JP2014187258A - 基板処理装置及び半導体装置の製造方法 - Google Patents

基板処理装置及び半導体装置の製造方法 Download PDF

Info

Publication number
JP2014187258A
JP2014187258A JP2013061831A JP2013061831A JP2014187258A JP 2014187258 A JP2014187258 A JP 2014187258A JP 2013061831 A JP2013061831 A JP 2013061831A JP 2013061831 A JP2013061831 A JP 2013061831A JP 2014187258 A JP2014187258 A JP 2014187258A
Authority
JP
Japan
Prior art keywords
substrate
processing
gas
inert gas
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013061831A
Other languages
English (en)
Inventor
Kenji Shinozaki
賢次 篠崎
Satoshi Takano
高野  智
Akihiko Yanagisawa
愛彦 柳沢
Satoru Takahashi
哲 高橋
Tateshi Ueda
立志 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2013061831A priority Critical patent/JP2014187258A/ja
Publication of JP2014187258A publication Critical patent/JP2014187258A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

【課題】基板支持台(サセプタ)の回転時に発生する遠心力等によるウエハの移動に起因したパーティクルの発生を抑制することを可能とした基板処理装置及び半導体装置の製造方法を提供する。
【解決手段】処理室内に不活性ガスと処理ガスを供給するガス供給部と、複数の基板が同一円周状に配置される基板載置部と、前記基板載置部が設けられた基板支持台と、前記基板支持台を回転させる回転制御部と、前記基板支持台の回転速度が一定である間、前記処理室の圧力を所定の第一の圧力とし、前記基板支持台の回転速度が変化する間、前記処理室の圧力を前記第一の圧力より高い第二の圧力とするよう制御する制御部と、を有する。
【選択図】図7

