されており、反応容器203内の圧力が所定の圧力(真空度)となるよう真空排気し得るように構成されている。本実施形態では、反応容器203内に導入された各処理ガス及び不活性ガスは、サセプタ217の外周部から排気管231へと排気される。なお、APCバルブ243は、弁を開閉して反応容器203内の真空排気・真空排気停止ができ、更に弁開度を調節して圧力調整可能となっている開閉弁である。主に、排気管231、APCバルブ243、及び圧力センサ245により排気部が構成される。なお、真空ポンプ246を排気部に含めて考えてもよい。
(制御部)
 次に、図6を用い、本実施形態の制御部(制御手段)であるコントローラ221について説明する。
 図6に示されているように、制御部(制御手段)であるコントローラ221は、CPU(Central Processing Unit)221a、RAM(Random  Access Memory)221b、記憶装置221c、I/Oポート221dを備えたコンピュータとして構成されている。RAM221b、記憶装置221c、I/Oポート221dは、内部バス221eを介して、CPU221aとデータ交換可能なように構成されている。コントローラ221には、例えばタッチパネル等として構成された入出力装置226が接続されている。
 記憶装置221cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置221c内には、基板処理装置100の動作を制御する制御プログラムや、後述する成膜処理等の基板処理の手順や条件などが記載されたプロセスレシピが、読み出し可能に格納されている。なお、プロセスレシピは、後述する基板処理工程における各手順をコントローラ221に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。以下、このプロセスレシピや制御プログラム等を総称して、単にプログラムともいう。なお、本明細書においてプログラムという言葉を用いた場合は、プロセスレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、その両方を含む場合がある。また、RAM221bは、CPU221aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
 I/Oポート221dは、上述のマスフローコントローラ234a,234b,234c、バルブ235a,235b,235c,235d,235e、圧力センサ245、APCバルブ243、真空ポンプ246、ヒータ218、温度センサ274、電力調整器224、ヒータ電源225、温度調整器223、回転機構267、昇降機構268等に接続されている。
 CPU221aは、記憶装置221cから制御プログラムを読み出して実行すると共に、入出力装置226からの操作コマンドの入力等に応じて記憶装置221cからプロセスレシピを読み出すように構成されている。そして、CPU221aは、読み出したプロセスレシピの内容に沿うように、マスフローコントローラ234a,234b,234cによる各種ガスの流量調整動作、バルブ235a,235b,235c,235d,235eの開閉動作、APCバルブ243の開閉動作及び圧力センサ245に基づくAPCバルブ243による圧力調整動作、温度センサ274に基づくヒータ218の温度調整動作、真空ポンプ246の起動および停止、回転機構267によるサセプタ217の回転および回転速度調節動作、昇降機構268によるサセプタ217の昇降動作等を制御するように構成されている。
 なお、コントローラ221は、専用のコンピュータとして構成されている場合に限らず、汎用のコンピュータとして構成されていてもよい。例えば、上述のプログラムを格納した外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MO等の光磁気ディスク、USBメモリやメモリカード等の半導体メモリ)227を用意し、係る外部記憶装置227を用いて汎用のコンピュータにプログラムをインストールすること等により、本実施形態に係るコントローラ221を構成することができる。なお、コンピュータにプログラムを供給するための手段は、外部記憶装置227を介して供給する場合に限らない。例えば、インターネットや専用回線等の通信手段を用い、外部記憶装置227を介さずにプログラムを供給するようにしてもよい。なお、記憶装置221cや外部記憶装置227は、コンピュータ読み取り可能な記録媒体として構成される。以下、これらを総称して、単に記録媒体ともいう。なお、本明細書において記録媒体という言葉を用いた場合は、記憶装置221c単体のみを含む場合、外部記憶装置227単体のみを含む場合、または、その両方を含む場合がある。
(3)基板処理工程
 続いて、本実施形態にかかる半導体製造工程の一工程として、上述した反応容器203を備えるプロセスチャンバ202bを用いて実施される基板処理工程について、図7及び図8を用いて説明する。なお、以下の説明において、基板処理装置100のプロセスチャンバ202の構成各部の動作は、コントローラ221により制御される。
 ここでは、第1のガスとして、シリコン含有ガスであるトリシリルアミン(TSA)を用い、第2の処理ガスとして、酸素含有ガスである酸素ガスを用い、基板200上に絶縁膜として酸化シリコン膜(SiO膜、以下、単にSiO膜ともいう)を形成する例について説明する。
(基板搬入・載置工程(S102))
 まず、基板200の搬送位置までサセプタ217を下降させることで、サセプタ217に対して相対的にリフトピン280の上端部を上昇させて、リフトピン280の上端部がサセプタ217の上面で突出した状態とする。上述のように、この時、リフトピン280の高さは、飛出し防止ピン281の高さよりも高くなっている。続いて、ゲートバルブ244aを開き、第1の基板移載機112を用いて、反応容器203内に所定枚数(例えば5枚)の基板200(処理基板)を搬入する。そして、第1の基板移載機112は、搬入した基板200を、複数(例えば5個)の基板載置部217bにそれぞれ設けられた各リフトピン280上に水平姿勢で載置する。この際、基板200は、反応容器203の外周側から、飛び出し防止ピン280の上方を通過してリフトピン280上に載置される。
 基板200を反応容器203内に搬入し、リフトピン280上に載置したら、第1の基板移載機112を反応容器203外へ退避させ、ゲートバルブ244aを閉じて反応容器203内を密閉する。その後、基板200の処理位置までサセプタ217を上昇させることで、サセプタ217に対して相対的にリフトピン280の上端部を下降させる。つまり、サセプタ217に対して相対的に基板200を下降させる。このようにして、第1の処理領域201a、第1のパージ領域204a、第2の処理領域201b、第2のパージ領域204bの各底面のサセプタ217に設けられた基板載置部217b上に、それぞれ基板200を載置する。
