WO2016114051A1 - 中空糸膜、及び中空糸膜の製造方法 - Google Patents

中空糸膜、及び中空糸膜の製造方法 Download PDF

Info

Publication number
WO2016114051A1
WO2016114051A1 PCT/JP2015/085058 JP2015085058W WO2016114051A1 WO 2016114051 A1 WO2016114051 A1 WO 2016114051A1 JP 2015085058 W JP2015085058 W JP 2015085058W WO 2016114051 A1 WO2016114051 A1 WO 2016114051A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
fiber membrane
hydrophilic resin
crosslinking
cross
Prior art date
Application number
PCT/JP2015/085058
Other languages
English (en)
French (fr)
Inventor
洋平 薮野
司 吉利
井上 雄大
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2016569265A priority Critical patent/JP6599900B2/ja
Publication of WO2016114051A1 publication Critical patent/WO2016114051A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor

Definitions

  • the present invention relates to a hollow fiber membrane and a method for producing the hollow fiber membrane.
  • Separation technology using hollow fiber membranes is used in various fields because of its high safety, high quality, energy saving and low carbon process.
  • separation technologies such as membrane filtration using a hollow fiber membrane are used in water treatment fields such as water purification, drinking water production, industrial water production and wastewater treatment, food industry, and pharmaceutical production. It has been.
  • water treatment fields such as water purification, drinking water production, industrial water production and wastewater treatment, food industry, and pharmaceutical production. It has been.
  • Patent Document 1 discloses a porous membrane substrate formed from a first polymer and having an average pore size of about 0.01 to 10 ⁇ m and having a hollow fiber shape, and free on the substrate in the absence of a crosslinking agent.
  • a composite porous material comprising a coating of the entire surface of the substrate with a second polymer composition in a solvent that is cross-linked and insolubilized by a radical polymerization initiator, and having substantially the same pore structure as the porous substrate A membrane is described.
  • the hollow fiber membrane to be used is required to be able to filter a larger amount of water in a shorter time.
  • the amount of foulant which is a turbid component deposited on the surface and inside of the hollow fiber membrane, increases with an increase in filtration time.
  • the foulant deposited on the hollow fiber membrane becomes filtration resistance and causes fouling, which is a phenomenon that the filtration efficiency is lowered. For this reason, when filtering the liquid to be treated over a long period of time using a hollow fiber membrane, the foulant deposited on the hollow fiber membrane is periodically removed by backwashing the hollow fiber membrane, so-called backwashing. It is possible to do.
  • the hollow fiber membrane used in the separation technique is required not only to improve permeation performance and separation characteristics, but also to maintain excellent permeation performance over a long period of time.
  • An object of the present invention is to provide a hollow fiber membrane that not only has excellent separation characteristics but also can maintain excellent permeation performance over a long period of time, and a method for producing the same.
  • the hollow fiber membrane according to one embodiment of the present invention includes a hollow fiber membrane-shaped base material and a crosslinked body of a hydrophilic resin, and the permeation rate of pure water at a transmembrane differential pressure of 0.1 MPa in a wet state is dry. It is characterized by being 0.5 to 0.99 times the permeation rate of pure water at a transmembrane pressure difference of 0.1 MPa in the state.
  • FIG. 1 is a partial perspective view of a hollow fiber membrane according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating an example of a membrane filtration device including a hollow fiber membrane according to an embodiment of the present invention.
  • FIG. 3 shows an infrared absorption spectrum of the hollow fiber membrane before crosslinking in Example 1.
  • 4 shows the infrared absorption spectrum of the hollow fiber membrane after crosslinking in Example 1.
  • FIG. FIG. 5 shows an infrared absorption spectrum of the hollow fiber membrane after crosslinking in Comparative Example 1.
  • the present inventor has studied to suppress fouling in order to maintain excellent permeation performance over a long period of time.
  • the foulant deposited on the hollow fiber membrane may be mainly composed of natural organic matter (NOM) such as humic substances that are humic substances in which plants are decomposed by microorganisms.
  • NOM natural organic matter
  • humic substances that are humic substances in which plants are decomposed by microorganisms.
  • NOM is a relatively hydrophobic substance, it was considered that the interaction between the hollow fiber membrane and the foulant can be weakened by increasing the hydrophilicity of the hollow fiber membrane. For this reason, it was thought that fouling can be suppressed by making the hollow fiber membrane hydrophilic.
  • examples of the method for hydrophilizing the hollow fiber membrane include a method of immersing the hollow fiber membrane in a hydrophilic resin solution and then crosslinking the hydrophilic resin contained in the hollow fiber membrane. Specifically, the method etc. of patent document 1 are mentioned.
  • the hollow fiber membrane obtained by such a method sometimes has insufficient separation characteristics.
  • the separation characteristics during filtration are improved by hydrophilizing the hollow fiber membrane.
  • Patent Document 1 does not mention improving separation characteristics by hydrophilization treatment.
  • Patent Document 1 does not mention that excellent permeation performance can be maintained over a long period of time by performing hydrophilic treatment to enhance separation characteristics.
  • the present inventor has focused on the fact that fouling can be suppressed by using a hollow fiber membrane that enhances separation characteristics when used in water treatment or the like, and arrived at the present invention as follows. .
  • the hollow fiber membrane according to an embodiment of the present invention is a hollow fiber membrane including a hollow fiber membrane-like base material and a crosslinked body of a hydrophilic resin. That is, this hollow fiber membrane has the base material and a crosslinked body of a hydrophilic resin contained in the base material.
  • the permeation rate of pure water at a transmembrane differential pressure of 0.1 MPa in this wet state and the permeation rate of pure water at a transmembrane differential pressure of 0.1 MPa in the dry state indicate whether the hollow fiber membrane is in a wet state. Whether it is in a dry state or not, the other conditions are permeation rates measured under similar conditions.
  • Examples of the permeation rate (FD) of pure water at a transmembrane pressure difference of 0.1 MPa in a dry state include permeation rates measured by the following method.
  • the drying is not particularly limited as long as the hollow fiber membrane can be dried, and examples thereof include drying for 24 hours in a 60 ° C. constant temperature dryer.
  • One end of this dried hollow fiber membrane is sealed, one hollow fiber membrane module having an effective length of 20 cm is used, pure water is used as raw water, the filtration pressure is 0.1 MPa (100 kPa), and the temperature is 25 ° C. External pressure filtration is performed under conditions, and the amount of water permeation for 1 minute from the start of water flow is measured.
  • the permeation rate FD (L / m 2 / hour) of pure water is obtained in terms of the water permeability per unit membrane area, unit time and unit pressure. Briefly described below.
  • the permeation rate (FD) of pure water at a transmembrane pressure difference of 0.1 MPa in a dry state is as follows: a hollow fiber membrane with one end sealed is dried for 24 hours with a constant temperature dryer at 60 ° C., and has an effective length of 20 cm. It is calculated from the amount of water permeated by external pressure filtration for 1 minute at a transmembrane differential pressure of 0.1 MPa and a temperature of 25 ° C.
  • the hollow fiber membrane which is a measurement object is brought into a wet state.
  • the crosslinked body of hydrophilic resin contained in the hollow fiber membrane is swollen.
  • the wetting treatment for making the wet state is not particularly limited as long as the hollow fiber membrane can be suitably wetted.
  • the hollow fiber membrane is dipped in a 50% by mass aqueous solution of ethanol for 15 minutes, and then subjected to a wet treatment such as washing with pure water for 15 minutes. Except for using the wet hollow fiber membrane instead of the dry hollow fiber membrane, the permeation rate FW (L (L / M 2 / hour). Briefly described below.
  • the permeation rate (FW) of pure water at a transmembrane pressure difference of 0.1 MPa in a wet state was determined by immersing a hollow fiber membrane sealed at one end in a 50% by weight aqueous solution of ethanol for 15 minutes and then washing with pure water for 15 minutes. It is calculated from the amount of water permeated by external pressure filtration for one minute at a transmembrane differential pressure of 0.1 MPa and a temperature of 25 ° C., with a single hollow fiber membrane module having an effective length of 20 cm.
  • the hollow fiber membrane according to the present embodiment includes a crosslinked body of hydrophilic resin, the hydrophilicity of the hollow fiber membrane can be enhanced. That is, it is considered that the hydrophilicity of the hollow fiber membrane is higher than that of the hollow fiber membrane not including a hydrophilic resin crosslinked body. Thereby, it is considered that the interaction between the hollow fiber membrane and the foulant can be weakened and fouling can be suppressed.
  • the hollow fiber membrane in a dry state tends to have lower water permeability than the hollow fiber membrane in a wet state. That is, FW tends to be larger than FD. Therefore, FW / FD tends to be larger than 1 and FD / FW tends to be smaller than 1.
  • the FW of the hollow fiber membrane according to this embodiment is 0.5 to 0.99 times that of the FD.
  • the hollow fiber membrane which concerns on this embodiment when the hollow fiber membrane which concerns on this embodiment is made into a wet state, it is thought that the crosslinked body of the hydrophilic resin contained in a hollow fiber membrane swells, and the pore of a hollow fiber membrane becomes small. Therefore, it is considered that the hollow fiber membrane according to the present embodiment preferably has improved separation characteristics in a wet state. Specifically, it is considered that the separation property of the hollow fiber membrane is higher than the separation property of the hollow fiber membrane that does not contain the crosslinked body of the hydrophilic resin and the separation property in the dry state. From this, it is considered that fouling can be suppressed.
  • the hollow fiber membrane which concerns on this embodiment not only has the high separation characteristic in a wet state but can suppress fouling suitably. Moreover, since this hollow fiber membrane can suppress fouling suitably, permeation
  • the FW / FD may be 0.5 to 0.99 as described above, but is preferably 0.6 to 0.99, more preferably 0.65 to 0.99. Is more preferable. If the FW / FD is too small, the hydrophilic resin is eluted from the hollow fiber membrane due to insufficient cross-linking degree of the cross-linked product of the hydrophilic resin and the cross-linked product is too swollen, which causes problems in long-term operability. Or the quality of filtered water tends to deteriorate. On the other hand, if the FW / FD is too large, the cross-linked body of the hydrophilic resin is too cross-linked, and the effect of improving fractionation, which is the gist of the present invention, is lost. There is a tendency to become impossible.
  • FD and FW respectively may be a rate that satisfies the above relationship, but for example, FD is preferably 100 ⁇ 20000L / m 2 / time is 100 ⁇ 10000L / m 2 / time Is more preferably 200 to 10,000 L / m 2 / hour. Moreover, FW is 100 preferably ⁇ 20000 L / m is 2 / hour, more preferably when 100 ⁇ 10000 L / m 2 /, and more preferably when 200 ⁇ 10000 L / m 2 /. If the FD is too low, the permeation rate in a wet state tends to be low, and the permeation performance may be insufficient.
  • the hollow fiber membrane according to the present embodiment only needs to contain a crosslinked body of a hydrophilic resin, and it is preferable that the crosslinked body is present at least on the surface. And it is preferable that this bridge
  • examples of the hollow fiber membrane include those subjected to a hydrophilic treatment so that the hollow fiber membrane as described above can be obtained. More specifically, the hollow fiber membrane before crosslinking without containing the hydrophilic resin, that is, the base material impregnated with the hydrophilic resin and the hydrophilic resin contained in the hollow fiber membrane is crosslinked, etc. Is mentioned. Further, as the hydrophilization treatment, in addition to the impregnation, a hydrophilic resin may be kneaded when the hollow fiber membrane is produced, and the hydrophilic resin contained in the hollow fiber membrane is crosslinked. Also good.
  • the hollow fiber membrane serving as a base material is not particularly limited.
  • this base material for example, a hollow fiber membrane manufactured by a non-solvent induced phase separation method (NIPS method), a thermally induced phase separation method (Thermally Induced Phase Separation: TIPS method), or the like can be given. It is done.
  • a commercially available hollow fiber membrane may be used, for example.
  • the base material is preferably a hollow fiber membrane that can cover the entire surface of the crosslinked surface of the hydrophilic resin by the hydrophilic treatment as described above.
  • the base material is preferably a hollow fiber membrane containing a fluororesin, more preferably a hollow fiber membrane containing a fluororesin as a main component, from the viewpoint of excellent strength and chemical resistance.
  • the main component means that the ratio of the fluorine-based resin in the hollow fiber membrane is high.
  • the fluorine-based resin is preferably 85% by mass or more with respect to the hollow fiber membrane. More preferably, it is 100 mass%.
  • the fluorine-based resin include vinyl fluoride resin, tetrafluoroethylene resin (polytetrafluoroethylene: PTFE), hexafluoropropylene resin, trifluoroethylene chloride resin, and vinylidene fluoride resin (PVDF).
  • the fluorine-based resin specifically, the co-polymerization of vinylidene fluoride with at least one selected from the group consisting of vinyl fluoride, tetrafluoroethylene, propylene hexafluoride, and ethylene trifluoride chloride. Examples include coalescence.
  • a hollow fiber membrane containing a fluororesin as a main component When a hollow fiber membrane containing a fluororesin as a main component is allowed to pass through water in a dry state, water is repelled due to the hydrophobic effect or water repellent effect of the fluororesin or the like. Water resistance increases. Therefore, it is difficult for a hollow fiber membrane containing a fluororesin as a main component to pass water in a dry state. For example, it is possible to pass water after passing a surfactant such as methanol, ethanol and an aqueous solution of lauryl sulfate to wet the surface once, so-called wet.
  • a surfactant such as methanol, ethanol and an aqueous solution of lauryl sulfate
  • the hydrophilic resin is present at least on the surface of the hollow fiber membrane subjected to the hydrophilic treatment, the hydrophobic effect and the water repellent effect of the fluorine-based resin can be reduced. Therefore, even if the hollow fiber membrane subjected to the hydrophilization treatment is a hollow fiber membrane containing a fluororesin as a main component, water can be passed in a dry state.
  • the upper limit of the permeation rate of pure water in the dry state is about one time (100%) that of the pure water in the wet state, and it is much larger than that. It was not thought. That is, it has been considered that FD / FW is never greater than 1 (FW / FD is less than 1). Therefore, when the entire surface of the hollow fiber membrane is ideally hydrophilized, it has been considered that the water permeability in a dry state is equivalent to the water permeability in a wet state.
  • the hollow fiber membrane according to the present embodiment is such that the water permeability in a dry state is higher than the water permeability in a wet state in the later-described crosslinking, that is, the water permeability in a wet state is the water permeability in a dry state.
  • the degree of crosslinking of the resulting crosslinked product is adjusted so as to be lower than the performance. That is, the degree of crosslinking is adjusted so that FW / FD is 0.5 to 0.99 times.
  • the cross-linking when obtaining the hollow fiber membrane is a cross-linking adjusted to have such a cross-linking degree. By doing so, while making a hollow fiber membrane hydrophilic, the separation characteristic in a wet state can be improved.
  • the pore diameter of the hollow fiber membrane is larger than the pore diameter in the wet state, and water flows. It is considered easy.
  • the hydrophilic resin crosslinked body contained in the hollow fiber membrane is suitably swollen, and the pore diameter of the hollow fiber membrane is suitably smaller than the pore diameter in the dry state. Conceivable. For this reason, it is considered that the hollow fiber membrane in the wet state is less likely to flow water than in the wet state, and the separation characteristics can be improved.
  • the hollow fiber membrane according to this embodiment is not only excellent in separation characteristics, but also has excellent permeation performance over a long period of time, even if the hollow fiber membrane containing a fluororesin as a main component is a base material. Can be maintained.
  • the hydrophilic resin is not particularly limited, but the cross-linked product can cover the entire surface of the hollow fiber membrane before cross-linking by the hydrophilic treatment as described above. Is preferred.
  • this hydrophilic resin a resin having a highly hydrophilic group such as a carboxyl group, a carbonyl group, an ester group, an amide group, and a hydroxy group is preferable. This is preferable because the swelling effect when the hollow fiber membrane is immersed in water is high.
  • hydrophilic resin for example, polyvinyl alcohol, polyethylene vinyl alcohol, polyethylene glycol, cellulose, cellulose acetate, polyvinyl pyrrolidone, acrylic acid-based polymer such as sodium polyacrylate, vinyl pyrrolidone and vinyl acetate Examples thereof include a polymer and a copolymer of vinyl pyrrolidone and vinyl caprolactam.
  • acrylic acid polymers such as polyvinyl pyrrolidone and sodium polyacrylate are preferable because of their high swelling effect.
  • the hollow fiber membrane can be obtained by crosslinking a hydrophilic resin contained in the hollow fiber membrane before crosslinking.
  • This crosslinking is not particularly limited as long as the FW / FD is 0.5 to 0.99.
  • the absorption intensity of the peak derived from the hydrophilic resin in the infrared absorption spectrum is changed to the absorption intensity of the peak derived from the hydrophilic resin of the hollow fiber membrane before crosslinking containing the hydrophilic resin.
  • the change in absorption strength is preferably such that the absorption strength of the hollow fiber membrane is 0.1 to 0.7 times that of the hollow fiber membrane before crosslinking, as described above. It is more preferably 1 to 0.6 times, and further preferably 0.1 to 0.5 times.