Description

本発明は、半導体デバイス作成工程において、シリコンウエハなどの処理基板を加熱しながら該処理基板の表面に薄膜を形成する基板処理装置及び半導体装置の製造方法に関する。
例えば、フラッシュメモリやDRAM(Dynamic Random Access Memory)等の半導体装置を製造する際、基板上に薄膜を形成する基板処理工程が実施されることがある。
薄膜を形成する工程では、形成する薄膜の種類やその膜厚によって様々な処理条件が設定されている。処理条件とは、例えば基板温度、ガスの種類、基板の処理時間、処理室の圧力などである。
前述の基板上に薄膜を形成する工程の一工程を実施する基板処理装置のひとつとして、基板載置台上に載置された複数の基板に対し、同時に薄膜を形成することが可能な薄膜蒸着装置が知られている(例えば特許文献1参照)。
この薄膜蒸着装置は複数の処理領域に等分割された処理室を有し、それぞれの領域に異なるガス種を供給している。複数の基板が、基板処理装置内で複数に分割された処理領域を通過することで、薄膜を形成している。
特表2008−524842号公報
しかしながら、このような従来の基板処理装置では、基板支持台(サセプタ)の回転加速時に発生する遠心力等の影響でウエハが移動すると、ウエハと基板支持台の間に摩擦が発生する。それによって、例えば基板載置台に付着した膜が剥がれ、剥がれた膜がパーティクルとなってウエハ上に付着するという問題があった。付着したパーティクルは、膜の品質の低下につながる。本発明は、従来の問題点である、サセプタの回転時に発生する遠心力等によるウエハの移動に起因したパーティクルの発生を抑制することを可能とした基板処理装置及び半導体装置の製造方法を提供することを目的とする。
本発明の一態様によれば、
処理室内に不活性ガスと処理ガスを供給するガス供給部と、複数の基板が同一円周状に配置される基板載置部と、前記基板載置部が設けられた基板支持台と、前記基板支持台を回転させる回転制御部と、前記基板支持台の回転速度が一定である間、前記処理室の圧力を所定の第一の圧力とし、前記基板支持台の回転速度が変化する間、前記処理室の圧力を前記第一の圧力より高い第二の圧力とするよう制御する制御部と、を有する基板処理装置が提供される。
また、本発明の他の態様によれば、
処理室内に設けられた基板支持台表面に同一円周状に配置された複数の基板載置部に基板を載置する基板載置工程と、前記処理室内に不活性ガスを供給した状態で、回転速度を変化させながら前記基板支持台を回転させる初期回転工程と、前記初期回転工程を所定の時間実施した後、前記初期回転工程よりも低い圧力とした状態で、前記処理室内に前記不活性ガス及び処理ガスを供給しつつ前記基板支持台を回転させ、基板を処理する基板処理工程と、 前記基板処理工程の後、前記処理室から基板を搬出する工程と、を有する半導体装置の製造方法が提供される。
本発明によれば、サセプタの回転時に発生する遠心力等によるウエハの移動に起因したパーティクルの発生を抑制する基板処理装置及び半導体装置の製造方法を提供することができる。
本発明の一実施形態に係るクラスタ型の基板処理装置の横断面概略図である。 本発明の一実施形態に係る反応容器の概略斜視図である。 本発明の一実施形態に係る処理炉の横断面概略図である。 本発明の一実施形態に係る処理炉の縦断面概略図であり、図3に示す処理炉のA−A’線断面図である。 本発明の一第1実施形態に係る基板処理工程を示すフロー図である。 本発明の第1実施形態に係る基板処理工程における成膜工程での基板への処理を示すフロー図である。 本発明の第1及び第2実施形態の圧力の推移を表す図である。
以下に、本発明の一実施形態について、図面を参照しながら説明する。
(1)基板処理装置の構成
図1は、本実施形態にかかるクラスタ型の基板処理装置の横断面図である。なお、本発明が適用される基板処理装置では、半導体基板としての基板(ウエハ)200を搬送するキャリヤとして、FOUP(Front Opening Unified Pod:以下、ポッドという。)が使用されている。本実施形態にかかるクラスタ型の基板処理装置の搬送装置は、真空側と大気側とに分かれている。本明細書中における「真空」とは工業的真空を意味する。なお、説明の便宜上、図1の真空搬送室103から大気搬送室121へ向かう方向を前側と呼ぶ。
(真空側の構成)
クラスタ型の基板処理装置100は、その内部を真空状態などの大気圧未満の圧力(例えば100Pa)に減圧可能なロードロックチャンバ構造に構成された第1搬送室としての真空搬送室103を備えている。真空搬送室103の筐体101は、平面視が例えば六角形で、上下両端が閉塞した箱形状に形成されている。
真空搬送室103の筐体101を構成する六枚の側壁のうち、前側に位置する二枚の側壁には、ゲートバルブ126,ゲートバルブ127を介して,ロードロック室122,ロードロック室123が真空搬送室103と連通可能にそれぞれ設けられている。
真空搬送室103の他の四枚の側壁のうち、二枚の側壁には、ゲートバルブ244a,ゲートバルブ244bを介して、プロセスチャンバ202a,プロセスチャンバ202bが真空搬送室103と連通可能にそれぞれ設けられている。プロセスチャンバ202a,プロセスチャンバ202bは、後述する処理ガス供給部、不活性ガス供給部、排気部等が設けられている。プロセスチャンバ202a,プロセスチャンバ202bは、後述するように、1つの反応容器内に複数の処理領域及び処理領域と同数のパージ領域が交互に配列されている。そして、反応容器203内に設けられる基板支持部としてのサセプタ(基板支持台、回転トレーともいう)217を回転させて、基板である基板200が処理領域及びパージ領域を交互に通過するように構成されている。このような構成とすることで、基板200に処理ガス及び不活性ガスが交互に供給され、次のような基板処理が為される。具体的には、基板200上へ薄膜を形成する処理や、基板200表面を酸化、窒化、炭化等する処理や、基板200表面をエッチングする処理等の各種基板処理が為される。
真空搬送室103の残りの二枚の側壁には、ゲートバルブ244c,ゲートバルブ244dを介して、冷却室202c,冷却室202dが真空搬送室103と連通可能にそれぞれ設けられている。
真空搬送室103内には、第1搬送機構としての真空搬送ロボット112が設けられている。真空搬送ロボット112は、ロードロック室122,ロードロック室123と、プロセスチャンバ202a,プロセスチャンバ202bと、冷却室202c,冷却室202dとの間で、例えば2枚の基板200(図1中、点線で示す)を同時に搬送可能に構成されている。真空搬送ロボット112は、エレベータ115によって、真空搬送室103の気密性を維持しつつ昇降可能に構成されている。また、ロードロック室122,ロードロック室123のゲートバルブ126,ゲートバルブ127、プロセスチャンバ202a,プロセスチャンバ202bのゲートバルブ244a,ゲートバルブ244b、冷却室202c,冷却室202dのゲートバルブ244c,ゲートバルブ244dのそれぞれの近傍には、基板200の有無を検知する図示しない基板検知センサが設けられている。基板検知センサを基板検知部とも呼ぶ。
ロードロック室122,ロードロック室123は、内部が真空状態などの大気圧未満の圧力(減圧)に減圧可能なロードロックチャンバ構造に構成されている。即ち、ロードロック室の前側には、ゲートバルブ128,ゲートバルブ129を介して、後述する第2搬送室としての大気搬送室121が設けられている。このため、ゲートバルブ126からゲートバルブ129を閉じてロードロック室122,ロードロック室123内部を真空排気した後、ゲートバルブ126,ゲートバルブ127を開けることで、真空搬送室103の真空状態を保持しつつ、ロードロック室122,ロードロック室123と真空搬送室103との間で基板200を搬送可能にしている。また、ロードロック室122,ロードロック室123は、真空搬送室103内へ搬入する基板200を一時的に収納する予備室として機能する。この際、ロードロック室122内では基板載置部140上に、ロードロック室123内では基板載置部141上にそれぞれ基板200が載置されるように構成されている。
(大気側の構成)
基板処理装置100の大気側には、略大気圧下で用いられる、第2搬送室としての大気搬送室121が設けられている。即ち、ロードロック室122,ロードロック室123の前側(真空搬送室103と異なる側)には、ゲートバルブ128,ゲートバルブ129を介して、大気搬送室121が設けられている。なお、大気搬送室121は、ロードロック室122,ロードロック室123と連通可能に設けられている。
大気搬送室121には、基板200を移載する第2搬送機構としての大気搬送ロボット124が設けられている。大気搬送ロボット124は、大気搬送室121に設けられた図示しないエレベータによって昇降されるように構成されているとともに、図示しないリニアアクチュエータによって左右方向に往復移動されるように構成されている。また、大気搬送室121のゲートバルブ128,ゲートバルブ129の近傍には、基板200の有無を検知する図示しない基板検知センサが設けられている。基板検知センサを基板検知部とも呼ぶ。
また、大気搬送室121内には、基板200の位置補正装置として、ノッチ合わせ装置106が設けられている。ノッチ合わせ装置106は、基板200の結晶方向や位置合わせ等を基板200のノッチで把握し、その把握した情報を元に基板200の位置を補正する。なお、ノッチ合わせ装置106の代わりに、図示しないオリフラ(Orientation Flat)合わせ装置が設けられてもよい。そして、大気搬送室121の上部には、クリーンエアを供給する図示しないクリーンユニットが設けられている。
大気搬送室121の筐体125の前側には、基板200を大気搬送室121内外に搬送する基板搬送口134と、ポッドオープナ108とが設けられている。基板搬送口134を挟んで、ポッドオープナ108と反対側、即ち筐体125の外側にはロードポート(I/Oステージ)105が設けられている。ロードポート105上には、複数枚の基板200を収納するポッド109が載置されている。また、大気搬送室121内には、基板搬送口134を開閉する蓋(不図示)や、ポッド109のキャップ等を開閉させる開閉機構(不図示)と、開閉機構を駆動する開閉機構駆動部(不図示)とが設けられている。ポッドオープナ108は、ロードポート105に載置されたポッド109のキャップを開閉することにより、ポッド109に対する基板200の出し入れを可能にする。また、ポッド109は図示しない搬送装置(例えばRGV:Rail Guided Vehicle)によって、ロードポート105に対して、搬入(供給)および搬出(排出)されるようになっている。
主に、真空搬送室103、ロードロック室122,ロードロック室123、大気搬送室121、及びゲートバルブ126からゲートバルブ129により、本実施形態に係る基板処理装置100の搬送装置が構成される。
また、基板処理装置100の搬送装置の構成各部には、後述する制御部(コントローラ)221が電気的に接続されている。そして、上述した構成各部の動作を、それぞれ制御するように構成されている。
(基板搬送動作)
次に、本実施形態に係る基板処理装置100内における基板200の搬送動作を説明する。なお、基板処理装置100の搬送装置の構成各部の動作は、制御部221によって制御される。
まず、例えば25枚の未処理の基板200を収納したポッド109が、図示しない搬送装置によって基板処理装置100に搬入される。搬入されたポッド109は、ロードポート105上に載置される。開閉機構は、蓋及びポッド109のキャップを取り外し、基板搬送口134及びポッド109の基板出入口を開放する。
ポッド109の基板出入口を開放すると、大気搬送室121内に設置されている大気搬送ロボット124は、ポッド109から基板200を1枚ピックアップして、ノッチ合わせ装置106上へ載置する。
ノッチ合わせ装置106は、載置された基板200を、水平の縦横方向(X方向,Y方向)及び円周方向に動かして、基板200のノッチ位置等を調整する。ノッチ合わせ装置106で1枚目の基板200の位置を調整中に、大気搬送ロボット124は、2枚目の基板200をポッド109からピックアップして大気搬送室121内に搬入し、大気搬送室121内で待機する。
ノッチ合わせ装置106により1枚目の基板200の位置調整が終了した後、大気搬送ロボット124は、ノッチ合わせ装置106上の1枚目の基板200をピックアップする。大気搬送ロボット124は、そのとき大気搬送ロボット124が保持している2枚目の基板200を、ノッチ合わせ装置106上へ載置する。その後、ノッチ合わせ装置106は、載置された2枚目の基板200のノッチ位置等を調整する。
次に、ゲートバルブ128が開けられ、大気搬送ロボット124は、1枚目の基板200をロードロック室122内に搬入し、基板載置部140上に載置する。この移載作業中には、真空搬送室103側のゲートバルブ126は閉じられており、真空搬送室103内の減圧雰囲気は維持されている。1枚目の基板200の基板載置部140上への移載が完了すると、ゲートバルブ128が閉じられ、ロードロック室122内が図示しない排気装置によって負圧になるよう排気される。
以降、大気搬送ロボット124は、上述の動作を繰り返す。但し、ロードロック室122が負圧状態の場合、大気搬送ロボット124は、ロードロック室122内への基板200の搬入を実行せず、ロードロック室122の直前位置で停止して待機する。