 なお、基板200を反応容器203内に搬入する際には、排気部により反応容器203内を排気しつつ、不活性ガス供給部から反応容器203内にパージガスとしてのNガスを供給することが好ましい。即ち、真空ポンプ246を作動させ、APCバルブ243を開けることにより、反応容器203内を排気しつつ、少なくとも第1の不活性ガス供給部のバルブ235cを開けることにより、反応容器203内にNガスを供給することが好ましい。これにより、処理領域201内へのパーティクルの侵入や、基板200上へのパーティクルの付着を抑制することが可能となる。ここで、さらに第2の不活性ガス供給部及び第3の不活性ガス供給部から不活性ガスを供給してもよい。なお、真空ポンプ246は、少なくとも基板搬入・載置工程(S102)から後述する基板搬出工程(S108)が終了するまでの間は、常に作動させた状態とする。
(昇温・圧力調整工程(S104))
 続いて、サセプタ217の内部に埋め込まれたヒータ218に電力を供給し、基板200の表面が所定の温度(例えば200℃以上であって400℃以下)となるように加熱する。この際、ヒータ218の温度は、温度センサ274により検出された温度情報に基づいてヒータ218への通電具合を制御することによって調整される。
 なお、シリコンで構成される基板200の加熱処理では、表面温度を750℃以上にまで加熱すると、基板200の表面に形成されたソース領域やドレイン領域等に不純物の拡散が生じ、回路特性が劣化し、半導体デバイスの性能が低下してしまう場合がある。基板200の温度を上述のように制限することにより、基板200の表面に形成されたソース領域やドレイン領域における不純物の拡散、回路特性の劣化、半導体デバイスの性能の低下を抑制できる。
 また、基板200を加熱しつつ、回転機構267を作動して、サセプタ217の回転を開始させる。この際、サセプタ217の回転速度はコントローラ221によって制御される。サセプタ217を回転させることにより、基板200は、第1の処理領域201a、第1のパージ領域204a、第2の処理領域201b、第2のパージ領域204bの順に移動を開始し、各領域を基板200が通過する。サセプタ217の回転開始時は、回転速度が徐々に上昇し、回転停止時には回転速度は徐々に下降する。回転開始時は、例えば0~120rpmの間をリニアに上昇させる。これを30秒から1分間程度継続する。このサセプタ217の回転を開始する開始時及び回転が停止する際を含め回転速度が変化する間とも表現する。また、後述する基板処理を行う際のサセプタ217を回転速度が一定(安定)している間を回転速度が一定である間とも表現する。
 回転速度が変化する間、サセプタ217の回転速度を上げつつ、反応容器203内の圧力を第1の圧力に上昇させていく。反応容器203内の圧力が上がることにより、基板200は基板載置部217bの底面に押し付けられ、遠心力による急加速を伴う基板200の位置移動が起きづらくなる。また、基板200が基板載置部217bを移動し、基板200と基板載置部200bの間の摩擦によってパーティクルが発生してしまった場合でも、パーティクルの飛散を抑えることが可能となる。
 排気系のAPCバルブ243の調整による圧力の上昇を行う場合には、反応容器203内が所望の圧力(例えば0.1Pa~300Pa、好ましくは20Pa~40Pa)となるように、反応容器203内を真空ポンプ246によって真空排気する。この際、反応容器203内の圧力は図中省略の圧力センサで測定され、この測定された圧力情報に基づきAPCバルブ243の開度をフィードバック制御する。
 また、不活性ガス(例えばNガス)の供給量を増加させて第1の圧力へ上昇させる場合には、第1のガス供給部のバルブ235aと第2のガス供給部のバルブ235bを閉じる。更に第1の不活性ガス供給部のバルブ235c、第2の不活性ガス供給部のバルブ235d、第3の不活性ガス供給部のバルブ235eを開にする。この状態で不活性ガスを反応容器203内に供給することにより、各領域を不活性ガス雰囲気とし、圧力が上昇される。
 このとき、所定の時間(基板200が基板載置部217b内で遠心力により徐々に移動し、基板載置部217bの周縁部側面に接触するまでの時間)をかけて基板200が移動し、摩擦によるパーティクルの発生を抑制することが可能となる。さらに、基板載置部217bの周縁部側面が基板200を支持することで、サセプタ回転中の基板200の位置ズレや、基板載置部217bから基板200が飛び出すことを防ぐことが可能となる。
 尚、基板200が基板載置部217b内で遠心力により徐々に移動し、基板載置部217bの周縁部側面に接触するまでの時間(所定の時間)の間を初期回転工程と呼ぶ。
(成膜工程(S106))
 所定の時間(基板200が基板載置部217b内で遠心力により徐々に移動し、基板載置部217bの周縁部側面に接触するまでの時間)経過後、サセプタ217の回転速度を維持する。サセプタ217の回転速度が維持されたら、第1のガス供給部のバルブ235aと第2のガス供給部のバルブ235bを開とする。第1の不活性ガス供給部のバルブ235cは引き続き開とし、第2の不活性ガス供給部のバルブ235d、第3の不活性ガス供給部のバルブ235eは、ガスの種類に応じて開閉を制御する。具体的には、第1のガスが常温で液体となる原料ガスの場合は、バルブ235dを開とし、キャリアガスとしてNガスを使用する。第1のガスがそれ以外の場合は、第1のガスの希釈を防ぐためバルブ235dは閉とする。第2のガスの希釈を防ぐため、第3の不活性ガス供給部のバルブ235eは閉とする。この際、処理ガスの反応温度より基板温度が低いため、第1のガスと第2のガスは反応しない。
 この成膜工程であるサセプタ217の回転速度が一定である間の反応容器203内の圧力は、サセプタ217の回転速度が上がっている(変化している)際の第1の圧力より低い第2の圧力とする。換言すると、サセプタ217の回転速度が変化する間は、反応容器203の圧力を第1の圧力とし、サセプタ217の回転速度が一定である間は、反応容器203の圧力を第1の圧力より低い第2の圧力とする。(図9参照)
 成膜工程におけるサセプタ217の一定の回転速度は、例えば120rpmであり、例えば60rpm以上の高速となっている。サセプタ217の回転速度が高いほど、単位時間の成膜サイクル数が増え、膜厚が増加し、単位時間の処理枚数を増加させることができる。しかしながら、回転速度をこのような高速とした場合、サセプタの外周方向の遠心力が大きくなることで、基板200が基板載置部217bから外周側へ飛び出す可能性が高くなる。