  • the degree of crosslinking is suitably expressed.
  • the hydrophilic resin is cross-linked so that the absorption strength decreases as described above, the obtained cross-linked product has a degree of cross-linking that can suitably improve the separation characteristics of the hollow fiber membrane in a wet state. Conceivable. For this reason, by crosslinking in this way, a hollow fiber membrane having excellent separation characteristics and maintaining excellent permeation performance over a long period of time is obtained.
  • the absorption intensity is an absorption intensity of a peak derived from a hydrophilic resin, and is preferably an intensity of a peak derived from stretching vibration of a C ⁇ O bond that the hydrophilic resin has, for example.
  • the absorption intensity is preferably the absorption intensity of the maximum peak at a wave number of 1600 to 1800 cm ⁇ 1 .
  • the hydrophilic resin is polyvinyl pyrrolidone
  • the absorption intensity is preferably the absorption intensity at the maximum peak at a wave number of 1676 cm ⁇ 1 .
  • the degree of crosslinking of the resulting crosslinked product is suitably represented. That is, it is considered that the cross-linked hollow fiber membrane suitably represents the degree of cross-linking that can suitably enhance the separation characteristics of the hollow fiber membrane in a wet state.
  • the hollow fiber membrane according to the present embodiment preferably has a peak at a wave number of 1600 to 1800 cm ⁇ 1 in the infrared absorption spectrum. Therefore, the hydrophilic resin contained in the hollow fiber membrane is not completely crosslinked, but is a hollow fiber membrane containing a hydrophilic resin having an uncrosslinked portion. From this, a hollow fiber membrane excellent in separation characteristics and long-term permeation performance can be obtained.
  • the infrared absorption spectrum is not particularly limited as long as it is a spectrum obtained by infrared spectroscopy. Specific examples include an infrared absorption spectrum obtained when a hollow fiber membrane is measured using a general infrared spectrophotometer.
  • Examples of the C ⁇ O bond possessed by the hydrophilic resin include C ⁇ O bonds in carboxyl groups, carbonyl groups, ester groups, and amide groups. Further, when such a hydrophilic resin having a C ⁇ O bond is used, by measuring the change in the absorption intensity of the peak derived from the stretching vibration of the C ⁇ O bond that the hydrophilic resin has, a suitable degree of crosslinking can be obtained. It can be seen whether a crosslinked product is obtained. In addition, by measuring the change in the absorption intensity, the difference in the degree of crosslinking due to differences in various radical initiators, ultraviolet rays, ⁇ rays, acids, alkalis, etc., used when the hydrophilic resin is crosslinked is also measured. it can.
  • a cross-linked body having a suitable degree of cross-linking can be obtained, but a substance used at the time of cross-linking can be selected uniformly to some extent.
  • examples of the radical initiator include an aqueous hydrogen peroxide (H 2 O 2 ) solution, sodium persulfate, and potassium persulfate.
  • H 2 O 2 aqueous hydrogen peroxide
  • sodium persulfate sodium persulfate
  • potassium persulfate potassium persulfate.
  • an acrylic polymer such as polyvinyl pyrrolidone or sodium acrylate it may be crosslinked using ultraviolet rays.
  • this crosslinking is performed by adjusting the temperature and time during the crosslinking reaction, the concentration of the radical initiator, etc. so that FW / FD is 0.5 to 0.99. It is preferable.
  • polyvinylpyrrolidone is used as the hydrophilic resin, it is preferably crosslinked using a 1% by mass H 2 O 2 aqueous solution.
  • the cross-linking in addition to the change in the absorption strength, for example, the cross-linking is such that the fraction diameter is 0.05 to 0.7 times the fraction diameter of the hollow fiber membrane as the base material.
  • the fraction diameter is preferably 0.05 to 0.7 times that of the base material, more preferably 0.1 to 0.5 times, and more than 0.1 times. More preferably, it is 1/3 or less.
  • the ratio of the fraction diameters here was measured under the same environment whether the fraction diameter of the substrate was used or the fraction diameter of the hollow fiber membrane after crosslinking was used. It is the ratio obtained using the fraction diameter. Examples of the ratio of the fraction diameter include a ratio using a fraction diameter measured in a wet state for both the hollow fiber after crosslinking and the base material.
  • This fraction diameter is the size of the smallest of the materials to be filtered that can prevent passage through the hollow fiber membrane.
  • the fractional diameter include a fractional particle diameter that is a particle diameter of a minimum particle that can prevent passage of the hollow fiber membrane, and examples include a particle diameter that provides a blocking rate of 90% by the hollow fiber membrane. .
  • the fraction molecular weight etc. which are the molecular weights of the size of what can be prevented are also mentioned.
  • the fractional diameter may be the molecular weight of the smallest one of the materials to be filtered that can prevent passage through the hollow fiber membrane, for example, the molecular weight of the material to be filtered with a blocking rate of 90% by the hollow fiber membrane.
  • the obtained crosslinked body can suitably improve the separation characteristics of the hollow fiber membrane in a wet state. It is considered that the degree of crosslinking is. For this reason, by crosslinking in this way, a hollow fiber membrane having excellent separation characteristics and maintaining excellent permeation performance over a long period of time is obtained.
  • the fraction diameter of the hollow fiber membrane according to the present embodiment may be a fraction diameter satisfying the above relationship.
  • the fraction diameter is a fraction particle diameter of 0.01 to 0.5 ⁇ m.
  • the thickness is 0.01 to 0.2 ⁇ m, more preferably 0.02 to 0.1 ⁇ m.
  • the fraction diameter is preferably 1 to 500 kDa, more preferably 50 to 500 kDa, and even more preferably 100 to 500 kDa in terms of molecular weight cut-off. The smaller the fraction diameter, the better. However, in order to maintain excellent transmission performance, it is preferably in the above range.
  • the separation membrane generally include a microfiltration (MF) membrane, an ultrafiltration (UF) membrane, and a nanofiltration (NF) membrane in descending order of the removable substances.
  • the fractional particle size when used as a microfiltration membrane, is preferably 0.01 to 2 ⁇ m, more preferably 0.01 to 0.5 ⁇ m, and More preferably, the thickness is 01 to 0.3 ⁇ m.
  • the fractional particle size when used as an ultrafiltration membrane, is smaller than that when used as the microfiltration membrane, for example, the fractional particle size is preferably 0.05 to 0.1 ⁇ m.
  • the fractional diameter is preferably 5,000 to 1,000,000, and more preferably 100,000 to 1,000,000 in terms of molecular weight cut-off. 300,000 to 1,000,000 is more preferable.
  • the shape of the hollow fiber membrane according to the present embodiment is not particularly limited.
  • the hollow fiber membrane has a hollow fiber shape, and one side in the longitudinal direction may be open, and the other side may be open or closed.
  • Examples of the shape of the hollow fiber membrane include a hollow fiber shape in which one side in the longitudinal direction is left open and the other side is closed.
  • release side of a hollow fiber membrane the case where it is a shape as shown in FIG. 1, etc. are mentioned, for example.
  • FIG. 1 is a partial perspective view of the hollow fiber membrane according to the present embodiment.
  • the outer diameter R1 of the hollow fiber membrane is preferably 0.5 to 7 mm, more preferably 1 to 2.5 mm, and further preferably 1 to 2 mm.
  • Such an outer diameter is a suitable size as a hollow fiber membrane provided in an apparatus for realizing a separation technique using a hollow fiber membrane.
  • the inner diameter R2 of the hollow fiber membrane is preferably 0.4 to 3 mm, more preferably 0.6 to 2 mm, and further preferably 0.6 to 1.2 mm. If the inner diameter of the hollow fiber membrane is too small, the pressure loss in the tube, which is the resistance of the permeate, increases, and the flow tends to be poor. If the hollow fiber membrane has an excessively large inner diameter, the shape of the hollow fiber membrane cannot be maintained, and the membrane tends to be crushed or distorted.
  • the film thickness T of the hollow fiber membrane is preferably 0.2 to 1 mm, more preferably 0.25 to 0.5 mm, and further preferably 0.25 to 0.4 mm. . If the hollow fiber membrane is too thin, the strength tends to be insufficient, and deformation such as strain tends to occur.
  • the outer diameter R1, the inner diameter R2, and the film thickness T of the hollow fiber membrane are within the above ranges, respectively, a suitable size as a hollow fiber membrane provided in a device that realizes a separation technique using the hollow fiber membrane.
  • the device can be miniaturized.
  • the manufacturing method of the hollow fiber membrane according to the present embodiment is not particularly limited as long as the above-described hollow fiber membrane can be manufactured.
  • this manufacturing method the following manufacturing methods are mentioned, for example.
  • a step of preparing a hollow fiber membrane before crosslinking containing the hydrophilic resin preparation step
  • a step of crosslinking the hydrophilic resin in the hollow fiber membrane before crosslinking crosslinking step
  • the hollow fiber membrane which concerns on this embodiment is manufactured by adjusting the conditions in these processes, for example, the conditions in a bridge
  • the preparation step is not particularly limited as long as a hollow fiber membrane before crosslinking including the hydrophilic resin can be prepared.
  • a method of impregnating the hydrophilic resin into the base material, a method of kneading the hydrophilic resin when producing a hollow fiber membrane to be the base material, and the like can be given.
  • crosslinking may be manufactured and a commercially available hollow fiber membrane may be prepared.
  • the cross-linking step is particularly a step of cross-linking the hydrophilic resin in the hollow fiber membrane before cross-linking so that the finally obtained hollow fiber membrane becomes the hollow fiber membrane according to the present embodiment. It is not limited. Specifically, in the infrared absorption spectrum, the step of crosslinking so that the relationship between the absorption intensity before and after crosslinking is the above relationship, and the relationship between the fraction diameter of the base material and the hollow fiber membrane after crosslinking However, the process etc. which are bridge
  • the crosslinking step include a step of performing the following treatments on the hollow fiber membrane before crosslinking, including the hydrophilic resin. Specifically, the hollow fiber membrane is treated with a radical initiator.
  • Examples include a step of immersing in an aqueous solution containing, a step of immersing the hollow fiber membrane in a strong acid or strong alkali, a step of heat treating the hollow fiber membrane, and a step of subjecting the hollow fiber membrane to radiation treatment including the hydrophilic resin.
  • the hydrophilic resin contained in the hollow fiber membrane is crosslinked.
  • the crosslinking step is preferably a step of immersing the hollow fiber membrane in an aqueous solution containing a radical initiator from the viewpoint that the deterioration of the hydrophilic resin can be suppressed and the handling is easy.
  • the aqueous solution containing a radical initiator may be an aqueous solution containing a radical initiator capable of initiating the crosslinking reaction of the hydrophilic resin, and examples thereof include a 1% by mass aqueous solution of a radical initiator.
  • the radical initiator include sodium persulfate, ammonium persulfate, and hydrogen peroxide. Among these, hydrogen peroxide is preferable because a hollow fiber membrane having high permeation performance is easily obtained.
  • the heating temperature in the heat treatment step may be any temperature that can initiate the crosslinking reaction of the hydrophilic resin, and is preferably about 170 to 200 ° C., for example.
  • the hollow fiber membrane according to the present embodiment can be subjected to a membrane filtration method.
  • a hollow fiber membrane is used to be modularized as follows, and this modularized product can be used for membrane filtration. More specifically, a predetermined number of hollow fiber membranes according to this embodiment are bundled, cut into a predetermined length, and filled into a casing having a predetermined shape, and the end of the hollow fiber bundle is a polyurethane resin or an epoxy resin. It is fixed to the casing by a thermosetting resin such as a module to form a module.
  • this module there are various types such as a type in which both ends of the hollow fiber membrane are fixed open, one end of the hollow fiber membrane is fixed open and the other end is sealed, but the type is not fixed.
  • a structure having a known structure is known, and the hollow fiber membrane according to this embodiment can be used in any module structure.
  • FIG. 2 is a schematic diagram illustrating an example of a membrane filtration device including the hollow fiber membrane according to the present embodiment.
  • the membrane filtration device 31 includes the membrane module 32 obtained by modularizing the hollow fiber membrane as described above. And as for this membrane module 32, what has opened the hollow part in the upper end part 33 of a hollow fiber membrane, and the lower end part 34 has sealed the hollow part with the epoxy resin, for example.
  • Examples of the membrane module 32 include those made of 70 hollow fiber membranes having an effective membrane length of 100 cm.
  • the liquid to be treated (filtered water) filtered from the membrane module 32 is discharged from the introduction port 36 through the introduction port 35. By doing so, filtration using a hollow fiber membrane is implemented.
  • the air introduced into the membrane filtration device 31 is discharged from the air vent 37.
  • the liquid to be treated is filtered by allowing the liquid to be treated to permeate from the outer surface to the inner surface of the hollow fiber membrane. Therefore, the outer surface side of the hollow fiber membrane is called a primary side, and the inner surface side is also called a secondary side.
  • the hollow fiber membrane according to the present embodiment is modularized in this way and used for various purposes such as water purification treatment, drinking water production, industrial water production, wastewater treatment and the like. That is, in the membrane filtration method, the liquid to be treated which is a treatment target is a liquid for achieving such an application, and includes an aqueous medium containing water as a main component.
  • the hollow fiber membrane according to the present embodiment can be subjected to liquid treatment, specifically, filtration treatment by using it in the membrane filtration method as described above.
  • the liquid processing method using the hollow fiber membrane includes a filtration step of filtering the liquid to be treated using the hollow fiber membrane, and a backwashing step of backwashing the hollow fiber membrane, The method etc. which perform the said filtration process and the said backwash process alternately are mentioned.
  • the backwashing step supplies gas such as compressed air or liquid such as filtrate to the secondary side in the filtration step, so that the gas permeated through the hollow fiber membrane or The hollow fiber membrane is washed with a liquid.
  • air may be introduced from the inlet 35 in FIG. 2 to generate bubbles on the hollow fiber membrane, and scrubbing cleaning with the bubbles may be performed.
  • the hollow fiber membrane according to one embodiment of the present invention includes a hollow fiber membrane-shaped base material and a crosslinked body of a hydrophilic resin, and the permeation rate of pure water at a transmembrane differential pressure of 0.1 MPa in a wet state is dry. It is characterized by being 0.5 to 0.99 times the permeation rate of pure water at a transmembrane pressure difference of 0.1 MPa in the state.
  • the hydrophilicity of the hollow fiber membrane can be increased. Thereby, it is considered that the interaction between the hollow fiber membrane and the foulant can be weakened and fouling can be suppressed.
  • the hollow fiber membrane when the hollow fiber membrane is in a wet state, the hollow fiber It is considered that the cross-linked body of the hydrophilic resin contained in the membrane swells, the pores of the hollow fiber membrane become smaller, and the separation characteristics of the hollow fiber membrane in a wet state are preferably enhanced. From this, it is considered that fouling can be suppressed.
  • such a hollow fiber membrane not only has high separation characteristics in a wet state but also can suitably suppress fouling. Moreover, since this hollow fiber membrane can suppress fouling suitably, permeation
  • the crosslinked body is present at least on the surface and is obtained by crosslinking a hydrophilic resin contained in the hollow fiber membrane before crosslinking.
  • the separation characteristics are superior, and excellent permeation performance can be maintained over a longer period. This is because the cross-linked product obtained by cross-linking the hydrophilic resin contained in the hollow fiber membrane before cross-linking exists on at least the surface of the hollow fiber membrane. This is considered to be due to the further improvement of the separation characteristics of the hollow fiber membrane.
  • the absorption intensity of the peak derived from the hydrophilic resin in the infrared absorption spectrum is 0.1 to 0.7 times the absorption intensity of the hollow fiber membrane before crosslinking. The following is preferable.
  • the separation characteristics are superior, and excellent permeation performance can be maintained over a longer period.
  • the absorption strength is a peak strength derived from the stretching vibration of the C ⁇ O bond of the hydrophilic resin.
  • the degree of crosslinking of the obtained crosslinked product is preferably expressed.
  • the cross-linked hollow fiber membrane suitably represents the degree of cross-linking that can suitably enhance the separation characteristics of the hollow fiber membrane in a wet state. Therefore, a hollow fiber membrane that has better separation characteristics and can maintain excellent permeation performance for a longer period of time can be obtained.
  • the absorption intensity is preferably the absorption intensity of the maximum peak at a wave number of 1600 to 1800 cm ⁇ 1 .
  • the degree of crosslinking of the obtained crosslinked product is suitably represented. That is, it is considered that the cross-linked hollow fiber membrane suitably represents the degree of cross-linking that can suitably enhance the separation characteristics of the hollow fiber membrane in a wet state. Therefore, a hollow fiber membrane that has better separation characteristics and can maintain excellent permeation performance for a longer period of time can be obtained.
  • the fraction diameter is preferably 0.05 to 0.7 times the fraction diameter of the base material.