ロードロック室122内が予め設定された圧力値(例えば100Pa)に減圧されると、ゲートバルブ126が開けられて、ロードロック室122と真空搬送室103とが連通される。続いて、真空搬送室103内に配置された真空搬送ロボット112は、基板載置部140から1枚目の基板200をピックアップして、真空搬送室103内に搬入する。
真空搬送ロボット112が基板載置部140から1枚目の基板200をピックアップした後、ゲートバルブ126が閉じられ、ロードロック室122内が大気圧に復帰させられ、ロードロック室122内に次の基板200を搬入するための準備が行われる。それと並行して、所定の圧力(例えば100Pa)にあるプロセスチャンバ202aのゲートバルブ244aが開けられ、真空搬送ロボット112が1枚目の基板200をプロセスチャンバ202a内に搬入する。この動作をプロセスチャンバ202a内に基板200が任意の枚数(例えば5枚)搬入されるまで繰り返す。プロセスチャンバ202a内への任意の枚数(例えば5枚)の基板200の搬入が完了したら、ゲートバルブ244aが閉じられる。そして、プロセスチャンバ202a内に後述するガス供給部から処理ガスが供給され、基板200に所定の処理が施される。
プロセスチャンバ202aにおいて所定の処理が終了し、後述するようにプロセスチャンバ202a内で基板200の冷却が終了すると、ゲートバルブ244aが開けられる。その後、真空搬送ロボット112によって、処理済の基板200がプロセスチャンバ202a内から真空搬送室103へ搬出される。搬出された後、ゲートバルブ244aが閉じられる。
続いて、ゲートバルブ127が開けられ、プロセスチャンバ202aから搬出した基板200は、ロードロック室123内へ搬入されて、基板載置部141上に載置される。なお、ロードロック室123は、図示しない排気装置によって、予め設定された圧力値に減圧されている。そして、ゲートバルブ127が閉じられ、ロードロック室123に接続された図示しない不活性ガス供給部から不活性ガスが導入され、ロードロック室123内の圧力が大気圧に復帰させられる。
ロードロック室123内の圧力が大気圧に復帰させられると、ゲートバルブ129が開けられる。続いて、大気搬送ロボット124が基板載置部141上から処理済みの基板200をピックアップして大気搬送室121内に搬出した後、ゲートバルブ129が閉じられる。その後、大気搬送ロボット124は、大気搬送室121の基板搬送口134を通して、処理済の基板200をポッド109に収納する。ここで、ポッド109のキャップは、最大25枚の基板200が戻されるまでずっと開け続けていてもよく、空きのポッド109に収納せずに基板を搬出してきたポッド109に戻してもよい。
前述の工程によってポッド109内の全ての基板200に所定の処理が施され、処理済みの25枚の基板200のすべてが所定のポッド109へ収納されると、ポッド109のキャップと、基板搬送口134の蓋135とが開閉機構143によって閉じられる。その後、ポッド109は、ロードポート105上から次の工程へ、図示しない搬送装置によって搬送される。以上の動作が繰り返されることにより、基板200が25枚ずつ順次処理される。
(2)プロセスチャンバの構成
続いて、本実施形態に係る処理炉としてのプロセスチャンバ202aの構成について、主に図2から図4を用いて説明する。図2は、本実施形態に係る反応容器の概略斜視図である。図3は、本実施形態に係る処理炉の横断面概略図である。図4は、本実施形態に係る処理炉の縦断面概略図であり、図3に示す処理炉のA−A’線断面図である。なお、プロセスチャンバ202bについては、プロセスチャンバ202aと同様に構成されているため、説明を省略する。
(反応容器)
図2から図4に示すように、処理炉としてのプロセスチャンバ202aは、円筒状の気密容器である反応容器203を備えている。反応容器203内には、基板200の処理空間が形成されている。反応容器203内の処理空間の上側には、中心部から放射状に延びる4枚の仕切板205が設けられている。
4枚の仕切板(分割構造体)205は、反応容器203内の処理空間を、第1の処理領域201a、第1のパージ領域204a、第2の処理領域201b、第2のパージ領域204bに仕切る(分割する)ように構成されている。即ち、4枚の仕切板205はそれぞれ、反応容器203内を第1の処理領域201aと、第1のパージ領域204aと、第2の処理領域201bと、第2のパージ領域204bとに分割する分割構造体として用いられる。好適には、処理空間は2つ以上の処理領域に分割するように2つ以上の分割構造体が構成されると良い。なお、第一の処理領域201a、第2の処理領域201bを処理ガス供給領域とも表現し、第1のパージ領域204a、第2のパージ領域204bを不活性ガス供給領域とも表現する。
なお、第1の処理領域201a、第1のパージ領域204a、第2の処理領域201b、第2のパージ領域204bは、後述するサセプタ217の回転方向に沿って、この順番に配列するように、即ち処理領域とパージ領域とが交互に配列されるように構成されている。換言すれば、隣り合う分割構造体の間に、ガス供給領域である第1の処理領域201a、第1のパージ領域204a、第2の処理領域201b、第2のパージ領域204bが配される。
後述するように、サセプタ217を回転させることで、サセプタ217上に載置された基板200は、第1の処理領域201a、第1のパージ領域204a、第2の処理領域201b、第2のパージ領域204bの順に移動することとなる。また、後述するように、第1の処理領域201a内には第1のガスとしての第1の処理ガスが供給され、第2の処理領域201b内には第2のガスとしての第2の処理ガスが供給され、第1のパージ領域204a内及び第2のパージ領域204b内には、不活性ガスが供給されるように構成されている。そのため、サセプタ217を回転させることで、基板200上には、第1の処理ガス、不活性ガス、第2の処理ガス、不活性ガスがこの順に供給されることとなる。サセプタ217及びガス供給系の構成については後述する。
仕切板205の端部と反応容器203の側壁との間には、所定の幅の隙間が設けられており、この隙間をガスが通過できるように構成されている。この隙間を介し、第1のパージ領域204a内及び第2のパージ領域204b内から第1の処理領域201a内及び第2の処理領域201b内に向けて不活性ガスを噴出させるようにする。このようにすることで、第1のパージ領域204a内及び第2のパージ領域204b内への処理ガスの侵入を抑制することができ、処理ガスの反応や、その反応による異物の生成を抑制する。
(サセプタ)
図2から図4に示すように、仕切板205の下側、即ち反応容器203内の底側中央には、反応容器203の中心に回転軸の中心を有し、所望の角速度で回転するように構成されたサセプタ217が設けられている。サセプタ217を基板支持部とも呼ぶ。サセプタ217は、基板200の金属汚染を低減することができるように、例えば、窒化アルミニウム(AlN)、セラミックス、石英等の非金属材料で形成されている。なお、サセプタ217は、反応容器203とは電気的に絶縁されている。
サセプタ217は、反応容器203内にて、複数枚(本実施形態では例えば5枚)の基板200を同一面上に、かつ基板の中心が同一円周上に並べて支持するように構成されている。ここで、同一面上とは、完全な同一面に限られるものではない。例えば、サセプタ217を上面から見たときに、図2及び図3に示すように、複数枚の基板200が互いに重ならないように並べられていればよい。
なお、サセプタ217表面における基板200の支持位置には、同一円周状に配置され、円形状かつザグリ形状である複数の基板載置部217bを設けておく。この基板載置部217bは、その直径が基板200の直径よりもわずかに大きくなるように構成されている。この基板載置部217b内に基板200を載置することにより、基板200の位置決めを容易に行うことができる。また、サセプタが回転する際、基板200に遠心力が発生するが、基板200を基板載置部217b内に載置することで、遠心力による基板200の位置ずれがわずかながら発生してしまう。サセプタ217が回転すると、基板200にはサセプタ217の中心から見て外側方向に遠心力が生じ、基板200は基板載置部217b内を外方向にずれることとなり、基板200と基板載置部217bの底面との間及び基板200の周縁部と基板載置部217bの内側面が接触することによりパーティクルが発生してしまう。
図4に示すように、サセプタ217には、サセプタ217を昇降させる昇降機構268が設けられている。サセプタ217には、基板載置部217b内に貫通孔217aが複数設けられている。上述の反応容器203の底面には、基板突き上げピン266が複数設けられている。基板突き上げピン266は、反応容器203内への基板200の搬入・搬出時に、基板200を突き上げて、基板200の裏面を支持する。貫通孔217a及び基板突き上げピン266は、基板突き上げピン266が上昇させられた時、又は昇降機構268によりサセプタ217が下降させられた時に、基板突き上げピン266がサセプタ217とは非接触な状態で基板載置部217b及び貫通孔217aを突き抜けるように、互いに配置されている。
昇降機構268には、サセプタ217を回転させる回転機構267が設けられている。回転機構267の図示しない回転軸は、サセプタ217に接続されており、回転機構267を作動させることでサセプタ217を回転させることができるように構成されている。回転機構267には、後述する制御部221が、カップリング部267aを介して接続されている。カップリング部267aは、回転側と固定側との間を金属ブラシ等により電気的に接続するスリップリング機構として構成されている。これにより、サセプタ217の回転が妨げられないようになっている。制御部221は、サセプタ217を所定の速度で所定時間回転させるように、回転機構267への通電具合を制御するように構成されている。上述したように、サセプタ217を回転させることにより、サセプタ217上の基板載置部217bに載置された基板200は、第1の処理領域201a、第1のパージ領域204a、第2の処理領域201b及び第2のパージ領域204bをこの順番に移動することとなる。
(加熱部)
サセプタ217の内部には、加熱部としてのヒータ218が一体的に埋め込まれており、基板200を加熱できるように構成されている。ヒータ218に電力が供給されると、基板200表面が所定温度(例えば室温〜1000℃程度)にまで加熱されるようになっている。なお、ヒータ218は、サセプタ217に載置されたそれぞれの基板200を個別に加熱するように、同一面上に複数(例えば5つ)設けてもよい。
サセプタ217には温度センサ274が設けられている。ヒータ218及び温度センサ274には、電力供給線222を介して、温度調整器223、電力調整器224及びヒータ電源225が電気的に接続されている。温度センサ274により検出された温度情報に基づいて、ヒータ218への通電具合が制御されるように構成されている。
(ガス供給部)
反応容器203の上側には、第1の処理ガス導入機構251と、第2の処理ガス導入機構252と、不活性ガス導入機構253と、を備えるガス供給機構250が設けられている。ガス供給機構250は、反応容器203の上側に開設された開口に気密に設けられている。第1の処理ガス導入機構251の側壁には、第1のガス噴出口254が設けられている。第2の処理ガス導入機構252の側壁には、第2のガス噴出口255が設けられている。不活性ガス導入機構253の側壁には、第1の不活性ガス噴出口256及び第2の不活性ガス噴出口257がそれぞれ対向するように設けられている。ガス供給機構250は、第1の処理ガス導入機構251から第1の処理領域201a内に第1の処理ガスを供給し、第2の処理ガス導入機構252から第2の処理領域201b内に第2の処理ガスを供給し、不活性ガス導入機構253から第1のパージ領域204a内及び第2のパージ領域204b内に不活性ガスを供給するように構成されている。ガス供給機構250は、各処理ガス及び不活性ガスを混合させずに個別に供給することができる。また、ガス供給機構250は、各処理ガス及び不活性ガスを併行して供給することができるように構成されている。
(処理ガス供給部)
第1の処理ガス導入機構251の上流側には、第1のガス供給管232aが接続されている。第1のガス供給管232aの上流側には、上流方向から順に、原料ガス供給源233a、流量制御器(流量制御部)であるマスフローコントローラ(MFC)234a、及び開閉弁であるバルブ235aが設けられている。
第1のガス供給管232aからは、第1のガス(第1の処理ガス)として、例えば、シリコン含有ガスが、マスフローコントローラ234a、バルブ235a、第1のガス導入部251及び第1のガス噴出口254を介して、第1の処理領域201a内に供給される。シリコン含有ガスとしては、例えばトリシリルアミン((SiHN、略称:TSA)ガスを用いることができる。なお、第1の処理ガスは、常温常圧で固体、液体、及び気体のいずれであっても良いが、ここでは気体として説明する。第1の処理ガスが常温常圧で液体の場合は、原料ガス供給源233aとマスフローコントローラ234aとの間に、図示しない気化器を設ければよい。

