WO2016114381A1 - 接続構造体 - Google Patents

接続構造体 Download PDF

Info

Publication number
WO2016114381A1
WO2016114381A1 PCT/JP2016/051091 JP2016051091W WO2016114381A1 WO 2016114381 A1 WO2016114381 A1 WO 2016114381A1 JP 2016051091 W JP2016051091 W JP 2016051091W WO 2016114381 A1 WO2016114381 A1 WO 2016114381A1
Authority
WO
WIPO (PCT)
Prior art keywords
row
bump
input
bumps
output
Prior art date
Application number
PCT/JP2016/051091
Other languages
English (en)
French (fr)
Inventor
川津 雅巳
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2016114381A1 publication Critical patent/WO2016114381A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body

Definitions

  • the present invention relates to a connection structure in which an electronic component and a circuit board are connected, and relates to a connection structure in which an electronic component is connected to a circuit board through an adhesive.
  • liquid crystal display devices and organic EL panels have been used as various display means such as televisions, PC monitors, mobile phones, smart phones, portable game machines, tablet terminals, wearable terminals, and in-vehicle monitors.
  • the driving IC is directly mounted on the glass substrate of the display panel using an anisotropic conductive film (ACF).
  • ACF anisotropic conductive film
  • a plurality of transparent electrodes made of ITO (indium tin oxide) or the like are formed on a glass substrate on which an IC or a flexible substrate is mounted, and an electronic component such as an IC or a flexible substrate is connected to the transparent electrode.
  • the electronic component connected to the glass substrate has a plurality of electrode terminals formed on the mounting surface corresponding to the transparent electrodes, and is thermocompression-bonded on the glass substrate through the anisotropic conductive film, thereby A transparent electrode is connected.
  • An anisotropic conductive film is a film in which conductive particles are mixed in a binder resin, and heat conduction is performed between two conductors to provide electrical continuity between the conductors with the conductive particles. Resin maintains the mechanical connection between the conductors.
  • a highly reliable thermosetting binder resin is usually used, but a photocurable binder resin or a photothermal binder resin may be used.
  • the anisotropic conductive film When connecting an electronic component to a transparent electrode via such an anisotropic conductive film, first, the anisotropic conductive film is temporarily pasted onto the transparent electrode of the glass substrate by a temporary pressure bonding means. Subsequently, after mounting the electronic component on the glass substrate via the anisotropic conductive film to form a temporary connection body, the electronic component is moved to the transparent electrode side together with the anisotropic conductive film by a thermocompression bonding means such as a thermocompression bonding head. Heat and press. By the heating by the thermocompression bonding head, the anisotropic conductive film undergoes a thermosetting reaction, whereby the electronic component is bonded onto the transparent electrode.
  • a thermocompression bonding means such as a thermocompression bonding head.
  • the input bumps 51 are arranged in a line along one side edge 50a on the mounting surface of the glass substrate 56.
  • An input bump region 52 is formed, and an output bump region 54 in which output bumps 53 are arranged in two rows in a staggered manner is provided along the other side edge 50b opposite to one side edge 50a.
  • the bump arrangement varies depending on the type of IC chip. In general, a bumped IC chip has a larger number of output bumps 53 than the number of input bumps 51, and the area of the output bump area 54 is larger than the area of the input bump area 52.
  • the shape of the input bump 51 is larger than that of the output bump 53.
  • the bumped IC chip 50 is separated by forming the input bump 51 on one side of the pair of side edges facing each other and forming the output bump 53 on the other side, and no bump is formed in the central portion. There is an area.
  • the IC chip 50 has different bump arrangements and sizes of the input bumps 51 and the output bumps 53 and is asymmetrically arranged on the mounting surface.
  • an IC chip such as a driving IC used for various liquid crystal display panels such as a smart phone
  • output signals corresponding to each pixel increase, and output bumps tend to increase.
  • the input bumps 51 formed on one side edge are arranged in a row while the output bumps 53 formed on the other side edge are arranged in two rows or three or more rows. .
  • the IC chip 50 and glass substrate are also designed to be wider and thinner, and the area between the input and output bump rows increases. For this reason, the area between the bump rows is easily deformed by pressing in the surface direction.
  • the glass substrate and the IC chip may be pulled together by heat shrinkage and curing shrinkage of the binder resin, and may be deformed so that the interval between the bump row regions is narrowed.
  • the distance between the IC chip and the substrate after connection is about 9 to 17 ⁇ m, and if an attempt is made to maintain this distance by interposing particles, particles having a particle diameter of at least 10 ⁇ m or more are arranged. Is required. When such large-diameter particles are used, it is difficult to ensure insulation between adjacent bumps, and there is a high possibility that a short circuit will occur between the bumps.
  • an object of the present invention is to provide a connection structure that can effectively prevent connection failure due to deformation of an IC chip in a connection body in which an electronic component such as an IC chip is anisotropically conductively connected to a substrate. .
  • connection structure includes a first bump row in which bumps are arranged along one side edge, and the other side edge facing the one side edge.
  • An electronic component including a second bump array in which bumps are arranged along the first bump array, a first terminal array in which electrode terminals connected to the bumps are arranged in the first bump array, and A second terminal row in which electrode terminals connected to the bumps arranged in a second bump row are arranged, and the first terminal row and the second terminal row, And a substrate having a protrusion supporting a region between the bump rows between one bump row and the second bump row, and the electronic component is pressure-bonded to the substrate with an adhesive.
  • the protrusion is formed at a predetermined position on the substrate according to the region between the bump rows of the electronic component, the pressing force related to the region between the bump rows by the crimping head can be received by the protrusion, The warping of the electronic component is suppressed, and the bump can be sufficiently pressed against the electrode terminal by the crimping head.
  • FIG. 1 is a cross-sectional view showing a connection process of an electronic component to which the present invention is applied.
  • 2A and 2B are diagrams showing the mounting portion of the transparent substrate, where FIG. 2A is a plan view and FIG. 2B is a cross-sectional view taken along line A-A ′.
  • FIG. 3 is a cross-sectional view showing a connection process of an electronic component to which the present invention is applied.
  • FIG. 4 is a plan view showing a mounting surface of the electronic component.
  • FIG. 5 is a cross-sectional view showing the connection structure.
  • FIG. 6 is a plan view showing a configuration in which the center of the protrusion is arranged at a position within ⁇ 10% of the distance between the bump rows from the center between the bump rows.
  • FIG. 6 is a plan view showing a configuration in which the center of the protrusion is arranged at a position within ⁇ 10% of the distance between the bump rows from the center between the bump rows.
  • FIG. 7 is a plan view showing a configuration in which the protrusions are arranged on both sides of the center line between the bump rows.
  • FIG. 8 shows a configuration in which protrusion rows are formed on both sides of the center line between the bump rows, and the center line between the bump rows is arranged within ⁇ 10% of the distance between the bump rows from the center between the bump rows.
  • FIG. 9 is a cross-sectional view showing an anisotropic conductive film.
  • FIG. 10A is a plan view of a liquid crystal driving IC
  • FIG. 10B is a cross-sectional view showing a connection process.
  • FIG. 11 is a cross-sectional view showing a state in which the liquid crystal driving IC is warped.
  • the liquid crystal display panel 10 includes two transparent substrates 11 and 12 made of a glass substrate and the like, and the transparent substrates 11 and 12 are bonded to each other by a frame-shaped seal 13. .
  • the liquid crystal 14 is sealed in a space surrounded by the transparent substrates 11 and 12 to form a panel display unit 15.
  • the transparent substrates 11 and 12 have a pair of striped transparent electrodes 16 and 17 made of ITO (Indium Tin Oxide) or the like on both inner surfaces facing each other so as to intersect each other.
  • the transparent electrodes 16 and 17 are configured such that a pixel as a minimum unit of liquid crystal display is configured by the intersection of the transparent electrodes 16 and 17.
  • one transparent substrate 12 is formed to have a larger planar dimension than the other transparent substrate 11, and an edge 12a of the formed transparent substrate 12 has an electronic component.
  • a mounting portion 27 on which the liquid crystal driving IC 18 is mounted via the anisotropic conductive film 1 is provided. 2 and 3, the mounting unit 27 includes an input terminal row 20 in which a plurality of input terminals 19 of the transparent electrode 17 are arranged, and an output terminal row 22 in which a plurality of output terminals 21 are arranged,
  • a substrate-side alignment mark 31 is formed so as to overlap the IC-side alignment mark 32 provided on the liquid crystal driving IC 18.
  • the output terminal row 22 includes a first output terminal row 22a in which the output terminals 21 are arranged on the inner side, that is, the input terminal row 20 side, and a second output in which the output terminals 21 are arranged on the outer side, that is, the outer edge side of the mounting portion 27. And a terminal row 22b.
  • the liquid crystal driving IC 18 can selectively apply a liquid crystal driving voltage to the pixels to change the alignment of the liquid crystal partially and perform a predetermined liquid crystal display.
  • the liquid crystal driving IC 18 has an input in which a plurality of input bumps 23 electrically connected to the input terminal 19 of the transparent electrode 17 are arranged on the mounting surface 18 a on the transparent substrate 12.
  • An output bump row 26 in which a plurality of output bumps 25 that are electrically connected to the bump row 24 and the output terminal 21 of the transparent electrode 17 are arranged is formed.
  • the input bumps 23 and the output bumps 25 for example, copper bumps, gold bumps, or copper bumps plated with gold are suitably used.
  • the liquid crystal driving IC 18 includes, for example, two input bumps 24 in which input bumps 23 are arranged in a line along one side edge of the mounting surface 18a, and two parallel in the width direction perpendicular to the arrangement direction of the output bumps 25.
  • the output bump rows 26a and 26b are formed substantially in parallel.
  • the output bump row 26 includes a first output bump row 26a in which output bumps are arranged on the inner side, that is, the input bump row 24 side, and a second output bump in which output bumps 25 are arranged on the outer side, that is, the outer edge side of the mounting surface 18a. Row 26b.
  • the output bumps 25 of the first and second output bump rows 26a and 26b are arranged in a staggered manner in a plurality of rows along the other side edge facing one side edge.
  • the liquid crystal driving IC 18 has an input bump row 24 formed along one side edge of the mounting surface 18a, and outputs along the other side edge facing the one side edge.
  • the bump row 26 is separated, and a bump row region 30 in which no bump is formed is formed at the center.
  • the input / output bumps 23 and 25 and the input / output terminals 19 and 21 provided on the mounting portion 27 of the transparent substrate 12 are formed at the same number and the same pitch, respectively, so that the transparent substrate 12 and the liquid crystal driving IC 18 are formed. Connected by aligning and connecting.
  • the input bump row 24 is arranged in one or more rows on one side edge of the mounting surface 18a, and the output bumps are arranged on the other side edge. Any configuration in which the rows 26 are arranged in one or a plurality of rows may be employed.
  • a part of the input / output bumps 23 and 25 arranged in a line may be a plurality of lines, and a part of the input / output bumps 23 and 25 arranged in a line may be a line. Good.
  • the input / output bump rows 24 and 26 may be formed in a straight array in which the arrays of the plurality of input / output bumps 23 and 25 are parallel and adjacent bumps are arranged in parallel.
  • 23 and 25 may be formed in a staggered arrangement in which adjacent bumps are evenly displaced from each other in parallel.