  • the separation characteristics are superior, and excellent permeation performance can be maintained over a longer period.
  • a hydrophilic resin is included in the base material. And it is thought that by separating the hydrophilic resin contained in the hollow fiber membrane before crosslinking, the pores on the surface of the hollow fiber membrane are reduced and the separation characteristics are enhanced.
  • the hydrophilic resin contained in the hollow fiber membrane before crosslinking is crosslinked so that the fraction diameter is 0.05 to 0.7 times the fraction diameter of the base material, the resulting crosslinked product is obtained. It is considered that the degree of cross-linking is such that the separation characteristics of the hollow fiber membrane in a wet state can be suitably enhanced. For this reason, it is thought that it is excellent in a separation characteristic and can maintain the outstanding permeation
  • the base material contains a fluorine-based resin and has a peak at a wave number of 1600 to 1800 cm ⁇ 1 in the infrared absorption spectrum of the hollow fiber membrane.
  • the base material contains the fluororesin, it has sufficient strength and excellent chemical resistance.
  • the hydrophilic resin contained in the base material containing the fluororesin that is, the hollow fiber membrane before cross-linking, has a peak at a wave number of 1600 to 1800 cm ⁇ 1
  • the hollow fiber membrane containing the fluororesin The hollow fiber membrane in which the contained hydrophilic resin is crosslinked is a hollow fiber membrane comprising a hydrophilic resin having a non-crosslinked portion, rather than the hydrophilic resin contained in the hollow fiber membrane being completely crosslinked. . From this, a hollow fiber membrane not only excellent in separation characteristics and long-term permeation performance but also excellent in strength and chemical resistance can be obtained.
  • the method for producing a hollow fiber membrane according to another aspect of the present invention is a method for producing the hollow fiber membrane, comprising the step of preparing a hollow fiber membrane before crosslinking, including the hydrophilic resin, And a crosslinking step of crosslinking the hydrophilic resin in the hollow fiber membrane before crosslinking.
  • the permeation rate of pure water at a transmembrane pressure difference of 0.1 MPa in a wet state is 0.5 to about the permeation rate of pure water at a transmembrane pressure difference of 0.1 MPa in a dry state.
  • the hydrophilic resin contained in the hollow fiber membrane before cross-linking is cross-linked so that the ratio becomes 0.99 times. From this, since the crosslinked body of hydrophilic resin is included, the hydrophilic property of a hollow fiber membrane can be improved. Thereby, it is considered that the interaction between the hollow fiber membrane and the foulant can be weakened and fouling can be suppressed.
  • the hollow fiber membrane when the hollow fiber membrane is in a wet state, the hollow fiber It is considered that the cross-linked body of the hydrophilic resin contained in the membrane swells, the pores of the hollow fiber membrane become smaller, and the separation characteristics of the hollow fiber membrane in a wet state are preferably enhanced. From this, it is considered that fouling can be suppressed.
  • this manufactured hollow fiber membrane is considered not only to have excellent separation characteristics, but also to maintain excellent permeation performance over a long period of time.
  • the crosslinking step has an absorption intensity derived from the hydrophilic resin in an infrared absorption spectrum of 0.1% with respect to the absorption intensity of the hollow fiber membrane before the crosslinking. It is preferable to be a step of crosslinking the hydrophilic resin so as to be at least twice and at most 0.7 times.
  • the degree of cross-linking of the body is suitably expressed.
  • the hydrophilic resin is cross-linked in the cross-linking step so that the absorption strength is reduced as described above, the cross-linking degree is such that the obtained cross-linked product can suitably improve the separation characteristics of the hollow fiber membrane in a wet state. It is thought that it becomes. For this reason, it is thought that the hollow fiber membrane which is excellent in a separation characteristic and can maintain the outstanding permeation performance over a longer period of time is obtained.
  • the hydrophilic resin in the method for producing a hollow fiber membrane, is used so that the fraction diameter is 0.05 to 0.7 times the fraction diameter of the base material.
  • a cross-linking step is preferred.
  • the cross-linking step it is considered that the hydrophilic resin contained in the hollow fiber membrane before cross-linking is cross-linked, whereby the pores on the surface of the hollow fiber membrane are reduced and the separation characteristics are improved.
  • the hydrophilic resin contained in the hollow fiber membrane before crosslinking is crosslinked so that the fraction diameter is 0.05 to 0.7 times the fraction diameter of the base material. It is considered that the obtained cross-linked product has a degree of cross-linking that can suitably improve the separation characteristics of the hollow fiber membrane in a wet state. For this reason, it is thought that the hollow fiber membrane which is excellent in a separation characteristic and can maintain the outstanding permeation performance over a longer period of time is obtained.
  • the present invention it is possible to provide a hollow fiber membrane that not only has excellent separation characteristics but also can maintain excellent permeation performance over a long period of time. Moreover, the manufacturing method of the said hollow fiber membrane can be provided.
  • Example 1 a hollow fiber membrane containing polyvinylidene fluoride (PVDF) as a main component was used as a base material, and the hollow fiber membrane serving as the base material was immersed in a 50% by mass aqueous solution of ethanol. By doing so, the hollow fiber membrane used as a base material was wetted. This wet hollow fiber membrane was immersed in water for 24 hours. By doing so, water was contained in the whole hollow fiber membrane. This hollow fiber membrane was immersed in a 1% by mass aqueous solution of polyvinyl pyrrolidone (PVP), which is a hydrophilic resin (Sokalan K-90 manufactured by BASF Japan Ltd.).
  • PVDF polyvinylidene fluoride
  • the hollow fiber membrane immersed in the aqueous polyvinyl pyrrolidone solution was immersed in an aqueous solution (crosslinking solution) containing 0.5% by mass of hydrogen peroxide. By doing so, polyvinylpyrrolidone contained in the hollow fiber membrane was crosslinked. Thereafter, the hollow fiber membrane was immersed in water. By doing so, polyvinyl pyrrolidone that was insufficiently crosslinked was removed from the hollow fiber membrane. Then, this hollow fiber membrane was blown and dried at 80 ° C. for 24 hours. In this way, a hollow fiber membrane was obtained in which the entire surface was covered with a crosslinked product of polyvinylpyrrolidone.
  • a hollow fiber membrane immersed in an aqueous polyvinylpyrrolidone solution that is, a product obtained by blowing and drying the hollow fiber membrane before crosslinking at 80 ° C. for 24 hours, was separately prepared.
  • An infrared absorption spectrum of this hollow fiber membrane was obtained using an infrared spectrophotometer.
  • This hollow fiber membrane is the same as the hollow fiber membrane according to Comparative Example 4 described later. This infrared absorption spectrum is shown in FIG.
  • FIG. 3 shows the infrared absorption spectrum of the hollow fiber membrane before crosslinking in Example 1
  • FIG. 4 shows the infrared absorption spectrum of the hollow fiber membrane after crosslinking in Example 1.
  • the infrared absorption spectrum shown in FIGS. 3 and 4 is a spectrum of the outer surface of each of the hollow fiber membranes, and the wave number is in the range of 1300 to 3000 cm ⁇ 1 .
  • fraction diameters of the hollow fiber membrane serving as the substrate and the crosslinked hollow fiber membrane were measured.
  • fraction diameter and the fraction molecular weight were determined according to the fraction diameter.
  • the fractional particle size is a particle size at which the rejection by the hollow fiber membrane is 90%.
  • the fraction particle diameter of the hollow fiber membrane was measured by the following method.
  • At least two kinds of particles having different particle diameters (cataloid SI-550, cataloid SI-45P, cataloid SI-80P, manufactured by JGC Catalysts & Chemicals, Inc., particle diameters 0.1 ⁇ m, 0.2 ⁇ m, manufactured by Dow Chemical Co., Ltd. , 0.5 ⁇ m polystyrene latex, etc.) was measured, and based on the measured value, the value of S at which R was 90 was determined in the following approximate formula, and this was taken as the fractional particle size.
  • a and m in the above formula are constants determined by the hollow fiber membrane, and are calculated based on measured values of two or more types of rejection.
  • the molecular weight cut off is the molecular weight of an object to be filtered with a rejection of 90% by the hollow fiber membrane.
  • the measurement method uses at least two types of dextran having different molecular weights (for example, dextran-40 and dextran-70 manufactured by Tokyo Chemical Industry Co., Ltd.) instead of at least two types of particles having different particle sizes.
  • S in which R is 90 is obtained by the same method.
  • the fractional particle size of the base material was 0.3 ⁇ m.
  • the fractionated particle diameter of the crosslinked hollow fiber membrane was 0.1 ⁇ m. Therefore, it was found that the hollow fiber membrane after crosslinking, that is, the hollow fiber membrane according to Example 1, has a fractional particle diameter that is 1/3 times the fractional particle diameter of the base material. .
  • FD and FW of the hollow fiber membrane according to Example 1 were measured. As a result, FW / FD was found to be 0.68 times.
  • a membrane filtration device 31 as shown in FIG. 2 was produced.
  • the membrane module 32 loaded in the membrane filtration device 31 has an effective membrane length of 100 cm and 50 hollow fibers, and the lower end portion 34 is sealed with an epoxy resin.
  • the upper end portion 33 has an open hollow portion of the hollow fiber membrane, and the lower end portion 34 has the hollow portion of the hollow fiber membrane sealed with an epoxy resin.
  • the liquid to be treated was filtered with a filtration device 31. That is, a filtrate was obtained from the outlet of the hollow fiber membrane module. After filtration for 10 minutes at a set flow rate of 8 m / day (the set flow rate (m / day) is a value obtained by dividing the filtration flow rate (m 3 / day) by the hollow fiber membrane area (m 2 )), the flow rate is reduced to 0. Air was supplied to the hollow fiber membrane with compressed air of 2 MPa for 10 seconds to separate turbid components. Thereafter, air scrubbing was performed with compressed air of 0.1 MPa from the inlet at the bottom of the module for 60 seconds to clean the membrane dirt (the inlet air outlet was secured by opening the air outlet). The washed dirt was extracted from the inlet and filtration was started again.
  • the water permeability retention after 20 days is the ratio of the water permeability (LMH) after 20 days to the initial water permeability at the start of operation (permeation rate of pure water, L / m 2 / hour: LMH). (%).
  • leaching was prepared with calcium chloride, sodium bicarbonate and sodium hydroxide so that the water quality was pH 7.0, total hardness (calcium carbonate equivalent) 45 mg / L, alkalinity (calcium carbonate equivalent) 35 mg / L.
  • An aqueous solution was prepared.
  • a washed hollow fiber membrane was prepared by passing a 1% by mass sodium lauryl sulfate (SLS) aqueous solution and then passing pure water for 6 hours.
  • SLS sodium lauryl sulfate
  • the prepared hollow fiber membrane 0.05 m 2 was immersed in 40 mL of a leaching aqueous solution for 24 hours.
  • TOC total organic carbon
  • Example 2 It is the same as Example 1 except having used the hollow fiber membrane which contains a polytetrafluoroethylene (PTFE) as a main component instead of polyvinylidene fluoride (PVDF) as a base material.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • the fraction particle diameters of the base material and the crosslinked hollow fiber membrane were measured.
  • the fractional particle size of the substrate was 0.1 ⁇ m.
  • the fractionated particle size of the crosslinked hollow fiber membrane was 0.02 ⁇ m. Therefore, the hollow fiber membrane after crosslinking, that is, the hollow fiber membrane according to Example 2, was found to have a fractional particle diameter of 0.2 times the fractional particle diameter of the substrate. .
  • the water permeability retention rate after 20 days was excellent at 85%.
  • the elution of the hydrophilic resin of the hollow fiber membrane according to Example 2 was evaluated, it was “None”.
  • Example 3 As a hydrophilic resin, sodium polyacrylate (Aronbis SX manufactured by Toa Gosei Co., Ltd.) is used instead of polyvinylpyrrolidone (PVP), and sodium persulfate (Mitsubishi Gas Co., Ltd.) is used as a cross-linking solution instead of an aqueous hydrogen peroxide solution.
  • PVP polyvinylpyrrolidone
  • Na persulfate Mitsubishi Gas Co., Ltd.
  • the fraction particle diameters of the base material and the crosslinked hollow fiber membrane were measured.
  • the fractional particle size of the substrate was 0.3 ⁇ m.
  • the fractionated particle size of the crosslinked hollow fiber membrane was 0.02 ⁇ m. Therefore, it was found that the hollow fiber membrane after crosslinking, that is, the hollow fiber membrane according to Example 3, has a fractional particle diameter of 0.07 times the fractional particle diameter of the base material. .
  • the hollow fiber membrane according to Example 3 when used, the water permeability retention after 20 days was excellent at 90%. Moreover, when the elution of the hydrophilic resin of the hollow fiber membrane according to Example 3 was evaluated, it was “None”.
  • Example 4 The same as Example 1 except that sodium persulfate was used as the cross-linking solution instead of the hydrogen peroxide solution.
  • the fraction particle diameters of the base material and the crosslinked hollow fiber membrane were measured.
  • the fractional particle size of the substrate was 0.3 ⁇ m.
  • the fractionated particle diameter of the crosslinked hollow fiber membrane was 0.1 ⁇ m. Therefore, it was found that the hollow fiber membrane after crosslinking, that is, the hollow fiber membrane according to Example 4, has a fractional particle diameter that is 1/3 times the fractional particle diameter of the base material. .
  • the hollow fiber membrane according to Example 4 when used, the water permeability retention after 20 days was excellent at 85%. Moreover, when the elution of the hydrophilic resin of the hollow fiber membrane according to Example 4 was evaluated, it was “None”.
  • Example 5 The same as Example 1 except that an ultrafiltration membrane (UF) membrane was used as a hollow fiber membrane containing polyvinylidene fluoride (PVDF) as a main component.
  • UF ultrafiltration membrane
  • PVDF polyvinylidene fluoride
  • the fractional particle diameter and the fractional molecular weight of the substrate and the crosslinked hollow fiber membrane were measured, respectively.
  • the fractional particle diameter of the substrate was less than 0.01 ⁇ m, and the fractional molecular weight was 800 kDa.
  • the fractionated particle diameter of the crosslinked hollow fiber membrane was less than 0.01 ⁇ m, and the fractionated molecular weight was 100 kDa. Therefore, it was found that the hollow fiber membrane after crosslinking, that is, the hollow fiber membrane according to Example 5, has a fractional molecular weight of 0.125 times the fractional molecular weight of the substrate.
  • the hollow fiber membrane according to Example 5 when used, the water permeability retention after 20 days was excellent at 90%. Moreover, when the elution of the hydrophilic resin of the hollow fiber membrane according to Example 5 was evaluated, it was “none”.
  • Example 1 The same as in Example 1 except that an aqueous solution containing 20% by mass of hydrogen peroxide (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the aqueous hydrogen peroxide solution.
  • FIG. 5 shows an infrared absorption spectrum of the hollow fiber membrane after crosslinking in Comparative Example 1.
  • the absorption intensity of the peak having a wave number of about 1676 cm ⁇ 1 was close to zero.
  • the absorption intensity of the peak having a wave number of about 1676 cm ⁇ 1 was 0.08 times the absorption intensity of the hollow fiber membrane before crosslinking. From these results, it was found that in the hollow fiber membrane according to Comparative Example 1, the hydrophilic resin was crosslinked to the extent that the peak with a wave number of about 1676 cm ⁇ 1 was almost eliminated.
  • the fraction particle diameters of the base material and the crosslinked hollow fiber membrane were measured.
  • the fractional particle size of the substrate was 0.3 ⁇ m.
  • the fractionated particle size of the hollow fiber membrane after crosslinking was 0.3 ⁇ m. Therefore, it was found that the hollow fiber membrane after crosslinking, that is, the hollow fiber membrane according to Comparative Example 1, has a fractional particle diameter that is 1 times the fractional particle diameter of the substrate.
  • the water permeability retention rate after 20 days was 57%.
  • the elution of the hydrophilic resin of the hollow fiber membrane according to Comparative Example 1 was evaluated, it was “none”.
  • Example 1 is the same as Example 1 except that an aqueous solution containing 0.1% by mass of hydrogen peroxide was used as the aqueous hydrogen peroxide solution.
  • the fraction particle diameters of the base material and the crosslinked hollow fiber membrane were measured.
  • the particle diameter of the hollow fiber membrane before cross-linking was 0.3 ⁇ m.
  • the fractionated particle size of the crosslinked hollow fiber membrane was 0.01 ⁇ m. Therefore, it was found that the hollow fiber membrane after crosslinking, that is, the hollow fiber membrane according to Comparative Example 2, has a fractional particle diameter of 0.03 times the fractional particle diameter of the base material. .
  • Example 3 As a hydrophilic resin, 1% by mass of polyvinyl alcohol (PVA) (PVA-505 manufactured by Kuraray Co., Ltd.) is used in place of polyvinylpyrrolidone (PVP), and 1% by mass in place of an aqueous hydrogen peroxide solution as a crosslinking liquid.
  • PVA polyvinyl alcohol
  • PVP polyvinylpyrrolidone
  • the fraction particle diameters of the base material and the crosslinked hollow fiber membrane were measured.
  • the fractional particle size of the substrate was 0.3 ⁇ m.
  • the fractionated particle size of the hollow fiber membrane after crosslinking was 0.3 ⁇ m. Therefore, it was found that the hollow fiber membrane after crosslinking, that is, the hollow fiber membrane according to Comparative Example 3, has a fractional particle diameter that is 1 times the fractional particle diameter of the substrate.
  • Example 4 is a hollow fiber membrane before crosslinking in Example 1.
  • a hollow fiber membrane that not only has excellent separation characteristics but also can maintain excellent permeation performance over a long period of time. Moreover, the manufacturing method of the said hollow fiber membrane is provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明の一局面は、中空糸膜状の基材と親水性樹脂の架橋体とを含み、湿潤状態での膜間差圧0.1MPaにおける純水の透過速度が、乾燥状態での膜間差圧0.1MPaにおける純水の透過速度に対して、0.5~0.99倍である中空糸膜である。また、前記中空糸膜の製造方法であって、前記親水性樹脂を含む、架橋前の中空糸膜を用意する工程と、前記架橋前の中空糸膜内の親水性樹脂を架橋させる架橋工程とを備える中空糸膜の製造方法である。