なお、シリコン含有ガスとしては、TSAの他に、例えば有機シリコン材料であるヘキサメチルジシラザン(C19NSi、略称:HMDS)、トリスジメチルアミノシラン(Si[N(CH3)2]3H、略称:3DMAS)、ビスターシャリブチルアミノシラン(SiH(NH(C))、略称:BTBAS)等を用いることができる。
第2の処理ガス導入機構252の上流側には、第2のガス供給管232bが接続されている。第2のガス供給管232bの上流側には、上流方向から順に、原料ガス供給源233b、流量制御器(流量制御部)であるマスフローコントローラ(MFC)234b、及び開閉弁であるバルブ235bが設けられている。
第2のガス供給管232bからは、第2のガス(第2の処理ガス)として、例えば酸素含有ガスである酸素(O)ガスが、マスフローコントローラ234b、バルブ235b、第2の処理ガス導入機構252及び第2のガス噴出口255を介して、第2の処理領域201b内に供給される。第2の処理ガスである酸素ガスは、後述のプラズマ生成部206によりプラズマ状態とされ、基板200に供給される。なお、第2の処理ガスである酸素ガスは、ヒータ218の温度及び反応容器203内の圧力を所定の範囲に調整し、熱で活性化させてもよい。なお、酸素含有ガスとしては、オゾン(O)ガスや水蒸気(HO)を用いてもよい。
主に、第1の処理ガス導入機構251、第1のガス供給管232a、マスフローコントローラ234a及びバルブ235aにより、第1の処理ガス供給部(シリコン含有ガス供給系ともいう)が構成される。なお、原料ガス供給源233a、第1の処理ガス導入機構251、第1のガス噴出口254を、第1の処理ガス供給部に含めて考えてもよい。また、主に、第2の処理ガス導入機構252、第2のガス供給管232b、マスフローコントローラ234b及びバルブ235bにより、第2の処理ガス供給部(酸素含有ガス供給系ともいう)が構成される。なお、原料ガス供給源233b、第2の処理ガス導入機構252、第2のガス噴出口255を、第2の処理ガス供給部に含めて考えてもよい。そして、主に、第1のガス供給系及び第2のガス供給系により、処理ガス供給部が構成される。
第1の処理ガス供給部と第2の処理ガス供給部を合わせて処理ガス供給部とも表現する。
(不活性ガス供給部)
不活性ガス導入機構253の上流側には、第1の不活性ガス供給管232cが接続されている。第1の不活性ガス供給管232cの上流側には、上流方向から順に、不活性ガス供給源233c、流量制御器(流量制御部)であるマスフローコントローラ(MFC)234c、及び開閉弁であるバルブ235cが設けられている。
第1の不活性ガス供給管232cからは、不活性ガスとして、例えば窒素(N)ガスが、マスフローコントローラ234c、バルブ235c、不活性ガス導入機構253、第1の不活性ガス噴出口256及び第2の不活性ガス噴出口257を介して、第1のパージ領域204a内及び第2のパージ領域204b内にそれぞれ供給される。第1のパージ領域204a内及び第2のパージ領域204b内に供給される不活性ガスは、後述する成膜工程(S106)ではパージガスとして作用する。なお、不活性ガスとしては、Nガスのほか、例えばHeガス、Neガス、Arガス等の希ガスを用いることができる。
第1のガス供給管232aのバルブ235aよりも下流側には、第2の不活性ガス供給管232dの下流端が接続されている。第2の不活性ガス供給管232dの上流端は、第1の不活性ガス供給部のマスフローコントローラ234cとバルブ235cとの間に接続されている。第2の不活性ガス供給管232dには、開閉弁であるバルブ235dが設けられている。
また、第2のガス供給管232bのバルブ235bよりも下流側には、第3の不活性ガス供給管232eの下流端が接続されている。第3の不活性ガス供給管232eの上流端は、第1の不活性ガス供給部のマスフローコントローラ234cとバルブ235cとの間に接続されている。第3の不活性ガス供給管232eには、開閉弁であるバルブ235eが設けられている。
第3の不活性ガス供給管232eからは、不活性ガスとして、例えばNガスが、マスフローコントローラ234c、バルブ235e、第2のガス供給管232b、第2の処理ガス導入機構252及び第2のガス噴出口255を介して、第2の処理領域201b内に供給される。第2の処理領域201b内に供給される不活性ガスは、第1の処理領域201a内に供給される不活性ガスと同様に、成膜工程(S106)ではキャリアガス或いは希釈ガスとして作用する。
主に、第1の不活性ガス供給管232c、マスフローコントローラ234c及びバルブ235cにより第1の不活性ガス供給部が構成される。なお、不活性ガス供給源233c、不活性ガス導入機構253、第1の不活性ガス噴出口256、第2の不活性ガス噴出口257を、第1の不活性ガス供給部に含めて考えてもよい。また、主に、第2の不活性ガス供給管232d及びバルブ235dにより第2の不活性ガス供給部が構成される。なお、不活性ガス供給源233c、マスフローコントローラ234c、第1のガス供給管232a、第1のガス導入部251及び第1のガス噴出口254を、第2の不活性ガス供給部に含めて考えてもよい。また、主に、第3の不活性ガス供給管232e及びバルブ235eにより第3の不活性ガス供給部が構成される。なお、不活性ガス供給源233c、マスフローコントローラ234c、第2のガス供給管232b、第2の処理ガス導入機構252及び第2のガス噴出口255を、第3の不活性ガス供給部に含めて考えてもよい。そして、主に、第1の不活性ガス供給部、第2の不活性ガス供給部、第3の不活性ガス供給部により、不活性ガス供給部が構成される。
(プラズマ生成部)
図3に示すように、第2の処理領域201aの上方には、供給された処理ガスをプラズマ状態とするプラズマ生成部206が設けられている。プラズマ状態とすることで、低温で基板200の処理を行うことができる。プラズマ生成部206は、例えば、少なくとも一対の対向する電極を備えている。該電極には、絶縁トランスが電気的に接続されている。高周波電源の出力する交流電力が、整合器を介して電極に供給されると、電極の周辺にプラズマが生成されるように構成されている。
電極は、サセプタ217に支持された基板200の処理面から5mm以上25mm以下の高さ位置に、基板200の処理面と対向するように配置することが好ましい。このように、電極を基板200の処理面の極近傍に設けると、活性化させた処理ガスが基板200に到達する前に失活してしまうことを抑制できる。
(排気部)
図4に示すように、反応容器203には、処理領域201a,201b内及びパージ領域204a,204b内の雰囲気を排気する排気管231が設けられている。排気管231には、反応容器203内(処理領域201a,201b内及びパージ領域204a,204b内)の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245、及び圧力調整器(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ243を介して、真空排気装置としての真空ポンプ246が接続されており、反応容器203内の圧力が所定の圧力(真空度)となるよう真空排気し得るように構成されている。なお、APCバルブ243は、弁を開閉して反応容器203内の真空排気・真空排気停止ができ、更に弁開度を調節して圧力調整可能となっている開閉弁である。主に、排気管231、APCバルブ243、及び圧力センサ245により排気部が構成される。なお、真空ポンプ246を排気部に含めて考えてもよい。
(制御部)
制御部(制御手段)であるコントローラ221は、以上説明した各構成の制御を行うものである。
なお、コントローラ221は、専用のコンピュータとして構成されている場合に限らず、汎用のコンピュータとして構成されていてもよい。例えば、上述のプログラムを格納した外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MO等の光磁気ディスク、USBメモリやメモリカード等の半導体メモリ)を用意し、係る外部記憶装置を用いて汎用のコンピュータにプログラムをインストールすること等により、本実施形態に係るコントローラ221を構成することができる。なお、コンピュータにプログラムを供給するための手段は、外部記憶装置を介して供給する場合に限らない。例えば、インターネットや専用回線等の通信手段を用い、外部記憶装置を介さずにプログラムを供給するようにしてもよい。なお、記憶装置や外部記憶装置は、コンピュータ読み取り可能な記録媒体として構成される。以下、これらを総称して、単に記録媒体ともいう。なお、本明細書において記録媒体という言葉を用いた場合は、記憶装置単体のみを含む場合、外部記憶装置単体のみを含む場合、または、その両方を含む場合がある。
(3)基板処理工程
続いて、第1実施形態にかかる半導体製造工程の一工程として、上述した反応容器203を備えるプロセスチャンバ202bを用いて実施される基板処理工程について、図5及び図6を用いて説明する。図5は、第1実施形態に係る基板処理工程を示すフロー図であり、図6は、第1実施形態に係る基板処理工程における成膜工程での基板への処理を示すフロー図である。なお、以下の説明において、基板処理装置10のプロセスチャンバ202の構成各部の動作は、コントローラ221により制御される。

