WO2016117167A1 - 排ガス処理方法及び排ガス処理装置 - Google Patents

排ガス処理方法及び排ガス処理装置 Download PDF

Info

Publication number
WO2016117167A1
WO2016117167A1 PCT/JP2015/075754 JP2015075754W WO2016117167A1 WO 2016117167 A1 WO2016117167 A1 WO 2016117167A1 JP 2015075754 W JP2015075754 W JP 2015075754W WO 2016117167 A1 WO2016117167 A1 WO 2016117167A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
combustion
combustion furnace
furnace
burner
Prior art date
Application number
PCT/JP2015/075754
Other languages
English (en)
French (fr)
Inventor
康之 山本
公夫 飯野
義之 萩原
Original Assignee
大陽日酸株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陽日酸株式会社 filed Critical 大陽日酸株式会社
Priority to ES15878856T priority Critical patent/ES2742896T3/es
Priority to EP15878856.2A priority patent/EP3249295B1/en
Priority to KR1020177018623A priority patent/KR101973957B1/ko
Priority to US15/541,757 priority patent/US10502417B2/en
Priority to CN201580070682.6A priority patent/CN107110500B/zh
Publication of WO2016117167A1 publication Critical patent/WO2016117167A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/32Apparatus therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/14Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion
    • F23G5/16Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion in a separate combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/061Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating
    • F23G7/065Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/007Supplying oxygen or oxygen-enriched air
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/32Apparatus therefor
    • D01F9/328Apparatus therefor for manufacturing filaments from polyaddition, polycondensation, or polymerisation products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/10Combustion in two or more stages
    • F23G2202/101Combustion in two or more stages with controlled oxidant supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/10Combustion in two or more stages
    • F23G2202/102Combustion in two or more stages with supplementary heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/10Combustion in two or more stages
    • F23G2202/103Combustion in two or more stages in separate chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/14Gaseous waste or fumes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present invention relates to an exhaust gas treatment method and an exhaust gas treatment apparatus.
  • This application claims priority based on Japanese Patent Application No. 2015-009572 filed in Japan on January 21, 2015, the contents of which are incorporated herein by reference.
  • Carbon fiber is used as a reinforcing material for various materials because it is excellent in specific strength, specific elastic modulus, heat resistance, chemical resistance, and the like.
  • the process which consists of a several process is given.
  • an acrylic fiber is used as a carbon fiber precursor
  • a flame resistant fiber is obtained by pre-oxidation in air at a temperature of 200 to 300 ° C. (flame resistance step).
  • carbon fiber is obtained by carbonization at a temperature of 300 to 2000 ° C. in an inert atmosphere (carbonization step).
  • carbonization step carbonization step
  • graphitization step graphitized at a temperature of 2000 to 3000 ° C. in an inert atmosphere
  • the exhaust gas generated in the flameproofing process, the carbonization process, and the graphitization process contains highly toxic gases such as hydrogen cyanide and ammonia. Therefore, an exhaust gas treatment method for detoxifying the exhaust gas generated by the above process is required.
  • Patent Document 1 As a conventional exhaust gas treatment method, there is known a method in which the first exhaust gas and the second exhaust gas are blown into one processing furnace (combustion chamber) and decomposed by air combustion (for example, Patent Document 1). . Further, as another treatment method, a method is known in which the first exhaust gas and the second exhaust gas are decomposed by air combustion in separate processing furnaces (for example, Patent Document 2).
  • the first exhaust gas and the second exhaust gas have different concentrations of hydrogen cyanide and the like, and the base gas composition (the presence or absence of oxygen) is different. Therefore, when the first exhaust gas and the second exhaust gas are decomposed in one processing furnace, hydrogen cyanide, ammonia and the like cannot be decomposed sufficiently, and a large amount of NO X is generated along with the decomposition. was there.
  • an exhaust gas treatment method capable of suppressing the generation of NO x and treating the first exhaust gas and the second exhaust gas with a small amount of fuel
  • An object of the present invention is to provide an exhaust gas treatment apparatus capable of treating the first exhaust gas and the second exhaust gas with a small amount of fuel.
  • An exhaust gas treatment method comprising:
  • the first exhaust gas is combusted at 1000 to 1600 ° C. in the first combustion step, and the second exhaust gas is combusted at 700 to 1200 ° C. in the second combustion step.
  • the first combustion furnace and the second combustion furnace each have an opening, and the openings are joined in a state of facing each other.
  • a communication pipe that is provided between the first combustion furnace and the second combustion furnace and communicates the internal space of the first combustion furnace and the internal space of the second combustion furnace.
  • the exhaust gas treatment apparatus as set forth in (3), characterized by comprising:
  • thermometer for measuring the temperature in the first combustion furnace
  • second thermometer for measuring the temperature in the second combustion furnace
  • combustion amount of the first burner is controlled based on temperatures obtained from the first thermometer and the second thermometer.
  • thermometer for measuring the temperature in the first combustion furnace
  • second thermometer for measuring the temperature in the second combustion furnace
  • a control unit for controlling the combustion amount of the first burner, and the combustion amounts of the first burner and the second burner based on the temperatures obtained from the first thermometer and the second thermometer.
  • the oxygen-enriched air having an oxygen concentration of 25 to 100% by volume is used as the combustion-supporting gas of the first burner provided in the first combustion furnace (3)
  • the exhaust gas treatment apparatus according to any one of (9) to (9).
  • the first exhaust gas supply means is a first inlet provided in a furnace wall of the first combustion furnace, and the first exhaust gas is supplied from the first inlet.
  • the exhaust gas treatment apparatus according to any one of (3) to (10), wherein the exhaust gas treatment apparatus is characterized.
  • the second exhaust gas supply means is a second blowing port provided in a furnace wall of the second combustion furnace, and the second blowing port sends the second exhaust gas to the second blowing port.
  • the exhaust gas treatment apparatus according to any one of (3) to (12), wherein the exhaust gas treatment apparatus is provided so as to be blown from a tangential direction of an inner peripheral wall of the combustion furnace.
  • the apparatus further comprises a heat exchanger at a rear stage of the exhaust gas treatment device, and preheats the second exhaust gas using sensible heat of the exhaust gas discharged from the second combustion furnace. 3) The exhaust gas treatment apparatus according to any one of (13) to (13).
  • Exhaust gas treatment method of the present invention a first exhaust gas, the oxygen ratio is in the configuration of the combustion at a low oxygen ratio of 0.8 or less, while suppressing the generation of NO x, processing the first exhaust gas can do. Further, the first combustion process for treating the first exhaust gas and the second combustion process for treating the second exhaust gas, and the exhaust gas discharged by the first combustion process in the second combustion process Since the second exhaust gas is burned using the sensible heat and the latent heat, the amount of fuel used can be reduced. Furthermore, since the first exhaust gas and the second exhaust gas can be processed continuously, the equipment cost and the maintenance cost can be reduced.
  • the exhaust gas treatment apparatus of the present invention includes a first combustion furnace for treating the first exhaust gas, a second combustion furnace for treating the second exhaust gas, and a first combustion furnace provided in the first combustion furnace. And a second combustion furnace provided on the secondary side of the first combustion furnace, and an internal space of the first combustion furnace and an internal space of the second combustion furnace, Since it is the structure connected, the 1st exhaust gas after burning with a 1st combustion furnace can be supplied to a 2nd combustion furnace. Thereby, in the 2nd combustion furnace, the 2nd exhaust gas can be processed using the sensible heat and latent heat of the 1st exhaust gas after combustion. As a result, the amount of fuel used can be reduced. Furthermore, since the first exhaust gas and the second exhaust gas can be processed by one apparatus, the equipment cost and the maintenance cost can be reduced.
  • FIG. 1 is a cross-sectional view of an exhaust gas treatment apparatus according to a first embodiment to which the present invention is applied.
  • the exhaust gas treatment apparatus 1 of the present embodiment includes a first combustion furnace 10, a first burner 20, a throttle unit 30, a second combustion furnace 40, and an inlet (second ) And an exhaust port 60 are schematically configured.
  • the exhaust gas treatment method of the present embodiment to be described later can be implemented.
  • the first combustion furnace 10 treats the first exhaust gas A discharged from the carbonization furnace and the graphitization furnace, and the second combustion furnace 40 discharges the second exhaust gas from the flameproofing furnace.
  • the exhaust gas B can be treated.
  • the first combustion furnace 10 has a cylindrical shape (for example, a cylindrical shape) for burning and decomposing harmful gases such as hydrogen cyanide and ammonia contained in the first exhaust gas A by burning the first exhaust gas A. It is a furnace.
  • the first combustion furnace 10 has a closed portion 12 and an inner peripheral wall 14, and has a first internal space S1 in which one end is closed and the other end is opened.
  • the material of the first combustion furnace 10 is not particularly limited. Specifically, for example, an alumina refractory, an alumina-silica refractory, or the like can be used.
  • the first combustion furnace 10 is provided with a first burner 20, a first thermometer (not shown), and a throttle unit 30.
  • the first burner 20 is provided so as to penetrate the center of the blocking portion 12.
  • the first burner 20 is provided so as to be coaxial with the first combustion furnace 10. Accordingly, the first burner 20 can form a flame in the first internal space S1, and the first gas in the first internal space S1 can be burned by the flame.
  • the first burner 20 is supplied with fuel and a combustion-supporting gas. By adjusting the flow rates of the fuel and the combustion-supporting gas, a combustion amount and an oxygen ratio described later can be controlled. By controlling the oxygen ratio, a reducing atmosphere flame can be formed.
  • gas fuels such as city gas and LPG
  • liquid fuels such as kerosene and A heavy oil.
  • the combustion-supporting gas is not particularly limited as long as it contains oxygen, but a gas having an oxygen concentration of 20.8 (air) to 100% by volume (pure oxygen) is preferably used. From the viewpoint of improving the decomposition rate, it is particularly preferable to use a gas having an oxygen concentration of 25 to 100% by volume.