Description

中空糸膜、及び中空糸膜の製造方法
 本発明は、中空糸膜、及び中空糸膜の製造方法に関する。
 中空糸膜を用いた分離技術は、安全性が高く、高品質であり、省エネルギかつ低炭素なプロセスであること等から、様々な分野で利用されている。具体的には、浄水処理、飲料水製造、工業用水製造及び廃水処理等の水処理分野、食品工業分野、及び医薬品製造分野等で、中空糸膜を用いた膜ろ過法等の分離技術が用いられている。この中でも、例えば、水処理分野での利用が、中空糸膜を用いた分離技術を用いることで良好な水質の処理水を比較的低費用で得られることから注目されている。
 また、このような中空糸膜としては、例えば、特許文献1に記載の複合多孔質膜が挙げられる。特許文献1には、第1重合体から形成され約0.01~10μmの平均孔寸法を有し、中空繊維形状を有する多孔質膜基体と、架橋剤の不存在下に前記基体上で遊離ラジカル重合開始剤により架橋して不溶化される溶媒中の第2重合体組成物による前記基体の全表面の被覆とよりなり、前記多孔質基体と実質的に同一の細孔構造を有する複合多孔質膜が記載されている。
 一方で、水処理分野での利用の場合、分離技術によって得られる水自体が安価であるために、用いる中空糸膜には、より短時間でより大量の水をろ過できることが求められる。
 また、中空糸膜を用いた膜ろ過法は、ろ過時間の増加とともに、中空糸膜の表面や内部に堆積された濁質成分であるファウラントの量が増加する。この中空糸膜に堆積したファウラントが、ろ過抵抗になり、ろ過効率が低下する現象であるファウリングの発生の原因となる。このため、中空糸膜を用いて、長期間にわたって、被処理液をろ過する際には、中空糸膜を逆流洗浄、いわゆる逆洗することによって、中空糸膜に堆積したファウラントを定期的に除去することが考えられる。
 このようなことから、分離技術に用いられる中空糸膜は、透過性能や分離特性等の向上が求められるだけではなく、長期間にわたって、優れた透過性能を維持できることが求められる。
特表平9-512857号公報
 本発明は、分離特性に優れるだけではなく、長期間にわたって、優れた透過性能を維持できる中空糸膜及びその製造方法を提供することを目的とする。
 本発明の一態様に係る中空糸膜は、中空糸膜状の基材と親水性樹脂の架橋体とを含み、湿潤状態での膜間差圧0.1MPaにおける純水の透過速度が、乾燥状態での膜間差圧0.1MPaにおける純水の透過速度に対して、0.5~0.99倍であることを特徴とする。
 上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載から明らかになるだろう。
図1は、本発明の実施形態に係る中空糸膜の部分斜視図である。 図2は、本発明の実施形態に係る中空糸膜を備えた膜ろ過装置の一例を示す概略図である。 図3は、実施例1における架橋前の中空糸膜の赤外吸収スペクトルを示す。 図4は、実施例1における架橋後の中空糸膜の赤外吸収スペクトルを示す。 図5は、比較例1における架橋後の中空糸膜の赤外吸収スペクトルを示す。
 本発明者は、長期間にわたって、優れた透過性能を維持するために、ファウリングを抑制することを検討した。
 ファウリングを抑制するためには、まず、中空糸膜を親水化させることが有効であると考えた。浄水処理等の水処理において、中空糸膜に堆積するファウラントは、植物等が微生物によって分解された腐植物質であるフミン質等の天然有機物質(Natural Organic Matter:NOM)が主成分であることが知られている。NOMは、疎水性の比較的高い物質であるので、中空糸膜の親水性を高めることで、中空糸膜とファウラントとの相互作用を弱めることができると考えた。このため、中空糸膜を親水化させることで、ファウリングを抑制できると考えた。
 また、ファウリングを抑制するためには、中空糸膜を親水化させるだけではなく、中空糸膜の分離特性を高めることも有効であると考えた。中空糸膜等の膜の目詰まりに関しては、Hermans-Bredeeのろ過法則等から、膜の細孔径と同程度以下の粒子が、膜の閉塞を起こしやすいことが知られている。このことから、中空糸膜の分離特性が高まれば、中空糸膜の細孔径が小さくなり、膜の細孔径と同程度以下の粒子が少なくなると考えた。すなわち、中空糸膜の分離特性が高まれば、膜の閉塞に寄与しやすい粒子が少なくなると考えた。よって、中空糸膜の分離特性を高めることで、ファウリングを抑制できると考えた。
 また、中空糸膜を親水化させる方法としては、例えば、親水性樹脂の溶液に、中空糸膜を浸漬させた後に、中空糸膜に含まれた親水性樹脂を架橋させる方法等が挙げられる。具体的には、特許文献1に記載の方法等が挙げられる。
 本発明者の検討によれば、このような方法で得られた中空糸膜では、分離特性が不充分である場合があった。また、従来、長期間にわたって優れた透過性能を維持するために、中空糸膜を親水化させることで、ろ過時における分離特性も向上させることは、着目されていなかった。例えば、特許文献1には、親水化処理により分離特性を向上させることについては言及されていない。さらに、特許文献1には、親水化処理をして分離特性を高めることによって、長期間にわたって優れた透過性能を維持することができることについても言及されていない。
 そこで、本発明者は、水処理等に用いる際に、分離特性が高まるような中空糸膜を用いると、ファウリングを抑制できることに着目し、以下のような本発明に想到するに到った。
 以下、本発明に係る実施形態について説明するが、本発明は、これらに限定されるものではない。
 本発明の一実施形態に係る中空糸膜は、中空糸膜状の基材と親水性樹脂の架橋体とを含む中空糸膜である。すなわち、この中空糸膜は、前記基材と、前記基材に含まれる親水性樹脂の架橋体とを有する。そして、この中空糸膜は、湿潤状態での膜間差圧0.1MPaにおける純水の透過速度(FW)が、乾燥状態での膜間差圧0.1MPaにおける純水の透過速度(FD)に対して、0.5~0.99倍である。すなわち、FW/FD=0.5~0.99である。
 この湿潤状態での膜間差圧0.1MPaにおける純水の透過速度と乾燥状態での膜間差圧0.1MPaにおける純水の透過速度とは、中空糸膜の状態が湿潤状態であるか乾燥状態であるかが異なり、他の条件は同様の条件で測定した透過速度である。
 乾燥状態での膜間差圧0.1MPaにおける純水の透過速度(FD)としては、例えば、以下の方法により測定される透過速度等が挙げられる。まず、測定対象物である中空糸膜を乾燥させる。この乾燥は、中空糸膜を乾燥できれば、特に限定されないが、例えば、60℃の恒温乾燥機での24時間の乾燥等が挙げられる。この乾燥状態の中空糸膜の一端を封止し、有効長20cmの1本の中空糸膜モジュールを用い、原水として純水を利用し、ろ過圧力が0.1MPa(100kPa)、温度25℃の条件で外圧ろ過して、通水開始からの1分間の透水量を測定する。この測定した透水量から、単位膜面積、単位時間、及び単位圧力当たりの透水量に換算して、純水の透過速度FD(L/m/時)を得る。以下に端的に記載する。乾燥状態での膜間差圧0.1MPaにおける純水の透過速度(FD)は、一端を封止した中空糸膜を、60℃の恒温乾燥機で24時間乾燥し、有効長20cmの1本の中空糸膜モジュールとし、膜間差圧0.1MPa、温度25℃で1分間外圧ろ過した透水量から算出される。
 また、湿潤状態での膜間差圧0.1MPaにおける純水の透過速度(FW)としては、例えば、以下の方法により測定される透過速度等が挙げられる。まず、測定対象物である中空糸膜を湿潤状態にする。本実施形態に係る中空糸膜の場合、中空糸膜に含まれる親水性樹脂の架橋体を膨潤させる。この湿潤状態にする湿潤処理は、中空糸膜を好適に湿潤状態にすることができれば、特に限定されない。具体的には、中空糸膜を、エタノール50質量%水溶液に15分間浸漬させ、その後、15分間純水で洗浄するといった湿潤処理を施す。この湿潤状態にした中空糸膜を、乾燥状態の中空糸膜の代わりに用いること以外、上記FDの測定方法と同様の方法により、膜間差圧0.1MPaにおける純水の透過速度FW(L/m/時)を得る。以下に端的に記載する。湿潤状態での膜間差圧0.1MPaにおける純水の透過速度(FW)は、一端を封止した中空糸膜を、エタノール50質量%水溶液に15分間浸漬した後に15分間純水で洗浄し、有効長20cmの1本の中空糸膜モジュールとし、膜間差圧0.1MPa、温度25℃で1分間外圧ろ過した透水量から算出される。
 本実施形態に係る中空糸膜は、親水性樹脂の架橋体を含むので、中空糸膜の親水性を高めることができる。すなわち、この中空糸膜の親水性は、親水性樹脂の架橋体を含ませていない中空糸膜より高いと考えられる。このことにより、中空糸膜とファウラントとの相互作用を弱めることができ、ファウリングを抑制できると考えられる。
 また、本実施形態に係る中空糸膜は、上記のようにして得られたFD及びFWが、FW/FD=0.5~0.99との関係を満たす。なお、通常の中空糸膜の場合、乾燥状態での中空糸膜は、湿潤状態での中空糸膜より透水性が低下する傾向がある。すなわち、FWのほうが、FDより大きくなる傾向がある。よって、FW/FDは1より大きく、FD/FWは1より小さい傾向がある。通常の中空糸膜では、こういった傾向があるにもかかわらず、本実施形態に係る中空糸膜は、FWがFDに対して0.5~0.99倍である。このことから、本実施形態に係る中空糸膜は、湿潤状態にしたとき、中空糸膜に含まれる親水性樹脂の架橋体が膨潤して、中空糸膜の細孔が小さくなると考えられる。よって、本実施形態に係る中空糸膜は、湿潤状態での分離特性が好適に高まると考えられる。具体的には、この中空糸膜の分離特性は、親水性樹脂の架橋体を含ませていない中空糸膜の分離特性や乾燥状態等での分離特性より高いと考えられる。このことからも、ファウリングを抑制できると考えられる。
 これらのことから、本実施形態に係る中空糸膜は、湿潤状態での分離特性が高いだけではなく、ファウリングを好適に抑制できると考えられる。また、この中空糸膜は、ファウリングを好適に抑制できるので、逆洗等によって、透過性能が回復されやすい。よって、本実施形態に係る中空糸膜は、上記のことから、分離特性に優れるだけではなく、長期間にわたって、優れた透過性能を維持できると考えられる。
 また、FW/FDは、上述したように、0.5~0.99であればよいが、さらに、0.6~0.99であることが好ましく、0.65~0.99であることがより好ましい。FW/FDが小さすぎると、親水性樹脂の架橋体の架橋度が不足し、架橋体が膨潤しすぎる等の理由から、中空糸膜から親水性樹脂が溶出し、長期運転性に問題が出たり、ろ過水水質等が悪化するという傾向がある。また、FW/FDが大きすぎると、親水性樹脂の架橋体が架橋しすぎて、本発明の趣旨である分画性向上の効果がなくなるため、ファウリング抑制及び長期運転性向上の効果が得られなくなるという傾向がある。
 また、FD及びFWは、それぞれ上記の関係を満たす速度であればよいが、例えば、FDは、100~20000L/m/時であることが好ましく、100~10000L/m/時であることがより好ましく、200~10000L/m/時であることがさらに好ましい。また、FWは、100~20000L/m/時であることが好ましく、100~10000L/m/時であることがより好ましく、200~10000L/m/時であることがさらに好ましい。FDが低すぎると、湿潤状態での透過速度も低い傾向になり、透過性能が不充分になるおそれがある。また、FDが高すぎると、親水性樹脂の架橋体の架橋度が不足し、架橋体が膨潤しすぎる等の理由から、中空糸膜から親水性樹脂が溶出し、長期運転性に問題が出たり、ろ過水水質等が悪化するという傾向がある。また、FWが低すぎると、透過性能が劣る傾向がある。また、FWが高すぎると、分離特性が劣る傾向がある。これらのことから、FD及びFWが、それぞれ上記の関係を満たす速度であれば、FW/FDが好適な関係になりやすく、分離特性に優れるだけではなく、長期間にわたって、優れた透過性能を維持できると考えられる。
 また、本実施形態に係る中空糸膜は、親水性樹脂の架橋体を含んでいればよく、この架橋体が、少なくとも表面に存在していることが好ましい。そして、この架橋体は、基材に親水性樹脂を含ませ、この基材に含まれる親水性樹脂を架橋させたものであることが好ましい。すなわち、中空糸膜中の親水性樹脂を架橋させた架橋体が、基材の表面を被覆していることが好ましい。また、この架橋体は、基材の表面全面に対して、被覆されていることがより好ましい。このような中空糸膜中の親水性樹脂を架橋させた架橋体が、中空糸膜の少なくとも表面に存在するので、この架橋体が膨潤することにより、湿潤状態での中空糸膜の分離特性をより高めることができると考えられる。このことから、分離特性により優れ、より長期間にわたって優れた透過特性を維持できる中空糸膜が得られる。
 また、この中空糸膜としては、上記のような中空糸膜が得られるような親水化処理を施したもの等が挙げられる。より具体的には、親水性樹脂を含ませていない架橋前の中空糸膜、すなわち基材を、親水性樹脂に含浸させ、中空糸膜中に含まれた親水性樹脂を架橋させたもの等が挙げられる。また、親水化処理としては、前記含浸以外にも、中空糸膜を製造する際に、親水性樹脂を練り込んでいてもよく、その中空糸膜中に含まれた親水性樹脂を架橋させてもよい。
 また、基材となる中空糸膜、すなわち、親水性樹脂を含ませていない架橋前の中空糸膜としては、特に限定されない。この基材としては、例えば、非溶剤誘起相分離法(Nonsolvent Induced Phase Separation:NIPS法)や、熱誘起相分離法(Thermally Induced Phase Separation:TIPS法)等で製造された中空糸膜等が挙げられる。また、この基材としては、例えば、市販の中空糸膜であってもよい。この基材としては、上記のような親水化処理により、親水性樹脂の架橋体を表面全面に被覆させることができる中空糸膜が好ましい。また、この基材としては、強度及び耐薬品性が優れる点から、フッ素系樹脂を含む中空糸膜であることが好ましく、フッ素系樹脂を主成分として含む中空糸膜であることがより好ましい。なお、ここで主成分とは、中空糸膜に占めるフッ素系樹脂の割合が高いことをいい、例えば、中空糸膜に対して、フッ素系樹脂が85質量%以上であることが好ましく、90~100質量%であることがより好ましい。また、フッ素系樹脂としては、フッ化ビニル樹脂、四フッ化エチレン樹脂(ポリテトラフルオロエチレン:PTFE)、六フッ化プロピレン樹脂、三フッ化塩化エチレン樹脂、及びフッ化ビニリデン樹脂(PVDF)等が挙げられる。また、フッ素系樹脂としては、具体的には、フッ化ビニル、四フッ化エチレン、六フッ化プロピレン、及び三フッ化塩化エチレンからなる群から選ばれる少なくとも1種とフッ化ビニリデンとの共重合体等が挙げられる。
 一般的に、フッ素系樹脂を主成分として含む中空糸膜は、乾固した状態で、通水させようとした場合、フッ素系樹脂等の疎水効果や撥水効果によって、水がはじかれ、通水抵抗が大きくなる。よって、フッ素系樹脂を主成分として含む中空糸膜は、乾固した状態での通水は困難である。例えば、メタノール、エタノール、及びラウリル硫酸塩水溶液等の界面活性剤を通水し、表面を一度濡らし、いわゆるウェット化した後であれば、通水可能になる。これに対して、親水化処理を施した中空糸膜は、親水性樹脂が少なくとも表面に存在するので、フッ素系樹脂等の疎水効果や撥水効果を低減できる。よって、親水化処理を施した中空糸膜は、フッ素系樹脂を主成分として含む中空糸膜であっても、乾固した状態で、通水可能である。
 このことから、乾燥状態での純水の透過速度は、湿潤状態での純水の透過速度に対して、1倍(100%)程度であることが上限であり、それより大幅に大きくなることはないと考えられていた。すなわち、FD/FWが1より大きく(FW/FDが1より小さく)になることはないと考えられていた。よって、中空糸膜表面全体が理想的に親水化された場合には、乾燥状態での透水性能が、湿潤状態での透水性能と同等になると考えられていた。
 本実施形態に係る中空糸膜は、後述する架橋において、乾燥状態での透水性能が、湿潤状態での透水性能より高くなるように、すなわち、湿潤状態での透水性能が、乾燥状態での透水性能より低くなるように、得られる架橋体の架橋度を調整する。すなわち、FW/FDが0.5~0.99倍になるように架橋度を調整する。中空糸膜を得る際の架橋は、このような架橋度になるように調整した架橋である。そうすることによって、中空糸膜を親水化するとともに、湿潤状態での分離特性を高めることができる。
 このことは、以下のことによると考えられる。
 まず、乾燥状態では、中空糸膜に含まれる親水性樹脂の架橋体が、乾固しているため、中空糸膜の細孔径が、湿潤状態での細孔径より大きくなっていて、水が流れやすいと考えられる。これに対して、湿潤状態では、中空糸膜に含まれる親水性樹脂の架橋体が、好適に膨潤し、中空糸膜の細孔径が、乾燥状態での細孔径より好適に小さくなっていると考えられる。このため、湿潤状態での中空糸膜は、湿潤状態より水が流れにくく、分離特性が向上させることができると考えられる。これらのことから、本実施形態に係る中空糸膜は、フッ素系樹脂を主成分として含む中空糸膜が基材であっても、分離特性に優れるだけではなく、長期間にわたって、優れた透過性能を維持できると考えられる。
 また、前記親水性樹脂としては、特には限定されないが、架橋前の中空糸膜に対して、上記のような親水化処理により、その架橋体が表面全面を覆うことが可能な樹脂であることが好ましい。この親水性樹脂としては、カルボキシル基、カルボニル基、エステル基、アミド基、及びヒドロキシ基等の親水性の高い基を有する樹脂が好ましい。中空糸膜を水に浸漬させた際の膨潤効果が高い点で好ましい。具体的には、親水性樹脂としては、例えば、ポリビニルアルコール、ポリエチレンビニルアルコール、ポリエチレングリコール、セルロース、セルロースアセテート、ポリビニルピロリドン、ポリアクリル酸ナトリウム等のアクリル酸系ポリマー、ビニルピロリドンとビニルアセテートとの共重合体、及びビニルピロリドンとビニルカプロラクタムとの共重合体等が挙げられる。この中でも、膨潤効果が高い点で、ポリビニルピロリドンやポリアクリル酸ナトリウム等のアクリル酸系ポリマーが好ましい。
 また、前記中空糸膜は、架橋前の中空糸膜に含まれる親水性樹脂を架橋させること等によって得られる。この架橋は、FW/FDが0.5~0.99となるような架橋であれば、特に限定されない。
 この架橋としては、例えば、赤外吸収スペクトルにおける親水性樹脂に由来のピークの吸収強度が、親水性樹脂を含ませた架橋前の中空糸膜の、親水性樹脂に由来のピークの吸収強度に対して、0.1倍以上0.7倍以下となるような架橋が挙げられる。また、吸収強度の変化は、前記中空糸膜の吸収強度が、架橋前の中空糸膜のそれに対して、上述したように、0.1倍以上0.7倍以下であることが好ましく、0.1倍以上0.6倍以下であることがより好ましく、0.1倍以上0.5倍以下であることがさらに好ましい。架橋前の中空糸膜に含まれる親水性樹脂を架橋することにより、赤外吸収スペクトルにおける親水性樹脂に由来のピークの吸収強度が低下する場合、この吸収強度の低下は、得られる架橋体の架橋度を好適に表すと考えられる。この吸収強度が上記のように低下するように、親水性樹脂を架橋すると、得られた架橋体が、湿潤状態での中空糸膜の分離特性を好適に高めることができる程度の架橋度になると考えられる。このため、このように架橋することで、分離特性に優れ、長期間にわたって、優れた透過性能を維持する中空糸膜となる。
 また、前記吸収強度は、親水性樹脂に由来のピークの吸収強度であり、例えば、親水性樹脂の有するC=O結合の伸縮振動由来のピークの強度であることが好ましい。また、前記吸収強度は、波数が1600~1800cm-1における最大ピークの吸収強度であることが好ましい。また、親水性樹脂がポリビニルピロリドンである場合は、前記吸収強度は、波数が1676cm-1における最大ピークの吸収強度であることが好ましい。前記吸収強度の変化として、これらのピークの強度を採用すると、得られる架橋体の架橋度を好適に表すと考えられる。すなわち、架橋後の中空糸膜が、湿潤状態での中空糸膜の分離特性を好適に高めることができる程度の架橋度に適切になっていることを好適に表すことになると考えられる。
 また、本実施形態に係る中空糸膜は、赤外吸収スペクトルにおいて、波数が1600~1800cm-1にピークを有することが好ましい。このことから、中空糸膜に含まれる親水性樹脂が完全に架橋されているのではなく、架橋されていない部分を有する親水性樹脂を含む中空糸膜である。このことから、分離特性や長期間にわたる透過性能に優れる中空糸膜が得られる。
 また、赤外吸収スペクトルは、赤外分光法で得られたスペクトルであれば、特に限定されない。具体的には、一般的な赤外分光光度計を用いて、中空糸膜を測定した際に得られる赤外吸収スペクトル等が挙げられる。
 また、親水性樹脂の有するC=O結合とは、例えば、カルボキシル基、カルボニル基、エステル基、及びアミド基におけるC=O結合等が挙げられる。また、このようなC=O結合を有する親水性樹脂を用いた場合、親水性樹脂の有するC=O結合の伸縮振動由来のピークの吸収強度の変化を測定することで、好適な架橋度の架橋体が得られているかがわかる。また前記吸収強度の変化を測定することで、前記親水性樹脂を架橋させる際に用いた、種々のラジカル開始剤、紫外線、γ線、酸、及びアルカリ等の違いによる、架橋度の違いも測定できる。これらのことから、好適な架橋度の架橋体が得られているかがわかるだけではなく、架橋時に用いる物質等をある程度統一的に選定することができる。例えば、親水性樹脂として、ポリビニルピロリドンやアクリル酸ナトリウム等のアクリル系ポリマーを用いた場合、ラジカル開始剤としては、過酸化水素(H)水溶液、過硫酸ナトリウム、及び過硫酸カリウム等を用いることが挙げられる。また、親水性樹脂として、ポリビニルピロリドンやアクリル酸ナトリウム等のアクリル系ポリマーを用いた場合、紫外線を用いて架橋させてもよい。
 また、この架橋は、ラジカル開始剤を用いる場合、FW/FDが0.5~0.99となるように、架橋反応を行う際の温度や時間、ラジカル開始剤の濃度等を調整して行うことが好ましい。具体的には、親水性樹脂として、ポリビニルピロリドンを用いた場合、1質量%のH水溶液を用いて、架橋することが好ましい。
 また、前記架橋としては、前記吸収強度の変化以外に、例えば、分画径が、基材となる中空糸膜の分画径に対して、0.05~0.7倍となるような架橋が挙げられる。また、分画径は、基材のそれに対して、前記の0.05~0.7倍であることが好ましく、0.1~0.5倍であることがより好ましく、0.1倍以上1/3倍以下であることがさらに好ましい。なお、ここでの分画径の比は、基材の分画径を用いる場合であっても、架橋後の中空糸膜の分画径を用いる場合であっても、同じ環境下で測定した分画径を用いて得られた比である。分画径の比としては、例えば、架橋後の中空糸も、基材も、ともに湿潤状態で測定した分画径を用いた比等が挙げられる。この分画径は、中空糸膜の通過を阻止可能な被ろ過物のうちの最小物の大きさである。この分画径としては、中空糸膜の通過を阻止できる最小粒子の粒子径である分画粒子径等が挙げられ、例えば、中空糸膜による阻止率が90%となる粒子径等が挙げられる。また、この分画径としては、阻止可能なものの大きさを分子量である分画分子量等も挙げられる。この場合、この分画径は、中空糸膜の通過を阻止できる被ろ過物のうちの最も小さいものの分子量等が挙げられ、例えば、中空糸膜による阻止率が90%となる被ろ過物の分子量等が挙げられる。このような分画径が、上記のような関係を満たすように、親水性樹脂を架橋すると、得られた架橋体が、湿潤状態での中空糸膜の分離特性を好適に高めることができる程度の架橋度になると考えられる。このため、このように架橋することで、分離特性に優れ、長期間にわたって、優れた透過性能を維持する中空糸膜となる。
 また、本実施形態に係る中空糸膜の分画径は、上記関係を満たす分画径であればよいが、例えば、前記分画径は、分画粒子径で、0.01~0.5μmであることが好ましく、0.01~0.2μmであることがより好ましく、0.02~0.1μmであることがさらに好ましい。また、前記分画径は、分画分子量で、1~500kDaであることが好ましく、50~500kDaであることがより好ましく、100~500kDaであることがさらに好ましい。分画径は、小さければ小さいほど好ましいが、優れた透過性能を維持するためには、上記範囲程度であることが好ましい。また、分画径が大きすぎると、透過性能が高まったとしても、分離特性が低下してしまい、除去対象の適用範囲が狭くなってしまう傾向がある。このことから、分画径が、上記範囲内で、除去対象物に応じて、適切な分画径にすることによって、透過性能の低下を抑制しつつ、適切な分離を行うことができる。すなわち、中空糸膜は、分画径によって、除去対象の適用範囲が異なる。また、中空糸膜の分離特性を高めることによって、除去可能物質の範囲が広がるため、適用範囲が広がるという点でも有用である。分離膜としては、一般的に、除去可能物質が大きいものから順に、精密ろ過(MF)膜、限外ろ過(UF)膜、及びナノろ過(NF)膜等が挙げられる。具体的には、精密ろ過膜として用いる場合は、分画径が、分画粒子径で0.01~2μmであることが好ましく、0.01~0.5μmであることがより好ましく、0.01~0.3μmであることがより好ましい。また、限外ろ過膜として用いる場合は、分画径が、上記精密ろ過膜として用いる場合より分画粒子径が小さく、例えば、分画粒子径で0.05~0.1μmであることが好ましい。また、限外ろ過膜として用いる場合は、分画径が、分画分子量で5,000~1,000,000であることが好ましく、100,000~1,000,000であることがより好ましく、300,000~1,000,000であることがより好ましい。
 また、本実施形態に係る中空糸膜の形状は、特に限定されない。中空糸膜は、中空糸状であって、長手方向の一方側は開放し、他方側は、開放していても閉じていてもよい。中空糸膜の形状としては、例えば、中空糸状であって、長手方向の一方側を開放したままで、他方側を閉じた形状等が挙げられる。また、中空糸膜の開放した側の形状としては、例えば、図1に示すような形状である場合等が挙げられる。なお、図1は、本実施形態に係る中空糸膜の部分斜視図である。
 また、前記中空糸膜の外径R1は、0.5~7mmであることが好ましく、1~2.5mmであることがより好ましく、1~2mmであることがさらに好ましい。このような外径であれば、中空糸膜を用いた分離技術を実現する装置に備える中空糸膜として、好適な大きさである。
 また、前記中空糸膜の内径R2は、0.4~3mmであることが好ましく、0.6~2mmであることがより好ましく、0.6~1.2mmであることがさらに好ましい。中空糸膜の内径が小さすぎると、透過液の抵抗である管内圧損が大きくなり、流れが不良になる傾向がある。また、中空糸膜の内径が大きすぎると、中空糸膜の形状を維持できず、膜の潰れや歪み等が発生しやすくなる傾向がある。
 また、前記中空糸膜の膜厚Tは、0.2~1mmであることが好ましく、0.25~0.5mmであることがより好ましく、0.25~0.4mmであることがさらに好ましい。中空糸膜の膜厚が薄すぎると、強度不足になり、歪み等の変形が発生しやすくなる傾向がある。
 また、前記中空糸膜の外径R1、内径R2、及び膜厚Tが、それぞれ上記範囲内であると、中空糸膜を用いた分離技術を実現する装置に備える中空糸膜として、好適な大きさであり、前記装置の小型化が図れる。
 また、本実施形態に係る中空糸膜の製造方法は、上述の中空糸膜を製造することができれば、特に限定されない。この製造方法としては、例えば、以下のような製造方法が挙げられる。この製造方法としては、例えば、前記親水性樹脂を含む、架橋前の中空糸膜を用意する工程(用意工程)と、前記架橋前の中空糸膜内の親水性樹脂を架橋させる工程(架橋工程)とを備える方法などが挙げられる。そして、これらの工程における条件、例えば、架橋工程での条件等を調整することによって、本実施形態に係る中空糸膜を製造する。
 また、前記用意工程は、前記親水性樹脂を含む、架橋前の中空糸膜を用意することができれば、特に限定されない。例えば、前記基材に、前記親水性樹脂を含浸させる方法や、基材となる中空糸膜を製造する際に、前記親水性樹脂を練り込む方法等が挙げられる。また、架橋前の中空糸膜は、製造してもよいし、市販の中空糸膜を用意してもよい。
 また、前記架橋工程は、前記架橋前の中空糸膜内の親水性樹脂を、最終的に得られる中空糸膜が本実施形態に係る中空糸膜になるように架橋させる工程であれば、特に限定されない。具体的には、赤外吸収スペクトルにおいて、架橋前後の吸収強度の関係が、上記のような関係になるように架橋させる工程や、基材と架橋後の中空糸膜との分画径の関係が、上記のような関係になるように架橋させる工程等が挙げられる。また、前記架橋工程としては、前記親水性樹脂を含む、架橋前の中空糸膜に対して、下記各処理を施す工程等が挙げられ、具体的には、中空糸膜を、ラジカル開始剤を含む水溶液に浸漬させる工程、中空糸膜を強酸や強アルカリに浸漬させる工程、中空糸膜を熱処理する工程、及び前記親水性樹脂を含む、中空糸膜に対して放射線処理する工程等が挙げられる。前記各工程によって、中空糸膜に含まれる親水性樹脂が架橋される。また、前記架橋工程としては、前記各工程の中でも、親水性樹脂の劣化を抑制でき、取扱が容易である点から、中空糸膜を、ラジカル開始剤を含む水溶液に浸漬させる工程が好ましい。