ここでは、第一のガスとして、シリコン含有ガスであるトリシリルアミン(TSA)を用い、第二の処理ガスとして、酸素含有ガスである酸素ガスを用い、基板200上に絶縁膜として酸化シリコン膜(SiO膜、以下、単にSiO膜ともいう)を形成する例について説明する。
(基板搬入・載置工程(S102))
まず、基板200の搬送位置まで基板突き上げピン266を上昇させ、サセプタ217の貫通孔217a及び基板載置部217bに基板突き上げピン266を貫通させる。その結果、基板突き上げピン266が、サセプタ217表面よりも所定の高さ分だけ突出した状態となる。続いて、ゲートバルブ244aを開き、第一の基板移載機112を用いて、反応容器203内に所定枚数(例えば5枚)の基板200(処理基板)を搬入する。そして、サセプタ217の図示しない回転軸を中心として、各基板200が重ならないように、サセプタ217の同一面上に載置する。これにより、基板200は、サセプタ217の表面から突出した基板突き上げピン266上に水平姿勢で支持される。
反応容器203内に基板200を搬入したら、第一の基板移載機112を反応容器203外へ退避させ、ゲートバルブ244aを閉じて反応容器203内を密閉する。その後、基板突き上げピン266を下降させて、第1の処理領域201a、第1のパージ領域204a、第2の処理領域201b、第2のパージ領域204bの各底面のサセプタ217に設けられた載置部217b上にそれぞれ基板200を載置する。
なお、基板200を反応容器203内に搬入する際には、排気部により反応容器203内を排気しつつ、不活性ガス供給部から反応容器203内にパージガスとしてのNガスを供給することが好ましい。即ち、真空ポンプ246を作動させ、APCバルブ243を開けることにより、反応容器203内を排気しつつ、少なくとも第一の不活性ガス供給部のバルブ235cを開けることにより、反応容器203内にNガスを供給することが好ましい。これにより、処理領域201内へのパーティクルの侵入や、基板200上へのパーティクルの付着を抑制することが可能となる。ここで、さらに第二の不活性ガス供給部及び第三の不活性ガス供給部から不活性ガスを供給してもよい。なお、真空ポンプ246は、少なくとも基板搬入・載置工程(S102)から後述する基板搬出工程(S112)が終了するまでの間は、常に作動させた状態とする。
(昇温・圧力調整工程(S104))
続いて、サセプタ217の内部に埋め込まれたヒータ218に電力を供給し、基板200の表面が所定の温度(例えば200℃以上であって400℃以下)となるように加熱する。この際、ヒータ218の温度は、温度センサ274により検出された温度情報に基づいてヒータ218への通電具合を制御することによって調整される。
なお、シリコンで構成される基板200の加熱処理では、表面温度を750℃以上にまで加熱すると、基板200の表面に形成されたソース領域やドレイン領域等に不純物の拡散が生じ、回路特性が劣化し、半導体デバイスの性能が低下してしまう場合がある。基板200の温度を上述のように制限することにより、基板200の表面に形成されたソース領域やドレイン領域における不純物の拡散、回路特性の劣化、半導体デバイスの性能の低下を抑制できる。
また、基板200を加熱しつつ、回転機構267を作動して、サセプタ217の回転を開始させる。この際、サセプタ217の回転速度はコントローラ221によって制御される。サセプタ217を回転させることにより、基板200は、第1の処理領域201a、第1のパージ領域204a、第2の処理領域201b、第2のパージ領域204bの順に移動を開始し、各領域を基板200が通過する。サセプタ217の回転開始時は、回転速度が徐々に上昇し、回転停止時には回転速度は徐々に下降する。回転開始時は、例えば0〜60rpmの間をリニアに上昇させる。これを30秒から1分間程度継続する。このサセプタ217の回転を開始する開始時及び回転が停止する際を含め回転速度が変化する間とも表現する。また、後述する基板処理を行う際のサセプタ217を回転速度が一定(安定)している間を回転速度が一定である間とも表現する。
回転速度が変化する間、サセプタ217の回転速度を上げつつ、反応容器203内の圧力を第一の圧力に上昇させていく。反応容器203内の圧力が上がることにより、基板200は基板載置部217bの底面に押し付けられ、遠心力による急加速を伴う基板200の位置移動が起きづらくなる。また、基板200が基板載置部217bを移動し、基板200と基板載置部200bの間の摩擦によってパーティクルが発生してしまった場合でも、パーティクルの飛散を抑えることが可能となる。
排気系のAPCバルブ243の調整による圧力の上昇を行う場合には、反応容器203内が所望の圧力(例えば0.1Pa〜300Pa、好ましくは20Pa〜40Pa)となるように、反応容器203内を真空ポンプ246によって真空排気する。この際、反応容器203内の圧力は図中省略の圧力センサで測定され、この測定された圧力情報に基づきAPCバルブ243の開度をフィードバック制御する。
また、不活性ガス(例えばN2ガス)の供給量を増加させて第一の圧力へ上昇させる場合には、第一のガス供給部のバルブ235aと第二のガス供給部のバルブ235bを閉じる。更に第一の不活性ガス供給部のバルブ235c、第二の不活性ガス供給部のバルブ235d、第三の不活性ガス供給部のバルブ235eを開にする。この状態で不活性ガスを反応容器203内に供給することにより、各領域を不活性ガス雰囲気とし、圧力が上昇される。
このとき、所定の時間(基板200が基板載置部217b内で遠心力により徐々に移動し、基板載置部217bの周縁部側面に接触するまでの時間)をかけて基板200が移動し、摩擦によるパーティクルの発生を抑制することが可能となる。さらに、基板載置部217bの周縁部側面が基板200を支持することで、サセプタ回転中の基板200の位置ズレや、基板載置部217bから基板200が飛び出すことを防ぐことが可能となる。
尚、基板200が基板載置部217b内で遠心力により徐々に移動し、基板載置部217bの周縁部側面に接触するまでの時間(所定の時間)の間を初期回転工程と呼ぶ。
(成膜工程(S106))
所定の時間(基板200が基板載置部217b内で遠心力により徐々に移動し、基板載置部217bの周縁部側面に接触するまでの時間)経過後、サセプタ217の回転速度を維持する。サセプタ217の回転速度が維持されたら、第一のガス供給部のバルブ235aと第二のガス供給部のバルブ235bを開とする。第一の不活性ガス供給部のバルブ235cは引き続き開とし、第二の不活性ガス供給部のバルブ235d、第三の不活性ガス供給部のバルブ235eは、ガスの種類に応じて開閉を制御する。具体的には、第一のガスが常温で液体となる原料ガスの場合は、バルブ235dを開とし、キャリアガスとしてN2ガスを使用する。第一のガスがそれ以外の場合は、第一のガスの希釈を防ぐためバルブ235dは閉とする。第二のガスの希釈を防ぐため、第三の不活性ガス供給部のバルブ235eは閉とする。この際、処理ガスの反応温度より基板温度が低いため、第一のガスと第二のガスは反応しない。
この成膜工程であるサセプタ217の回転速度が一定である間の反応容器203内の圧力は、サセプタ217の回転速度が上がっている(変化している)際の第一の圧力より低い第二の圧力とする。換言すると、サセプタ217の回転速度が一定(安定)である間、反応容器203の圧力を第一の圧力とし、サセプタ217の回転速度が一定である間は第一の圧力より低い第二の圧力とする。(図7参照)
以下、より詳細に説明する。第1の処理領域201a内に第一の処理ガスとしてのTSAガスを供給し、第2の処理領域201b内に第二の処理ガスとしての酸素ガスを供給して、基板200上にSiO膜を成膜する工程を例に、成膜工程を説明する。なお、以下の説明では、TSAガス、酸素ガス、不活性ガスを併行してそれぞれの領域に供給する。換言すれば、TSAガスの供給、酸素ガスの供給、不活性ガスの供給は、少なくとも基板に対する処理が完了する間は継続して行われる。
基板200を加熱して所望とする温度に達し、サセプタ217が所望とする回転速度に到達(所定の時間:基板200が基板載置部217b内で遠心力により徐々に移動し、基板載置部217bの周縁部側面に接触するまでの時間)したら、少なくともバルブ235a,バルブ235b及びバルブ235cを同時に開け、処理ガス及び不活性ガスの処理領域201及びパージ領域204への供給を開始する。
即ち、バルブ235aを開けて第1の処理領域201a内にTSAガスを供給し、バルブ235bを開けて第2の処理領域201b内に酸素ガスを供給することで、処理ガス供給部から処理ガスを供給する。さらにバルブ235cを開けて第1のパージ領域204a及び第2のパージ領域204b内に不活性ガスであるNガスを供給することで、不活性ガス供給部から不活性ガスを供給する。
第1の処理領域201aや第2の処理領域201bには、基板処理に影響する量の不活性ガスが混入しないよう、処理ガスの供給量を調整する。このようにすると、処理領域における基板処理において、不活性ガスが基板200に形成された膜と供給されたガスとの間の反応を邪魔することがないので、不活性ガスが処理領域に供給される場合と比べ、成膜速度を高くすることができる。
このとき、APCバルブ243を適正に調整して反応容器203内の圧力を、例えば10Pa〜1000Paの範囲内の圧力とする。このときヒータ218の温度は、基板200の温度が、例えば200℃〜400℃の範囲内の温度となるような温度に設定する。
圧力を調整する際、バルブ235aを開け、第一のガス供給管232aから第一のガス導入機構251及び第一のガス噴出口254を介して第1の処理領域201aにTSAガスを供給しつつ、排気管231から排気する。このとき、TSAガスの流量が所定の流量となるように、マスフローコントローラ232cを調整する。なお、マスフローコントローラ232cで制御するTSAガスの供給流量は、例えば100sccm〜5000sccmの範囲内の流量とする。
また、バルブ235bを開け、第二のガス供給管233aから第二のガス導入機構252及び第二のガス噴出口255を介して第2の処理領域201bに酸素ガスを供給しつつ、排気管231から排気する。このとき、酸素ガスの流量が所定の流量となるように、マスフローコントローラ233cを調整する。なお、マスフローコントローラ233cで制御する酸素ガスの供給流量は、例えば1000sccm〜10000sccmの範囲内の流量とする。