  • a gas having a high oxygen concentration By using a gas having a high oxygen concentration, the temperature in the combustion furnace can be increased, and the decomposition rate can be increased. As a result, the exhaust gas residence time in the first internal space S1 is shortened, so that the first combustion furnace 10 can be made smaller.
  • the combustion amount of the first burner 20 (based on the temperature in the first combustion furnace 10 and the temperature in the second combustion furnace 40 ( A control unit (not shown) for controlling (described later) is provided.
  • the first burner 20 is provided with a first exhaust gas A supply path (not shown).
  • a supply port (not shown) for the first exhaust gas A is provided at the tip of the first burner 20 that opens into the first internal space S1 in the first combustion furnace 10. Accordingly, the first burner 20 can form a reducing atmosphere flame in the first internal space S1 and supply the first exhaust gas A into the first internal space S1.
  • the throttle portion 30 is provided on the opening 13 side of the inner peripheral wall 14.
  • the aperture area of the opening 13 can be regulated by the diaphragm 30. By restricting the opening area, it is possible to prevent gas (including oxygen) in the second internal space S2 described later from entering the first internal space S1. As a result, the inside of the first internal space S1 can be maintained in a reducing atmosphere.
  • the second combustion furnace 40 is provided on the secondary side of the first combustion furnace 10.
  • the second combustion furnace 40 has a cylindrical shape (for example, a cylindrical shape) for burning and decomposing harmful gases such as hydrogen cyanide and ammonia contained in the second exhaust gas B by burning the second exhaust gas B. It is a furnace.
  • the second combustion furnace 40 has a closed portion 42 and an inner peripheral wall 44, and has a second internal space S2 in which one end is closed and the other end is opened.
  • the material of the second combustion furnace 40 is not particularly limited. Specifically, for example, an alumina refractory, an alumina-silica refractory, or the like can be used.
  • the opening 13 of the first combustion furnace 10 and the opening 43 of the second combustion furnace 40 are joined in a state of facing each other, and the first internal space S1. And the second internal space S2.
  • the third exhaust gas after burning the first exhaust gas A can be supplied from the first internal space S1 to the second internal space S2.
  • the exhaust gas after the first exhaust gas is burned in the first combustion furnace 10 is defined as “third exhaust gas”.
  • the second exhaust gas B can be burned using the sensible heat and latent heat of the third exhaust gas.
  • harmful gases such as hydrogen cyanide contained in the second exhaust gas B can be combusted and decomposed.
  • the second combustion furnace 40 is provided with a blowing port (second blowing port) 50 and an exhaust port 60.
  • the blowing port (second blowing port) 50 is provided on the opening 43 side of the inner peripheral wall 44 of the second combustion furnace 40.
  • the second exhaust gas B can be supplied from the inlet 50 to the second internal space S2.
  • the blowing port 50 is provided so that the second exhaust gas B can be blown in the tangential direction of the inner peripheral wall 44.
  • a swirl flow can be formed by the third exhaust gas and the second exhaust gas B in the second internal space S2, so that the harmful gas contained in the second exhaust gas B can be efficiently decomposed by combustion. can do.
  • the exhaust port 60 is provided so as to penetrate the closed portion 42 of the second combustion furnace 40.
  • the gas burned in the second internal space S2 can be discharged from the exhaust port 60 to the outside.
  • the exhaust gas treatment method of the present embodiment is an exhaust gas treatment method in which the first exhaust gas A is processed by the first combustion process, and the second exhaust gas B is processed by the second combustion process.
  • the first combustion step is a step of burning the first exhaust gas A at a low oxygen ratio with an oxygen ratio of 0.8 or less.
  • first exhaust gas A the gas discharged from the carbonization process and the graphitization process
  • the supplied first exhaust gas A is burned by the first burner 20 in a temperature range of 1000 to 1600 ° C.
  • the temperature in the first combustion furnace 10 is measured by a first thermometer (not shown), and the temperature in the second combustion furnace 40 is measured by a second thermometer (not shown). Yes.
  • the combustion temperature of the first burner 20 is controlled by a control unit (not shown) to control the combustion temperature.
  • the first burner 20 is supplied with fuel gas and combustion-supporting gas, and the amount of combustion is controlled by controlling the supply amount of the fuel gas and combustion-supporting gas.
  • the “burning amount” is the amount of heat per unit time generated by burning the fuel. As the amount of combustion increases, the amount of heat generated per unit time increases, so the temperature of the first internal space S1 increases.
  • the first exhaust gas A to be processed in the first combustion furnace 10 is a nitrogen-based exhaust gas containing hydrogen cyanide, ammonia and the like at a high concentration, so that the oxygen ratio is higher than the stoichiometric ratio (oxygen ratio 0).
  • a large amount of NO x is produced when the combustion treatment is performed at a temperature higher than .8).
  • processing is performed while forming a reducing atmosphere under combustion conditions with an oxygen ratio of 0.8 or less. While thereby suppressing the formation of NO x, it is possible to burn decomposition. Therefore, in the exhaust gas treatment method of the present embodiment, the oxygen ratio is controlled by controlling the proportion of oxygen contained in the combustion-supporting gas with respect to the fuel gas.
  • oxygen ratio means a value obtained by dividing the amount of oxygen supplied to the burner by the theoretical amount of oxygen required to burn the fuel supplied to the burner. Therefore, theoretically, a state where the oxygen ratio is 1.0 can be said to be a state where oxygen can be completely burned using excess or deficiency.
  • the third exhaust gas generated by the combustion is supplied to the second combustion furnace 40 through the opening 13.
  • the second combustion step is a step of burning the second exhaust gas B using the sensible heat and latent heat of the exhaust gas discharged in the first combustion step in the second combustion furnace 40.
  • the second exhaust gas B is an air-based exhaust gas containing hydrogen cyanide and ammonia, and the amount of emission is much larger than that of the first exhaust gas A.
  • the first exhaust gas A when it is attempted to perform combustion decomposition by reducing the oxygen ratio to 0.8 or less, it is necessary to use a large amount of fuel, which is not practical.
  • hydrogen cyanide and ammonia can be decomposed while suppressing the production of NO x by performing combustion treatment at a low temperature even in an atmosphere in which oxygen is present. Therefore, in the exhaust gas treatment method of the present embodiment, the second exhaust gas B is burned in the temperature range of 700 to 1200 ° C., thereby decomposing hydrogen cyanide and ammonia while suppressing the generation of NO x .
  • the third exhaust gas supplied from the first combustion furnace 10 is mixed with the second exhaust gas B supplied from the inlet 50 provided in the second combustion furnace 40.
  • gases such as CO and H 2 contained in the third exhaust gas and contained in the second exhaust gas B Oxygen is combusted, and the temperature in the second combustion furnace 40 can be raised to 700 ° C. or higher by heat generated by the combustion.
  • harmful gas such as hydrogen cyanide contained in the second exhaust gas B is combusted and decomposed.
  • the sensible heat and latent heat (combustion heat amount of the exhaust gas) of the third exhaust gas discharged in the first combustion process are effectively used.
  • the temperature in the second combustion furnace 40 is measured by a second thermometer (not shown). Based on the measured temperature, the control unit (not shown) controls the oxygen ratio of the first burner 20 to control the amount of unburned gas flowing into the second combustion furnace 40. Thereby, the temperature in the second combustion furnace 40 can be controlled.
  • exhaust gas generated by combustion in the second internal space S2 is discharged to the outside from the exhaust port 60, whereby the exhaust gas treatment method of the present embodiment is completed.
  • the first combustion furnace 10 for treating the first exhaust gas A the first burner 20 provided in the first combustion furnace, A second combustion furnace 40 for treating the second exhaust gas B, the second combustion furnace 40 being provided on the secondary side of the first combustion furnace 10, and the first combustion furnace 10
  • the first internal space S1 and the second internal space S2 of the second combustion furnace 40 are in communication with each other, and the third exhaust gas after burning in the first combustion furnace 10 is used.
  • the second combustion furnace 40 can be supplied.
  • the 2nd combustion furnace 40 the 2nd exhaust gas B can be processed using the sensible heat and latent heat of a 3rd exhaust gas.
  • the amount of fuel used to process the first and second exhaust gases A and B can be reduced.
  • the equipment cost and the maintenance cost can be reduced.
  • the exhaust gas treatment apparatus 1 of the present embodiment since it is configured to include the throttle portion 30 for regulating the opening area between the first internal space S1 and the second internal space S2, The gas (including oxygen) in the second internal space S2 can be prevented from entering the first internal space S1, and the inside of the first internal space S1 can be maintained in a reducing atmosphere.
  • the first exhaust gas A is configured to burn at a low oxygen ratio with an oxygen ratio of 0.8 or less, the generation of NO x is suppressed.
  • the first exhaust gas A can be treated.
  • the second combustion includes a first combustion process for treating the first exhaust gas A and a second combustion process for treating the second exhaust gas B.
  • the second exhaust gas B is burned using the sensible heat and latent heat of the exhaust gas discharged in the first combustion process, so that the amount of burner fuel used can be reduced. it can.
  • the equipment cost and the maintenance cost can be reduced.
  • FIG. 2 is a cross-sectional view of an exhaust gas treatment apparatus according to a second embodiment to which the present invention is applied.
  • the exhaust gas treatment apparatus 101 of the present embodiment includes a first combustion furnace 10, a first burner 20, a throttle unit 30, a second combustion furnace 40, and an inlet (second ) 50, an exhaust port 60, and a blow port (first blow port) 151. That is, the exhaust gas treatment apparatus 101 of the present embodiment is configured differently from the above-described exhaust gas treatment apparatus 1 in that it includes the inlet 151. For this reason, the same components as those in the exhaust gas treatment device 1 are denoted by the same reference numerals and description thereof is omitted.
  • the blowing port (first blowing port) 151 is provided on the closed part 12 side of the inner peripheral wall 14 of the first combustion furnace 10. Through the inlet 151, the first exhaust gas A can be supplied to the first internal space S1.
  • the inlet 151 can be provided so that the first exhaust gas A can be blown in the tangential direction of the inner peripheral wall 14. Thereby, since the swirl
  • the configuration includes the inlet 151, and the first exhaust gas A can be supplied from the inner peripheral wall 14 of the first combustion furnace 10. Thereby, the first exhaust gas A directly near the flame that is present in the oxygen does not enter, it is possible to further suppress the formation of NO x.