 飛出し防止ピン281は、基板載置部217bの外周に接するように配置され、サセプタ217の上面において突出するように設けられている。これにより、遠心力により基板200が基板載置部217bから外周側へ飛び出すことを、より確実に防止することができる(遠心力により基板200が基板載置部217bから外周側へ飛び出すことを、飛出し防止ピン281が設けられていない場合と比べて抑制することができる)。
 以下、成膜工程におけるガスの供給態様等について、より詳細に説明する。第1の処理領域201a内に第1の処理ガスとしてのTSAガスを供給し、第2の処理領域201b内に第2の処理ガスとしての酸素ガスを供給して、基板200上にSiO膜を成膜する工程を例に、成膜工程を説明する。なお、以下の説明では、TSAガス、酸素ガス、不活性ガスを併行してそれぞれの領域に供給する。換言すれば、TSAガスの供給、酸素ガスの供給、不活性ガスの供給は、少なくとも基板に対する処理が完了する間は継続して行われる。
 基板200を加熱して所望とする温度に達し、サセプタ217が所望とする回転速度に到達(所定の時間:基板200が基板載置部217b内で遠心力により徐々に移動し、基板載置部217bの周縁部側面に接触するまでの時間)したら、少なくともバルブ235a,バルブ235b及びバルブ235cを同時に開け、処理ガス及び不活性ガスの処理領域201及びパージ領域204への供給を開始する。
 即ち、バルブ235aを開けて第1の処理領域201a内にTSAガスを供給し、バルブ235bを開けて第2の処理領域201b内に酸素ガスを供給することで、処理ガス供給部から処理ガスを供給する。さらにバルブ235cを開けて第1のパージ領域204a及び第2のパージ領域204b内に不活性ガスであるNガスを供給することで、不活性ガス供給部から不活性ガスを供給する。
 第1の処理領域201aや第2の処理領域201bには、基板処理に影響する量の不活性ガスが混入しないよう、処理ガスの供給量を調整する。このようにすると、処理領域における基板処理において、不活性ガスが基板200に形成された膜と供給されたガスとの間の反応を邪魔することがないので、不活性ガスが処理領域に供給される場合と比べ、成膜速度を高くすることができる。
 このとき、APCバルブ243を適正に調整して反応容器203内の圧力を、例えば10Pa~1000Paの範囲内の圧力とする。このときヒータ218の温度は、基板200の温度が、例えば200℃~400℃の範囲内の温度となるような温度に設定する。
 圧力を調整する際、バルブ235aを開け、第1のガス供給管232aから第1のガス導入機構251及び第1のガス噴出口254を介して第1の処理領域201aにTSAガスを供給しつつ、排気管231から排気する。このとき、TSAガスの流量が所定の流量となるように、マスフローコントローラ232cを調整する。なお、マスフローコントローラ232cで制御するTSAガスの供給流量は、例えば100sccm~5000sccmの範囲内の流量とする。
 また、バルブ235bを開け、第2のガス供給管233aから第2のガス導入機構252及び第2のガス噴出口255を介して第2の処理領域201bに酸素ガスを供給しつつ、排気管231から排気する。このとき、酸素ガスの流量が所定の流量となるように、マスフローコントローラ233cを調整する。なお、マスフローコントローラ233cで制御する酸素ガスの供給流量は、例えば1000sccm~10000sccmの範囲内の流量とする。
 また、バルブ235a、バルブ235b、バルブ235cを開け、パージガスとしての不活性ガスであるNガスを、第1の不活性ガス供給管234aから不活性ガス導入機構253、第1の不活性ガス噴出口256及び第2の不活性ガス噴出口257を介して第1のパージ領域204a及び第2のパージ領域204bにそれぞれ供給しつつ排気する。このとき、Nガスの流量が所定の流量となるように、マスフローコントローラ234cを調整する。なお、仕切り板205の端部と反応容器203の側壁との隙間を介し、第1のパージ領域204a内及び第2のパージ領域204b内から第1の処理領域201a内及び第2の処理領域201b内に向けて不活性ガスを噴出させることで、第1のパージ領域204a内及び第2のパージ領域204b内への処理ガスの侵入を抑制することができる。
 ガスの供給開始と共に、第2の処理領域201bの上方に設けられたプラズマ生成部206に高周波電源から高周波電力を供給する。第2の処理領域201b内に供給され、プラズマ生成部206の下方を通過した酸素ガスは、第2の処理領域201b内でプラズマ状態となり、これに含まれる活性種が基板200に供給される。
 酸素ガスは反応温度が高く、上述のような基板200の処理温度、反応容器203内の圧力では反応しづらいが、本実施形態のように酸素ガスをプラズマ状態とし、これに含まれる活性種を供給するようにすると、例えば400℃以下の温度帯でも成膜処理を行うことができる。なお、第1の処理ガスと第2の処理ガスとで要求する処理温度が異なる場合、処理温度が低い方の処理ガスの温度に合わせてヒータ218を制御し、処理温度を高くする必要のある他方の処理ガスを、プラズマ状態として供給するとよい。このようにプラズマを利用することにより基板200を低温で処理することができ、例えばアルミニウム等の熱に弱い配線等を有する基板200に対する熱ダメージを抑制することが可能となる。また、処理ガスの不完全反応による生成物等の異物の発生を抑制することができ、基板200上に形成する薄膜の均質性や耐電圧特性等を向上させることができる。また、プラズマ状態とした酸素ガスの高い酸化力によって、酸化処理時間を短縮することができる等、基板処理の生産性を向上させることができる。
 上述したように、サセプタ217を回転させることにより、基板200は、第1の処理領域201a、第1のパージ領域204a、第2の処理領域201b、第2のパージ領域204bの順に移動を繰り返す。
 各領域を通過する際、基板200には、TSAガスの供給、Nガスの供給(パージ)、プラズマ状態とされた酸素ガスの供給、Nガスの供給(パージ)が交互に所定回数実施されることになる。ここで、成膜処理シーケンスの詳細について、図8を用いて説明する。
(第1の処理ガス領域通過(S202))
 まず、第1の処理領域201aを通過した基板200表面及びサセプタ217の基板が載置されていない部分にTSAガスが供給され、基板200上にシリコン含有層が形成される。第1の処理領域201aには、第1の処理ガス導入機構251から第1のガス噴出口254を通して、水平方向にガスが噴出される。