また、バルブ235a、バルブ235b、バルブ235cを開け、パージガスとしての不活性ガスであるNガスを、第一の不活性ガス供給管234aから不活性ガス導入機構253、第一の不活性ガス噴出口256及び第二の不活性ガス噴出口257を介して第1のパージ領域204a及び第2のパージ領域204bにそれぞれ供給しつつ排気する。このとき、Nガスの流量が所定の流量となるように、マスフローコントローラ234cを調整する。なお、仕切板205の端部と反応容器203の側壁との隙間を介し、第1のパージ領域204a内及び第2のパージ領域204b内から第1の処理領域201a内及び第2の処理領域201b内に向けて不活性ガスを噴出させることで、第1のパージ領域204a内及び第2のパージ領域204b内への処理ガスの侵入を抑制することができる。
ガスの供給開始と共に、第2の処理領域201bの上方に設けられたプラズマ生成部206に高周波電源209から高周波電力を供給する。第2の処理領域201b内に供給され、プラズマ生成部206の下方を通過した酸素ガスは、第2の処理領域201b内でプラズマ状態となり、これに含まれる活性種が基板200に供給される。
酸素ガスは反応温度が高く、上述のような基板200の処理温度、反応容器203内の圧力では反応しづらいが、第1実施形態のように酸素ガスをプラズマ状態とし、これに含まれる活性種を供給するようにすると、例えば400℃以下の温度帯でも成膜処理を行うことができる。なお、第一の処理ガスと第二の処理ガスとで要求する処理温度が異なる場合、処理温度が低い方の処理ガスの温度に合わせてヒータ218を制御し、処理温度を高くする必要のある他方の処理ガスを、プラズマ状態として供給するとよい。このようにプラズマを利用することにより基板200を低温で処理することができ、例えばアルミニウム等の熱に弱い配線等を有する基板200に対する熱ダメージを抑制することが可能となる。また、処理ガスの不完全反応による生成物等の異物の発生を抑制することができ、基板200上に形成する薄膜の均質性や耐電圧特性等を向上させることができる。また、プラズマ状態とした酸素ガスの高い酸化力によって、酸化処理時間を短縮することができる等、基板処理の生産性を向上させることができる。
上述したように、サセプタ217を回転させることにより、基板200は、第1の処理領域201a、第1のパージ領域204a、第2の処理領域201b、第2のパージ領域204bの順に移動を繰り返す。
各領域を通過する際、基板200には、TSAガスの供給、Nガスの供給(パージ)、プラズマ状態とされた酸素ガスの供給、N2ガスの供給(パージ)が交互に所定回数実施されることになる。ここで、成膜処理シーケンスの詳細について、図6を用いて説明する。
(第一の処理ガス領域通過(S202))
まず、第1の処理領域201aを通過した基板200表面及びサセプタ217の基板が載置されていない部分にTSAガスが供給され、基板200上にシリコン含有層が形成される。
第1の処理領域201aには、第一の処理ガス導入機構251から第一のガス噴出口254を通して、水平方向にガスが噴出される。
(第一のパージ領域通過(S204))
次に、シリコン含有層が形成された基板200が第1のパージ領域204aを通過する。このとき、第一のパージ領域を通過する基板200に対して不活性ガスであるNガスが供給される。
(第二の処理ガス領域通過(S206))
次に、第2の処理領域201bを通過した基板200及びサセプタ217の基板が載置されていない部分に酸素ガスが供給される。基板200上にはシリコン酸化層(SiO層)が形成される。即ち、酸素ガスは、第1の処理領域201aで基板200上に形成されたシリコン含有層の少なくとも一部と反応する。これにより、シリコン含有層は酸化されて、シリコン及び酸素を含むSiO層へと改質される。
第2の処理領域201bには、第二の処理ガス導入機構252から第二のガス噴出口255を通して、水平方向にガスが噴出される。
(第二のパージ領域通過(S208))
そして、第2の処理領域201bでSiO層が形成された基板200が第2のパージ領域204bを通過する。このとき、第二のパージ領域を通過する基板200に対して不活性ガスであるNガスが供給される。
(サイクル数の確認(S210))
このように、サセプタ217の1回転を1サイクルとし、即ち第1の処理領域201a、第1のパージ領域204a、第2の処理領域201b及び第2のパージ領域204bの基板200の通過を1サイクルとし、このサイクルを少なくとも1回以上行うことにより、基板200上に所定膜厚のSiO膜を成膜することができる。
ここでは、前述のサイクルを所定回数実施したか否かを確認する。
サイクルを所定の回数実施した場合、所望の膜厚に到達できたと判断し、成膜処理を終了する。サイクルを所定の回数実施しなかった場合、即ち所望の膜厚に到達できなかったと判断し、S202に戻りサイクル処理を継続する。
S210にて、前述のサイクルを所定回数実施し、基板200上に所望の膜厚のSiO膜が形成されたと判断した後、少なくともバルブ235a及びバルブ235bを閉じ、TSAガス及び酸素ガスの第1の処理領域201a及び第2の処理領域201bへの供給を停止する。このとき、プラズマ生成部206への電力供給も停止する。さらに、ヒータ218の通電量を制御して温度を低くするか、あるいはヒータ218への通電を停止する。更に、サセプタ217の回転速度を徐々に下げ回転を停止する。この時、回転速度によって基板200の位置ずれが起きる場合、更に圧力を上昇させて、基板200の位置ずれを防止する。
(基板搬出工程(S108))
成膜工程106が終了したら、次のように基板を搬出する。
まず、基板突き上げピン266を上昇させ、サセプタ217の表面から突出させた基板突き上げピン266上に基板200を支持させる。そして、ゲートバルブ244aを開き、第一の基板移載機112を用いて基板200を反応容器203の外へ搬出し、第1実施形態に係る基板処理工程を終了する。なお、上記において、基板200の温度、反応容器203内の圧力、各ガスの流量、プラズマ生成部206に印加する電力、処理時間等の処理条件等は、改質対象の膜の材料や膜厚等によって任意に調整する。
以上、本発明の実施形態を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
更には、本実施形態においては、ガスを供給する形態として、サセプタ中央から外側に向けガスを供給しているが、それに限らず、サセプタと対向する基板処理室の上側にサセプタ中央から外側に亘りノズルを設け、このノズルに設けられた複数のガス供給口からガスを供給しても良い。
また、本実施形態においては、分割構造体として仕切り板を用いていたが、隣り合う処理ガス供給領域間でガスを混合させないような構造であればよい。例えば、パージガス供給領域の天井を低くしてパージガスの流速を高める構造や、パージガス専用の排気部を設けて、処理ガスを混合させないようなガス流れを設ける構造でも良い。
<本発明の好ましい態様>
以下に、本発明の好ましい態様について付記する。
(付記1)
本発明の一態様によれば、
処理室内に不活性ガスと処理ガスを供給するガス供給部と、複数の基板が同一円周状に配置される基板載置部と、前記基板載置部が設けられた基板支持台と、前記基板支持台を回転させる回転制御部と、前記基板支持台の回転速度が変化する間、前記処理室の圧力を所定の第一の圧力とし、前記基板支持台の回転速度が一定である間、前記処理室の圧力を前記第一の圧力より低い第二の圧力とするよう制御する制御部と、を有する基板処理装置が提供される。
(付記2)
また、本発明の他の態様によれば、
前記回転速度が変化する間、前記処理室に不活性ガスを供給し、前記回転速度が一定である間、前記処理室に不活性ガス及び処理ガスを供給するよう制御する制御部と、を有する付記1記載の基板処理装置が提供される。
(付記3)
本発明の他の態様によれば、
前記回転速度が変化する間、前記処理ガスを供給する供給系に設けられたバルブを閉じるよう制御する付記1または2記載の基板処理装置が提供される。
(付記4)
前記処理室は、不活性ガス供給領域と処理ガス供給領域を円周状に交互に配置するよう分割構造体を介して複数の処理領域に分割され、前記回転速度が変化する間、前記不活性ガス供給領域及び前記処理ガス供給領域に不活性ガスを供給し、前記回転速度が一定である間、前記不活性ガス供給領域に不活性ガスを供給し、前記ガス供給領域に処理ガスを供給するよう制御する制御部とを有する付記1から付記3の内、いずれかに記載の基板処理装置が提供される。
(付記5)
また、本発明の他の態様によれば、
前記基板載置部はザグリ形状である付記1から4の内いずれかに記載の基板処理装置が提供される。
(付記6)
また、本発明の他の態様によれば、
処理室内に不活性ガスと処理ガスを供給するガス供給部と、複数の基板が同一円周状に配置される基板載置部と、前記基板載置部が設けられた基板支持台と、前記基板支持台を回転させる回転制御部と、前記基板支持台の回転速度が一定である間、前記処理室に不活性ガス及び処理ガスを供給し、前記基板支持台の回転速度が変化する間、前記処理室に不活性ガスを供給するように制御する制御部と、を有する基板処理装置が提供される。
(付記7)
また、本発明の他の態様によれば、
処理室内に設けられた基板支持台表面に同一円周状に配置された複数の基板載置部に基板を載置する基板載置工程と、
前記処理室内に不活性ガスを供給した状態で、回転速度を変化させながら前記基板支持台を回転させる初期回転工程と、
前記初期回転工程を所定の時間実施した後、前記初期回転工程よりも低い圧力とした状態で、前記処理室内に前記不活性ガス及び処理ガスを供給しつつ前記基板支持台を回転させ、基板を処理する成膜工程と、
前記基板処理工程の後、前記処理室から基板を搬出する工程と、
を有する半導体装置の製造方法が提供される。
100 基板処理装置
200 基板
201 処理室
203 反応容器
205 仕切板(分割構造体)
217 基板支持台(サセプタ、回転トレー)
217b 基板載置部
221 コントローラ(制御部)