  • FIG. 3 is a figure which shows the structure of the waste gas processing apparatus which is 3rd Embodiment to which this invention is applied.
  • the exhaust gas treatment apparatus 201 of the present embodiment includes a first combustion furnace 210, a first burner 20, a second combustion furnace 240, and an inlet (second inlet) 250. And an exhaust port 60, a second burner 221, and a connecting pipe 231.
  • the exhaust gas treatment apparatus 201 of the present embodiment includes a second burner 221, further includes a connecting pipe 231 between the first combustion furnace 210 and the second combustion furnace 240, and the first
  • the configuration differs from the above-described exhaust gas treatment apparatus 1 in that the combustion furnace 210 and the second combustion furnace 240 are configured as separate furnace bodies. For this reason, the same components as those in the exhaust gas treatment device 1 are denoted by the same reference numerals and description thereof is omitted.
  • the first combustion furnace 210 is a furnace for burning and decomposing harmful gases such as hydrogen cyanide and ammonia contained in the first exhaust gas A by burning the first exhaust gas A.
  • the shape of the first combustion furnace 210 is a cylindrical shape (for example, a cylindrical shape) closed at both ends.
  • the first combustion furnace 210 has a first internal space S1 inside.
  • an opening 213 is provided on the lower bottom side of the inner peripheral wall of the first combustion furnace 210.
  • the material of the first combustion furnace 210 is not particularly limited. Specifically, for example, an alumina refractory, an alumina-silica refractory, or the like can be used.
  • the first thermometer 215 is provided on the inner peripheral wall 214.
  • the temperature in the first combustion furnace 210 can be measured by the first thermometer 215.
  • the amount of combustion of the first burner 20 can be controlled by a control unit (not shown).
  • the connecting pipe 231 is a pipe provided for communicating the first internal space S1 in the first combustion furnace 210 and the second internal space S2 in the second combustion furnace 240 described later. . Specifically, the connecting pipe 231 is provided so as to connect the opening 213 of the first combustion furnace 210 and the opening 243 of the second combustion furnace 240 described later.
  • the material of the connecting pipe 231 is not particularly limited, and specifically, for example, an alumina refractory, an alumina-silica refractory, or the like can be used.
  • the gas (including oxygen) in the second internal space S2 enters the first internal space S1. Can be prevented. As a result, the inside of the first internal space S1 can be maintained in a reducing atmosphere.
  • the second combustion furnace 240 is a furnace for burning and decomposing harmful gases such as hydrogen cyanide and ammonia contained in the second exhaust gas B by burning the second exhaust gas B.
  • the second combustion furnace 240 is provided on the secondary side of the first combustion furnace 210 via the connecting pipe 231.
  • the shape of the second combustion furnace 240 is a cylindrical shape (for example, a cylindrical shape) closed at both ends.
  • the second combustion furnace 240 has a second internal space S2 inside.
  • an opening 243 is provided on the lower bottom side of the inner peripheral wall of the second combustion furnace 240.
  • the material of the second combustion furnace 240 is not particularly limited. Specifically, for example, an alumina refractory, an alumina-silica refractory, or the like can be used.
  • the second burner 221 is provided on the inlet 250 side of the inner peripheral wall 244 of the second combustion furnace 240.
  • combustion of the second exhaust gas B and the third exhaust gas can be performed stably.
  • the second burner 221 is supplied with fuel and a combustion-supporting gas. By adjusting the flow rates of the fuel and the combustion-supporting gas, the combustion amount and the oxygen ratio described later can be controlled.
  • the fuel and the combustion-supporting gas those similar to the first burner 20 can be used.
  • the second burner 221 may not always be burned, and may be ignited when the temperature in the second combustion furnace 240 becomes a predetermined temperature or lower.
  • the blowing port (second blowing port) 250 is provided on the opposite side of the opening 243 of the second combustion furnace 240. From the inlet 250, the 2nd waste gas B can be supplied to 2nd internal space S2. The blowing port 250 can be provided so that the second exhaust gas B can be blown in the tangential direction of the inner peripheral wall 244. Thereby, since the swirl flow by the second exhaust gas B can be formed in the second internal space S2, the mixing with the third exhaust gas is promoted, and the harmful gas contained in the second exhaust gas B Can be efficiently decomposed by combustion.
  • the second thermometer 245 is provided on the inner peripheral wall 244.
  • the temperature in the second combustion furnace 240 can be measured by the second thermometer 245.
  • the combustion amount and oxygen ratio of the second burner 221 can be controlled by a control unit (not shown).
  • the exhaust gas treatment apparatus 201 of the present embodiment since the second burner 221 is provided, the combustion of the second exhaust gas B and the third exhaust gas can be performed stably.
  • the connecting pipe 231 is provided between the first combustion furnace 210 and the second combustion furnace 240, and the first combustion furnace 210 and the second combustion furnace 240 are provided. Since the combustion furnace 240 and the combustion furnace 240 are configured as separate furnace bodies, the length of the furnace can be adjusted, and when installed vertically, the height can be lowered and the degree of freedom of installation can be increased. it can.
  • the example which joined two combustion furnaces was demonstrated in the exhaust gas processing apparatus 1,101,201 of embodiment mentioned above, even if it is an aspect which divides
  • the throttle unit 30 is provided inside the combustion furnace, the primary side space of the throttle unit 30 is a first combustion furnace, and the secondary side space is a second combustion furnace.
  • the primary side space of the inlet (second inlet) 50 is used as the first combustion furnace, and the secondary side space is used as the second combustion. Use a furnace.
  • the throttle part 30 was provided in the opening part 13 side of the 1st combustion furnace 10 in the exhaust gas processing apparatus 1 and 101 of embodiment mentioned above, the throttle part 30 was 2nd combustion furnace. It may be provided on the opening 43 side of the inner peripheral wall 44 of 40.
  • a second burner may be provided.
  • combustion of the second exhaust gas B and the third exhaust gas can be performed stably.
  • Example 1 Comparative with direct combustion method
  • Table 1 shows the composition and flow rate of the simulated gas of the first exhaust gas and the second exhaust gas. NO was used for the simulated gas as an alternative to HCN (the validity of using NO as the simulated gas will be described later).
  • the simulation gas was subjected to three conditions (conditions 1-1, 1-2, and 1-3).
  • Table 2 shows the combustion conditions of the burner of the exhaust gas treatment apparatus 1 of this embodiment and the direct combustion type exhaust gas treatment apparatus.
  • the first burner 20 was burned at an oxygen ratio of 0.7 using pure oxygen having an oxygen concentration of 100% as the combustion-supporting gas.
  • the temperature of the combustion furnace was 1600 ° C. for the first combustion furnace 10 and 1000 ° C. for the second combustion furnace 40. Further, in a direct combustion processing apparatus, the processing was performed at 1000 ° C.
  • Table 3 shows the test results. From this result, in the exhaust gas treatment apparatus 1 of this embodiment, ammonia (NH 3 ) can be decomposed to an extremely low concentration even under the condition 1-1 in which NO and NH 3 are added at the highest concentration, and NO x It was confirmed that the production of can be suppressed to about 90 ppm. On the other hand, in the exhaust gas treatment apparatus of the direct combustion system, it was confirmed that the NO x concentration increases when NO and NH 3 are decomposed. Moreover, in the exhaust gas processing apparatus 1 of this embodiment, it confirmed that the 1st exhaust gas and the 2nd exhaust gas could be processed with less fuel compared with a direct combustion system.
  • Example 2 (Effect of oxygen ratio) Using the same exhaust gas treatment apparatus 1 as in Example 1, the oxygen ratio of the first burner 20 was changed as shown in Table 4, and the first exhaust gas and the second exhaust gas shown in Condition 1-2 in Table 3 were changed. The concentration of NH 3 and NO x contained in the exhaust gas after treating the simulated gas was confirmed.
  • FIG. 4 shows the relationship between the concentration of NH 3 and NO x in the exhaust gas after treatment discharged from the exhaust port 60 of the exhaust gas treatment apparatus 1 and the oxygen ratio. From this result, it was confirmed that NH 3 is 0.1 ppm or less under all conditions, and that almost all can be decomposed. Further, when the oxygen ratio of the first burner 20 is larger than 0.8, NO x tends to increase rapidly, and by making the oxygen ratio 0.8 or less, while suppressing generation of NO x , It was confirmed that the first exhaust gas can be treated.
  • Example 3> (Pilot equipment test) The exhaust gas treatment apparatus 201 of this embodiment shown in FIG. 3 was used to perform exhaust gas treatment with pilot equipment.
  • Table 5 shows the composition and flow rate of the simulated gas of the first exhaust gas and the second exhaust gas.
  • the second exhaust gas was flowed under three conditions of 300, 600, and 900 Nm 3 / h (conditions 3-1, 3-2, and 3-3).
  • Table 6 shows the burner combustion conditions under the above exhaust gas conditions.
  • Table 7 shows the concentration of NH 3 and NO x in the exhaust gas after treatment discharged from the exhaust port 60 of the exhaust gas treatment device 201. From this result, it was confirmed that in the exhaust gas treatment apparatus 201 of the present embodiment, NH 3 can be decomposed to an extremely low concentration, and further, generation of NO x accompanying combustion can be suppressed.
  • Example 4> (Validity verification of simulated gas) NO was used as an alternative simulation gas for HCN. The validity of using NO for the simulated gas was examined by reaction analysis by simulation. Reaction analysis was performed using CHEMKIN-PRO (manufactured by Reaction Design, detailed chemical reaction analysis support software). Table 8 shows the analysis conditions. Condition 4-1 shows the case where HCN is added to the first combustion furnace 10 in a reducing combustion atmosphere, and condition 4-2 shows the case where NO is added.
  • FIG. 5 shows the decomposition behavior of HCN and the generation / decomposition behavior of NO by reaction analysis under condition 4-1.
  • FIG. 6 shows the NO decomposition behavior when NO is added according to the reaction analysis under Condition 4-2. From FIG. 5, it can be seen that HCN is rapidly decomposed in a reducing combustion atmosphere, and NO X is rapidly generated and then gradually decomposed. Comparing the NO concentration changes in FIG. 5 and FIG. 6, the decomposition behavior shows the same tendency, and by using NO as a simulation gas, the decomposition behavior of NO generated along with the decomposition of HCN can be evaluated. .
  • the exhaust gas treatment method and exhaust gas treatment apparatus of the present invention can be applied to an apparatus and method for treating exhaust gas containing hydrogen cyanide, ammonia and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Incineration Of Waste (AREA)