(第1のパージ領域通過(S204))
 次に、シリコン含有層が形成された基板200が第1のパージ領域204aを通過する。このとき、第1のパージ領域を通過する基板200に対して不活性ガスであるNガスが供給される。
(第2の処理ガス領域通過(S206))
 次に、第2の処理領域201bを通過した基板200及びサセプタ217の基板が載置されていない部分に酸素ガスが供給される。基板200上にはシリコン酸化層(SiO層)が形成される。即ち、酸素ガスは、第1の処理領域201aで基板200上に形成されたシリコン含有層の少なくとも一部と反応する。これにより、シリコン含有層は酸化されて、シリコン及び酸素を含むSiO層へと改質される。第2の処理領域201bには、第2の処理ガス導入機構252から第2のガス噴出口255を通して、水平方向にガスが噴出される。
(第2のパージ領域通過(S208))
 そして、第2の処理領域201bでSiO層が形成された基板200が第2のパージ領域204bを通過する。このとき、第2のパージ領域を通過する基板200に対して不活性ガスであるNガスが供給される。
(サイクル数の確認(S210))
 このように、サセプタ217の1回転を1サイクルとし、即ち第1の処理領域201a、第1のパージ領域204a、第2の処理領域201b及び第2のパージ領域204bの基板200の通過を1サイクルとし、このサイクルを少なくとも1回以上行うことにより、基板200上に所定膜厚のSiO膜を成膜することができる。ここでは、前述のサイクルを所定回数実施したか否かを確認する。サイクルを所定の回数実施した場合、所望の膜厚に到達できたと判断し、成膜処理を終了する。サイクルを所定の回数実施しなかった場合、即ち所望の膜厚に到達できなかったと判断し、S202に戻りサイクル処理を継続する。
 S210にて、前述のサイクルを所定回数実施し、基板200上に所望の膜厚のSiO膜が形成されたと判断した後、少なくともバルブ235a及びバルブ235bを閉じ、TSAガス及び酸素ガスの第1の処理領域201a及び第2の処理領域201bへの供給を停止する。このとき、プラズマ生成部206への電力供給も停止する。さらに、ヒータ218の通電量を制御して温度を低くするか、あるいはヒータ218への通電を停止する。更に、サセプタ217の回転速度を徐々に下げ回転を停止する。この時、回転速度によって基板200の位置ずれが起きる場合、更に圧力を上昇させて、基板200の位置ずれを防止する。
(基板搬出工程(S108))
 成膜工程106が終了したら、次のように基板を搬出する。まず、基板200の搬送位置までサセプタ217を下降させることで、サセプタ217に対して相対的にリフトピン280の上端部を上昇させて、リフトピン280上に基板200を支持させる。そして、ゲートバルブ244aを開き、第1の基板移載機112を用いて基板200を反応容器203の外へ搬出し、本実施形態に係る基板処理工程を終了する。この際、リフトピン280上に支持されていた基板200は、飛び出し防止ピン280の上方を通過して反応容器203の外周側に設けられたゲートバルブ244aから搬出される。なお、上記において、基板200の温度、反応容器203内の圧力、各ガスの流量、プラズマ生成部206に印加する電力、処理時間等の処理条件等は、改質対象の膜の材料や膜厚等によって任意に調整する。
(4)本実施形態による効果
 本実施形態によれば、以下に示す1つ又は複数の効果が得られる。
(a)基板載置部(ザグリ部)217bに載置された基板200は、凹部内に配置されていることにより、サセプタ217の回転に伴う遠心力で外側に飛び出すことが抑制されている。しかし、回転速度が高速(例えば60rpm以上)になると、基板200が基板載置部217bから飛び出す可能性が高くなる。本実施形態によれば、基板載置部217bの外周に接するように設けられ、サセプタ217の上面において突出する飛出し防止ピン281により、基板載置部217bに載置された基板200がサセプタ217の回転に伴う遠心力で外側に飛び出すことを、より確実に防止することができる。これにより、サセプタ217を、高速で回転させることができ、単位時間の成膜サイクル数が増え、膜厚が増加し、単位時間の処理枚数を増加させることができる。
(b)飛出し防止ピン281は、好ましくは、基板載置部217bの外周に接する位置であって、基板載置部217bの中心よりもサセプタ217の回転の半径方向において外側となる位置に設けられる。また、飛出し防止ピン281は、好ましくは、基板載置部217bの外周に接する位置であって、基板載置部217bの中心とサセプタ217の回転中心を通る直線上の位置に設けられる。飛出し防止ピン280をこのような位置に設けることにより、基板200がサセプタ217の半径方向外側に向かう遠心力を受けても、基板載置部217b内から逸脱しないように飛出し防止ピン280に支持される。従って基板200の飛び出しを、効果的に抑制することができる。
(c)飛出し防止ピン281は、より好ましくは、基板載置部217bの外周に接する位置であって、基板載置部217bの中心とサセプタ217の回転中心を通る直線に対して線対称となる位置に少なくとも1組(2個)設けられる。飛出し防止ピン281をこのように配置することで、遠心力に対して2点以上でバランス良く基板200を支持することができるので、基板200の飛び出しを、より確実に防止することができる。
(d)飛出し防止ピン281の、サセプタ217の上面からの高さは、好ましくは、1mm以上5mm以下の範囲内の高さとする。飛出し防止ピン281の高さを1mm以上とすることにより、充分な飛出し防止効果を得ることができる。また、飛出し防止ピン281を5mm以下とすることで、仕切り板205の切欠き部291を充分に小さくすることができる。仕切り板205の切欠き部291が大きくなりすぎると、仕切り板20を挟んで隣接する領域間での気密性が低下してしまうが、飛出し防止ピン281を5mm以下として切欠き部291を小さくすることにより、充分な気密性を得ることができる。
(e)仕切り板205のサセプタ217の上面と対向する面には、飛出し防止ピン281が通過するための切欠き部291が設けられている。切欠き部291により、基板処理時に飛出し防止ピン281と仕切り板205とが干渉しないように、仕切り板205とサセプタ217とを充分に近接させることができる。これにより、各処理領域201a,201bや各パージ領域204a,204bの気密性を充分に高くすることができる。処理ガス等の領域間での拡散を抑制でき、不純物の少ない高品質な成膜ができる。