Claims (5)

  1. 処理室内に不活性ガスと処理ガスを供給するガス供給部と、
    複数の基板が同一円周状に配置される基板載置部と、
    前記基板載置部が設けられた基板支持台と、
    前記基板支持台を回転させる回転制御部と、
    前記基板支持台の回転速度が一定である間、前記処理室の圧力を所定の第一の圧力とし、
    前記基板支持台の回転速度が変化する間、前記処理室の圧力を前記第一の圧力より高い第二の圧力とするよう制御する制御部と、
    を有する基板処理装置。
  2. 前記回転速度が変化する間、前記処理室に不活性ガスを供給し、前記回転速度が一定である間、前記処理室に不活性ガス及び処理ガスを供給するよう制御する制御部とを有する請求項1記載の基板処理装置。
  3. 前記回転速度が変化する間、前記処理ガスを供給する供給系に設けられたバルブを閉じるよう制御する請求項1または2記載の基板処理装置。
  4. 前記処理室は、不活性ガス供給領域と処理ガス供給領域を円周状に交互に配置するよう分割構造体を介して複数の処理領域に分割され、
    前記回転速度が変化する間、前記不活性ガス供給領域及び前記処理ガス供給領域に不活性ガスを供給し、
    前記回転速度が一定である間、前記不活性ガス供給領域に不活性ガスを供給し、前記ガス供給領域に処理ガスを供給するよう制御する制御部とを有する請求項1から請求項3の内、いずれかに記載の基板処理装置。
  5. 処理室内に設けられた基板支持台表面に同一円周状に配置された複数の基板載置部に基板を載置する基板載置工程と、
    前記処理室内に不活性ガスを供給した状態で、回転速度を変化させながら前記基板支持台を回転させる初期回転工程と、
    前記初期回転工程を所定の時間実施した後、前記初期回転工程よりも低い圧力とした状態で、前記処理室内に前記不活性ガス及び処理ガスを供給しつつ前記基板支持台を回転させ、基板を処理する成膜工程と、
    前記基板処理工程の後、前記処理室から基板を搬出する工程と、
    を有する半導体装置の製造方法。

JP2013061831A 2013-03-25 2013-03-25 基板処理装置及び半導体装置の製造方法 Pending JP2014187258A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013061831A JP2014187258A (ja) 2013-03-25 2013-03-25 基板処理装置及び半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013061831A JP2014187258A (ja) 2013-03-25 2013-03-25 基板処理装置及び半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2014187258A true JP2014187258A (ja) 2014-10-02

Family

ID=51834503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013061831A Pending JP2014187258A (ja) 2013-03-25 2013-03-25 基板処理装置及び半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP2014187258A (ja)

Similar Documents

Publication Publication Date Title
JP6000665B2 (ja) 半導体装置の製造方法、基板処理装置及びプログラム
JP6084202B2 (ja) 基板処理装置、半導体装置の製造方法及び基板処理方法
US10604839B2 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and method of processing substrate
US10546761B2 (en) Substrate processing apparatus
JP2014082463A (ja) 基板処理装置、蓋体及び半導体装置の製造方法
KR101752075B1 (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 기록 매체
US20120251737A1 (en) Plasma-nitriding method
JP6095172B2 (ja) 半導体装置の製造方法、基板処理方法及び基板処理装置
JP2010239103A (ja) 活性化ガスインジェクター、成膜装置及び成膜方法
WO2016151684A1 (ja) 半導体装置の製造方法、記録媒体及び基板処理装置
US20140242810A1 (en) Substrate processing apparatus and method of supplying and exhausting gas
JP2014060309A (ja) 基板処理装置、及び半導体装置の製造方法
JP6332746B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
JP6276428B2 (ja) 基板処理装置、半導体装置の製造方法、及びサセプタ
JP2014192484A (ja) 半導体装置の製造方法及び基板処理装置
JP2015015272A (ja) 半導体装置の製造方法及び基板処理装置
WO2014148490A1 (ja) 基板処理装置、及び半導体装置の製造方法
JP2014187258A (ja) 基板処理装置及び半導体装置の製造方法
WO2013141159A1 (ja) 基板処理装置、半導体装置の製造方法及び基板処理方法
JP6224263B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
JP2015185757A (ja) 基板処理装置及び半導体装置の製造方法
KR101614276B1 (ko) 기판 처리 장치, 개체 및 반도체 장치의 제조 방법
JP2011066367A (ja) 基板処理方法
JP2008182194A (ja) 半導体装置の製造方法
JP2014175483A (ja) 基板処理装置、及び半導体装置の製造方法