Abstract

本発明により、NOの発生を抑制し、かつ少ない燃料で第1の排ガス及び第2の排ガスを処理することが可能な排ガス処理方法及び排ガス処理装置が提供される。本発明の排ガス処理方法は、繊維状物質を不活性ガス雰囲気中で炭素化する炭素化炉及び黒鉛化する黒鉛化炉から排出される第1の排ガスを処理する第1の燃焼工程と、空気雰囲気中で耐炎化する耐炎化炉から排出される第2の排ガスを処理する第2の燃焼工程と、を含む。第1の燃焼工程において、第1の排ガスを酸素比が0.8以下の低酸素比で燃焼する。第2の燃焼工程において、第1の燃焼工程により排出された第3の排ガスの顕熱と潜熱とを利用して、第2の排ガスを燃焼する。

Description

排ガス処理方法及び排ガス処理装置
 本発明は、排ガス処理方法及び排ガス処理装置に関する。
 本願は、2015年1月21日に、日本に出願された特願2015-009572号に基づき優先権を主張し、その内容をここに援用する。
 炭素繊維は、比強度、比弾性率、耐熱性、耐薬品性等に優れているため、各種素材の強化材として使用されている。一般的に、炭素繊維を製造する際には、所望の特性を得るために、複数の工程からなる処理が施される。例えば、炭素繊維のプリカーサとしてアクリル繊維を用いた場合、最初に、空気中で200~300℃の温度で予備酸化することにより耐炎化繊維を得る(耐炎化工程)。次に、不活性雰囲気中で300~2000℃の温度で炭素化することにより炭素繊維を得る(炭素化工程)。さらに、高弾性率繊維を得る場合は、不活性雰囲気中で2000~3000℃の温度で黒鉛化する(黒鉛化工程)。
 ところで、耐炎化工程、炭素化工程、及び黒鉛化工程の各工程を行った際に、排ガスが発生する。具体的には、炭素化工程及び黒鉛化工程は不活性雰囲気中で行われるため、窒素などの不活性ガスをベースガスとした、耐炎化繊維の分解成分であるシアン化水素、アンモニア、一酸化炭素、二酸化炭素、メタン、タール成分等を含むガスが発生する。(以下、炭素化工程及び黒鉛化工程により発生する排ガスを「第1の排ガス」と定義する。)(特許文献3)
 同様に、耐炎化工程は空気中で行われるため、酸素、窒素、アルゴンをベースガスとした、アクリル繊維の分解生成物であるシアン化水素、アンモニア、一酸化炭素、二酸化炭素、メタン、タール成分等を含むガスが発生する。(以下、耐炎化工程により発生する排ガスを「第2の排ガス」と定義する。)(特許文献2、4)
 このように、耐炎化工程、炭素化工程、及び黒鉛化工程により発生する排ガスは、シアン化水素やアンモニア等の毒性の高いガスを含む。そのため、上記工程により発生した排ガスを無害化するための排ガス処理方法が必要となる。
 従来の排ガス処理方法としては、一つの処理炉(燃焼室)に第1の排ガスと第2の排ガスとを吹き込んで、空気燃焼により分解処理する方法が知られている(例えば、特許文献1)。また、別の処理方法としては、第1の排ガスと第2の排ガスをそれぞれ別々の処理炉で空気燃焼により分解処理する方法が知られている(例えば、特許文献2)。
特開2011-021779号公報 特開2001-324119号公報 特開2012-067419号公報 特開2003-113538号公報
 ところで、第1の排ガスと第2の排ガスとでは、シアン化水素等の濃度が異なるとともに、ベースガスの組成(酸素の有無)が異なる。そのため、第1の排ガス及び第2の排ガスを一つの処理炉で分解処理する場合、シアン化水素やアンモニア等を十分に分解することができず、また、分解に伴いNOが大量に発生するといった問題があった。
 また、第1の排ガス及び第2の排ガスを別々の処理炉で分解処理する場合、シアン化水素やアンモニア等を十分に分解することはできるが、燃焼の際に使用する燃料の量が多くなるといった問題があった。さらに、二つの処理設備が必要になるため、設備コスト及び保守コストが高くなるといった問題があった。
 そこで、本発明は上記事情を鑑みてなされたものであって、NOの発生を抑制し、かつ少ない燃料で第1の排ガス及び第2の排ガスを処理することが可能な排ガス処理方法、並びに、少ない燃料で第1の排ガス及び第2の排ガスを処理することが可能な排ガス処理装置を提供することを課題とする。
 上記課題を解決するため、本発明は以下の手段を提供する。
(1)繊維状物質を不活性ガス雰囲気中で炭素化する炭素化炉及び黒鉛化する黒鉛化炉から排出される第1の排ガスを処理する第1の燃焼工程と、空気雰囲気中で耐炎化する耐炎化炉から排出される第2の排ガスを処理する第2の燃焼工程と、を含む排ガス処理方法であって、前記第1の燃焼工程において、前記第1の排ガスを酸素比が0.8以下の低酸素比で燃焼し、前記第2の燃焼工程において、前記第1の燃焼工程により排出された第3の排ガスの顕熱と潜熱とを利用して、前記第2の排ガスを燃焼することを特徴とする排ガス処理方法。
(2)前記第1の燃焼工程において、1000~1600℃で前記第1の排ガスを燃焼し、前記第2の燃焼工程において、700~1200℃で前記第2の排ガスを燃焼することを特徴とする前記(1)に記載の排ガス処理方法。
(3)第1の排ガスを処理する第1の燃焼炉と、第2の排ガスを処理する第2の燃焼炉と、前記第1の燃焼炉内に前記第1の排ガスを供給する第1の排ガス供給手段と、前記第2の燃焼炉内に前記第2の排ガスを供給する第2の排ガス供給手段と、前記第1の燃焼炉に設けられた第1のバーナと、を備え、前記第1の燃焼炉の二次側に前記第2の燃焼炉が設けられているとともに、前記第1の燃焼炉の内部空間と、前記第2の燃焼炉の内部空間とが、連通されていることを特徴とする排ガス処理装置。
(4)前記第1の燃焼炉及び前記第2の燃焼炉は、それぞれ開口部を有しており、前記開口部同士が互いに対向した状態で接合されていることを特徴とする前記(3)に記載の排ガス処理装置。
(5)前記第1の燃焼炉及び前記第2の燃焼炉の少なくともいずれか一方が、前記開口部の開口面積を規制する絞り部を有することを特徴とする前記(4)に記載の排ガス処理装置。
(6)前記第1の燃焼炉と前記第2の燃焼炉との間に設けられ、当該第1の燃焼炉の内部空間と当該第2の燃焼炉の内部空間とを連通させる連通管をさらに備えることを特徴とする前記(3)に記載の排ガス処理装置。
(7)前記第2の燃焼炉に設けられた第2のバーナをさらに備えることを特徴とする前記(3)~(6)のいずれか一項に記載の排ガス処理装置。
(8)前記第1の燃焼炉内の温度を測定する第1の温度計と、前記第2の燃焼炉内の温度を測定する第2の温度計と、前記第1のバーナの燃焼量を制御する制御部と、をさらに備え、前記第1の温度計及び前記第2の温度計から得た温度に基づいて前記第1のバーナの燃焼量を制御することを特徴とする前記(3)~(6)のいずれか一項に記載の排ガス処理装置。
(9)前記第1の燃焼炉内の温度を測定する第1の温度計と、前記第2の燃焼炉内の温度を測定する第2の温度計と、前記第1のバーナ及び前記第2のバーナの燃焼量を制御する制御部と、をさらに備え、前記第1の温度計及び前記第2の温度計から得た温度に基づいて前記第1のバーナ及び前記第2のバーナの燃焼量を制御することを特徴とする前記(7)に記載の排ガス処理装置。
(10)前記第1の燃焼炉に設けられている前記第1のバーナの支燃性ガスとして、酸素濃度が25~100体積%の酸素富化空気を用いることを特徴とする前記(3)~(9)のいずれか一項に記載の排ガス処理装置。
(11)前記第1の排ガス供給手段が前記第1のバーナであり、前記第1の排ガスを前記第1のバーナから供給することを特徴とする前記(3)~(10)のいずれか一項に記載の排ガス処理装置。
(12)前記第1の排ガス供給手段が、前記第1の燃焼炉の炉壁に設けられた第1の吹込口であり、前記第1の排ガスを前記第1の吹込口から供給することを特徴とする前記(3)~(10)のいずれか一項に記載の排ガス処理装置。
(13)前記第2の排ガス供給手段が、前記第2の燃焼炉の炉壁に設けられた第2の吹込口であり、前記第2の吹込口は、前記第2の排ガスを前記第2の燃焼炉の内周壁の接線方向から吹き込むことができるように設けられていることを特徴とする前記(3)~(12)のいずれか一項に記載の排ガス処理装置。
(14)前記排ガス処理装置の後段に熱交換器をさらに備え、前記第2の燃焼炉から排出される排ガスの顕熱を利用して前記第2の排ガスを予熱することを特徴とする前記(3)~(13)のいずれか一項に記載の排ガス処理装置。
 本発明の排ガス処理方法は、第1の排ガスを、酸素比が0.8以下の低酸素比で燃焼する構成となっているため、NOの生成を抑制しながら、第1の排ガスを処理することができる。また、第1の排ガスを処理する第1の燃焼工程と、第2の排ガスを処理する第2の燃焼工程と、を含み、第2の燃焼工程において、第1の燃焼工程により排出された排ガスの顕熱と潜熱とを利用して、第2の排ガスを燃焼する構成となっているため、燃料の使用量を低減することができる。さらに、第1の排ガスと第2の排ガスとを連続して処理することができるため、設備コスト及び保守コストを低減することができる。
 次に、本発明の排ガス処理装置は、第1の排ガスを処理する第1の燃焼炉と、第2の排ガスを処理する第2の燃焼炉と、第1の燃焼炉に設けられた第1のバーナと、を備え、第1の燃焼炉の二次側に第2の燃焼炉が設けられているとともに、第1の燃焼炉の内部空間と、第2の燃焼炉の内部空間とが、連通されている構成となっているため、第1の燃焼炉で燃焼した後の第1の排ガスを、第2の燃焼炉に供給することができる。これにより、第2の燃焼炉では、燃焼後の第1の排ガスの顕熱及び潜熱を利用して、第2の排ガスを処理することができる。その結果、燃料の使用量を低減することができる。さらに、第1の排ガス及び第2の排ガスを一つの装置により処理することができるため、設備コスト及び保守コストを低減することができる。
本発明を適用した第1の実施形態である排ガス処理装置の断面図である。 本発明を適用した第2の実施形態である排ガス処理装置の断面図である。 本発明を適用した第3の実施形態である排ガス処理装置の構成を示す図である。 排ガス処理装置から排出される排ガス中のNH、NO濃度と酸素比との関係を示すグラフである。 反応解析によるHCNの分解挙動と、NOの生成・分解挙動を示すグラフである。 反応解析によるNOを添加した場合のNO分解挙動を示すグラフである。
 以下、本発明の一実施形態である排ガス処理方法について、それに用いる排ガス処理装置とともに、図面を用いて詳細に説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。
<第1の実施形態>
(排ガス処理装置)
 先ず、本発明を適用した第1の実施形態である排ガス処理装置1について説明する。図1は、本発明を適用した第1の実施形態である排ガス処理装置の断面図である。
 図1に示すように、本実施形態の排ガス処理装置1は、第1の燃焼炉10と、第1のバーナ20と、絞り部30と、第2の燃焼炉40と、吹込口(第2の吹込口)50と、排気口60と、を備えて概略構成されている。
 本実施形態の排ガス処理装置1を用いることにより、後述する本実施形態の排ガス処理方法を実施することができる。具体的には、第1の燃焼炉10により、炭素化炉及び黒鉛化炉から排出される第1の排ガスAを処理し、第2の燃焼炉40により、耐炎化炉から排出される第2の排ガスBを処理することができる。
 第1の燃焼炉10は、第1の排ガスAを燃焼することにより、第1の排ガスAに含まれるシアン化水素、アンモニア等の有害ガスを燃焼分解するための、筒状(例えば、円筒状)の炉である。この第1の燃焼炉10は、閉塞部12と内周壁14とを有しており、その内部に、一端が閉塞し、他端が開口した第1の内部空間S1を有している。第1の燃焼炉10の材質としては、特に限定されるものではないが、具体的には、例えば、アルミナ質耐火物、アルミナ-シリカ質耐火物等を用いることができる。
 第1の燃焼炉10には、第1のバーナ20と、第1の温度計(図示略)と、絞り部30と、が設けられている。