(f)飛出し防止ピン281と切欠き部291とは、好ましくは、サセプタ217の回転中心を中心とする同一円周上に設けられる。すべての飛出し防止ピン281が、同一円周上に配置されていることで、仕切り板205に設けられる切欠き部291の配置を、半径方向について1カ所のみにすることができる。これにより、切欠き部291の数を減らし、各領域間が連通する部分を小さくすることができるので、各領域間の気密性を高めることが容易になる。
(g)飛出し防止ピン281は、好ましくは、基板載置部217bの中心よりもサセプタ217の回転の半径方向において外側となる位置に設けられる。飛出し防止ピン281が、サセプタ217の外側位置に設けられていることにより、サセプタ中央側から外周側に向かうガスの流れが、基板軌道領域(基板200が通過する領域)の上において、飛出し防止ピン281の影響で乱れるのを抑えることができる。基板面内でのガスの流れの均一性低下を抑制することができ、基板面内における膜厚の均一化を図ることができる。
(h)反応容器203内への基板200の搬入・搬出時に、サセプタ217を基板搬送位置まで下降させた状態において、サセプタ217の上面で突出したリフトピン280の高さよりも低くなるように、飛出し防止ピン281の高さが設定されている。これにより、基板200の搬送時において、飛出し防止ピン281と、基板200や真空搬送ロボット112が干渉することを防ぐことができる。
(5)変形例
 上述の実施形態では、基板200及び基板載置部(ザグリ部)217bを円形状とした場合について、1組(2個)の飛出し防止ピン281を設けた例について説明した。基板200や基板載置部217bの形状や、飛出し防止ピン281の配置は、上述の実施形態のものに限定されず、例えば以下のような種々の態様とすることもできる。
 図10(a)~図10(d)に、種々の態様のうちのいくつかの例について、基板載置部217bと、基板載置部217bに載置された基板200と、基板載置部217bの外周に設けられた飛出し防止ピン281の概略的な平面図を示す。サセプタ217に設けられる複数の基板載置部217bのうち、代表的に、1つ分の基板載置部217bを示す。図10(a)~図10(d)には、サセプタ217の回転中心300と基板載置部217bの中心とを通る直線301を示している。図10(a)~図10(d)に示すどの態様においても、飛出し防止ピン281は、基板載置部217bの中心よりもサセプタ217の回転の半径方向において外側となる位置に設けられている。
 図10(a)には、上述の実施形態で例示したものと同様な態様を示す。基板200及び基板載置部217bは円形状であり、直線301に対して線対称となる位置に、1組(2個)の飛出し防止ピン281が設けられている。1組の飛出し防止ピン281は、サセプタ217の回転中心300を中心とする同一円周302上に配置されている。なお、他の基板載置部217bの外周に設けられている飛出し防止ピン281も、同一円周302上に配置することができる。
 図10(b)には、第1の変形例を示す。基板200及び基板載置部217bは円形状であり、直線301上に、1個の飛出し防止ピン281が設けられている。なお、図示されている基板載置部217bの外周に設けられている飛出し防止ピン281、及び、他の基板載置部217bの外周に設けられている飛出し防止ピン281は、サセプタ217の回転中心300を中心とする同一円周302上に配置することができる。
 図10(c)には、第2の変形例を示す。基板200及び基板載置部217bは円形状であり、直線301に対して線対称となる位置に、2組(4個)の飛出し防止ピン281が設けられている。1組の飛出し防止ピン281は、サセプタ217の回転中心300を中心とする同一円周302上に配置されており、また、他の1組の飛出し防止ピン281は、サセプタ217の回転中心300を中心とする他の同一円周303上に配置されている。なお、他の基板載置部217bの外周に設けられている飛出し防止ピン281も、同一円周302上または同一円周303上に配置することができる。
 図10(d)には、第3の変形例を示す。基板200及び基板載置部217bは正方形状である。基板200及び基板載置部217bが正方形の場合、基板載置部217bの対角線の一方がサセプタ217の回転の半径方向と一致するように、基板載置部217bが設けられることが好ましい。直線301に対して線対称となる位置に、1組(2個)の飛出し防止ピン281が設けられている。1組の飛出し防止ピン281は、サセプタ217の回転中心300を中心とする同一円周302上に配置されている。なお、他の基板載置部217bの外周に設けられている飛出し防止ピン281も、同一円周302上に配置することができる。なお、第3の変形例のように、基板200及び基板載置部217bが正方形状である場合についても、2組(4個)以上の飛出し防止ピン281を設けてもよい。
 図10(a)、図10(b)及び図10(d)に示す例では、飛出し防止ピン281が配置された同一円周302上に、つまり、半径方向について1カ所のみに、仕切り板205の切欠き部291を配置することができる。図10(c)に示す例では、飛出し防止ピン281が配置された同一円周302上、及び同一円周303上に、つまり、半径方向について2カ所に、仕切り板205の切欠き部を配置することができる。
<本発明の他の実施形態>
 以上、本発明の実施形態を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
 例えば、上述の実施形態では、仕切り部(分割構造体)として仕切り板を用いる例について説明したが、仕切り部の構造は、隣り合う処理ガス供給領域間でガスを混合させないような構造であれば、特に限定されない。例えば、パージガス供給領域の天井を低くしてパージガスの流速を高める構造や、パージガス専用の排気部を設けて、処理ガスを混合させないようなガス流れを設ける構造でも良い。このような構造の場合であっても、飛出し防止ピン281が通過するための切欠き部を仕切り部に設けることができる。
 また、上述の実施形態では、基板200の飛び出しを防止する構造として飛出し防止ピン281を用いたが、ピン形状に限らず、基板の飛び出しを防止するための凸型形状を有する構造であれば良い。但し、サセプタ217の平面方向に大きさを持つと、反応容器203内のガスの流れを乱したり、仕切り部に設ける切欠き部を大きくする必要があるため、ピンのように細い形状である方がより好ましい。
 また例えば、上述の実施形態では、サセプタ217の昇降によりリフトピン280をサセプタ217に対して相対的に昇降させる例について説明したが、リフトピンの構造は、特に制限されず、リフトピン自体が昇降するようなものであっても良い。