 ラジカル開始剤を含む水溶液に浸漬させる工程は、その浸漬の際に、又は、浸漬後に、加熱処理をすることが好ましい。また、ラジカル開始剤を含む水溶液としては、前記親水性樹脂の架橋反応を開始させることができるラジカル開始剤を含む水溶液であればよく、例えば、ラジカル開始剤の1質量%水溶液等が挙げられる。ラジカル開始剤としては、例えば、過硫酸ナトリウム、過硫酸アンモニウム、及び過酸化水素等が挙げられる。この中でも、透過性能の高い中空糸膜が得られやすいという点で、過酸化水素が好ましい。
 また、熱処理する工程における加熱温度は、親水性樹脂の架橋反応を開始させることができる温度であればよく、例えば、170~200℃程度であることが好ましい。
 また、本実施形態に係る中空糸膜は、膜ろ過法に供することができる。具体的には、例えば、中空糸膜を用いて、以下のようにモジュール化し、このモジュール化されたものを用いて、膜ろ過に用いることができる。より具体的には、本実施形態に係る中空糸膜は、所定本数束ねられ、所定長さに切断されて、所定形状のケーシングに充填され、中空糸束の端部はポリウレタン樹脂やエポキシ系樹脂等の熱硬化性樹脂によりケーシングに固定されて、モジュールとなる。なお、このモジュールの構造としては、中空糸膜の両端が開口固定されているタイプ、中空糸膜の一端が開口固定され、他端が密封されているが、固定されていないタイプ等、種々の構造のものが知られており、本実施形態に係る中空糸膜は、いずれのモジュールの構造においても使用可能である。
 また、本実施形態に係る中空糸膜は、上記のようにモジュール化され、例えば、図2に示すような膜ろ過装置に組み込むことができる。なお、図2は、本実施形態に係る中空糸膜を備えた膜ろ過装置の一例を示す概略図である。膜ろ過装置31は、上記のように中空糸膜をモジュール化した膜モジュール32を備える。そして、この膜モジュール32は、例えば、中空糸膜の上端部33は中空部を開口しており、下端部34は中空部をエポキシ系樹脂にて封止しているものが挙げられる。また、膜モジュール32は、例えば、有効膜長さ100cmの中空糸膜を70本用いてなるもの等が挙げられる。そして、この膜ろ過装置31は、導入口35から、被処理液を、膜モジュール32によるろ過が施された液体(ろ過水)等が導出口36から排出される。そうすることによって、中空糸膜を用いたろ過が実施される。なお、膜ろ過装置31に導入された空気は、空気抜き口37から排出される。また、ここでの膜ろ過法は、中空糸膜の外表面から内表面に向かって、被処理液を透過させることによって、被処理液がろ過される。このことから、中空糸膜の外表面側を、1次側と呼び、内表面側を、2次側とも呼ぶ。
 本実施形態に係る中空糸膜は、このようにモジュール化されて、浄水処理、飲料水製造、工業水製造、廃水処理等の各種用途に用いられる。すなわち、前記膜ろ過法で、処理対象物である被処理液としては、このような用途を達成するための液体であり、水を主成分とした水系媒体等が挙げられる。
 また、本実施形態に係る中空糸膜は、上記のような膜ろ過法に用いることによって、液体処理、具体的には、ろ過処理を行うことができる。この中空糸膜を用いた液体処理方法は、具体的には、前記中空糸膜を用いて、被処理液をろ過するろ過工程と、前記中空糸膜を逆流洗浄する逆洗工程とを備え、前記ろ過工程と前記逆洗工程とを交互に行う方法等が挙げられる。そして、この方法としては、例えば、前記逆洗工程が、前記ろ過工程における二次側に、圧縮空気等の気体やろ過液等の液体を供給することによって、前記中空糸膜を透過した気体や液体で、前記中空糸膜を洗浄する。また、この洗浄の際又はその後に、図2における導入口35から空気を導入して、中空糸膜上で気泡を発生させて、その気泡によるスクラビング洗浄を行ってもよい。
 本明細書は、上述したように、様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。
 本発明の一態様に係る中空糸膜は、中空糸膜状の基材と親水性樹脂の架橋体とを含み、湿潤状態での膜間差圧0.1MPaにおける純水の透過速度が、乾燥状態での膜間差圧0.1MPaにおける純水の透過速度に対して、0.5~0.99倍であることを特徴とする。
 このような構成によれば、分離特性に優れるだけではなく、長期間にわたって、優れた透過性能を維持できる中空糸膜を提供することができる。
 このことは、以下のことによると考えられる。
 まず、親水性樹脂の架橋体を含むので、中空糸膜の親水性を高めることができる。このことにより、中空糸膜とファウラントとの相互作用を弱めることができ、ファウリングを抑制できると考えられる。
 また、湿潤状態での純水の透過速度が、乾燥状態での純水の透過速度に対して、0.5~0.99倍であるので、中空糸膜を湿潤状態にしたとき、中空糸膜に含まれる親水性樹脂の架橋体が膨潤して、中空糸膜の細孔が小さくなり、湿潤状態での中空糸膜の分離特性が好適に高まると考えられる。このことからも、ファウリングを抑制できると考えられる。
 よって、このような中空糸膜は、湿潤状態での分離特性が高いだけではなく、ファウリングを好適に抑制できると考えられる。また、この中空糸膜は、ファウリングを好適に抑制できるので、逆洗等によって、透過性能が回復されやすい。これらのことから、このような中空糸膜は、分離特性に優れるだけではなく、長期間にわたって、優れた透過性能を維持できると考えられる。
 また、前記中空糸膜において、前記架橋体は、少なくとも表面に存在し、架橋前の中空糸膜に含まれる親水性樹脂を架橋させたものであることが好ましい。
 このような構成によれば、分離特性により優れ、より長期間にわたって、優れた透過性能を維持できる。このことは、架橋前の中空糸膜に含まれる親水性樹脂を架橋させた架橋体が、中空糸膜の、少なくとも表面に存在しているので、この架橋体が膨潤することにより、湿潤状態での中空糸膜の分離特性がより高められることによると考えられる。
 また、前記中空糸膜において、赤外吸収スペクトルにおける前記親水性樹脂に由来のピークの吸収強度が、前記架橋前の中空糸膜の前記吸収強度に対して、0.1倍以上0.7倍以下であることが好ましい。
 このような構成によれば、分離特性により優れ、より長期間にわたって、優れた透過性能を維持できる。
 このことは、以下のことによると考えられる。
 まず、架橋前の中空糸膜に含まれる親水性樹脂を架橋することにより、赤外吸収スペクトルにおける親水性樹脂に由来のピークの吸収強度が低下する場合、この吸収強度の低下は、得られる架橋体の架橋度を好適に表すと考えられる。吸収強度が上記のように低下するように、親水性樹脂を架橋すると、得られた架橋体が、湿潤状態での中空糸膜の分離特性を好適に高めることができる程度の架橋度となると考えられる。このため、分離特性により優れ、より長期間にわたって、優れた透過性能を維持できると考えられる。
 また、前記中空糸膜において、前記吸収強度が、前記親水性樹脂の有するC=O結合の伸縮振動由来のピークの強度であることが好ましい。
 このような構成によれば、前記吸収強度の変化として、親水性樹脂の有するC=O結合の伸縮振動由来のピークの強度を採用すると、得られる架橋体の架橋度を好適に表すと考えられる。すなわち、架橋後の中空糸膜が、湿潤状態での中空糸膜の分離特性を好適に高めることができる程度の架橋度に適切になっていることを好適に表すことになると考えられる。よって、分離特性により優れ、より長期間にわたって、優れた透過性能を維持できる中空糸膜が得られる。
 また、前記中空糸膜において、前記吸収強度が、波数が1600~1800cm-1における最大ピークの吸収強度であることが好ましい。
 このような構成によれば、前記吸収強度の変化として、前記波数範囲内における最大ピークの強度を採用すると、得られる架橋体の架橋度を好適に表すと考えられる。すなわち、架橋後の中空糸膜が、湿潤状態での中空糸膜の分離特性を好適に高めることができる程度の架橋度に適切になっていることを好適に表すことになると考えられる。よって、分離特性により優れ、より長期間にわたって、優れた透過性能を維持できる中空糸膜が得られる。
 また、前記中空糸膜において、分画径が、前記基材の分画径に対して、0.05~0.7倍であることが好ましい。
 このような構成によれば、分離特性により優れ、より長期間にわたって、優れた透過性能を維持できる。
 このことは、以下のことによると考えられる。
 まず、基材に親水性樹脂を含ませる。そして、この架橋前の中空糸膜に含まれる親水性樹脂を架橋することにより、中空糸膜の表面の細孔が小さくなり、分離特性が高まると考えられる。分画径が、基材の分画径に対して、0.05~0.7倍となるように、架橋前の中空糸膜に含まれる親水性樹脂を架橋すると、得られた架橋体が、湿潤状態での中空糸膜の分離特性を好適に高めることができる程度の架橋度となると考えられる。このため、分離特性により優れ、より長期間にわたって、優れた透過性能を維持できると考えられる。
 また、前記中空糸膜において、前記基材が、フッ素系樹脂を含み、前記中空糸膜の赤外吸収スペクトルにおいて、波数が1600~1800cm-1にピークを有することが好ましい。
 このような構成によれば、まず、基材が、フッ素系樹脂を含むので、充分な強度及び優れた耐薬品性を有する。また、フッ素系樹脂を含む基材、すなわち、架橋前の中空糸膜に含まれる親水性樹脂を架橋し、波数が1600~1800cm-1にピークを有するので、フッ素系樹脂を含む中空糸膜に含まれる親水性樹脂を架橋した中空糸膜は、中空糸膜に含まれる親水性樹脂が完全に架橋されているのではなく、架橋されていない部分を有する親水性樹脂を含む中空糸膜である。このことから、分離特性や長期間にわたる透過性能に優れるだけではなく、強度や耐薬品性に優れる中空糸膜が得られる。
 また、本発明の他の一態様に係る中空糸膜の製造方法は、前記中空糸膜の製造方法であって、前記親水性樹脂を含む、架橋前の中空糸膜を用意する工程と、前記架橋前の中空糸膜内の親水性樹脂を架橋させる架橋工程とを備えることを特徴とする。
 このような構成によれば、分離特性に優れるだけではなく、長期間にわたって、優れた透過性能を維持できる中空糸膜を製造することができる。
 このことは、以下のことによると考えられる。
 まず、架橋工程で、湿潤状態での膜間差圧0.1MPaにおける純水の透過速度が、乾燥状態での膜間差圧0.1MPaにおける純水の透過速度に対して、0.5~0.99倍となるように、架橋前の中空糸膜に含まれる親水性樹脂を架橋させる。このことから、親水性樹脂の架橋体を含むので、中空糸膜の親水性を高めることができる。このことにより、中空糸膜とファウラントとの相互作用を弱めることができ、ファウリングを抑制できると考えられる。また、湿潤状態での純水の透過速度が、乾燥状態での純水の透過速度に対して、0.5~0.99倍であるので、中空糸膜を湿潤状態にしたとき、中空糸膜に含まれる親水性樹脂の架橋体が膨潤して、中空糸膜の細孔が小さくなり、湿潤状態での中空糸膜の分離特性が好適に高まると考えられる。このことからも、ファウリングを抑制できると考えられる。
 よって、湿潤状態での中空糸膜の分離特性が高いだけではなく、ファウリングを好適に抑制できる中空糸膜を製造できると考えられる。このため、この製造された中空糸膜は、分離特性に優れるだけではなく、長期間にわたって、優れた透過性能を維持できると考えられる。
 また、前記中空糸膜の製造方法において、前記架橋工程は、赤外吸収スペクトルにおける前記親水性樹脂に由来の吸収強度が、前記架橋前の中空糸膜の前記吸収強度に対して、0.1倍以上0.7倍以下となるように、前記親水性樹脂を架橋させる工程であることが好ましい。
 このような構成によれば、分離特性により優れ、より長期間にわたって、優れた透過性能を維持できる中空糸膜を製造できる。
 このことは、以下のことによると考えられる。
 まず、架橋前の中空糸膜に含まれる親水性樹脂を架橋することにより、赤外吸収スペクトルにおける親水性樹脂に由来のピークの吸収強度が低下する場合、この吸収強度の低下は、得られる架橋体の架橋度を好適に表すと考えられる。吸収強度が上記のように低下するように、架橋工程で親水性樹脂を架橋すると、得られた架橋体が、湿潤状態での中空糸膜の分離特性を好適に高めることができる程度の架橋度となると考えられる。このため、分離特性により優れ、より長期間にわたって、優れた透過性能を維持できる中空糸膜が得られると考えられる。
 また、前記中空糸膜の製造方法において、前記架橋工程は、分画径が、前記基材の分画径に対して、0.05~0.7倍となるように、前記親水性樹脂を架橋させる工程であることが好ましい。
 このような構成によれば、分離特性により優れ、より長期間にわたって、優れた透過性能を維持できる中空糸膜を製造できる。このことは、以下のことによると考えられる。まず、架橋工程で、架橋前の中空糸膜に含まれる親水性樹脂を架橋することにより、中空糸膜の表面の細孔が小さくなり、分離特性が高まると考えられる。また、架橋工程で、分画径が、基材の分画径に対して、0.05~0.7倍となるように、架橋前の中空糸膜に含まれる親水性樹脂を架橋すると、得られた架橋体が、湿潤状態での中空糸膜の分離特性を好適に高めることができる程度の架橋度となると考えられる。このため、分離特性により優れ、より長期間にわたって、優れた透過性能を維持できる中空糸膜が得られると考えられる。
 本発明によれば、分離特性に優れるだけではなく、長期間にわたって、優れた透過性能を維持できる中空糸膜を提供することができる。また、前記中空糸膜の製造方法を提供することができる。
 以下に、実施例により本発明を更に具体的に説明するが、本発明の範囲はこれらに限定されるものではない。
 [実施例1]
 まず、ポリフッ化ビニリデン(PVDF)を主成分として含む中空糸膜を基材として用い、この基材となる中空糸膜を、エタノール50質量%水溶液に浸漬させた。そうすることによって、基材となる中空糸膜を濡らした。この濡らした中空糸膜を、水に24時間浸漬させた。そうすることによって、中空糸膜内全体に水が含まれた。この中空糸膜を、親水性樹脂であるポリビニルピロリドン(PVP)の1質量%水溶液(BASFジャパン株式会社製のSokalan K-90)に浸漬させた。その後、このポリビニルピロリドン水溶液に浸漬させた中空糸膜を、過酸化水素を0.5質量%含む水溶液(架橋液)に浸漬させた。そうすることによって、中空糸膜に含まれたポリビニルピロリドンが架橋した。その後、この中空糸膜を水に浸漬させた。そうすることによって、架橋が不充分であったポリビニルピロリドンを中空糸膜から除去した。その後、この中空糸膜を、24時間、80℃で送風乾燥させた。このようにして、ポリビニルピロリドンの架橋体が表面全体を被覆した中空糸膜が得られた。
 ポリビニルピロリドン水溶液に浸漬させた中空糸膜、すなわち、上記架橋前の中空糸膜を、24時間、80℃で送風乾燥させたものを、別途用意した。この中空糸膜を、赤外分光光度計を用いて、赤外吸収スペクトルを得た。なお、この中空糸膜は、後述する比較例4に係る中空糸膜と同じである。この赤外吸収スペクトルは、図3に示す。また、上記ポリビニルピロリドンの架橋体が表面全体を被覆した中空糸膜、すなわち、上記架橋後の中空糸膜を、赤外分光光度計を用いて、赤外吸収スペクトルを得た。この赤外吸収スペクトルは、図4に示す。なお、図3は、実施例1における架橋前の中空糸膜の赤外吸収スペクトルを示し、図4は、実施例1における架橋後の中空糸膜の赤外吸収スペクトルを示す。なお、図3及び図4に示す赤外吸収スペクトルは、上記各中空糸膜の外表面のスペクトルであり、波数が1300~3000cm-1の範囲内を示す。