 第1のバーナ20は、閉塞部12の中央を貫通するように設けられている。そして、第1のバーナ20は、第1の燃焼炉10と同軸上となるように設けられている。これにより、第1のバーナ20は第1の内部空間S1内に火炎を形成することができるともに、この火炎により、当該第1の内部空間S1内の第1ガスを燃焼することができる。第1のバーナ20には、燃料と支燃性ガスとが供給されており、燃料及び支燃性ガスの流量を調整することにより、後述の燃焼量及び酸素比を制御することができる。酸素比を制御することにより、還元雰囲気の火炎を形成することができる。
 燃料としては、特に限定されないが、都市ガス、LPGなどの気体燃料や、灯油、A重油などの液体燃料等を用いるのが好ましい。
 支燃性ガスとしては、酸素を含むガスであれば特に限定されないが、酸素濃度が20.8(空気)~100体積%(純酸素)のガスを用いるのが好ましい。また、分解速度向上の観点から、酸素濃度が25~100体積%のガスを用いるのが特に好ましい。酸素濃度が高いガスを用いることで、燃焼炉内の温度を上げることができ、分解速度を速くすることができる。その結果、第1の内部空間S1内の排ガス滞留時間が短くなるため、第1の燃焼炉10を小さくすることができる。
 本実施形態の排ガス処理装置1(あるいは第1のバーナ20)には、第1の燃焼炉10内の温度及び第2の燃焼炉40内の温度を基に第1のバーナ20の燃焼量(後述する)を制御するための制御部(図示略)が設けられている。
 第1のバーナ20には、第1の排ガスAの供給路(図示略)が設けられている。そして、第1の燃焼炉10内の第1の内部空間S1に開口した、第1のバーナ20の先端部には、第1の排ガスAの供給口(図示略)が設けられている。これにより、第1のバーナ20は、第1の内部空間S1に還元雰囲気の火炎を形成するとともに、第1の排ガスAを第1の内部空間S1内に供給することができる。
 絞り部30は、内周壁14の開口部13側に設けられている。絞り部30により、開口部13の開口面積を規制することができる。開口面積を規制することにより、後述する第2の内部空間S2内のガス(酸素を含む)が第1の内部空間S1へ侵入することを防ぐことができる。その結果、第1の内部空間S1内を還元化雰囲気に維持することができる。
 第2の燃焼炉40は、第1の燃焼炉10の二次側に設けられている。第2の燃焼炉40は、第2の排ガスBを燃焼することにより、第2の排ガスBに含まれるシアン化水素、アンモニア等の有害ガスを燃焼分解するための、筒状(例えば、円筒状)の炉である。この第2の燃焼炉40は、閉塞部42と内周壁44とを有しており、その内部に、一端が閉塞し、他端が開口した第2の内部空間S2を有している。第2の燃焼炉40の材質としては、特に限定されるものではないが、具体的には、例えば、アルミナ質耐火物、アルミナ-シリカ室耐火物等を用いることができる。
 本実施形態の排ガス処理装置1は、第1の燃焼炉10の開口部13と、第2の燃焼炉40の開口部43とが互いに対向した状態で接合されており、第1の内部空間S1と第2の内部空間S2とが連通されている。これにより、第1の排ガスAを燃焼させた後の第3の排ガスを、第1の内部空間S1から第2の内部空間S2へ供給することができる。(以下、第1の排ガスが第1の燃焼炉10で燃焼された後の排ガスを、「第3の排ガス」と定義する。)
 第2の燃焼炉40では、上記第3の排ガスの顕熱及び潜熱を用いて、第2の排ガスBを燃焼することができる。第2の排ガスBを燃焼することにより、第2の排ガスBに含まれるシアン化水素等の有害ガスを燃焼分解することができる。
 第2の燃焼炉40には、吹込口(第2の吹込口)50と、排気口60と、が設けられている。
 吹込口(第2の吹込口)50は、第2の燃焼炉40の内周壁44の開口部43側に設けられている。吹込口50から、第2の排ガスBを、第2の内部空間S2に供給することができる。吹込口50は、内周壁44の接線方向に第2の排ガスBを吹き込むことができるように設けられている。これにより、第2の内部空間S2内に、第3の排ガスと第2の排ガスBとによる旋回流を形成することができるため、第2の排ガスB中に含まれる有害ガスを効率よく燃焼分解することができる。
 排気口60は、第2の燃焼炉40の閉塞部42を貫通するように設けられている。排気口60から、第2の内部空間S2内で燃焼したガスを、外部に排出することができる。
(排ガス処理方法)
 次に、上述した排ガス処理装置1を用いた本実施形態の排ガス処理方法を説明する。
 本実施形態の排ガス処理方法は、第1の排ガスAを第1の燃焼工程により処理し、第2の排ガスBを第2の燃焼工程により処理する排ガス処理方法である。
 第1の燃焼工程は、第1の排ガスAを酸素比が0.8以下の低酸素比で燃焼する工程である。具体的には、第1の燃焼工程では、先ず、炭素化工程及び黒鉛化工程により排出されるガス(第1の排ガスA)を、第1のバーナ20から第1の内部空間S1へ供給する。次に、供給された第1の排ガスAを、第1のバーナ20により1000~1600℃の温度範囲で燃焼する。第1の燃焼炉10内の温度は第1の温度計(図示略)により測定されており、また、第2の燃焼炉40内の温度は第2の温度計(図示略)により測定されている。測定した温度に基づいて、制御部(図示略)により第1のバーナ20の燃焼量を制御することで、燃焼温度を制御する。また、第1のバーナ20には、燃料ガス及び支燃性ガスが供給されており、燃料ガス及び支燃性ガスの供給量を制御することで、燃焼量を制御する。
 なお、「燃焼量」とは、燃料を燃焼することにより生じた、単位時間あたりの熱量のことである。燃焼量が多いほど、単位時間当たりに発生する熱量が多くなるため、第1の内部空間S1の温度が高くなる。
 ところで、第1の燃焼炉10で処理する第1の排ガスAは、シアン化水素、アンモニア等を高濃度で含有する窒素ベースの排ガスであるため、量論比付近より酸素比が高い条件(酸素比0.8より高い)で燃焼処理すると大量のNOが生成する。そのため、第1の燃焼炉10では、酸素比0.8以下の燃焼条件で、還元雰囲気を形成しながら処理を行う。
 これによりNOの生成を抑制しながら、燃焼分解することが可能となる。そのため、本実施形態の排ガス処理方法では、燃料ガスに対して支燃性ガスに含まれる酸素の割合を制御することで、酸素比を制御している。
 なお、「酸素比」とは、バーナに供給される酸素量を、バーナに供給される燃料を燃焼させるのに必要とされる理論必要酸素量で除した値をいう。したがって、理論的には、酸素比1.0の状態が、酸素を過不足なく用いて完全燃焼することが可能な状態といえる。
 第1の排ガスAを燃焼することで、第1の排ガスAに含まれるシアン化水素、アンモニア等の有害ガスを燃焼分解する。燃焼により生じた第3の排ガスを、開口部13を介して第2の燃焼炉40に供給する。
 第2の燃焼工程は、第2の燃焼炉40において、上記第1の燃焼工程により排出された排ガスの顕熱と潜熱とを利用して、第2の排ガスBを燃焼する工程である。
 ところで、第2の排ガスBは、シアン化水素、アンモニアを含有する空気ベースの排ガスであり、第1の排ガスAに比較して排出量が非常に多い。そのため、第1の排ガスAと同じように酸素比を0.8以下に下げて燃焼分解しようとした場合、大量の燃料を使用する必要があり、現実的でない。また、シアン化水素、アンモニアは、酸素が存在する雰囲気においても、低い温度で燃焼処理することにより、NOの生成を抑えながら分解することができる。
 そこで、本実施形態の排ガス処理方法では、第2の排ガスBを700~1200℃の温度範囲で燃焼することにより、NOの生成を抑えながら、シアン化水素、アンモニアを分解する。
 具体的には、先ず、第1の燃焼炉10から供給された第3の排ガスを、第2の燃焼炉40に設けられた吹込口50から供給される第2の排ガスBと混合する。第2の内部空間S2内で、第2の排ガスBと第3の排ガスとを混合することにより、第3の排ガスに含まれるCOやH等のガスと、第2の排ガスBに含まれる酸素とが燃焼し、燃焼により生じた熱により、第2の燃焼炉40内の温度を700℃以上に上げることができる。第2の燃焼炉40内の温度が700℃以上になることにより、第2の排ガスBに含まれるシアン化水素等の有害ガスを燃焼分解する。このように、第2の燃焼工程では、第1の燃焼工程により排出した第3の排ガスの顕熱および潜熱(排ガスの燃焼熱量)を有効に利用するものである。
 なお、第2の燃焼炉40内の温度は第2の温度計(図示略)により測定されている。測定した温度に基づいて、制御部(図示略)により第1のバーナ20の酸素比を制御することで、第2の燃焼炉40に流入する未燃ガス量を制御する。これにより、第2の燃焼炉40内の温度を制御することができる。
 次に、第2の内部空間S2内での燃焼により生じた排ガスを、排気口60から外部に排出することで、本実施形態の排ガス処理方法が完了する。
 以上説明したように、本実施形態の排ガス処理装置1によれば、第1の排ガスAを処理する第1の燃焼炉10と、第1の燃焼炉に設けられた第1のバーナ20と、第2の排ガスBを処理する第2の燃焼炉40と、を備え、第1の燃焼炉10の二次側に第2の燃焼炉40が設けられているとともに、第1の燃焼炉10の第1の内部空間S1と、第2の燃焼炉40の第2の内部空間S2とが、連通されている構成となっており、第1の燃焼炉10で燃焼した後の第3の排ガスを、第2の燃焼炉40に供給することができる。これにより、第2の燃焼炉40では、第3の排ガスの顕熱及び潜熱を利用して、第2の排ガスBを処理することができる。その結果、第1及び第2の排ガスA,Bを処理するために要する燃料の使用量を低減することができる。さらに、第1の排ガスA及び第2の排ガスBを一つの装置により処理することができるため、設備コスト及び保守コストの低減をすることができる。
 また、本実施形態の排ガス処理装置1によれば、第1の内部空間S1と第2の内部空間S2との間の開口面積を規制するための絞り部30を備える構成となっているため、第2の内部空間S2内のガス(酸素を含む)が第1の内部空間S1へ侵入するのを防ぐことができ、第1の内部空間S1内を還元化雰囲気に維持することができる。
 次に、本実施形態の排ガス処理方法によれば、第1の排ガスAを、酸素比が0.8以下の低酸素比で燃焼する構成となっているため、NOの生成を抑制しながら、第1の排ガスAを処理することができる。
 また、本実施形態の排ガス処理方法によれば、第1の排ガスAを処理する第1の燃焼工程と、第2の排ガスBを処理する第2の燃焼工程と、を含み、第2の燃焼工程において、第1の燃焼工程により排出された排ガスの顕熱と潜熱とを利用して、第2の排ガスBを燃焼する構成となっているため、バーナの燃料の使用量を低減することができる。さらに、炭素化炉及び黒鉛化炉から排出される排ガスと、耐炎化炉から排出される排ガスと、を連続する工程により処理することができるため、設備コストや保守コストを低減することができる。
<第2の実施形態>
 次に、本発明を適用した第2の実施形態である排ガス処理装置について説明する。図2は、本発明を適用した第2の実施形態である排ガス処理装置の断面図である。
 図2に示すように、本実施形態の排ガス処理装置101は、第1の燃焼炉10と、第1のバーナ20と、絞り部30と、第2の燃焼炉40と、吹込口(第2の吹込口)50と、排気口60と、吹込口(第1の吹込口)151と、を備えて概略構成されている。すなわち、本実施形態の排ガス処理装置101は、吹込口151を備える点において、上述した排ガス処理装置1と異なる構成となっている。そのため、排ガス処理装置1と同一の構成については同一の符号を付すとともに、説明を省略する。
 吹込口(第1の吹込口)151は、第1の燃焼炉10の内周壁14の閉塞部12側に設けられている。吹込口151により、第1の排ガスAを、第1の内部空間S1に供給することができる。吹込口151は、内周壁14の接線方向に第1の排ガスAを吹き込むことができるように設けることができる。これにより、第1の内部空間S1内に、第1の排ガスAによる旋回流を形成することができるため、第1の排ガスA中に含まれる有害ガスを効率よく燃焼分解することができる。
 本実施形態の排ガス処理装置101によれば、吹込口151を備える構成となっており、第1の排ガスAを第1の燃焼炉10の内周壁14から供給することができる。これにより、酸素の存在する火炎付近に直接第1の排ガスAが入らないため、NOの生成をさらに抑制することができる。