 更には、本実施形態においては、ガスを供給する好ましい形態として、サセプタ中央から外側に向けガスを供給しているが、それに限らず、サセプタと対向する基板処理室の上側にサセプタ中央から外側に亘りノズルを設け、このノズルに設けられた複数のガス供給口からガスを供給することもできる。
<本発明の好ましい態様>
 以下に、本発明の好ましい態様について付記する。
(付記1)
 本発明の一態様によれば、
 基板を処理する処理室と、
 前記処理室内に設けられるサセプタと、
 前記サセプタを回転させる回転駆動部と、
 前記サセプタの上面に設けられ、前記サセプタの回転の中心に対してその周囲に配置される、 基板が載置されるための凹部(ザグリ部)と、
 前記凹部の外周に接するように設けられ、前記サセプタの上面において突出する凸部と、
 前記サセプタの回転中心を中心として前記処理室内を複数の処理領域に分割する仕切り部と、
 前記仕切り部の前記サセプタ上面と対向する位置に設けられる、前記凸部が通過するための切欠き部と、
 を有する基板処理装置が提供される。
(付記2)
 付記1に記載の基板処理装置であって、好ましくは、
 前記凸部と前記切欠き部は、前記サセプタの回転中心を中心とする同一円周上に設けられる。
(付記3)
 付記1に記載の基板処理装置であって、好ましくは、
 前記サセプタを昇降させる昇降駆動部と、
 前記サセプタが下降した状態において、前記サセプタを下方から貫通し、前記サセプタ上面で突出するよう構成されたリフトピンと、
 前記基板を前記リフトピン上に載置する基板搬送機構と、
 前記昇降駆動部を制御して前記サセプタを下降させ、前記基板搬送機構を制御してサセプタ上面で突出した前記リフトピン上に前記基板を載置させるよう構成された制御部と、を有し、
 前記凸部の高さは、サセプタ上面で突出した前記リフトピンの高さよりも低い。
(付記4)
 付記1に記載の基板処理装置であって、好ましくは、
 前記凸部は、前記凹部の中心よりも前記サセプタの回転の半径方向において外側となる位置に設けられる。
(付記5)
 付記1に記載の基板処理装置であって、好ましくは、
 前記凸部は、前記凹部の中心と前記サセプタの回転中心を通る直線上の位置に設けられる。
(付記6)
 付記1に記載の基板処理装置であって、好ましくは、
 前記凸部は、前記凹部の中心と前記サセプタの回転中心を通る直線に対して線対称となる位置に少なくとも1組(2個)設けられる。
(付記7)
 付記1に記載の基板処理装置であって、好ましくは、
 前記凹部は、前記サセプタの上面に複数設けられる。
(付記8)
 付記1に記載の基板処理装置であって、好ましくは、
 前記凹部は円形である。
(付記9)
 付記1に記載の基板処理装置であって、好ましくは、
 前記凹部は正方形である。
(付記10)
 付記9に記載の基板処理装置であって、好ましくは、
 前記凹部は、当該凹部の対角線の一方が前記サセプタの回転の半径方向と一致するように前記サセプタ上面に設けられる。
(付記11)
 付記10に記載の基板処理装置であって、好ましくは、
 前記凸部は、前記凹部の対角線に対して線対称となる位置に少なくとも1組(2個)設けられる。
(付記12)
 付記1に記載の基板処理装置であって、好ましくは、
 前記凸部は複数設けられ、前記複数の凸部は前記サセプタの回転中心を中心とする同一円周上に設けられる。
(付記13)
 付記1に記載の基板処理装置であって、好ましくは、
 前記凸部は、高さが1mm~5mmの範囲のピン形状である。
(付記14)
 本発明の他の態様によれば、
 基板を処理する処理室と、
 前記処理室内において回転可能に構成されたサセプタと、
 前記サセプタの上面に設けられ、前記サセプタの回転の中心に対してその周囲に配置される、 前記基板が載置されるための凹部と、
 前記凹部の外周に接するように設けられ、前記サセプタの上面において突出する凸部と、
 前記サセプタの回転中心を中心として前記処理室内を複数の処理領域に分割する仕切り部と、
 前記仕切り部の前記サセプタ上面と対向する位置に設けられる、前記凸部が通過するための切欠き部と、
 を有する基板処理装置を準備する(提供する)工程と、
 前記凹部に前記基板を載置する工程と、
 前記サセプタを回転させる工程と、
 前記複数の処理領域にそれぞれ不活性ガス及び処理ガスの少なくともいずれか一方を供給する工程と、
 を有する半導体装置の製造方法が提供される。
(付記15)
 付記14に記載の半導体装置の製造方法であって、好ましくは、
 前記凹部に前記基板を載置する工程は、前記凸部の高さよりも高くなるようにリフトピンを前記サセプタ上面で突出させる工程と、突出した状態である前記リフトピン上に前記基板を載置する工程と、を含む。
(付記16)
 本発明のさらに他の態様によれば、
 基板を処理する処理室と、
 前記処理室内において回転可能に構成されたサセプタと、
 前記サセプタの上面に設けられ、前記サセプタの回転の中心に対してその周囲に配置される、前記基板が載置されるための凹部と、
 前記凹部の外周に接するように設けられ、前記サセプタの上面において突出する凸部と、
 前記サセプタの回転中心を中心として前記処理室内を複数の処理領域に分割する仕切り部と、
 前記仕切り部の前記サセプタ上面と対向する位置に設けられる、前記凸部が通過するための切欠き部と、
 を有する基板処理装置において、
 前記凹部に前記基板を載置する手順と、
 前記サセプタを回転させる手順と、
 前記複数の処理領域にそれぞれ不活性ガス及び処理ガスの少なくともいずれか一方を供給する手順と、
 をコンピュータに実行させるプログラム(を記録したコンピュータが読み取り可能な記録媒体)が提供される。
(付記17)
 本発明のさらに他の態様によれば、
 基板処理装置に搭載され回転するように設けられるサセプタであって、
 前記サセプタの上面に設けられ、前記サセプタの回転の中心に対してその周囲に配置される、基板が載置されるための凹部(ザグリ部)と、
 前記凹部の外周に接するように設けられ、前記サセプタの上面において突出する凸部と、
 を備える前記サセプタが提供される。
 本発明によれば、凹部の外周に接するように設けられ、サセプタの上面において突出する凸部により、凹部に載置された基板がサセプタの回転に伴う遠心力で外側に飛び出すことを抑制することができる。
100・・・基板処理装置、 200・・・基板、 201・・・処理室、 203・・・反応容器、 205・・・仕切り板(仕切り部、分割構造体)、 217・・・基板支持台(サセプタ、回転トレー)、 217b・・・基板載置部(凹部、ザグリ部)、 221・・・コントローラ(制御部)、 280・・・リフトピン、 281・・・飛出し防止ピン(凸部)、 291・・・切欠き部