  • the input / output bumps 23 and 25 may be arranged along the long side of the IC substrate, and the side bumps may be formed along the short side of the IC substrate.
  • the input / output bumps 23 and 25 may be formed with the same dimensions or different dimensions.
  • the input / output bump rows 24 and 26 the input / output bumps 23 and 25 formed with the same dimensions may be arranged symmetrically or asymmetrically.
  • the input / output bumps 23 and 25 formed with different dimensions may be arranged asymmetrically. May be.
  • liquid crystal driving IC 18 With recent miniaturization and higher functionality of liquid crystal display devices and other electronic devices, electronic components such as the liquid crystal driving IC 18 are required to be smaller and lower in height, and the input / output bumps 23 and 25 are also high in height. Is low (for example, 6 to 15 ⁇ m).
  • the protrusion 40 is formed at a position facing the bump inter-row region 30 when the liquid crystal driving IC 18 is connected to the transparent substrate 12.
  • the protrusion 40 elastically supports the liquid crystal driving IC 18 to prevent bending, and has a shape and a size that do not hinder the flow of the binder resin of the anisotropic conductive film 1, and is formed in a column shape using, for example, a resin Has been.
  • the height of the protrusion 40 is preferably 0.6 to 1.2 times the height of the input / output bumps 23 and 25 of the liquid crystal driving IC 18.
  • a plurality of protrusions 40 are formed along the input / output bump rows 24 and 26. As a result, it is possible to prevent the entire bump row region 30 formed along the input / output bump rows 24 and 26 from being bent.
  • the area of the projection 40 that supports the inter-bump row region 30 of the liquid crystal driving IC 18 is within 50% of the area of the inter-bump row region 30.
  • the inter-bump row region 30 is a region between the input / output bump rows, and in the liquid crystal driving IC 18 shown in FIG. 4, it is a region between the input bump row 24 and the first output bump row 26a.
  • the area of the protrusion 40 is the sum of the areas of all the protrusions 40 when a plurality of protrusions 40 are provided.
  • the conductive material is electrically connected between the input / output terminals 19 and 21 and the input / output bumps 23 and 25 without hindering the flow of the binder resin.
  • the conductive particles 4 can be sandwiched and good electrical conductivity can be secured.
  • the area of the protrusion 40 exceeds 50% of the area between the bump row regions 50, the outflow of the binder resin due to pressurization of the thermocompression bonding head 33 is inhibited by the protrusion 40, and the input / output terminals 19 and 21 and the input / output bumps.
  • the pushing of the conductive particles 4 by 23 and 25 is insufficient, which may increase the conduction resistance.
  • the projections 40, center C in the width direction over between input and output bumps columns 24 and 26 from the center line L 1 between the input bumps column 24 and the first output bumps columns 26a It is preferable to be located in a region R within ⁇ 10% of the distance D between the input bump row 24 and the first output bump row 26a. Since the liquid crystal driving IC 18 is most pushed near the center between the input bump row 24 and the first output bump row 26a, the distance D between the input bump row 24 and the first output bump row 26a from the center. By forming the center C of the protrusion 40 in the region R within ⁇ 10%, it is possible to effectively prevent warping.
  • the projections 40 may be arranged on both sides of the center line L 1 between the input bumps column 24 and the first output bumps column 26a. At this time, the projections 40 may be arranged symmetrically to the center line L 1 as a boundary, and as shown in FIG. 7, may be arranged in a staggered manner equidistant from the center line L 1. Further, as shown in FIG.
  • the projection 40, the projection column 41a which projections on both sides 40 are arranged in the center line L 1, the protruding rib 41a provided with a 41b, the center line L 2 between 41b, the center line L In the width direction extending from 1 to the input / output bump rows 24 and 26, they may be arranged so as to be located in a region R within ⁇ 10% of the distance D between the input bump row 24 and the first output bump row 26a. 7 and 8, the protrusion 40 can effectively prevent the warp of the inter-bump row region 30 that is most pushed.
  • the protrusions 40 may be regularly arranged as shown in FIGS. 6 to 8 or may be randomly arranged.
  • the protrusion 40 elastically supports the liquid crystal driving IC 18 to prevent bending and has a shape and size that do not hinder the flow of the binder resin of the anisotropic conductive film 1. Used to form a column.
  • the protrusion 40 can be formed by the following method.
  • a negative photoresist is applied onto the transparent substrate 12 using a slit coater or the like.
  • the coating thickness is, for example, the height of the input / output bumps 23, 25 such that the height of the protrusion 40 is 0.6 to 1.2 times the height of the input / output bumps 23, 25 of the liquid crystal driving IC 18. ⁇ 2 ⁇ m.
  • the applied photoresist is heated to form a resin layer.
  • exposure light is irradiated onto the resin layer through a photomask having an opening formed at a predetermined position facing the inter-bump row region 30 of the liquid crystal driving IC 18.
  • development processing is performed to remove the unexposed portion of the resin layer, and a protrusion 40 made of the exposed resin layer is formed.
  • the protrusion 40 may be formed by printing an adhesive resin composition used for an anisotropic conductive adhesive and the like, and thermosetting or photocuring.
  • the protrusion 40 is formed by printing an adhesive resin composition containing a film-forming resin, heat and / or photocurable resin, a curing agent, or the like on the transparent substrate 12 in a predetermined pattern, and heating and / or light irradiation. It may be formed by curing.
  • the liquid crystal driving IC 18 is formed with an IC side alignment mark 32 for alignment with the transparent substrate 12 by superimposing the substrate side alignment mark 31 on the mounting surface 18a. Since the wiring pitch of the transparent electrodes 17 of the transparent substrate 12 and the fine pitches of the input / output bumps 23 and 25 of the liquid crystal driving IC 18 are increasing, the liquid crystal driving IC 18 and the transparent substrate 12 are aligned with high precision. Adjustment is required.
  • the substrate side alignment mark 31 and the IC side alignment mark 32 various marks that can be aligned with the transparent substrate 12 and the liquid crystal driving IC 18 can be used.
  • the liquid crystal driving IC 18 is connected to the input / output terminals 19 and 21 of the transparent electrode 17 formed on the mounting portion 27 using the anisotropic conductive film 1 as an adhesive for circuit connection.
  • the anisotropic conductive film 1 contains conductive particles 4, and input / output bumps 23 and 25 of the liquid crystal driving IC 18 and input / output terminals 19 of the transparent electrode 17 formed on the mounting portion 27 of the transparent substrate 12. 21 is electrically connected through the conductive particles 4.
  • the anisotropic conductive film 1 is thermocompression bonded by the thermocompression bonding head 33 to fluidize the binder resin, so that the conductive particles 4 are connected to the input / output terminals 19 and 21 and the input / output bumps 23 and 25 of the liquid crystal driving IC 18.
  • the binder resin is cured in this state. Thereby, the anisotropic conductive film 1 electrically and mechanically connects the transparent substrate 12 and the liquid crystal driving IC 18.
  • an alignment film 28 subjected to a predetermined rubbing process is formed on both the transparent electrodes 16 and 17, and the initial alignment of liquid crystal molecules is regulated by the alignment film 28.
  • a pair of polarizing plates 29a and 29b are disposed outside the transparent substrates 11 and 12, and the light transmitted from a light source (not shown) such as a backlight is transmitted by these polarizing plates 29a and 29b. The vibration direction is regulated.
  • an anisotropic conductive film (ACF) 1 usually has a binder resin layer (adhesive layer) 3 containing conductive particles 4 on a release film 2 as a base material. It is formed.
  • the anisotropic conductive film 1 is a thermosetting adhesive or a photo-curing adhesive such as ultraviolet rays, and is attached to the mounting portion 27 where the input / output terminals 19 and 21 of the transparent substrate 12 of the liquid crystal display panel 10 are formed.
  • the liquid crystal driving IC 18 is mounted and fluidized by being thermally pressed by the thermocompression bonding head 33, and the conductive particles 4 are opposed to the input / output terminals 19 and 21 of the transparent electrode 17 and the liquid crystal driving IC 18 inserted.
  • the conductive particles 4 are crushed between the output bumps 23 and 25 and hardened in a state of being crushed by heating or ultraviolet irradiation.
  • the anisotropic conductive film 1 can connect the transparent substrate 12 and the liquid crystal driving IC 18 to make them conductive.
  • conductive particles 4 are blended in a normal binder resin layer 3 containing a film-forming resin, a thermosetting resin, a latent curing agent, a silane coupling agent, and the like.
  • the release film 2 that supports the binder resin layer 3 includes, for example, a release agent such as silicone on PET (PolyEthylene Terephthalate), OPP (Oriented Polypropylene), PMP (Poly-4-methylpentene-1), PTFE (Polytetrafluoroethylene), and the like. It coats and prevents the anisotropic conductive film 1 from drying, and maintains the shape of the anisotropic conductive film 1.
  • a release agent such as silicone on PET (PolyEthylene Terephthalate), OPP (Oriented Polypropylene), PMP (Poly-4-methylpentene-1), PTFE (Polytetrafluoroethylene), and the like. It coats and prevents the anisotropic conductive film 1 from drying, and maintains the shape of the anisotropic conductive film 1.
  • the film-forming resin contained in the binder resin layer 3 is preferably a resin having an average molecular weight of about 10,000 to 80,000.
  • the film forming resin include various resins such as an epoxy resin, a modified epoxy resin, a urethane resin, and a phenoxy resin. Among these, phenoxy resin is particularly preferable from the viewpoint of film formation state, connection reliability, and the like.
  • thermosetting resin is not particularly limited, and examples thereof include commercially available epoxy resins and acrylic resins.
  • the epoxy resin is not particularly limited.
  • naphthalene type epoxy resin biphenyl type epoxy resin, phenol novolac type epoxy resin, bisphenol type epoxy resin, stilbene type epoxy resin, triphenolmethane type epoxy resin, phenol aralkyl type epoxy resin.
  • an acrylic compound, liquid acrylate, etc. can be selected suitably.
  • what made acrylate the methacrylate can also be used.
  • the latent curing agent is not particularly limited, and examples thereof include various curing agents such as a heat curing type and a UV curing type.
  • the latent curing agent does not normally react, but is activated by various triggers selected according to applications such as heat, light, and pressure, and starts the reaction.
  • the activation method of the thermal activation type latent curing agent includes a method of generating active species (cation, anion, radical) by a dissociation reaction by heating, etc., and it is stably dispersed in the epoxy resin near room temperature, and epoxy at high temperature
  • active species cation, anion, radical
  • Thermally active latent curing agents include imidazole, hydrazide, boron trifluoride-amine complexes, sulfonium salts, amine imides, polyamine salts, dicyandiamide, etc., and modified products thereof. The above mixture may be sufficient. Among these, a microcapsule type imidazole-based latent curing agent is preferable.
  • the silane coupling agent is not particularly limited, and examples thereof include an epoxy type, an amino type, a mercapto sulfide type, and a ureido type. By adding the silane coupling agent, the adhesion at the interface between the organic material and the inorganic material is improved.
  • Examples of the conductive particles 4 include any known conductive particles used in the anisotropic conductive film 1.
  • Examples of the conductive particles 4 include particles of various metals and metal alloys such as nickel, iron, copper, aluminum, tin, lead, chromium, cobalt, silver, gold, metal oxide, carbon, graphite, glass, ceramic, Examples thereof include those in which the surface of particles such as plastic is coated with metal, or those in which the surface of these particles is further coated with an insulating thin film.
  • examples of the resin particle include an epoxy resin, a phenol resin, an acrylic resin, an acrylonitrile / styrene (AS) resin, a benzoguanamine resin, a divinylbenzene resin, a styrene resin, and the like. Can be mentioned.
  • the size of the conductive particles 4 is preferably 1 to 10 ⁇ m, but the present invention is not limited to this.
  • the shape of the anisotropic conductive film 1 is not particularly limited.
  • the shape of the anisotropic conductive film 1 is a long tape shape that can be wound around the take-up reel 6, and is used by cutting a predetermined length. can do.
  • the anisotropic conductive film 1 may be produced by any method, but can be produced, for example, by the following method.
  • An adhesive composition containing a film-forming resin, a thermosetting resin, a latent curing agent, a silane coupling agent, conductive particles and the like is prepared.
  • molded the thermosetting resin composition which contained the electroconductive particle 4 suitably in the binder resin layer 3 as an adhesive agent in the present invention
  • Such an adhesive is not limited to this, and may be, for example, an insulating adhesive film made of only the binder resin layer 3.
  • the adhesive according to the present invention has a configuration in which an insulating adhesive layer composed only of the binder resin layer 3 and a conductive particle-containing layer composed of the binder resin layer 3 containing the conductive particles 4 are laminated. it can.
  • the adhesive is not limited to such an adhesive film formed into a film, but an insulating adhesive composed of only a conductive adhesive paste in which conductive particles 4 are dispersed in a binder resin composition or a binder resin composition. It may be a paste.
  • the adhesive according to the present invention includes any of the forms described above.
  • connection process Next, a connection process for connecting the liquid crystal driving IC 18 to the transparent substrate 12 will be described. First, the anisotropic conductive film 1 is temporarily attached on the mounting portion 27 where the input / output terminals 19 and 21 of the transparent substrate 12 are formed. Next, the transparent substrate 12 is placed on the stage of the connection device, and the liquid crystal driving IC 18 is disposed on the mounting portion 27 of the transparent substrate 12 via the anisotropic conductive film 1.
  • thermocompression bonding head 33 heated to a predetermined temperature for curing the binder resin layer 3 is hot-pressed from above the liquid crystal driving IC 18 at a predetermined pressure and time.
  • the binder resin layer 3 of the anisotropic conductive film 1 exhibits fluidity and flows out from between the mounting surface 18a of the liquid crystal driving IC 18 and the mounting portion 27 of the transparent substrate 12, and the conductive in the binder resin layer 3
  • the conductive particles 4 are sandwiched between the input / output bumps 23 and 25 of the liquid crystal driving IC 18 and the input / output terminals 19 and 21 of the transparent substrate 12 and are crushed.
  • the protrusions 40 are formed at predetermined positions according to the bump inter-row regions 30 of the liquid crystal driving IC 18, The pressing force related to the region 30 is received by the protrusion 40. As a result, warpage of the liquid crystal driving IC 18 is suppressed, and the input / output bumps 23 and 25 are sufficiently pressed against the input / output terminals 19 and 21 by the thermocompression bonding head 33.
  • the conductive particles 4 are electrically connected between the input / output bumps 23 and 25 and the input / output terminals 19 and 21, and the binder resin heated by the thermocompression bonding head 33 in this state is cured. To do. Thereby, the liquid crystal display panel 10 in which electrical conductivity is ensured between the input / output bumps 23 and 25 of the liquid crystal driving IC 18 and the input / output terminals 19 and 21 formed on the transparent substrate 12 can be manufactured.
  • the conductive particles 4 that are not between the input / output bumps 23 and 25 and the input / output terminals 19 and 21 are dispersed in the binder resin in the space between the adjacent input / output bumps 23 and 25 and are electrically insulated. Is maintained. Therefore, the liquid crystal display panel 10 is electrically connected only between the input / output bumps 23 and 25 of the liquid crystal driving IC 18 and the input / output terminals 19 and 21 of the transparent substrate 12.
  • the anisotropic conductive film 1 is not limited to the thermosetting type, and may be a photo-curing type or a photo-heat combined type adhesive as long as pressure connection is performed.
  • an evaluation glass substrate in which protrusions are formed between input / output terminal arrays and an evaluation glass substrate in which protrusions are not formed between input / output terminal arrays are prepared, and an anisotropic conductive film is interposed therebetween.
  • a connected body sample to which an evaluation IC on which an input / output bump array was formed was connected was prepared. And about the connection body sample which concerns on an Example and a comparative example, the height of electroconductive particle and the conduction resistance after a reliability test were measured and evaluated.
  • the binder resin layer of the anisotropic conductive film used for connecting the IC for evaluation was 60 parts by mass of phenoxy resin (trade name: YP50, manufactured by Nippon Steel Chemical Co., Ltd.), epoxy resin (trade name: EP828, manufactured by Mitsubishi Chemical Corporation).
  • a binder resin composition prepared by adding 5 parts by mass of conductive particles (trade name: Micropearl AUL-703, particle size 3 ⁇ m, manufactured by Sekisui Chemical Co., Ltd.) to a solvent is prepared, and this binder resin composition is applied onto a release film. Formed by drying.
  • an evaluation IC is prepared in which input bumps are arranged in one row along one side edge, and output bumps are arranged in two rows along the other side edge opposite to the one side edge. did.
  • the input / output bumps are all gold-plated bumps having a height of 15 ⁇ m.
  • the bump row arranged on the outer side, that is, on the other side edge side is defined as the first row, and the inner side, that is, on the input bump row side.
  • the arranged bump row is defined as a second row.
  • the input terminals are arranged in one row along one side edge, and the output terminals are arranged in two rows in a staggered manner along the other side edge facing the one side edge.
  • a 7 mm ITO-coated glass was prepared.
  • the evaluation glass substrate has a plurality of protrusions arranged in the center between the input and output terminals (see FIG. 2).
  • the protrusions are 60 parts by mass of a phenoxy resin (trade name: YP50, manufactured by Nippon Steel Chemical Co., Ltd.), 29 parts by mass of a diacrylate of ethylene oxide-modified bisphenol F (trade name: M208, manufactured by Toagosei Co., Ltd.), a photopolymerization initiator ( (Product name: IRGACURE 184, manufactured by BASF)
  • a resin composition in which a solvent was added to 2 parts by mass was prepared, and this resin composition was printed along the center of the region between the input and output terminal rows and photocured. .
  • An anisotropic conductive film was temporarily attached to the glass substrate for evaluation, an evaluation IC was mounted, and a connector sample was prepared by thermocompression bonding with a thermocompression bonding head under the conditions of 170 ° C., 60 MPa, and 5 seconds.
  • a connector sample was prepared by thermocompression bonding with a thermocompression bonding head under the conditions of 170 ° C., 60 MPa, and 5 seconds.
  • column was measured by cross-sectional observation. Since the conductive particles have good conductivity by being sandwiched and compressed between the output bump and the output terminal, the lower the height, the better, and the difference in height between the first row and the second row. A smaller value is preferable because warpage is suppressed.
  • connection body sample the conduction resistance after the reliability test in the first row, which is easily affected by the warpage of the evaluation IC, was measured.
  • the connected body sample was placed in a thermostatic chamber having a temperature of 85 ° C. and a humidity of 85% RH for 500 hours.
  • the conduction resistance after the reliability test was ⁇ (best) when less than 10 ⁇ , ⁇ (ordinary) when 10 ⁇ or more but less than 30 ⁇ , and x (defective) when 30 ⁇ or more.
  • Example 1 In Example 1, protrusions were formed on the glass substrate for evaluation. The area of the protrusion was set to 50% of the area of the area between the bump rows of the evaluation IC (see FIG. 4). The height of the protrusions was 1.2 times the height of the input / output bumps of the evaluation IC. In the connected body sample according to Example 1, the height of the conductive particles sandwiched under the first row of output bumps is 2.3 ⁇ m, and the height of the conductive particles sandwiched under the second row of output bumps is The evaluation of the conduction resistance after the reliability test in the first row was 2.3 (best) at 2.3 ⁇ m.
  • Example 2 protrusions were formed on the glass substrate for evaluation.
  • the area of the protrusion was set to 50% of the area of the area between the bump rows of the evaluation IC (see FIG. 4).
  • the height of the protrusions was 0.6 times the height of the input / output bumps of the evaluation IC.
  • the height of the conductive particles sandwiched under the first row of output bumps is 2.3 ⁇ m
  • the height of the conductive particles sandwiched under the second row of output bumps is The evaluation of the conduction resistance after the reliability test in the first row was 2.1 (best) at 2.1 ⁇ m.
  • Example 3 In Example 3, protrusions were formed on the glass substrate for evaluation. The area of the protrusion was set to 20% of the area of the area between the bump rows of the evaluation IC (see FIG. 4). The height of the protrusions was 1.2 times the height of the input / output bumps of the evaluation IC. In the connection body sample according to Example 3, the height of the conductive particles sandwiched under the output bumps in the first row is 2.2 ⁇ m, and the height of the conductive particles sandwiched under the output bumps in the second row is The evaluation of the conduction resistance after the reliability test in the first row was ⁇ (best) at 2.2 ⁇ m.
  • Example 4 In Example 4, protrusions were formed on the glass substrate for evaluation. The area of the protrusion was set to 20% of the area of the area between the bump rows of the evaluation IC (see FIG. 4). The height of the protrusions was 0.6 times the height of the input / output bumps of the evaluation IC. In the connection body sample according to Example 3, the height of the conductive particles sandwiched under the output bumps in the first row is 2.2 ⁇ m, and the height of the conductive particles sandwiched under the output bumps in the second row is The evaluation of the conduction resistance after the reliability test in the first row was 2.1 (best) at 2.1 ⁇ m.
  • Comparative Example 1 In Comparative Example 1, no protrusion was formed on the glass substrate for evaluation. In the connection sample according to Comparative Example 1, the height of the conductive particles sandwiched under the output bumps in the first row is 2.9 ⁇ m, and the height of the conductive particles sandwiched under the output bumps in the second row is The evaluation of the conduction resistance after the reliability test in the first column was 2.0 (defect) at 2.0 ⁇ m.
  • Comparative Example 2 In Comparative Example 2, protrusions were formed on the glass substrate for evaluation. The area of the protrusion was set to 70% of the area of the area between the bump rows of the evaluation IC (see FIG. 4). The height of the protrusions was 1.2 times the height of the input / output bumps of the evaluation IC. In the connection body sample according to Comparative Example 2, the height of the conductive particles sandwiched under the output bumps in the first row is 2.8 ⁇ m, and the height of the conductive particles sandwiched under the output bumps in the second row is The evaluation of the conduction resistance after the reliability test in the first row was ⁇ (normal) at 2.7 ⁇ m.
  • Comparative Example 3 In Comparative Example 3, protrusions were formed on the glass substrate for evaluation. The area of the protrusion was set to 50% of the area of the area between the bump rows of the evaluation IC (see FIG. 4). The height of the protrusions was 2.0 times the height of the input / output bumps of the evaluation IC. In the connected body sample according to Comparative Example 3, the height of the conductive particles sandwiched under the first row of output bumps is 2.7 ⁇ m, and the height of the conductive particles sandwiched under the second row of output bumps is The evaluation of the conduction resistance after the reliability test in the first row was ⁇ (normal) at 2.8 ⁇ m.
  • Comparative Example 1 in which no projection was formed on the evaluation glass substrate, the region between the bump rows of the evaluation IC was warped, and the conductivity sandwiched under the first row of output bumps provided on the side edge side. The compression of the particles became insufficient, and the conduction resistance evaluation was x (defect) even after the reliability test.
  • the height of the protrusion formed on the evaluation glass substrate is twice as high as the bump height of the evaluation IC, so the conductive particles are pushed in by the input / output terminals and the input / output bumps. This hindered the rise of the conduction resistance, and the conduction resistance evaluation after the reliability test in the first column was ⁇ (normal).
  • the height of the protrusion formed on the evaluation glass substrate is preferably 0.6 to 1.2 times the bump height of the evaluation IC.

Abstract

 ICチップ等の電子部品が基板に異方性導電接続された接続体において、ICチップの変形による接続不良を防止する。 一方の側縁に沿ってバンプ23が配列された第1のバンプ列24と、一方の側縁と対向する他方の側縁に沿ってバンプ25が配列された第2のバンプ列26とを備えた電子部品18と、第1のバンプ列24に配列されたバンプ23と接続される電極端子19が配列された第1の端子列20と、第2のバンプ列26に配列されたバンプ25と接続される電極端子21が配列された第2の端子列22と、第1の端子列20と第2の端子列22との間に設けられ、第1のバンプ列24と第2のバンプ列26との間のバンプ列間領域30を支持する突起40とを有する基板12とを備え、電子部品18が基板12に接着剤1を介して圧着されている。

Description

接続構造体
 本発明は、電子部品と回路基板とが接続された接続構造体に関し、接着剤を介して電子部品が回路基板に圧着されることにより接続された接続構造体に関する。
 本出願は、日本国において2015年1月16日に出願された日本特許出願番号特願2015-007185を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。
 従来から、テレビやPCモニタ、携帯電話やスマートホン、携帯型ゲーム機、タブレット端末やウェアラブル端末、あるいは車載用モニタ等の各種表示手段として、液晶表示装置や有機ELパネルが用いられている。近年、このような表示装置においては、ファインピッチ化、軽量薄型化等の観点から、異方性導電フィルム(ACF:Anisotropic Conductive Film)を用いて、駆動用ICを直接表示パネルのガラス基板上に実装する工法や、駆動回路等が形成されたフレキシブル基板を直接ガラス基板に実装する工法が採用されている。
 ICやフレキシブル基板が実装されるガラス基板には、ITO(酸化インジウムスズ)等からなる透明電極が複数形成され、この透明電極上にICやフレキシブル基板等の電子部品が接続される。ガラス基板に接続される電子部品は、実装面に、透明電極に対応して複数の電極端子が形成され、異方性導電フィルムを介してガラス基板上に熱圧着されることにより、電極端子と透明電極とが接続される。
 異方性導電フィルムは、バインダー樹脂に導電性粒子を混ぜ込んでフィルム状としたもので、2つの導体間で加熱圧着されることにより導電性粒子で導体間の電気的導通がとられ、バインダー樹脂にて導体間の機械的接続が保持される。異方性導電フィルムを構成する接着剤としては、通常、信頼性の高い熱硬化性のバインダー樹脂が用いられるが、光硬化性のバインダー樹脂又は光熱併用型のバインダー樹脂であってもよい。
 このような異方性導電フィルムを介して電子部品を透明電極へ接続する場合は、先ず、ガラス基板の透明電極上に異方性導電フィルムを仮圧着手段によって仮貼りする。続いて、異方性導電フィルムを介してガラス基板上に電子部品を搭載し仮接続体を形成した後、熱圧着ヘッド等の熱圧着手段によって電子部品を異方性導電フィルムとともに透明電極側へ加熱押圧する。この熱圧着ヘッドによる加熱によって、異方性導電フィルムは熱硬化反応を起こし、これにより電子部品が透明電極上に接着される。
特開2013-110404号公報
 この種のCOG接続に用いられるICチップ50は、例えば図10(A)に示すように、ガラス基板56への実装面に、一方の側縁50aに沿って入力バンプ51が一列で配列された入力バンプ領域52が形成され、一方の側縁50aと対向する他方の側縁50bに沿って出力バンプ53が二列の千鳥状に配列された出力バンプ領域54が設けられている。バンプ配列はICチップの種類によって様々であるが、一般にバンプ付きICチップは、入力バンプ51の数よりも出力バンプ53の数が多く、入力バンプ領域52の面積よりも出力バンプ領域54の面積が広くなり、また入力バンプ51の形状が出力バンプ53の形状よりも大きく形成されている。
 また、バンプ付きICチップ50は、対向する一対の側縁の一方側に入力バンプ51が形成され、他方側に出力バンプ53が形成されることにより離間し、中央部にバンプが形成されていない領域がある。
 また、ICチップ50は、入力バンプ51と出力バンプ53との各バンプ配列及び大きさが異なり、実装面において非対称に配置されている。そして、例えばスマートホン等の各種液晶表示パネルに用いられる駆動用IC等のICチップにおいては、高画素化が進むにつれて各画素に対応した出力信号も増え、出力バンプも増加する傾向にあり、一方の側縁に形成されている入力バンプ51が一列で配列されているのに対し、他方の側縁に形成される出力バンプ53は2列又は3列以上に配列される設計も提案されている。
 さらに、近年のスマートホンやタブレット端末、ウェアラブル端末等のモバイル機器の小型化、薄型化の進展に伴い、ICチップ50やガラス基板も幅広かつ薄型に設計され、入出力バンプ列間の領域が広がることから、面方向の押圧に対してバンプ列間領域が変形しやすい。また、バインダー樹脂の熱収縮や硬化収縮によりガラス基板やICチップが互いに引っ張られ、バンプ列間領域の間隔が狭まるように変形することもある。
 このため、図10(B)に示すように、ICチップ50は、回路基板56に接続する際に熱圧着ヘッド58によって加熱押圧されると、入力バンプ51や出力バンプ53が形成されていない中央のバンプ列間領域において異方性導電フィルム55のバインダー樹脂の排除が進み、図11に示すように、撓みが生じる。その結果、ICチップ50は、基板の外側縁に形成されている出力バンプ53bが基板の内側に形成されている出力バンプ53aに比して、ガラス基板56の透明電極57から浮いた状態となり、導電性粒子60への押圧力が弱まり、接続不良となる恐れが生じる。
 このような課題に対して、ICチップと基板に接する粒子をバンプ列間領域に配置することにより,ICチップと基板の変形を抑える方法も提案されている。しかし、実際には、接続後のICチップと基板の間隔は9~17μm程度であり、粒子を介在させることによりこの間隔を保持しようとすると、少なくとも10μm以上の粒子径を有する粒子を配置することが必要となる。このように大径の粒子を用いると、隣接するバンプ間の絶縁性を確保することが難しく、バンプ間でショートが発生する可能性が高くなる。
 また,粒子を所定のバンプ列間領域に配置することは技術的に難しく、且つ、ICチップのバンプレイアウトに合わせて位置を変える必要があり、製造上もコストが掛かる。
 そこで、本発明は、ICチップ等の電子部品が基板に異方性導電接続された接続体において、ICチップの変形による接続不良を効果的に防止できる接続構造体を提供することを目的とする。
 上述した課題を解決するために、本発明に係る接続構造体は、一方の側縁に沿ってバンプが配列された第1のバンプ列と、上記一方の側縁と対向する他方の側縁に沿ってバンプが配列された第2のバンプ列とを備えた電子部品と、上記第1のバンプ列に配列された上記バンプと接続される電極端子が配列された第1の端子列と、上記第2のバンプ列に配列された上記バンプと接続される電極端子が配列された第2の端子列と、上記第1の端子列と上記第2の端子列との間に設けられ、上記第1のバンプ列と上記第2のバンプ列との間のバンプ列間領域を支持する突起とを有する基板とを備え、上記電子部品が上記基板に接着剤を介して圧着されたものである。
 本発明によれば、基板に、電子部品のバンプ列間領域に応じて所定の位置に突起を形成しているため、圧着ヘッドによるバンプ列間領域に係る押圧力を突起によって受けることができ、電子部品の反りが抑制されるとともに、圧着ヘッドによってバンプを電極端子に対して十分に押圧することができる。
図1は、本発明が適用された電子部品の接続工程を示す断面図である。 図2は、透明基板の実装部を示す図であり、(A)は平面図、(B)はA-A’断面図である。 図3は、本発明が適用された電子部品の接続工程を示す断面図である。 図4は、電子部品の実装面を示す平面図である。 図5は、接続構造体を示す断面図である。 図6は、突起の中心をバンプ列間の中心からバンプ列間距離の±10%以内の位置に配置した構成を示す平面図である。 図7は、突起をバンプ列間の中心線の両側に配置した構成を示す平面図である。 図8は、バンプ列間の中心線の両側に突起列を形成するとともに、突起列間の中心線がバンプ列間の中心からバンプ列間距離の±10%以内となるように配置した構成を示す平面図である。 図9は、異方性導電フィルムを示す断面図である。 図10(A)は液晶駆動用ICの平面図であり、図10(B)は接続工程を示す断面図である。 図11は、液晶駆動用ICに反りが生じた状態を示す断面図である。
 以下、本発明が適用された接続構造体について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。また、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
 [液晶表示パネル]
 以下では、本発明が適用された接続体として、ガラス基板に、電子部品として液晶駆動用のICチップが実装された液晶表示パネルを例に説明する。この液晶表示パネル10は、図1に示すように、ガラス基板等からなる二枚の透明基板11,12が対向配置され、これら透明基板11,12が枠状のシール13によって互いに貼り合わされている。そして、液晶表示パネル10は、透明基板11,12によって囲繞された空間内に液晶14が封入されることによりパネル表示部15が形成されている。
 透明基板11,12は、互いに対向する両内側表面に、ITO(酸化インジウムスズ)等からなる縞状の一対の透明電極16,17が、互いに交差するように形成されている。そして、両透明電極16,17は、これら両透明電極16,17の当該交差部位によって液晶表示の最小単位としての画素が構成されるようになっている。
 両透明基板11,12のうち、一方の透明基板12は、他方の透明基板11よりも平面寸法が大きく形成されており、この大きく形成された透明基板12の縁部12aには、電子部品として液晶駆動用IC18が異方性導電フィルム1を介して実装される実装部27が設けられている。なお、実装部27には、図2、図3に示すように、透明電極17の複数の入力端子19が配列された入力端子列20及び複数の出力端子21が配列された出力端子列22、液晶駆動用IC18に設けられたIC側アライメントマーク32と重畳させる基板側アライメントマーク31が形成されている。
 実装部27は、例えば、一つの入力端子列20と、出力端子21の配列方向と直交する幅方向に並列する2つの出力端子列22a,22bとが略平行に形成されている。出力端子列22は、内側すなわち入力端子列20側に出力端子21が配列された第1の出力端子列22aと、外側すなわち実装部27の外縁側に出力端子21が配列された第2の出力端子列22bとを有する。
 [液晶駆動用IC]
 液晶駆動用IC18は、画素に対して液晶駆動電圧を選択的に印加することにより、液晶の配向を部分的に変化させて所定の液晶表示を行うことができるようになっている。また、図3、図4に示すように、液晶駆動用IC18は、透明基板12への実装面18aに、透明電極17の入力端子19と導通接続される複数の入力バンプ23が配列された入力バンプ列24と、透明電極17の出力端子21と導通接続される複数の出力バンプ25が配列された出力バンプ列26が形成されている。入力バンプ23及び出力バンプ25は、例えば銅バンプや金バンプ、あるいは銅バンプに金メッキを施したもの等が好適に用いられる。
 液晶駆動用IC18は、例えば、入力バンプ23が実装面18aの一方の側縁に沿って一列で配列された入力バンプ列24と、出力バンプ25の配列方向と直交する幅方向に並列する2つの出力バンプ列26a,26bとが略平行に形成されている。出力バンプ列26は、内側すなわち入力バンプ列24側に出力バンプが配列された第1の出力バンプ列26aと、外側すなわち実装面18aの外縁側に出力バンプ25が配列された第2の出力バンプ列26bとを有する。なお、第1、第2の出力バンプ列26a,26bの出力バンプ25は、一方の側縁と対向する他方の側縁に沿って複数列で千鳥状に配列されている。
 また、液晶駆動用IC18は、図4に示すように、実装面18aの一方の側縁に沿って入力バンプ列24が形成され、当該一方の側縁と対向する他方の側縁に沿って出力バンプ列26が形成されることにより離間し、中央部にバンプが形成されていないバンプ列間領域30が形成されている。
 なお、入出力バンプ23,25と、透明基板12の実装部27に設けられている入出力端子19,21とは、それぞれ同数かつ同ピッチで形成され、透明基板12と液晶駆動用IC18とが位置合わせされて接続されることにより、接続される。
 なお、入出力バンプ列24,26の配列は、図4に示す以外にも、実装面18aの一方の側縁に入力バンプ列24が一又は複数列で配列され、他方の側縁に出力バンプ列26が一又は複数列で配列されるいずれの構成であってもよい。また、入出力バンプ列24,26は、一列配列の入出力バンプ23,25の一部が複数列となってもよく、複数配列の入出力バンプ23,25の一部が一列となってもよい。さらに、入出力バンプ列24,26は、複数列の各入出力バンプ23,25の配列が平行且つ隣接するバンプ同士が並列するストレート配列で形成されてもよく、あるいは複数列の各入出力バンプ23,25の配列が平行且つ隣接するバンプ同士が均等にズレる千鳥配列で形成されてもよい。
 また、液晶駆動用IC18は、IC基板の長辺に沿って入出力バンプ23,25を配列させるとともに、IC基板の短辺に沿ってサイドバンプを形成してもよい。なお、入出力バンプ23,25は、同一寸法で形成してもよく、異なる寸法で形成してもよい。また、入出力バンプ列24,26は、同一寸法で形成された入出力バンプ23,25が対称又は非対称に配列されてもよく、異なる寸法で形成された入出力バンプ23,25が非対称に配列されてもよい。
 なお、近年の液晶表示装置その他の電子機器の小型化、高機能化に伴い、液晶駆動用IC18等の電子部品も小型化、低背化が求められ、入出力バンプ23,25もその高さが低くなっている(例えば6~15μm)。
 [突起]
 ここで、図4に示すように、液晶駆動用IC18は、入力バンプ列24と第1の出力バンプ列26aとの間にバンプ列間領域30が形成されている。そして、図5に示すように、液晶駆動用IC18は、バンプ列間領域30が透明基板12の入力端子列20と第1の出力端子列22aとの間に設けられた突起40によって支持されている。これにより、液晶駆動用IC18は、熱圧着ヘッド33によって押圧される際にも、バンプ列間領域30の反りが防止され、入出力バンプ23,25の入出力端子19,21に対する押圧力が不足することなく、接続信頼性を向上することができる。
 突起40は、図2(A)(B)に示すように、透明基板12に液晶駆動用IC18が接続される際に、バンプ列間領域30と対向する位置に形成されている。突起40は、液晶駆動用IC18を弾性支持することにより撓みを防止するとともに、異方性導電フィルム1のバインダー樹脂の流動を阻害しない形状、大きさを有し、例えば樹脂を用いて柱状に形成されている。また、突起40の高さは、液晶駆動用IC18の入出力バンプ23,25の高さに対して0.6~1.2倍とすることが好ましい。
 また、突起40は、入出力バンプ列24,26に沿って、複数形成されることが好ましい。これにより、入出力バンプ列24,26に沿って形成されているバンプ列間領域30の全体にわたって撓みを防止することができる。
 また、液晶駆動用IC18のバンプ列間領域30を支持する突起40の面積は、バンプ列間領域30の面積の50%以内であることが好ましい。バンプ列間領域30は、入出力バンプ列の間の領域をいい、図4に示す液晶駆動用IC18においては、入力バンプ列24と第1の出力バンプ列26aとの間の領域をいう。突起40の面積は、突起40が複数設けられているときは、全突起40の面積の合計とする。
 突起40の面積がバンプ列間領域50の面積の50%以内とされることにより、バインダー樹脂の流動を阻害することなく、入出力端子19,21と入出力バンプ23,25との間で導電性粒子4を挟持させ、良好な導通性を確保することができる。一方、突起40の面積がバンプ列間領域50の面積の50%を超えると、熱圧着ヘッド33の加圧によるバインダー樹脂の流出が突起40によって阻害され、入出力端子19,21と入出力バンプ23,25とによる導電性粒子4の押し込みが不足し、導通抵抗の上昇を招く恐れがある。
 また、図6に示すように、突起40は、中心Cが、入力バンプ列24及び第1の出力バンプ列26aの間の中心線Lから入出力バンプ列24,26間にわたる幅方向に、入力バンプ列24及び第1の出力バンプ列26a間の距離Dの±10%以内の領域Rに位置することが好ましい。液晶駆動用IC18は、入力バンプ列24及び第1の出力バンプ列26aの間の中心付近が最も押し込まれることから、当該中心から入力バンプ列24及び第1の出力バンプ列26a間の距離Dの±10%以内の領域Rに突起40の中心Cが位置するように形成されることで、効果的に反りを防止することができる。
 また、突起40は、入力バンプ列24及び第1の出力バンプ列26aの間の中心線Lの両側に配置してもよい。このとき、突起40は、中心線Lを境に対称に配置してもよく、また、図7に示すように、中心線Lから等距離の位置に千鳥状に配置してもよい。また、図8に示すように、突起40は、中心線Lの両側に突起40が配列された突起列41a,41bを設けるとともに突起列41a,41b間の中心線Lが、中心線Lから入出力バンプ列24,26間にわたる幅方向に、入力バンプ列24及び第1の出力バンプ列26a間の距離Dの±10%以内の領域Rに位置するように配置してもよい。図7及び図8に示す配置によっても、突起40は最も押し込まれるバンプ列間領域30の反りを効果的に防止することができる。
 なお、図8に示すように、突起40は、突起列41a,41b間の中心線Lを、入力バンプ列24及び第1の出力バンプ列26aの間の中心線Lよりも、複数のバンプ列からなる出力バンプ列26側に偏倚させることにより、液晶駆動用IC18の外縁側に形成され反りの影響を受けやすい第2の出力バンプ列26bの導通性を向上させることができる。
 なお、突起40は、図6~図8に示すように規則的に配列されてもよく、ランダムに配列されてもよい。
 [突起製法]
 上述したように、突起40は、液晶駆動用IC18を弾性支持することにより撓みを防止するとともに、異方性導電フィルム1のバインダー樹脂の流動を阻害しない形状、大きさを有し、例えば樹脂を用いて柱状に形成されている。具体的に、突起40は、以下の方法により形成することができる。
 先ず、透明基板12の上に、スリットコーター等を用いてネガ型のフォトレジストを塗布する。塗布厚みは、突起40の高さが液晶駆動用IC18の入出力バンプ23,25の高さに対して0.6~1.2倍となるように、例えば入出力バンプ23,25の高さに対して±2μmとする。その後、塗布したフォトレジストを加熱して樹脂層を作る。
 次いで、液晶駆動用IC18のバンプ列間領域30と対向する所定の位置に開口部が形成されたフォトマスクを介して樹脂層上に露光光を照射する。最後に現像処理を行って未露光部分の樹脂層を除去し、露光された樹脂層からなる突起40が形成される。
 その他にも、突起40は、異方性導電接着剤等に用いられる接着剤樹脂組成物を印刷し、熱硬化あるいは光硬化させることにより形成してもよい。例えば、突起40は、膜形成樹脂、熱及び/又は光硬化性樹脂、硬化剤等を含有する接着剤樹脂組成物を、透明基板12上に所定のパターンで印刷し、加熱及び/又は光照射によって硬化させることにより形成してもよい。
 [その他の構成]
 なお、液晶駆動用IC18は、実装面18aに、基板側アライメントマーク31と重畳させることにより、透明基板12に対するアライメントを行うIC側アライメントマーク32が形成されている。なお、透明基板12の透明電極17の配線ピッチや液晶駆動用IC18の入出力バンプ23,25のファインピッチ化が進んでいることから、液晶駆動用IC18と透明基板12とは、高精度のアライメント調整が求められている。
 基板側アライメントマーク31及びIC側アライメントマーク32は、組み合わされることにより透明基板12と液晶駆動用IC18とのアライメントが取れる種々のマークを用いることができる。
 液晶駆動用IC18は、回路接続用接着剤として異方性導電フィルム1を用いて実装部27に形成されている透明電極17の入出力端子19,21上に接続される。異方性導電フィルム1は、導電性粒子4を含有しており、液晶駆動用IC18の入出力バンプ23,25と透明基板12の実装部27に形成された透明電極17の入出力端子19,21とを、導電性粒子4を介して電気的に接続させるものである。この異方性導電フィルム1は、熱圧着ヘッド33により熱圧着されることによりバインダー樹脂が流動化して導電性粒子4が入出力端子19,21と液晶駆動用IC18の入出力バンプ23,25との間で押し潰され、この状態でバインダー樹脂が硬化する。これにより、異方性導電フィルム1は、透明基板12と液晶駆動用IC18とを電気的、機械的に接続する。
 また、両透明電極16,17上には、所定のラビング処理が施された配向膜28が形成されており、この配向膜28によって液晶分子の初期配向が規制されるようになっている。さらに、両透明基板11,12の外側には、一対の偏光板29a,29bが配設されており、これら両偏光板29a,29bによってバックライト等の光源(図示せず)からの透過光の振動方向が規制されるようになっている。
 [異方性導電フィルム]
 次いで、異方性導電フィルム1について説明する。異方性導電フィルム(ACF:Anisotropic Conductive Film)1は、図9に示すように、通常、基材となる剥離フィルム2上に導電性粒子4を含有するバインダー樹脂層(接着剤層)3が形成されたものである。異方性導電フィルム1は、熱硬化型あるいは紫外線等の光硬化型の接着剤であり、液晶表示パネル10の透明基板12の入出力端子19,21が形成された実装部27に貼着されるとともに液晶駆動用IC18が搭載され、熱圧着ヘッド33により熱加圧されることにより流動化して導電性粒子4が相対向する透明電極17の入出力端子19,21と液晶駆動用IC18の入出力バンプ23,25との間で押し潰され、加熱あるいは紫外線照射により、導電性粒子4が押し潰された状態で硬化する。これにより、異方性導電フィルム1は、透明基板12と液晶駆動用IC18とを接続し、導通させることができる。
 また、異方性導電フィルム1は、膜形成樹脂、熱硬化性樹脂、潜在性硬化剤、シランカップリング剤等を含有する通常のバインダー樹脂層3に導電性粒子4が配合されている。
 バインダー樹脂層3を支持する剥離フィルム2は、例えば、PET(Poly Ethylene Terephthalate)、OPP(Oriented Polypropylene)、PMP(Poly-4-methylpentene-1)、PTFE(Polytetrafluoroethylene)等にシリコーン等の剥離剤を塗布してなり、異方性導電フィルム1の乾燥を防ぐとともに、異方性導電フィルム1の形状を維持する。
 バインダー樹脂層3に含有される膜形成樹脂としては、平均分子量が10000~80000程度の樹脂が好ましい。膜形成樹脂としては、エポキシ樹脂、変形エポキシ樹脂、ウレタン樹脂、フェノキシ樹脂等の各種の樹脂が挙げられる。中でも、膜形成状態、接続信頼性等の観点からフェノキシ樹脂が特に好ましい。
 熱硬化性樹脂としては、特に限定されず、例えば、市販のエポキシ樹脂、アクリル樹脂等が挙げられる。
 エポキシ樹脂としては、特に限定されないが、例えば、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂等が挙げられる。これらは単独でも、2種以上の組み合わせであってもよい。
 アクリル樹脂としては、特に制限はなく、目的に応じてアクリル化合物、液状アクリレート等を適宜選択することができる。例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、イソブチルアクリレート、エポキシアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、ジメチロールトリシクロデカンジアクリレート、テトラメチレングリコールテトラアクリレート、2-ヒドロキシ-1,3-ジアクリロキシプロパン、2,2-ビス[4-(アクリロキシメトキシ)フェニル]プロパン、2,2-ビス[4-(アクリロキシエトキシ)フェニル]プロパン、ジシクロペンテニルアクリレート、トリシクロデカニルアクリレート、トリス(アクリロキシエチル)イソシアヌレート、ウレタンアクリレート等を挙げることができる。なお、アクリレートをメタクリレートにしたものを用いることもできる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 潜在性硬化剤としては、特に限定されないが、例えば、加熱硬化型、UV硬化型等の各種硬化剤が挙げられる。潜在性硬化剤は、通常では反応せず、熱、光、加圧等の用途に応じて選択される各種のトリガにより活性化し、反応を開始する。熱活性型潜在性硬化剤の活性化方法には、加熱による解離反応などで活性種(カチオンやアニオン、ラジカル)を生成する方法、室温付近ではエポキシ樹脂中に安定に分散しており高温でエポキシ樹脂と相溶・溶解し、硬化反応を開始する方法、モレキュラーシーブ封入タイプの硬化剤を高温で溶出して硬化反応を開始する方法、マイクロカプセルによる溶出・硬化方法等が存在する。熱活性型潜在性硬化剤としては、イミダゾール系、ヒドラジド系、三フッ化ホウ素-アミン錯体、スルホニウム塩、アミンイミド、ポリアミン塩、ジシアンジアミド等や、これらの変性物があり、これらは単独でも、2種以上の混合体であってもよい。中でも、マイクロカプセル型イミダゾール系潜在性硬化剤が好適である。
 シランカップリング剤としては、特に限定されないが、例えば、エポキシ系、アミノ系、メルカプト・スルフィド系、ウレイド系等を挙げることができる。シランカップリング剤を添加することにより、有機材料と無機材料との界面における接着性が向上される。
 [導電性粒子]
 導電性粒子4としては、異方性導電フィルム1において使用されている公知の何れの導電性粒子を挙げることができる。導電性粒子4としては、例えば、ニッケル、鉄、銅、アルミニウム、錫、鉛、クロム、コバルト、銀、金等の各種金属や金属合金の粒子、金属酸化物、カーボン、グラファイト、ガラス、セラミック、プラスチック等の粒子の表面に金属をコートしたもの、或いは、これらの粒子の表面に更に絶縁薄膜をコートしたもの等が挙げられる。樹脂粒子の表面に金属をコートしたものである場合、樹脂粒子としては、例えば、エポキシ樹脂、フェノール樹脂、アクリル樹脂、アクリロニトリル・スチレン(AS)樹脂、ベンゾグアナミン樹脂、ジビニルベンゼン系樹脂、スチレン系樹脂等の粒子を挙げることができる。導電性粒子4の大きさは1~10μmが好ましいが、本発明はこれに限定されるものではない。
 なお、異方性導電フィルム1の形状は、特に限定されないが、例えば、図9に示すように、巻取リール6に巻回可能な長尺テープ形状とし、所定の長さだけカットして使用することができる。
 異方性導電フィルム1は、何れの方法で作製するようにしてもよいが、例えば以下の方法によって作製することができる。膜形成樹脂、熱硬化性樹脂、潜在性硬化剤、シランカップリング剤、導電性粒子等を含有する接着剤組成物を調整する。調整した接着剤組成物をバーコーター、塗布装置等を用いて剥離フィルム2上に塗布し、オーブン等によって乾燥させることにより、剥離フィルム2にバインダー樹脂層3が支持された異方性導電フィルム1を得る。
 また、上述の実施の形態では、接着剤として、バインダー樹脂層3に適宜導電性粒子4を含有した熱硬化性樹脂組成物をフィルム状に成形した接着フィルムを例に説明したが、本発明に係る接着剤は、これに限定されず、例えばバインダー樹脂層3のみからなる絶縁性接着フィルムでもよい。また、本発明に係る接着剤は、バインダー樹脂層3のみからなる絶縁性接着剤層と導電性粒子4を含有したバインダー樹脂層3からなる導電性粒子含有層とを積層した構成とすることができる。また、接着剤は、このようなフィルム成形されてなる接着フィルムに限定されず、バインダー樹脂組成物に導電性粒子4が分散された導電性接着ペースト、あるいはバインダー樹脂組成物のみからなる絶縁性接着ペーストとしてもよい。本発明に係る接着剤は、上述したいずれの形態をも包含するものである。
 [接続工程]
 次いで、透明基板12に液晶駆動用IC18を接続する接続工程について説明する。先ず、透明基板12の入出力端子19,21が形成された実装部27上に異方性導電フィルム1を仮貼りする。次いで、この透明基板12を接続装置のステージ上に載置し、透明基板12の実装部27上に異方性導電フィルム1を介して液晶駆動用IC18を配置する。
 次いで、バインダー樹脂層3を硬化させる所定の温度に加熱された熱圧着ヘッド33によって、所定の圧力、時間で液晶駆動用IC18上から熱加圧する。これにより、異方性導電フィルム1のバインダー樹脂層3は流動性を示し、液晶駆動用IC18の実装面18aと透明基板12の実装部27の間から流出するとともに、バインダー樹脂層3中の導電性粒子4は、液晶駆動用IC18の入出力バンプ23,25と透明基板12の入出力端子19,21との間に挟持されて押し潰される。
 このとき、本発明が適用された透明基板12によれば、液晶駆動用IC18のバンプ列間領域30に応じて所定の位置に突起40を形成しているため、熱圧着ヘッド33によるバンプ列間領域30に係る押圧力を突起40によって受ける。これにより、液晶駆動用IC18は、反りが抑制されるとともに、熱圧着ヘッド33によって入出力バンプ23,25が入出力端子19,21に対して十分に押圧される。
 その結果、入出力バンプ23,25と入出力端子19,21との間で導電性粒子4を挟持することにより電気的に接続され、この状態で熱圧着ヘッド33によって加熱されたバインダー樹脂が硬化する。これにより、液晶駆動用IC18の入出力バンプ23,25と透明基板12に形成された入出力端子19,21との間で導通性を確保された液晶表示パネル10を製造することができる。
 入出力バンプ23,25と入出力端子19,21との間にない導電性粒子4は、隣接する入出力バンプ23,25間のスペースにおいてバインダー樹脂に分散されており、電気的に絶縁した状態を維持している。したがって、液晶表示パネル10は、液晶駆動用IC18の入出力バンプ23,25と透明基板12の入出力端子19,21との間のみで電気的導通が図られる。また、異方性導電フィルム1としては、熱硬化型に限らず、加圧接続を行うものであれば、光硬化型もしくは光熱併用型の接着剤を用いてもよい。
 次いで、本発明の実施例について説明する。本実施例では、入出力端子列の間に突起が形成された評価用ガラス基板と、入出力端子列の間に突起を形成しない評価用ガラス基板を用意し、異方性導電フィルムを介して入出力バンプ列が形成された評価用ICを接続した接続体サンプルを作成した。そして、実施例及び比較例に係る接続体サンプルについて、導電性粒子の高さ、及び信頼性試験後における導通抵抗を測定、評価した。
 [異方性導電フィルム]
 評価用ICの接続に用いる異方性導電フィルムのバインダー樹脂層は、フェノキシ樹脂(商品名:YP50、新日鐵化学社製)60質量部、エポキシ樹脂(商品名:EP828、三菱化学社製)40質量部、シランカップリング剤(商品名:KBM-403、信越化学工業社製)1質量部、熱カチオン系硬化剤(商品名:SI‐60L、三新化学工業社製)4質量部、導電性粒子(商品名:ミクロパールAUL-703、粒子径3μm、積水化学工業社製)5質量部を溶剤に加えたバインダー樹脂組成物を調整し、このバインダー樹脂組成物を剥離フィルム上に塗布、乾燥することにより形成した。
 [評価用IC]
 評価素子として、一方の側縁に沿って入力バンプが1列で配列され、当該一方の側縁と対向する他方の側縁に沿って出力バンプが2列で千鳥配列された評価用ICを用意した。入出力バンプは、いずれも高さ15μmの金メッキバンプである。なお、評価用ICの他方の側縁に沿って配列されている2列の出力バンプの内、外側すなわち他方の側縁側に配列されたバンプ列を第1列とし、内側すなわち入力バンプ列側に配列されたバンプ列を第2列とする。
 [評価用ガラス基板]
 評価用ガラス基板として、一方の側縁に沿って入力端子が1列で配列され、当該一方の側縁と対向する他方の側縁に沿って出力端子が2列で千鳥配列された厚さ0.7mmのITOコーティングガラスを用意した。
 評価用ガラス基板には、入出力端子間の中心に複数の突起が配列して形成されている(図2参照)。突起は、フェノキシ樹脂(商品名:YP50、新日鐵化学社製)60質量部、エチレンオキサイド変性ビスフェノールFのジアクリレート(商品名:M208、東亜合成社製)29質量部、光重合開始剤(商品名:IRGACURE184、BASF社製)2質量部に溶剤を加えた樹脂組成物を調整し、この樹脂組成物を入出力端子列間領域の中心に沿って印刷し、光硬化させることにより形成した。
 この評価用ガラス基板に異方性導電フィルムを仮貼りした後、評価用ICを搭載し、熱圧着ヘッドにより170℃、60MPa、5secの条件で熱圧着することにより接続体サンプルを作成した。各接続体サンプルについて、断面観察により、出力バンプ列の第1列及び第2列の各出力バンプ下の導電性粒子の高さを測定した。導電性粒子は、出力バンプと出力端子との間で挟持され圧縮されることにより良好な導通性を備えるため、高さが低いほど良く、また第1列と第2列とで高さの差が小さいほど反りが抑制されていることから好ましい。
 また、各接続体サンプルについて、評価用ICの反りの影響を受けやすい第1列における信頼性試験後の導通抵抗を測定した。信頼性試験は、接続体サンプルを温度85℃、湿度85%RHの恒温槽に500時間おいた。信頼性試験後の導通抵抗は、10Ω未満を〇(最良)、10Ω以上30Ω未満を△(普通)、30Ω以上を×(不良)とした。
 [実施例1]
 実施例1では、評価用ガラス基板に突起を形成した。突起の面積は、評価用ICのバンプ列間領域(図4参照)の面積の50%とした。また、突起の高さは、評価用ICの入出力バンプの高さに対して1.2倍とした。実施例1に係る接続体サンプルは、第1列の出力バンプ下に挟持された導電性粒子の高さは2.3μm、第2列の出力バンプ下に挟持された導電性粒子の高さは2.3μmで、第1列における信頼性試験後の導通抵抗の評価は○(最良)であった。
 [実施例2]
 実施例2では、評価用ガラス基板に突起を形成した。突起の面積は、評価用ICのバンプ列間領域(図4参照)の面積の50%とした。また、突起の高さは、評価用ICの入出力バンプの高さに対して0.6倍とした。実施例2に係る接続体サンプルは、第1列の出力バンプ下に挟持された導電性粒子の高さは2.3μm、第2列の出力バンプ下に挟持された導電性粒子の高さは2.1μmで、第1列における信頼性試験後の導通抵抗の評価は○(最良)であった。
 [実施例3]
 実施例3では、評価用ガラス基板に突起を形成した。突起の面積は、評価用ICのバンプ列間領域(図4参照)の面積の20%とした。また、突起の高さは、評価用ICの入出力バンプの高さに対して1.2倍とした。実施例3に係る接続体サンプルは、第1列の出力バンプ下に挟持された導電性粒子の高さは2.2μm、第2列の出力バンプ下に挟持された導電性粒子の高さは2.2μmで、第1列における信頼性試験後の導通抵抗の評価は○(最良)であった。
 [実施例4]
 実施例4では、評価用ガラス基板に突起を形成した。突起の面積は、評価用ICのバンプ列間領域(図4参照)の面積の20%とした。また、突起の高さは、評価用ICの入出力バンプの高さに対して0.6倍とした。実施例3に係る接続体サンプルは、第1列の出力バンプ下に挟持された導電性粒子の高さは2.2μm、第2列の出力バンプ下に挟持された導電性粒子の高さは2.1μmで、第1列における信頼性試験後の導通抵抗の評価は○(最良)であった。
 [比較例1]
 比較例1では、評価用ガラス基板に突起を形成しなかった。比較例1に係る接続体サンプルは、第1列の出力バンプ下に挟持された導電性粒子の高さは2.9μm、第2列の出力バンプ下に挟持された導電性粒子の高さは2.0μmで、第1列における信頼性試験後の導通抵抗の評価は×(不良)であった。
 [比較例2]
 比較例2では、評価用ガラス基板に突起を形成した。突起の面積は、評価用ICのバンプ列間領域(図4参照)の面積の70%とした。また、突起の高さは、評価用ICの入出力バンプの高さに対して1.2倍とした。比較例2に係る接続体サンプルは、第1列の出力バンプ下に挟持された導電性粒子の高さは2.8μm、第2列の出力バンプ下に挟持された導電性粒子の高さは2.7μmで、第1列における信頼性試験後の導通抵抗の評価は△(普通)であった。
 [比較例3]
 比較例3では、評価用ガラス基板に突起を形成した。突起の面積は、評価用ICのバンプ列間領域(図4参照)の面積の50%とした。また、突起の高さは、評価用ICの入出力バンプの高さに対して2.0倍とした。比較例3に係る接続体サンプルは、第1列の出力バンプ下に挟持された導電性粒子の高さは2.7μm、第2列の出力バンプ下に挟持された導電性粒子の高さは2.8μmで、第1列における信頼性試験後の導通抵抗の評価は△(普通)であった。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、評価用ガラス基板に突起を形成した実施例1~4では、第1列、第2列の出力バンプ下に挟持された導電性粒子の高さに差が無く、また導電性粒子は十分に圧縮されており、信頼性試験後においても第1列における導通抵抗はいずれも○(最良)であった。
 一方、評価用ガラス基板に突起を形成しなかった比較例1では、評価用ICのバンプ列間領域に反りが生じ、側縁側に設けられた第1列の出力バンプ下に挟持された導電性粒子の圧縮が不十分となり、また、信頼性試験後においても導通抵抗評価は×(不良)となった。
 また、比較例2では、評価用ガラス基板に形成した突起の面積が、バンプ列間領域の面積の70%と多いことから、熱圧着ヘッドの加圧によるバインダー樹脂の流出が突起によって阻害され、入出力端子と入出力バンプとによる導電性粒子の押し込みが不足し、導通抵抗の上昇を招き、第1列における信頼性試験後の導通抵抗評価が△(普通)となった。これより、実施例1~4に示すように、評価用ガラス基板に形成した突起の総面積は、バンプ列間領域の面積の20~50%とすることが好ましいことが分かる。
 また、比較例3では、評価用ガラス基板に形成した突起の高さが評価用ICのバンプ高さの2倍と高いことから、却って入出力端子と入出力バンプとによる導電性粒子の押し込みを阻害してしまい、導通抵抗の上昇を招き、第1列における信頼性試験後の導通抵抗評価が△(普通)となった。これより、実施例1~4に示すように、評価用ガラス基板に形成した突起の高さは、評価用ICのバンプ高さの0.6~1.2倍が好ましいことが分かる。
1 異方性導電フィルム、2 剥離フィルム、3 バインダー樹脂層、4 導電性粒子、6 巻取リール、10 液晶表示パネル、11 透明基板、12 透明基板、13 シール、14 液晶、15 パネル表示部、16 透明電極、17 透明電極、18 液晶駆動用IC、18a 実装面、19 入力端子、20 入力端子列、21 出力端子、22 出力端子列、22a 第1の出力端子列、22b 第2の出力端子列、23 入力バンプ、24 入力バンプ列、25 出力バンプ、26 出力バンプ列、26a 第1の出力バンプ列、26b 第2の出力バンプ列、27 実装部、28 配厚膜、29 偏光板、30  バンプ列間領域、31 基板側アライメントマーク、32 IC側アライメントマーク、33 圧着ヘッド、40 突起、41 突起列

Claims (7)

  1.  一方の側縁に沿ってバンプが配列された第1のバンプ列と、上記一方の側縁と対向する他方の側縁に沿ってバンプが配列された第2のバンプ列とを備えた電子部品と、
     上記第1のバンプ列に配列された上記バンプと接続される電極端子が配列された第1の端子列と、上記第2のバンプ列に配列された上記バンプと接続される電極端子が配列された第2の端子列と、上記第1の端子列と上記第2の端子列との間に設けられ、上記第1のバンプ列と上記第2のバンプ列との間のバンプ列間領域を支持する突起とを有する基板とを備え、
     上記電子部品が上記基板に接着剤を介して圧着された接続構造体。
  2.  複数の上記突起が、上記第1のバンプ列及び上記第2のバンプ列に沿って形成されている請求項1記載の接続構造体。
  3.  上記突起の面積は、上記バンプ列間領域の面積の50%以内である請求項1又は2に記載の接続構造体。
  4.  上記突起の中心は、上記第1のバンプ列及び上記第2のバンプ列の間の中心から上記第1のバンプ列及び上記第2のバンプ列間の距離の±10%以内に位置する請求項1又は2に記載の接続構造体。
  5.  複数の上記突起が直線状、千鳥状、又はランダムに配列されている請求項1又は2に記載の接続構造体。
  6.  複数の上記突起が上記第1のバンプ列及び上記第2のバンプ列の間の中心を境に一方の側に配列された第1の突起列及び他方の側に配列された第2の突起列とを有し、
     上記第1、第2の突起列の中心線が、上記第1のバンプ列及び上記第2のバンプ列の間の中心から上記第1のバンプ列及び上記第2のバンプ列間の距離の±10%以内に位置する請求項1又は2に記載の接続構造体。
  7.  上記突起の高さは、上記バンプの高さに対して0.6~1.2倍である請求項1又は2に記載の接続構造体。
PCT/JP2016/051091 2015-01-16 2016-01-15 接続構造体 WO2016114381A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-007185 2015-01-16
JP2015007185A JP2016134450A (ja) 2015-01-16 2015-01-16 接続構造体

Publications (1)

Publication Number Publication Date
WO2016114381A1 true WO2016114381A1 (ja) 2016-07-21

Family

ID=56405921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051091 WO2016114381A1 (ja) 2015-01-16 2016-01-15 接続構造体

Country Status (3)

Country Link
JP (1) JP2016134450A (ja)
TW (1) TW201644340A (ja)
WO (1) WO2016114381A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113823241B (zh) * 2021-09-30 2022-09-27 武汉华星光电技术有限公司 驱动芯片及显示面板

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192796A (ja) * 2008-02-14 2009-08-27 Seiko Instruments Inc 液晶表示装置
WO2010146884A1 (ja) * 2009-06-16 2010-12-23 シャープ株式会社 半導体チップおよびその実装構造
WO2014057908A1 (ja) * 2012-10-11 2014-04-17 シャープ株式会社 駆動チップ及び表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192796A (ja) * 2008-02-14 2009-08-27 Seiko Instruments Inc 液晶表示装置
WO2010146884A1 (ja) * 2009-06-16 2010-12-23 シャープ株式会社 半導体チップおよびその実装構造
WO2014057908A1 (ja) * 2012-10-11 2014-04-17 シャープ株式会社 駆動チップ及び表示装置

Also Published As

Publication number Publication date
TW201644340A (zh) 2016-12-16
JP2016134450A (ja) 2016-07-25

Similar Documents

Publication Publication Date Title
TWI672543B (zh) 對準方法、電子零件之連接方法、連接體之製造方法、連接體、異向性導電膜
KR102637835B1 (ko) 접속체 및 접속체의 제조 방법
KR101857331B1 (ko) 이방성 도전 필름, 이방성 도전 필름의 제조 방법, 접속체의 제조 방법 및 접속 방법
JP6645730B2 (ja) 接続体及び接続体の製造方法
WO2015108025A1 (ja) 接続体、接続体の製造方法、接続方法、異方性導電接着剤
JP6324746B2 (ja) 接続体、接続体の製造方法、電子機器
KR102067957B1 (ko) 접속체, 접속체의 제조 방법, 검사 방법
JP7369756B2 (ja) 接続体及び接続体の製造方法
WO2016114381A1 (ja) 接続構造体
JP2018073684A (ja) 接続体の製造方法、接続方法、接続装置
JP2015170721A (ja) 接続体の製造方法、電子部品の接続方法、アライメント方法及び接続体
JP6393039B2 (ja) 接続体の製造方法、接続方法及び接続体
JP2019140413A (ja) 接続体、接続体の製造方法、接続方法
WO2016158600A1 (ja) 異方性導電接続体、及びこれを用いた表示装置
JP2015170647A (ja) 接続体の製造方法、電子部品の接続方法及び接続体
JP2018170464A (ja) フレキシブル回路基板、接続体、接続体の製造方法、フレキシブル回路基板の設計方法
JP2019021947A (ja) 電子部品、接続体、接続体の製造方法及び電子部品の接続方法
JP2016039308A (ja) 接続体、接続体の製造方法及び電子部品の接続方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16737452

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16737452

Country of ref document: EP

Kind code of ref document: A1