<第3の実施形態>
 次に、図3は、本発明を適用した第3の実施形態である排ガス処理装置の構成を示す図である。
 図3に示すように、本実施形態の排ガス処理装置201は、第1の燃焼炉210と、第1のバーナ20と、第2の燃焼炉240と、吹込口(第2の吹込口)250と、排気口60と、第2のバーナ221と、連結管231と、を備えて概略構成されている。本実施形態の排ガス処理装置201は、第2のバーナ221を備えており、さらに第1の燃焼炉210と第2の燃焼炉240との間に連結管231を設けており、かつ第1の燃焼炉210と第2の燃焼炉240とが別々の炉体で構成されている点において、上述した排ガス処理装置1と異なる構成となっている。そのため、排ガス処理装置1と同一の構成については同一の符号を付すとともに、説明を省略する。
 第1の燃焼炉210は、第1の排ガスAを燃焼することにより、第1の排ガスAに含まれるシアン化水素、アンモニア等の有害ガスを燃焼分解するための炉である。第1の燃焼炉210の形状は、両端が閉塞した筒状(例えば、円筒状)である。第1の燃焼炉210は、内部に第1の内部空間S1を有する。また、第1の燃焼炉210の内周壁の下底側に開口部213を有する。第1の燃焼炉210の材質としては、特に限定されるものではないが、具体的には、例えば、アルミナ質耐火物、アルミナ-シリカ質耐火物等を用いることができる。
 第1の温度計215は、内周壁214に設けられている。第1の温度計215により、第1の燃焼炉210内の温度を測定することができる。第1の燃焼炉210内の温度を基に、制御部(図示略)により、第1のバーナ20の燃焼量を制御することができる。
 連結管231は、第1の燃焼炉210内の第1の内部空間S1と、後述する第2の燃焼炉240内の第2の内部空間S2と、を連通させるために設けられた配管である。具体的には、連結管231は、第1の燃焼炉210の開口部213と、後述する第2の燃焼炉240の開口部243と、を接続するように設けられている。連結管231の材質としては、特に限定されるものではないが、具体的には、例えば、アルミナ質耐火物、アルミナ-シリカ質耐火物等を用いることができる。
 連結管231の内径と、開口部213及び開口部243の開口面積と、を規制することにより、第2の内部空間S2内のガス(酸素を含む)が第1の内部空間S1へ侵入することを防ぐことができる。その結果、第1の内部空間S1内を還元化雰囲気に維持することができる。
 第2の燃焼炉240は、第2の排ガスBを燃焼することにより、第2の排ガスBに含まれるシアン化水素、アンモニア等の有害ガスを燃焼分解するための炉である。第2の燃焼炉240は、連結管231を介して、第1の燃焼炉210の二次側に設けられている。第2の燃焼炉240の形状は、両端が閉塞した筒状(例えば、円筒状)である。第2の燃焼炉240は、内部に第2の内部空間S2を有する。また、第2の燃焼炉240の内周壁の下底側に開口部243を有する。第2の燃焼炉240の材質としては、特に限定されるものではないが、具体的には、例えば、アルミナ質耐火物、アルミナ-シリカ質耐火物等を用いることができる。
 第2のバーナ221は、第2の燃焼炉240の内周壁244の吹込口250側に設けられている。第2のバーナ221により、第2の排ガスBと第3の排ガスとの燃焼を安定して行うことができる。第2のバーナ221には、燃料と支燃性ガスとが供給されており、燃料及び支燃性ガスの流量を調整することにより、燃焼量及び後述の酸素比を制御することができる。燃料及び支燃性ガスとしては、第1のバーナ20と同様のものを用いることができる。第2のバーナ221は常時燃焼させなくてもよく、第2の燃焼炉240内の温度が所定の温度以下になった場合に点火するようにしてもよい。
 吹込口(第2の吹込口)250は、第2の燃焼炉240の開口部243の対面に設けられている。吹込口250から、第2の排ガスBを、第2の内部空間S2に供給することができる。吹込口250は、内周壁244の接線方向に第2の排ガスBを吹き込むことができるように設けることができる。これにより、第2の内部空間S2内に、第2の排ガスBによる旋回流を形成することができるため、第3の排ガスとの混合が促進され、第2の排ガスB中に含まれる有害ガスを効率よく燃焼分解することができる。
 第2の温度計245は、内周壁244に設けられている。第2の温度計245により、第2の燃焼炉240内の温度を測定することができる。第2の燃焼炉240内の温度を基に、制御部(図示略)により、第2のバーナ221の燃焼量や酸素比を制御することができる。
 本実施形態の排ガス処理装置201によれば、第2のバーナ221を備えているため、第2の排ガスBと第3の排ガスとの燃焼を安定に行うことができる。
 また、本実施形態の排ガス処理装置201によれば、第1の燃焼炉210と第2の燃焼炉240との間に連結管231を設けており、かつ第1の燃焼炉210と第2の燃焼炉240とが別々の炉体で構成されているため、炉の長さを調整することができ、縦置きで設置する場合、高さを低くできるとともに、設置の自由度を広くすることができる。
 なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。例えば、上述した実施形態の排ガス処理装置1、101、201では、第2の燃焼炉40で燃焼した排ガスを、排気口60を介して外部に排出する例を説明したが、排気口60に熱交換器を接続し、排気口60から排出される排ガスの顕熱を利用して第2のガスを予熱してもよい。これにより、燃料の使用量を低減することができる。
 また、上述した実施形態の排ガス処理装置1、101、201では、2つの燃焼炉を接合した例を説明したが、一つの燃焼炉内の空間を2つの内部空間に分割する態様であってもよい。その際、燃焼炉の内側に絞り部30を有する場合は、絞り部30の一次側の空間を第1の燃焼炉とし、二次側の空間を第2の燃焼炉とする。また、燃焼炉の内側に絞り部30を有さない場合は、吹込口(第2の吹込口)50の一次側の空間を第1の燃焼炉とし、二次側の空間を第2の燃焼炉とする。
 また、上述した実施形態の排ガス処理装置1、101では、絞り部30が第1の燃焼炉10の開口部13側に設けられている例を説明したが、絞り部30が第2の燃焼炉40の内周壁44の開口部43側に設けられていてもよい。
 また、上述した実施形態の排ガス処理装置1、101では、第2の燃焼炉40にバーナが設けられていない例を説明したが、第2の燃焼炉40の内周壁44を貫通するように、第2のバーナを設けてもよい。第2のバーナにより、第2の排ガスBと第3の排ガスとの燃焼を安定に行うことができる。
<実施例1>
(直燃方式との比較)
 図1に示す本実施形態の排ガス処理装置1、及び従来技術である直燃方式の排ガス処理装置を用いて、炭素化炉および黒鉛化炉から排出される第1の排ガス、及び耐炎化炉から排出される第2の排ガスの模擬ガスを用いて処理試験を行った。
 表1に第1の排ガスと第2の排ガスの模擬ガスの組成と流量を示す。模擬ガスにはHCNの代替としてNOを用いた(NOを模擬ガスとして使用することの妥当性については後述する)。本処理試験では、模擬ガスについて3つの条件により行った(条件1-1、1-2、1-3)。
 表2に本実施形態の排ガス処理装置1と直燃方式の排ガス処理装置のバーナの燃焼条件を示す。
 なお、本実施例では、第1のバーナ20では、支燃性ガスとして酸素濃度100%の純酸素を用い、酸素比0.7で燃焼させた。燃焼炉の温度は、第1の燃焼炉10が1600℃、第2の燃焼炉40が1000℃であった。
 また、直燃方式の処理装置では、1000℃で処理を行った。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表3に試験結果を示す。本結果から、本実施形態の排ガス処理装置1では、NOとNHを最も高濃度で添加した条件1-1においても、アンモニア(NH)を極低濃度まで分解することができ、NOの生成を90ppm程度に抑えることができることを確認した。一方、直燃方式の排ガス処理装置では、NOとNHを分解しようとすると、NO濃度が高くなることを確認した。
 また、本実施形態の排ガス処理装置1では、直燃方式に比べて少ない燃料で、第1の排ガス及び第2の排ガスを処理することができることを確認した。
Figure JPOXMLDOC01-appb-T000003
<実施例2>
(酸素比の影響)
 実施例1と同じ排ガス処理装置1を用いて、表4に示すように第1のバーナ20の酸素比を変えて、表3の条件1-2に示す第1の排ガス及び第2の排ガスの模擬ガスを処理した後の排ガスに含まれる、NH、NOの濃度を確認した。
Figure JPOXMLDOC01-appb-T000004
 図4に、排ガス処理装置1の排気口60から排出された、処理後の排ガス中のNH、NOの濃度と酸素比との関係を示す。
 本結果から、NHは、全ての条件で0.1ppm以下であり、ほぼ全て分解することができることを確認した。
 また、第1のバーナ20の酸素比を0.8より大きくすると、NOが急激に増加する傾向にあり、酸素比を0.8以下にすることにより、NOの生成を抑制しながら、第1の排ガスを処理することができることを確認した。
<実施例3>
(パイロット設備での試験)
 図3に示す本実施形態の排ガス処理装置201を用いて、パイロット設備で排ガス処理を行った。
 表5に第1の排ガスと第2の排ガスの模擬ガスの組成と流量を示す。第2の排ガスの流量は、300、600、900Nm/hの3条件で実施した(条件3-1、3-2、3-3)。また、表6に上記各排ガス条件におけるバーナ燃焼条件を示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表7に、排ガス処理装置201の排気口60から排出された、処理後の排ガス中のNH、NOの濃度を示す。本結果から、本実施形態の排ガス処理装置201では、NHを極低濃度まで分解することができ、さらに、燃焼に伴うNOの生成を抑制することができることを確認した。
Figure JPOXMLDOC01-appb-T000007
<実施例4>
(模擬ガスの妥当性検証について)
 HCNの代替の模擬ガスとしてNOを用いた。模擬ガスにNOを用いることの妥当性をシミュレーションによる反応解析により検討した。
 反応解析は、CHEMKIN-PRO(Reaction Design社製、詳細化学反応解析支援ソフトウェア)を用いて行った。解析条件を表8に示す。条件4-1は、還元燃焼雰囲気下の第1の燃焼炉10にHCNを添加した場合を示し、条件4-2は、NOを添加した場合を示す。
Figure JPOXMLDOC01-appb-T000008
 図5に、条件4-1の反応解析によるHCNの分解挙動と、NOの生成・分解挙動を示す。また、図6に、条件4-2の反応解析によるNOを添加した場合のNO分解挙動を示す。
 図5から、還元燃焼雰囲気下においてHCNは急激に分解され、それに伴いNOが急激に生成された後、徐々に分解されることを示していることがわかる。図5と図6のNOの濃度変化を比較すると、分解挙動は同様の傾向を示しており、NOを模擬ガスとして用いることにより、HCNの分解に伴って生成されるNOの分解挙動を評価できる。
 本発明の排ガス処理方法及び排ガス処理装置は、シアン化水素、アンモニア等を含む排ガスを処理するための装置及び方法への利用可能性がある。
 1、101、201 排ガス処理装置
 10、210 第1の燃焼炉
 11 炉壁
 12 閉塞部
 13、213 開口部
 14、214 内周壁
 20 第1のバーナ
 30 絞り部
 40、240 第2の燃焼炉
 41 炉壁
 42 閉塞部
 43、243 開口部
 44、244 内周壁
 50、250 吹込口(第2の吹込口)
 60 排気口
 151 吹込口(第1の吹込口)
 215 第1の温度計
 221 第2のバーナ
 222 パイロットバーナ
 231 連結管
 245 第2の温度計
 S1 第1の内部空間
 S2 第2の内部空間
 A 第1の排ガス
 B 第2の排ガス