Claims (15)

  1.  基板を処理する処理室と、
     前記処理室内に設けられるサセプタと、
     前記サセプタを回転させる回転駆動部と、
     前記サセプタの上面に設けられ、前記サセプタの回転の中心に対してその周囲に配置される、基板が載置されるための凹部と、
     前記凹部の外周に接するように設けられ、前記サセプタの上面において突出する凸部と、
     前記サセプタの回転中心を中心として前記処理室内を複数の処理領域に分割する仕切り部と、
     前記仕切り部の前記サセプタ上面と対向する位置に設けられる、前記凸部が通過するための切欠き部と、
     を有する基板処理装置。
  2.  請求項1記載の基板処理装置であって、
     前記凸部と前記切欠き部は、前記サセプタの回転中心を中心とする同一円周上に設けられる。
  3.  請求項1に記載の基板処理装置であって、
     前記凸部は複数設けられ、前記複数の凸部は前記サセプタの回転中心を中心とする同一円周上に設けられる。
  4.  請求項1に記載の基板処理装置であって、
     前記サセプタを昇降させる昇降駆動部と、
     前記サセプタが下降した状態において、前記サセプタを下方から貫通し、前記サセプタ上面で突出するよう構成されたリフトピンと、
     前記基板を前記リフトピン上に載置する基板搬送機構と、
     前記昇降駆動部を制御して前記サセプタを下降させ、前記基板搬送機構を制御してサセプタ上面で突出した前記リフトピン上に前記基板を載置させるよう構成された制御部と、を有し、
     前記凸部の高さは、サセプタ上面で突出した前記リフトピンの高さよりも低い。
  5.  請求項1に記載の基板処理装置であって、
     前記凸部は、前記凹部の中心よりも前記サセプタの回転の半径方向において外側となる位置に設けられる。
  6.  請求項1に記載の基板処理装置であって、
     前記凸部は、前記凹部の中心と前記サセプタの回転中心を通る直線上の位置に設けられる。
  7.  請求項1に記載の基板処理装置であって、
     前記凸部は、前記凹部の中心と前記サセプタの回転中心を通る直線に対して線対称となる位置に少なくとも1組設けられる。
  8.  基板を処理する処理室と、
     前記処理室内において回転可能に構成されたサセプタと、
     前記サセプタの上面に設けられ、前記サセプタの回転の中心に対してその周囲に配置される、前記基板が載置されるための凹部と、
     前記凹部の外周に接するように設けられ、前記サセプタの上面において突出する凸部と、
     前記サセプタの回転中心を中心として前記処理室内を複数の処理領域に分割する仕切り部と、
     前記仕切り部の前記サセプタ上面と対向する位置に設けられる、前記凸部が通過するための切欠き部と、
     を有する基板処理装置を準備する工程と、
     前記凹部に前記基板を載置する工程と、
     前記サセプタを回転させる工程と、
     前記複数の処理領域にそれぞれ不活性ガス及び処理ガスの少なくともいずれか一方を供給する工程と、
     を有する半導体装置の製造方法。
  9.  請求項8に記載の半導体装置の製造方法であって、
     前記凹部に前記基板を載置する工程は、前記凸部の高さよりも高くなるようにリフトピンを前記サセプタ上面で突出させる工程と、突出した状態である前記リフトピン上に前記基板を載置する工程と、を含む。
  10.  基板処理装置に搭載され回転するように設けられるサセプタであって、
     前記サセプタの上面に設けられ、前記サセプタの回転の中心に対してその周囲に配置される、基板が載置されるための凹部と、
     前記凹部の外周に接するように設けられ、前記サセプタの上面において突出する凸部と、
     を備える前記サセプタ。
  11.  請求項10に記載のサセプタであって、
     前記凸部は、前記凹部の中心よりも前記サセプタの回転の半径方向において外側となる位置に設けられる。
  12.  請求項10に記載のサセプタであって、
     前記凸部は、前記凹部の中心と前記サセプタの回転中心を通る直線上の位置に設けられる。
  13.  請求項10に記載のサセプタであって、
     前記凸部は、前記凹部の中心と前記サセプタの回転中心を通る直線に対して線対称となる位置に少なくとも1組設けられる。
  14.  請求項10に記載のサセプタであって、
     前記凸部は複数設けられ、前記複数の凸部は前記サセプタの回転中心を中心とする同一円周上に設けられる。
  15.  請求項10に記載のサセプタであって、
     前記凹部は、正方形であり、前記凹部の対角線の一方が前記サセプタの回転の半径方向と一致するように前記サセプタ上面に設けられ、
     前記凸部は、前記凹部の対角線に対して線対称となる位置に少なくとも1組設けられる。
     
PCT/JP2016/051531 2015-01-22 2016-01-20 基板処理装置、半導体装置の製造方法、及びサセプタ WO2016117589A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016570673A JP6276428B2 (ja) 2015-01-22 2016-01-20 基板処理装置、半導体装置の製造方法、及びサセプタ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-010754 2015-01-22
JP2015010754 2015-01-22

Publications (1)

Publication Number Publication Date
WO2016117589A1 true WO2016117589A1 (ja) 2016-07-28

Family

ID=56417130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051531 WO2016117589A1 (ja) 2015-01-22 2016-01-20 基板処理装置、半導体装置の製造方法、及びサセプタ

Country Status (2)

Country Link
JP (1) JP6276428B2 (ja)
WO (1) WO2016117589A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10584265B2 (en) 2017-09-28 2020-03-10 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Aqueous silica slurry and amine carboxylic acid compositions selective for nitride removal in polishing and methods of using them
US11186748B2 (en) 2017-09-28 2021-11-30 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Aqueous anionic functional silica slurry and amine carboxylic acid compositions for selective nitride removal in polishing and methods of using them

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102446229B1 (ko) * 2018-04-12 2022-09-22 주식회사 원익아이피에스 기판처리장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011151387A (ja) * 2009-12-25 2011-08-04 Tokyo Electron Ltd 成膜装置及び成膜方法
JP2011166107A (ja) * 2010-01-14 2011-08-25 Tokyo Electron Ltd 保持体機構、ロードロック装置、処理装置及び搬送機構
JP2014082463A (ja) * 2012-09-27 2014-05-08 Hitachi Kokusai Electric Inc 基板処理装置、蓋体及び半導体装置の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216218A (ja) * 1992-11-17 1994-08-05 Sony Corp 半導体製造装置
JP3674896B2 (ja) * 1997-11-10 2005-07-27 東芝セラミックス株式会社 気相薄膜形成装置及びそれを用いる気相薄膜形成法
JP4795755B2 (ja) * 2005-08-25 2011-10-19 株式会社日立ハイテクノロジーズ 半導体基板の製造装置
JP5310512B2 (ja) * 2009-12-02 2013-10-09 東京エレクトロン株式会社 基板処理装置
US10167571B2 (en) * 2013-03-15 2019-01-01 Veeco Instruments Inc. Wafer carrier having provisions for improving heating uniformity in chemical vapor deposition systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011151387A (ja) * 2009-12-25 2011-08-04 Tokyo Electron Ltd 成膜装置及び成膜方法
JP2011166107A (ja) * 2010-01-14 2011-08-25 Tokyo Electron Ltd 保持体機構、ロードロック装置、処理装置及び搬送機構
JP2014082463A (ja) * 2012-09-27 2014-05-08 Hitachi Kokusai Electric Inc 基板処理装置、蓋体及び半導体装置の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10584265B2 (en) 2017-09-28 2020-03-10 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Aqueous silica slurry and amine carboxylic acid compositions selective for nitride removal in polishing and methods of using them
US11186748B2 (en) 2017-09-28 2021-11-30 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Aqueous anionic functional silica slurry and amine carboxylic acid compositions for selective nitride removal in polishing and methods of using them

Also Published As

Publication number Publication date
JP6276428B2 (ja) 2018-02-07
JPWO2016117589A1 (ja) 2017-08-31

Similar Documents

Publication Publication Date Title
JP6000665B2 (ja) 半導体装置の製造方法、基板処理装置及びプログラム
JP6084202B2 (ja) 基板処理装置、半導体装置の製造方法及び基板処理方法
US10604839B2 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and method of processing substrate
KR101752075B1 (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 기록 매체
JP2014082463A (ja) 基板処理装置、蓋体及び半導体装置の製造方法
US20170243764A1 (en) Substrate processing apparatus
JP6095172B2 (ja) 半導体装置の製造方法、基板処理方法及び基板処理装置
US20140242810A1 (en) Substrate processing apparatus and method of supplying and exhausting gas
JP6276428B2 (ja) 基板処理装置、半導体装置の製造方法、及びサセプタ
JP2014060309A (ja) 基板処理装置、及び半導体装置の製造方法
JP2014192484A (ja) 半導体装置の製造方法及び基板処理装置
WO2014148490A1 (ja) 基板処理装置、及び半導体装置の製造方法
JP2014187258A (ja) 基板処理装置及び半導体装置の製造方法
JP6224263B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
KR101614276B1 (ko) 기판 처리 장치, 개체 및 반도체 장치의 제조 방법
WO2013141159A1 (ja) 基板処理装置、半導体装置の製造方法及び基板処理方法
TW202326894A (zh) 基板處理裝置、基板處理方法、半導體製造方法及程式
JP2015185757A (ja) 基板処理装置及び半導体装置の製造方法
JP2014175483A (ja) 基板処理装置、及び半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16740196

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016570673

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16740196

Country of ref document: EP

Kind code of ref document: A1