 図3及び図4から、ポリビニルピロリドン樹脂のC=O結合に由来すると思われる波数が1676cm-1程度のピークが、架橋前後で、大きく変化していることがわかる。このことから、架橋前の中空糸膜には、ポリビニルピロリドン樹脂が含まれ、前記架橋によって、このポリビニルピロリドン樹脂が架橋したことがわかる。そして、実施例1に係る中空糸膜には、ポリビニルピロリドン樹脂の架橋体が含まれることがわかった。また、この波数が1676cm-1程度のピークの吸収強度が、前記架橋前の中空糸膜の前記吸収強度に対して、0.21倍であることがわかった。
 また、前記基材となる中空糸膜及び前記架橋後の中空糸膜の分画径をそれぞれ測定した。この分画径としては、分画径に応じて、分画粒子径や分画分子量を求めた。分画粒子径は、中空糸膜による阻止率が90%となる粒子径である。具体的には、上記中空糸膜の分画粒子径は、以下の方法で測定した。
 異なる粒子径を有する少なくとも2種類の粒子(日揮触媒化成株式会社製の、カタロイドSI-550、カタロイドSI-45P、カタロイドSI-80P、ダウケミカル株式会社製の、粒径0.1μm、0.2μm、0.5μmのポリスチレンラテックス等)の阻止率を測定し、その測定値を元にして、下記の近似式において、Rが90となるSの値を求め、これを分画粒子径とした。
  R=100/(1-m×exp(-a×log(S)))
 上記式中のaおよびmは、中空糸膜によって定まる定数であって、2種類以上の阻止率の測定値をもとに算出される。また、分画分子量は、中空糸膜による阻止率が90%となる被ろ過物の分子量である。その測定方法は、異なる粒子径を有する少なくとも2種類の粒子の代わりに、異なる分子量を有する少なくとも2種類のデキストラン(例えば、東京化成工業株式会社製の、デキストラン-40及びデキストラン-70等)を用いて、同様の方法で、Rが90となるSを求める。
 その結果、前記基材の分画粒子径は、0.3μmであった。また、前記架橋後の中空糸膜の分画粒子径は、0.1μmであった。よって、架橋後の中空糸膜、すなわち、実施例1に係る中空糸膜は、その分画粒子径が、前記基材の分画粒子径に対して、1/3倍であることがわかった。
 また、実施例1に係る中空糸膜の、FD及びFWをそれぞれ測定した。その結果、FW/FDが、0.68倍であることがわかった。
 [評価]
 (透水性保持率)
 得られた中空糸膜を、以下のようにして、評価した。その結果は、表1に示す。
 この中空糸膜を用いて図2に示すような膜ろ過装置31を作製した。膜ろ過装置31に装填されている膜モジュール32は、有効膜長さ100cm、中空糸本数50本からなり、下端部34をエポキシ系樹脂で封止されている。上端部33は中空糸膜の中空部が開口しており、下端部34は中空糸膜の中空部をエポキシ系樹脂にて封止されている。濁度2.0NTU(HACH社製:2100Qにて測定)の河川水に、凝集剤としてポリ塩化アルミニウムを、アルミニウム換算濃度で1mg/Lで添加した液体を被処理液として用い、得られた膜ろ過装置31で、この被処理液をろ過した。すなわち、中空糸膜モジュールの導出口からろ過液が得られた。設定流量8m/日(設定流量(m/日)は、ろ過流量(m/日)を中空糸膜面積(m)で割った値)で、10分間ろ過した後、導出口より0.2MPaの圧縮した空気にて、10秒間、中空糸膜に空気を供給し、濁質成分を剥離させた。その後、モジュール下部の導入口から0.1MPaの圧縮した空気にてエアースクラビングを60秒間行い、膜の汚れを洗浄した(導入エアーの抜き口は、空気抜き口を開けることで確保した。)。洗浄した汚れは、導入口より抜き取り、再びろ過を開始した。
 このようなサイクルを20日以上継続させた。
 そして、20日経過後の透水性保持率を算出した。なお、20日経過後の透水性保持率とは、運転開始時の初期の透水性(純水の透過速度、L/m/時:LMH)に対する、20日経過後の透水性(LMH)の比(%)である。
 この実施例1に係る中空糸膜を用いた場合の、20日経過後の透水性保持率は、85%と優れていた。
 (親水性樹脂の溶出)
 得られた中空糸膜からの親水性樹脂の溶出の有無を、以下のように評価した。
 まず、塩化カルシウムと炭酸水素ナトリウムと水酸化ナトリウムとにより、水質が、pH7.0、全硬度(炭酸カルシウム換算)45mg/L、アルカリ度(炭酸カルシウム換算)35mg/Lになるように調製した浸出用の水溶液を用意した。
 また、1質量%のラウリル硫酸ナトリウム(SLS)水溶液を通水した後、6時間純水を通水することによって、洗浄した中空糸膜を用意した。
 この用意した中空糸膜0.05mを40mLの浸出用の水溶液に24時間浸漬した。
 その後、この浸出用の水溶液の全有機体炭素(TOC)を測定した。このTOCが0.5mg/L以下であれば、親水性樹脂の溶出は、「無」と評価し、TOCが0.5mg/Lを越えるのであれば、親水性樹脂の溶出は、「有」と評価した。
 実施例1に係る中空糸膜の、親水性樹脂の溶出を評価したところ、「無」であった。
 [実施例2]
 ポリフッ化ビニリデン(PVDF)の代わりに、ポリテトラフルオロエチレン(PTFE)を主成分として含む中空糸膜を基材として用いたこと以外、実施例1と同様である。
 波数が1676cm-1程度のピークの吸収強度が、前記架橋前の中空糸膜の前記吸収強度に対して、0.12倍であることがわかった。
 また、前記基材及び前記架橋後の中空糸膜の分画粒子径をそれぞれ測定した。その結果、前記基材の分画粒子径は、0.1μmであった。また、前記架橋後の中空糸膜の分画粒子径は、0.02μmであった。よって、架橋後の中空糸膜、すなわち、実施例2に係る中空糸膜は、その分画粒子径が、前記基材の分画粒子径に対して、0.2倍であることがわかった。
 また、実施例2に係る中空糸膜の、FD及びFWをそれぞれ測定した。その結果、FW/FDが、0.96倍であることがわかった。
 また、この実施例2に係る中空糸膜を用いた場合の、20日経過後の透水性保持率は、85%と優れていた。また、実施例2に係る中空糸膜の、親水性樹脂の溶出を評価したところ、「無」であった。
 [実施例3]
 親水性樹脂として、ポリビニルピロリドン(PVP)の代わりに、ポリアクリル酸ナトリウム(東亜合成株式会社製のアロンビスSX)を用い、架橋液として、過酸化水素水溶液の代わりに過硫酸ナトリウム(三菱ガス株式会社製)を用いたこと以外、実施例1と同様である。
 波数が1676cm-1程度のピークの吸収強度が、前記架橋前の中空糸膜の前記吸収強度に対して、0.5倍であることがわかった。
 また、前記基材及び前記架橋後の中空糸膜の分画粒子径をそれぞれ測定した。その結果、前記基材の分画粒子径は、0.3μmであった。また、前記架橋後の中空糸膜の分画粒子径は、0.02μmであった。よって、架橋後の中空糸膜、すなわち、実施例3に係る中空糸膜は、その分画粒子径が、前記基材の分画粒子径に対して、0.07倍であることがわかった。
 また、実施例3に係る中空糸膜の、FD及びFWをそれぞれ測定した。その結果、FW/FDが、0.68倍であることがわかった。
 また、この実施例3に係る中空糸膜を用いた場合の、20日経過後の透水性保持率は、90%と優れていた。また、実施例3に係る中空糸膜の、親水性樹脂の溶出を評価したところ、「無」であった。
 [実施例4]
 架橋液として、過酸化水素水溶液の代わりに過硫酸ナトリウムを用いたこと以外、実施例1と同様である。
 波数が1676cm-1程度のピークの吸収強度が、前記架橋前の中空糸膜の前記吸収強度に対して、0.26倍であることがわかった。
 また、前記基材及び前記架橋後の中空糸膜の分画粒子径をそれぞれ測定した。その結果、前記基材の分画粒子径は、0.3μmであった。また、前記架橋後の中空糸膜の分画粒子径は、0.1μmであった。よって、架橋後の中空糸膜、すなわち、実施例4に係る中空糸膜は、その分画粒子径が、前記基材の分画粒子径に対して、1/3倍であることがわかった。
 また、実施例4に係る中空糸膜の、FD及びFWをそれぞれ測定した。その結果、FW/FDが、0.77倍であることがわかった。
 また、この実施例4に係る中空糸膜を用いた場合の、20日経過後の透水性保持率は、85%と優れていた。また、実施例4に係る中空糸膜の、親水性樹脂の溶出を評価したところ、「無」であった。
 [実施例5]
 ポリフッ化ビニリデン(PVDF)を主成分として含む中空糸膜として、限外ろ過膜(UF)膜を用いたこと以外、実施例1と同様である。
 波数が1676cm-1程度のピークの吸収強度が、前記架橋前の中空糸膜の前記吸収強度に対して、0.39倍であることがわかった。
 また、前記基材及び前記架橋後の中空糸膜の分画粒子径及び分画分子量をそれぞれ測定した。その結果、前記基材の分画粒子径は、0.01μm未満であり、分画分子量は、800kDaであった。また、前記架橋後の中空糸膜の分画粒子径は、0.01μm未満であり、分画分子量は、100kDaであった。よって、架橋後の中空糸膜、すなわち、実施例5に係る中空糸膜は、その分画分子量が、前記基材の分画分子量に対して、0.125倍であることがわかった。
 また、実施例5に係る中空糸膜の、FD及びFWをそれぞれ測定した。その結果、FW/FDが、0.65倍であることがわかった。
 また、この実施例5に係る中空糸膜を用いた場合の、20日経過後の透水性保持率は、90%と優れていた。また、実施例5に係る中空糸膜の、親水性樹脂の溶出を評価したところ、「無」であった。
 [比較例1]
 過酸化水素水溶液として、過酸化水素を20質量%含む水溶液(和光純薬工業株式会社製)を用いたこと以外実施例1と同様である。
 また、図5は、比較例1における架橋後の中空糸膜の赤外吸収スペクトルを示す。図5からわかるように、波数が1676cm-1程度のピークの吸収強度が、0に近かった。そして、波数が1676cm-1程度のピークの吸収強度が、前記架橋前の中空糸膜の前記吸収強度に対して、0.08倍であることがわかった。これらのことから、比較例1に係る中空糸膜は、波数が1676cm-1程度のピークが、ほぼなくなる程度まで、親水性樹脂が架橋されていることがわかった。
 また、前記基材及び前記架橋後の中空糸膜の分画粒子径をそれぞれ測定した。その結果、前記基材の分画粒子径は、0.3μmであった。また、前記架橋後の中空糸膜の分画粒子径は、0.3μmであった。よって、架橋後の中空糸膜、すなわち、比較例1に係る中空糸膜は、その分画粒子径が、前記基材の分画粒子径に対して、1倍であることがわかった。
 また、比較例1に係る中空糸膜の、FD及びFWをそれぞれ測定した。その結果、FW/FDが、1.02倍であることがわかった。
 また、この比較例1に係る中空糸膜を用いた場合の、20日経過後の透水性保持率は、57%であった。また、比較例1に係る中空糸膜の、親水性樹脂の溶出を評価したところ、「無」であった。
 [比較例2]
 過酸化水素水溶液として、過酸化水素を0.1質量%含む水溶液を用いたこと以外、実施例1と同様である。
 波数が1676cm-1程度のピークの吸収強度が、前記架橋前の中空糸膜の前記吸収強度に対して、0.84倍であることがわかった。
 また、前記基材及び前記架橋後の中空糸膜の分画粒子径をそれぞれ測定した。その結果、前記架橋前の中空糸膜の分画粒子径は、0.3μmであった。また、前記架橋後の中空糸膜の分画粒子径は、0.01μmであった。よって、架橋後の中空糸膜、すなわち、比較例2に係る中空糸膜は、その分画粒子径が、前記基材の分画粒子径に対して、0.03倍であることがわかった。
 また、比較例2に係る中空糸膜の、FD及びFWをそれぞれ測定した。その結果、FW/FDが、0.49倍であることがわかった。
 また、この比較例2に係る中空糸膜を用いた場合の、20日経過後の透水性保持率は、22%であった。また、比較例2に係る中空糸膜の、親水性樹脂の溶出を評価したところ、「有」であった。
 [比較例3]
 親水性樹脂として、ポリビニルピロリドン(PVP)の代わりに、1質量%のポリビニルアルコール(PVA)(株式会社クラレ製のPVA-505)を用い、架橋液として、過酸化水素水溶液の代わりに1質量%のホルムアルデヒド水溶液を用いて、中空糸膜を処理した後、4質量%の硫酸酸性水溶液に浸漬させて、親水化処理したこと以外、実施例1と同様である。
 また、前記基材及び前記架橋後の中空糸膜の分画粒子径をそれぞれ測定した。その結果、前記基材の分画粒子径は、0.3μmであった。また、前記架橋後の中空糸膜の分画粒子径は、0.3μmであった。よって、架橋後の中空糸膜、すなわち、比較例3に係る中空糸膜は、その分画粒子径が、前記基材の分画粒子径に対して、1倍であることがわかった。
 また、比較例3に係る中空糸膜の、FD及びFWをそれぞれ測定した。その結果、FW/FDが、1.09倍であることがわかった。
 また、この比較例3に係る中空糸膜を用いた場合の、20日経過後の透水性保持率は、35%であった。また、比較例3に係る中空糸膜の、親水性樹脂の溶出を評価したところ、「無」であった。
 [比較例4]
 実施例1における、架橋前の中空糸膜である。
 また、比較例4に係る中空糸膜の、FD及びFWをそれぞれ測定した。その結果、FD及びFWは、未架橋のPVPの膨潤等によって、これが通水抵抗となるため、実施例1よりも大幅に低下するが、そのFW/FDが、0.47倍であることがわかった。
 また、この比較例4に係る中空糸膜を用いた場合の、20日経過後の透水性保持率は、3%であった。また、比較例4に係る中空糸膜の、親水性樹脂の溶出を評価したところ、「有」であった。
 上記結果を、表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1からわかるように、FW/FDが0.5~0.99である中空糸膜の場合(実施例1~5)は、それ以外の中空糸膜の場合(比較例1~4)と比較して、透水性保持率が高い。このことから、実施例1~5に係る中空糸膜のように、FW/FDが0.5~0.99であると、長期間にわたって、優れた透過性能を維持できることがわかる。また、FW/FDが0.5~0.99を、例えば、波数が1676cm-1のピークの吸収強度が、架橋前の中空糸膜のそれに対して、0.1~0.7倍となるように、また、分画径が、基材の分画径に対して、0.05~0.7倍となるように、架橋前の中空糸膜の親水性樹脂を架橋させることによって、実現できることがわかった。また、そうすることで、長期間にわたって、優れた透過性能を維持できる中空糸膜が得られることがわかった。
 本発明によれば、分離特性に優れるだけではなく、長期間にわたって、優れた透過性能を維持できる中空糸膜が提供される。また、前記中空糸膜の製造方法が提供される。

Claims (10)

  1.  中空糸膜状の基材と親水性樹脂の架橋体とを含み、
     湿潤状態での膜間差圧0.1MPaにおける純水の透過速度が、乾燥状態での膜間差圧0.1MPaにおける純水の透過速度に対して、0.5~0.99倍であることを特徴とする中空糸膜。
  2.  前記架橋体は、少なくとも表面に存在し、架橋前の中空糸膜に含まれる親水性樹脂を架橋させたものである請求項1に記載の中空糸膜。
  3.  赤外吸収スペクトルにおける前記親水性樹脂に由来のピークの吸収強度が、前記架橋前の中空糸膜の前記吸収強度に対して、0.1倍以上0.7倍以下である請求項2に記載の中空糸膜。
  4.  前記吸収強度が、前記親水性樹脂の有するC=O結合の伸縮振動由来のピークの強度である請求項3に記載の中空糸膜。
  5.  前記吸収強度が、波数が1600~1800cm-1における最大ピークの吸収強度である請求項3又は請求項4に記載の中空糸膜。
  6.  分画径が、前記基材の分画径に対して、0.05~0.7倍である請求項2~5のいずれか1項に記載の中空糸膜。
  7.  前記基材が、フッ素系樹脂を含み、
     前記中空糸膜の赤外吸収スペクトルにおいて、波数が1600~1800cm-1にピークを有する請求項1~6のいずれか1項に記載の中空糸膜。
  8.  請求項1~7のいずれか1項に記載の中空糸膜の製造方法であって、
     前記親水性樹脂を含む、架橋前の中空糸膜を用意する工程と、
     前記架橋前の中空糸膜内の親水性樹脂を架橋させる架橋工程とを備えることを特徴とする中空糸膜の製造方法。
  9.  前記架橋工程は、赤外吸収スペクトルにおける前記親水性樹脂に由来の吸収強度が、前記架橋前の中空糸膜の前記吸収強度に対して、0.1倍以上0.7倍以下となるように、前記親水性樹脂を架橋させる工程である請求項8に記載の中空糸膜の製造方法。
  10.  前記架橋工程は、分画径が、前記基材の分画径に対して、0.05~0.7倍となるように、前記親水性樹脂を架橋させる工程である請求項8又は請求項9に記載の中空糸膜の製造方法。
PCT/JP2015/085058 2015-01-16 2015-12-15 中空糸膜、及び中空糸膜の製造方法 WO2016114051A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016569265A JP6599900B2 (ja) 2015-01-16 2015-12-15 中空糸膜の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015006495 2015-01-16
JP2015-006495 2015-01-16

Publications (1)

Publication Number Publication Date
WO2016114051A1 true WO2016114051A1 (ja) 2016-07-21

Family

ID=56405606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085058 WO2016114051A1 (ja) 2015-01-16 2015-12-15 中空糸膜、及び中空糸膜の製造方法

Country Status (2)

Country Link
JP (1) JP6599900B2 (ja)
WO (1) WO2016114051A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018104541A (ja) * 2016-12-26 2018-07-05 三菱ケミカル株式会社 多孔質膜、及び多孔質膜の製造方法
WO2019131304A1 (ja) * 2017-12-27 2019-07-04 株式会社クラレ 複合中空糸膜、及び複合中空糸膜の製造方法
JP2020069443A (ja) * 2018-10-31 2020-05-07 積水化学工業株式会社 分離膜モジュール及びその製造方法
WO2020111211A1 (ja) * 2018-11-30 2020-06-04 富士フイルム株式会社 多孔質膜の製造方法および多孔質膜
WO2022050008A1 (ja) * 2020-09-03 2022-03-10 株式会社クラレ 複合半透膜

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01236916A (ja) * 1988-03-15 1989-09-21 Hitachi Zosen Corp 膜分離における透過速度および分離係数の制御方法
JPH09512857A (ja) * 1994-07-28 1997-12-22 ミリポア コーポレイション 多孔質複合膜と方法
JPH11302438A (ja) * 1998-04-24 1999-11-02 Toyo Roshi Kaisha Ltd 高強度親水性ポリフッ化ビニリデン多孔質膜及びその製造方法
JP2004305677A (ja) * 2003-04-09 2004-11-04 Toyobo Co Ltd 血液適合性に優れた中空糸型血液浄化器
JP2005329056A (ja) * 2004-05-20 2005-12-02 Toyobo Co Ltd 高透水性中空糸膜型血液浄化器
WO2014133130A1 (ja) * 2013-02-28 2014-09-04 東レ株式会社 複合半透膜およびその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5062773B2 (ja) * 2009-03-31 2012-10-31 旭化成メディカル株式会社 血液浄化器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01236916A (ja) * 1988-03-15 1989-09-21 Hitachi Zosen Corp 膜分離における透過速度および分離係数の制御方法
JPH09512857A (ja) * 1994-07-28 1997-12-22 ミリポア コーポレイション 多孔質複合膜と方法
JPH11302438A (ja) * 1998-04-24 1999-11-02 Toyo Roshi Kaisha Ltd 高強度親水性ポリフッ化ビニリデン多孔質膜及びその製造方法
JP2004305677A (ja) * 2003-04-09 2004-11-04 Toyobo Co Ltd 血液適合性に優れた中空糸型血液浄化器
JP2005329056A (ja) * 2004-05-20 2005-12-02 Toyobo Co Ltd 高透水性中空糸膜型血液浄化器
WO2014133130A1 (ja) * 2013-02-28 2014-09-04 東レ株式会社 複合半透膜およびその製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018104541A (ja) * 2016-12-26 2018-07-05 三菱ケミカル株式会社 多孔質膜、及び多孔質膜の製造方法
WO2019131304A1 (ja) * 2017-12-27 2019-07-04 株式会社クラレ 複合中空糸膜、及び複合中空糸膜の製造方法
JPWO2019131304A1 (ja) * 2017-12-27 2020-10-22 株式会社クラレ 複合中空糸膜、及び複合中空糸膜の製造方法
JP7064510B2 (ja) 2017-12-27 2022-05-10 株式会社クラレ 複合中空糸膜、及び複合中空糸膜の製造方法
JP2020069443A (ja) * 2018-10-31 2020-05-07 積水化学工業株式会社 分離膜モジュール及びその製造方法
WO2020111211A1 (ja) * 2018-11-30 2020-06-04 富士フイルム株式会社 多孔質膜の製造方法および多孔質膜
JPWO2020111211A1 (ja) * 2018-11-30 2021-09-27 富士フイルム株式会社 多孔質膜の製造方法および多孔質膜
JP7166660B2 (ja) 2018-11-30 2022-11-08 富士フイルム株式会社 多孔質膜の製造方法および多孔質膜
WO2022050008A1 (ja) * 2020-09-03 2022-03-10 株式会社クラレ 複合半透膜

Also Published As

Publication number Publication date
JP6599900B2 (ja) 2019-10-30
JPWO2016114051A1 (ja) 2017-10-26

Similar Documents

Publication Publication Date Title
JP6599900B2 (ja) 中空糸膜の製造方法
US8062751B2 (en) Low biofouling filtration membranes and their forming method
JP6644674B2 (ja) 中空糸膜、及び中空糸膜の製造方法
EP1654053B1 (en) Hollow fibre membrane comprising pvme and method of production
KR102289642B1 (ko) 복합 반투막
JP2008543546A (ja) ポリマー膜の架橋処理
US10406487B2 (en) Hydrophilised vinylidene fluoride-based porous hollow fibre membrane, and manufacturing method therefor
CA2676391A1 (en) Modified porous membranes, methods of membrane pore modification, and methods of use thereof
JP6577781B2 (ja) 中空糸膜、及び中空糸膜の製造方法
JP6226795B2 (ja) 中空糸膜の製造方法
CN111871235A (zh) 一种复合反渗透膜及其制备方法和应用
JP6419917B2 (ja) 中空糸膜の製造方法
JP2020142191A (ja) 中空糸膜モジュール、及びこれを用いた海水のろ過方法
KR101790174B1 (ko) Pva 코팅된 중공사 복합막 및 이의 제조방법
JP6277097B2 (ja) 中空糸膜、中空糸膜の製造方法、及び液体処理方法
CN106823856B (zh) 亲水性多孔聚烯烃材料及其亲水性改性处理方法
CN108430612B (zh) 复合半透膜
AU2006261581B2 (en) Cross linking treatment of polymer membranes
US20040140259A1 (en) Membrane flux enhancement
JPS61268302A (ja) 芳香族ポリスルホン複合半透膜の製造方法
WO2013054675A1 (ja) 分離膜、水処理ユニットおよび水処理装置
WO2021020571A1 (ja) 分離膜
JP2688564B2 (ja) 酢酸セルロース中空糸分離膜
JP2020147701A (ja) 親水性複合多孔質膜
KR20070072120A (ko) 비대칭 여과막의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878002

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016569265

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15878002

Country of ref document: EP

Kind code of ref document: A1