Claims (14)

  1.  繊維状物質を不活性ガス雰囲気中で炭素化する炭素化炉及び黒鉛化する黒鉛化炉から排出される第1の排ガスを処理する第1の燃焼工程と、空気雰囲気中で耐炎化する耐炎化炉から排出される第2の排ガスを処理する第2の燃焼工程と、を含む排ガス処理方法であって、
     前記第1の燃焼工程において、前記第1の排ガスを酸素比が0.8以下の低酸素比で燃焼し、
     前記第2の燃焼工程において、前記第1の燃焼工程により排出された第3の排ガスの顕熱と潜熱とを利用して、前記第2の排ガスを燃焼することを特徴とする排ガス処理方法。
  2.  前記第1の燃焼工程において、1000~1600℃で前記第1の排ガスを燃焼し、
     前記第2の燃焼工程において、700~1200℃で前記第2の排ガスを燃焼することを特徴とする請求項1に記載の排ガス処理方法。
  3.  第1の排ガスを処理する第1の燃焼炉と、
     第2の排ガスを処理する第2の燃焼炉と、
     前記第1の燃焼炉内に前記第1の排ガスを供給する第1の排ガス供給手段と、
     前記第2の燃焼炉内に前記第2の排ガスを供給する第2の排ガス供給手段と、
     前記第1の燃焼炉に設けられた第1のバーナと、を備え、
     前記第1の燃焼炉の二次側に前記第2の燃焼炉が設けられているとともに、
     前記第1の燃焼炉の内部空間と、前記第2の燃焼炉の内部空間とが、連通されていることを特徴とする排ガス処理装置。
  4.  前記第1の燃焼炉及び前記第2の燃焼炉は、それぞれ開口部を有しており、前記開口部同士が互いに対向した状態で接合されていることを特徴とする請求項3に記載の排ガス処理装置。
  5.  前記第1の燃焼炉及び前記第2の燃焼炉の少なくともいずれか一方が、前記開口部の開口面積を規制する絞り部を有することを特徴とする請求項4に記載の排ガス処理装置。
  6.  前記第1の燃焼炉と前記第2の燃焼炉との間に設けられ、当該第1の燃焼炉の内部空間と当該第2の燃焼炉の内部空間とを連通させる連通管をさらに備えることを特徴とする請求項3に記載の排ガス処理装置。
  7.  前記第2の燃焼炉に設けられた第2のバーナをさらに備えることを特徴とする請求項3乃至6のいずれか一項に記載の排ガス処理装置。
  8.  前記第1の燃焼炉内の温度を測定する第1の温度計と、
     前記第2の燃焼炉内の温度を測定する第2の温度計と、
     前記第1のバーナの燃焼量を制御する制御部と、をさらに備え、
     前記第1の温度計及び前記第2の温度計から得た温度に基づいて前記第1のバーナの燃焼量を制御することを特徴とする請求項3乃至6のいずれか一項に記載の排ガス処理装置。
  9.  前記第1の燃焼炉内の温度を測定する第1の温度計と、
     前記第2の燃焼炉内の温度を測定する第2の温度計と、
     前記第1のバーナ及び前記第2のバーナの燃焼量を制御する制御部と、をさらに備え、
     前記第1の温度計及び前記第2の温度計から得た温度に基づいて前記第1のバーナ及び前記第2のバーナの燃焼量を制御することを特徴とする請求項7に記載の排ガス処理装置。
  10.  前記第1の燃焼炉に設けられている前記第1のバーナの支燃性ガスとして、酸素濃度が25~100体積%の酸素富化空気を用いることを特徴とする請求項3乃至9のいずれか一項に記載の排ガス処理装置。
  11.  前記第1の排ガス供給手段が前記第1のバーナであり、前記第1の排ガスを前記第1のバーナから供給することを特徴とする請求項3乃至10のいずれか一項に記載の排ガス処理装置。
  12.  前記第1の排ガス供給手段が、前記第1の燃焼炉の炉壁に設けられた第1の吹込口であり、前記第1の排ガスを前記第1の吹込口から供給することを特徴とする請求項3乃至10のいずれか一項に記載の排ガス処理装置。
  13.  前記第2の排ガス供給手段が、前記第2の燃焼炉の炉壁に設けられた第2の吹込口であり、前記第2の吹込口は、前記第2の排ガスを前記第2の燃焼炉の内周壁の接線方向から吹き込むことができるように設けられていることを特徴とする請求項3乃至12のいずれか一項に記載の排ガス処理装置。
  14.  前記排ガス処理装置の後段に熱交換器をさらに備え、前記第2の燃焼炉から排出される排ガスの顕熱を利用して前記第2の排ガスを予熱することを特徴とする請求項3乃至13のいずれか一項に記載の排ガス処理装置。
PCT/JP2015/075754 2015-01-21 2015-09-10 排ガス処理方法及び排ガス処理装置 WO2016117167A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES15878856T ES2742896T3 (es) 2015-01-21 2015-09-10 Método de tratamiento de gases de escape y dispositivo de tratamiento de gases de escape
EP15878856.2A EP3249295B1 (en) 2015-01-21 2015-09-10 Exhaust gas treatment method and exhaust gas treatment device
KR1020177018623A KR101973957B1 (ko) 2015-01-21 2015-09-10 배기 가스 처리 방법 및 배기 가스 처리 장치
US15/541,757 US10502417B2 (en) 2015-01-21 2015-09-10 Exhaust gas treatment method and exhaust gas treatment device
CN201580070682.6A CN107110500B (zh) 2015-01-21 2015-09-10 废气处理方法及废气处理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015009572A JP6307769B2 (ja) 2015-01-21 2015-01-21 排ガス処理方法及び排ガス処理装置
JP2015-009572 2015-01-21

Publications (1)

Publication Number Publication Date
WO2016117167A1 true WO2016117167A1 (ja) 2016-07-28

Family

ID=56416730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075754 WO2016117167A1 (ja) 2015-01-21 2015-09-10 排ガス処理方法及び排ガス処理装置

Country Status (8)

Country Link
US (1) US10502417B2 (ja)
EP (1) EP3249295B1 (ja)
JP (1) JP6307769B2 (ja)
KR (1) KR101973957B1 (ja)
CN (1) CN107110500B (ja)
ES (1) ES2742896T3 (ja)
TW (1) TWI675170B (ja)
WO (1) WO2016117167A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230055A1 (ja) * 2017-06-13 2018-12-20 東レ株式会社 炭素繊維の製造方法
WO2022061473A1 (en) * 2020-09-25 2022-03-31 Industrial Ceramics Limited Device for enhancing reaction kinetics for incineration process

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6491147B2 (ja) * 2016-07-20 2019-03-27 大陽日酸株式会社 排ガス処理方法、排ガス処理装置及び炭素繊維製造システム
CN108261902B (zh) * 2017-01-04 2023-12-01 恩国环保科技(上海)有限公司 一种炭化炉尾气处理装置及处理方法
CN108240631A (zh) * 2018-01-03 2018-07-03 上海煜工环保科技有限公司 一种含VOCs的废氮气高温焚毁处置系统及方法
CN108800168A (zh) * 2018-06-26 2018-11-13 宜兴市智博环境设备有限公司 一种三段式有机氮废液焚烧装置及焚烧工艺
CN113719843B (zh) * 2021-08-12 2022-09-09 中国矿业大学 一种低浓度瓦斯资源再利用的方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5385975A (en) * 1977-01-07 1978-07-28 Continental Carbon Co Method and apparatus for combustion of industrial waste gases
JPS58164922A (ja) * 1982-03-11 1983-09-29 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ アンモニア−含有廃ガスの燃焼方法および装置
JPH06184831A (ja) * 1992-12-15 1994-07-05 Tonen Corp 炭素繊維の製造方法
JP2001355820A (ja) * 2000-06-12 2001-12-26 Sumitomo Seika Chem Co Ltd 排ガスの処理方法および処理装置
JP2003130326A (ja) * 2001-10-26 2003-05-08 Mitsubishi Heavy Ind Ltd ガス燃焼処理方法およびその装置
JP3106971U (ja) * 2004-08-02 2005-01-27 ロザイ工業株式会社 直接燃焼式脱臭装置
JP2007093156A (ja) * 2005-09-30 2007-04-12 Nikko Kinzoku Kk 排ガスの処理方法
JP2012067977A (ja) * 2010-09-24 2012-04-05 Mitsubishi Rayon Co Ltd 焼成炉の排ガス燃焼装置
JP2012067419A (ja) * 2010-09-24 2012-04-05 Mitsubishi Rayon Co Ltd 炭素化炉用排ガス処理装置
JP2013032608A (ja) * 2011-06-29 2013-02-14 Toray Ind Inc 排ガス処理方法
JP2014528052A (ja) * 2011-09-09 2014-10-23 ダイカー コンバスチョン エンジニアーズ ビー.ヴイ.Duiker Combustion Engineers B.V. Nh3を焼却する方法及びnh3焼却炉

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4519993A (en) 1982-02-16 1985-05-28 Mcgill Incorporated Process of conversion for disposal of chemically bound nitrogen in industrial waste gas streams
JPS58164922U (ja) * 1982-04-30 1983-11-02 ダイキヨ−・ベバスト株式会社 乗物の天井窓装置
JP3106971B2 (ja) 1996-08-21 2000-11-06 トヨタ自動車株式会社 酸素センサ
JP2000111025A (ja) * 1998-09-30 2000-04-18 Hosokawa Micron Corp 二次燃焼炉
JP2001324119A (ja) 2000-05-12 2001-11-22 Mitsubishi Rayon Co Ltd 炭素化炉用排ガス処理装置および炭素化炉からの排ガス処理方法
JP4247701B2 (ja) * 2001-07-13 2009-04-02 カシオ計算機株式会社 動画記録装置及び動画記録方法
JP3892263B2 (ja) 2001-10-01 2007-03-14 三菱レイヨン株式会社 耐炎化炉、及び耐炎化炉の温度制御方法
US7799297B2 (en) 2003-07-10 2010-09-21 Taiheiyo Cement Corporation Device and method for processing combustion exhaust gas
US7273366B1 (en) 2003-10-28 2007-09-25 Soil-Therm Equipment, Inc. Method and apparatus for destruction of vapors and waste streams
US7845166B2 (en) * 2007-09-27 2010-12-07 Tenneco Automotive Operating Company Inc. Exhaust system with plural emission treatment devices
JP5097564B2 (ja) 2008-01-23 2012-12-12 三菱レイヨン株式会社 炭素繊維製造装置
JP5492482B2 (ja) 2009-07-14 2014-05-14 株式会社桂精機製作所 直接燃焼式脱臭炉

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5385975A (en) * 1977-01-07 1978-07-28 Continental Carbon Co Method and apparatus for combustion of industrial waste gases
JPS58164922A (ja) * 1982-03-11 1983-09-29 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ アンモニア−含有廃ガスの燃焼方法および装置
JPH06184831A (ja) * 1992-12-15 1994-07-05 Tonen Corp 炭素繊維の製造方法
JP2001355820A (ja) * 2000-06-12 2001-12-26 Sumitomo Seika Chem Co Ltd 排ガスの処理方法および処理装置
JP2003130326A (ja) * 2001-10-26 2003-05-08 Mitsubishi Heavy Ind Ltd ガス燃焼処理方法およびその装置
JP3106971U (ja) * 2004-08-02 2005-01-27 ロザイ工業株式会社 直接燃焼式脱臭装置
JP2007093156A (ja) * 2005-09-30 2007-04-12 Nikko Kinzoku Kk 排ガスの処理方法
JP2012067977A (ja) * 2010-09-24 2012-04-05 Mitsubishi Rayon Co Ltd 焼成炉の排ガス燃焼装置
JP2012067419A (ja) * 2010-09-24 2012-04-05 Mitsubishi Rayon Co Ltd 炭素化炉用排ガス処理装置
JP2013032608A (ja) * 2011-06-29 2013-02-14 Toray Ind Inc 排ガス処理方法
JP2014528052A (ja) * 2011-09-09 2014-10-23 ダイカー コンバスチョン エンジニアーズ ビー.ヴイ.Duiker Combustion Engineers B.V. Nh3を焼却する方法及びnh3焼却炉

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230055A1 (ja) * 2017-06-13 2018-12-20 東レ株式会社 炭素繊維の製造方法
CN110709542A (zh) * 2017-06-13 2020-01-17 东丽株式会社 碳纤维的制造方法
KR20200016214A (ko) * 2017-06-13 2020-02-14 도레이 카부시키가이샤 탄소섬유의 제조 방법
US11261545B2 (en) 2017-06-13 2022-03-01 Toray Industries, Inc. Carbon fiber production method
KR102507504B1 (ko) 2017-06-13 2023-03-08 도레이 카부시키가이샤 탄소섬유의 제조 방법
WO2022061473A1 (en) * 2020-09-25 2022-03-31 Industrial Ceramics Limited Device for enhancing reaction kinetics for incineration process

Also Published As

Publication number Publication date
KR101973957B1 (ko) 2019-04-30
US20170370580A1 (en) 2017-12-28
CN107110500A (zh) 2017-08-29
JP2016133286A (ja) 2016-07-25
KR20170093904A (ko) 2017-08-16
EP3249295B1 (en) 2019-08-07
ES2742896T3 (es) 2020-02-17
JP6307769B2 (ja) 2018-04-11
CN107110500B (zh) 2019-07-12
EP3249295A1 (en) 2017-11-29
EP3249295A4 (en) 2018-08-22
TW201627607A (zh) 2016-08-01
TWI675170B (zh) 2019-10-21
US10502417B2 (en) 2019-12-10

Similar Documents

Publication Publication Date Title
WO2016117167A1 (ja) 排ガス処理方法及び排ガス処理装置
KR100827869B1 (ko) 연료공급장치 및 연료공급방법
JP3665542B2 (ja) Nox低減のための燃料希釈方法および装置
JP2020112280A (ja) アンモニアを混焼できるボイラ装置及び火力発電設備
JP2022015464A (ja) アンモニア燃料燃焼装置
US20120129111A1 (en) Premix for non-gaseous fuel delivery
KR20160003670A (ko) 방사 버너
Teng et al. Control of NOx emissions through combustion modifications for reheating furnaces in steel plants
JP5635285B2 (ja) ガラス溶解炉およびガラス溶解炉における排ガスの処理方法
CN109477636B (zh) 废气处理方法、废气处理装置及碳纤维制造系统
US9004910B2 (en) Method for combustion of a low-grade fuel
JP4876621B2 (ja) 炭素繊維製造時の排ガス処理方法
WO2018230055A1 (ja) 炭素繊維の製造方法
JP7387243B2 (ja) アンモニア燃料燃焼装置
KR840000354B1 (ko) 저 NOx 연소 방법
JP2024004304A (ja) 浸炭用ガス発生装置、及び浸炭用ガス生成方法
Kim et al. Investigation of Fuel Lean Reburning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878856

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015878856

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177018623

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15541757

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE