WO2016114043A1 - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
WO2016114043A1
WO2016114043A1 PCT/JP2015/084539 JP2015084539W WO2016114043A1 WO 2016114043 A1 WO2016114043 A1 WO 2016114043A1 JP 2015084539 W JP2015084539 W JP 2015084539W WO 2016114043 A1 WO2016114043 A1 WO 2016114043A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
insulating film
lower half
semiconductor substrate
impurity region
Prior art date
Application number
PCT/JP2015/084539
Other languages
English (en)
French (fr)
Inventor
勇介 小林
勇一 小野澤
学 武井
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to JP2016569261A priority Critical patent/JP6350679B2/ja
Priority to DE112015004505.8T priority patent/DE112015004505T5/de
Priority to CN201580057250.1A priority patent/CN107078155B/zh
Publication of WO2016114043A1 publication Critical patent/WO2016114043A1/ja
Priority to US15/583,982 priority patent/US10103256B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate

Definitions

  • the present invention relates to a semiconductor device and a method of manufacturing the same.
  • One of the power semiconductor devices is an IGBT (Insulated Gate Bipolar Transistor).
  • IGBTs have a breakdown voltage of, for example, 400V, 600V, 1200V, 1700V, 3300V or more.
  • the IGBT may be used, for example, in a power converter such as a converter or inverter.
  • EMC low loss, high efficiency, high tolerance, and low noise (EMC).
  • EMC depends on the time change of voltage (dV / dt). For example, in inverter operation, dV / dt tends to be the largest at low current of the diode to be turned on. Therefore, it is necessary to reduce dV / dt at turn-on to an appropriate value by increasing the gate resistance (Rg) to slow the switching speed. However, if the dV / dt at turn-on is reduced, the turn-on loss (Eon) of the IGBT will increase. Therefore, it is important to improve Eon-dV / dt trade-off and to improve dV / dt controllability at turn-on by Rg.
  • FIG. 9 is a cross-sectional view showing an active portion of a conventional trench gate type IGBT.
  • the active part is a part responsible for current drive.
  • a trench type MOS channel is formed on the front surface side of the n ⁇ type semiconductor substrate 1.
  • Gate oxide film 2 and gate electrode 3 are provided in trench 4.
  • the mesa portion 5 between the adjacent trenches 4 and 4 is provided with a p-type layer 6 generating a channel.
  • n + -type layer 7 is provided in the surface region of the p-type layer 6.
  • the front surface side of the n ⁇ -type semiconductor substrate 1 is covered with an interlayer insulating film 8.
  • the emitter electrode 9 is provided on the interlayer insulating film 8 in contact with the p-type layer 6 and the n + -type layer 7 through the contact hole, electrically to the p-type layer 6 and the n + -type layer 7 It is connected.
  • a floating p layer 10 which does not generate a channel is provided on the opposite side of the mesa portion 5 across the trench 4.
  • An n + -type field stop layer 11, a p-type collector layer 12 and a collector electrode 13 are provided on the back side of the n ⁇ -type semiconductor substrate 1.
  • FIG. 10 is a cross-sectional view showing an active portion of a trench gate type IGBT in which the conventional IE effect is improved.
  • the oxide film 14 in the lower half of the trench 4 is gate oxidized in the upper half as compared with the conventional trench gate type IGBT shown in FIG. It is thicker than membrane 2.
  • the current density flowing in the region of the same concentration as the drift layer of the mesa portion 5 is improved, whereby the IE effect is improved.
  • a dummy gate structure is known as a structure that improves both Eon-dV / dt trade-off and dV / dt controllability at turn-on by Rg.
  • the dummy gate type structure for example, polysilicon is filled in the emitter trench serving as the dummy gate instead of the gate electrode, and the n + emitter region is not provided in the vicinity of the dummy gate (for example, see Patent Document 1) ).
  • JP 2002-353456 A Japanese Patent Application Publication No. 2013-522924 International Publication No. 2011/111500
  • the input capacitance is extremely reduced, which causes a problem that the matching of the external circuit with the conventional structure is deteriorated.
  • the dummy gate type structure holes are easily accumulated in the emitter trench with respect to the gate trench even at a low voltage as in the on state, and the resistance of the hole current passing through the mesa portion is reduced. As a result, the on-voltage Von increases.
  • the IE effect is more easily damaged than the dummy gate structure because the low resistance path of the hole current is not actively used at turn-on, and the on voltage Von and Eon- There is a problem that coexistence with the Rg trade-off is difficult. Further, in the structure in which the floating p layer is eliminated by the dummy trench brought close, it is necessary to form a thin Si pillar which can be annihilated by the sacrificial oxidation when forming the emitter trench, so a high manufacturing technology is required. There is a problem that there is.
  • the present invention makes it possible to improve the dV / dt-Rg trade-off of IGBT and the improvement of the turn-on controllability of Rg and the improvement of the IE effect by an easy manufacturing process in order to solve the problems of the prior art described above.
  • a semiconductor device comprises a first trench, a gate electrode, a first impurity region of a second conductivity type, and a second impurity region of a first conductivity type.
  • the first groove and the second groove are provided on the front surface side of the semiconductor substrate of the first conductivity type.
  • the gate electrode is made of a conductor filled in the first groove.
  • the first impurity region is provided on the front surface side of the semiconductor substrate to be in contact with the first groove.
  • the second impurity region is provided in the vicinity of the surface of the first impurity region.
  • the first insulating film is provided between the first groove and the gate electrode, and has a lower half thicker than the upper half in contact with the first impurity region.
  • the second insulating film is provided in the second groove and has a lower half thicker than the upper half.
  • the third insulating film is provided across the top of the first groove and the top of the second groove.
  • the emitter electrode is provided on the third insulating film, and is electrically connected to the first impurity region and the second impurity region.
  • the third impurity layer is provided on the back surface side of the semiconductor substrate.
  • the collector electrode is provided on the surface of the third impurity layer. The lower half of the first insulating film and the lower half of the second insulating film are connected.
  • the thick insulating film in the lower portion of the trench is connected to the thick insulating film in the lower portion of the adjacent trench, so that the withstand voltage can be ensured without the p layer in the floating portion. It is possible to improve the dV / dt-Rg trade-off and the turn-on controllability of Rg. Since the insulating film in the lower portion of the trench in contact with the drift layer in the mesa portion is thick, the resistance of the hole current is increased, and the IE effect can be improved.
  • the width of the gate electrode in the portion in contact with the lower half of the first insulating film is the portion of the gate electrode in the portion in contact with the upper half of the first insulating film It is characterized in that it is narrower than the width.
  • the gate-drain capacitance can be reduced, and the dV / dt-Rg trade-off and the turn-on controllability of Rg can be further improved.
  • a semiconductor device is characterized in that, in the above-mentioned invention, a portion of the semiconductor substrate is included in a region surrounded by the first insulating film, the second insulating film, and the third insulating film. .
  • the gate-source capacitance can be increased, and the dV / dt-Rg trade-off and the turn-on controllability of Rg can be further improved.
  • the impurity concentration of a portion of the semiconductor substrate surrounded by the first insulating film, the second insulating film, and the third insulating film is the first impurity. It is characterized in that it has the same impurity concentration as the region.
  • the manufacturing process can be shortened, the cost can be reduced.
  • the upper half portion of the first groove and the upper half portion of the second groove are formed in the semiconductor substrate of the first conductivity type.
  • the side surfaces of the first groove and the side surfaces of the second groove are covered with a nitride film, respectively, and anisotropic etching is performed using the nitride film as a mask to form the bottom of the upper half portion of the first groove and the second Forming a lower half of the first groove and a lower half of the second groove at the bottom of the upper half of the groove, the upper half of the first groove and the upper half of the second groove being narrower than the upper half of the first groove respectively .
  • an oxidation process is performed using the nitride film as a mask to form an oxide film around each of the lower half of the first groove and the lower half of the second groove, and the lower half of the first groove is The surrounding oxide film and the oxide film around the lower half of the second trench are connected. Then, the nitride film is removed, and the upper half of the first groove and the lower half of the first groove are filled with the conductor.
  • the semiconductor device and the method of manufacturing the same of the present invention it is possible to simultaneously improve the dV / dt-Rg trade-off of the IGBT and the turn-on controllability of Rg and the improvement of the IE effect by an easy manufacturing process. it can.
  • FIG. 1 is a cross-sectional view showing an active portion of the semiconductor device according to the embodiment.
  • FIG. 2 is a cross-sectional view showing the semiconductor device shown in FIG. 1 in the process of being manufactured.
  • FIG. 3 is a cross-sectional view showing the continuation of FIG.
  • FIG. 4 is a cross-sectional view showing the continuation of FIG.
  • FIG. 5 is a cross-sectional view showing the continuation of FIG. 4.
  • FIG. 6 is a cross-sectional view showing the continuation of FIG.
  • FIG. 7 is a characteristic diagram showing the relationship between the dV / dt of the diode at turn-on and the turn-on loss Eon of the IGBT when the gate resistance Rg is changed in the example and the conventional example.
  • FIG. 1 is a cross-sectional view showing an active portion of the semiconductor device according to the embodiment.
  • FIG. 2 is a cross-sectional view showing the semiconductor device shown in FIG. 1 in the process of being manufactured.
  • FIG. 3 is a
  • FIG. 8 is a characteristic diagram showing a change in dV / dt of the diode at turn-on when the gate resistance Rg is changed in the embodiment and the conventional example.
  • FIG. 9 is a cross-sectional view showing an active portion of a conventional trench gate type IGBT.
  • FIG. 10 is a cross-sectional view showing an active portion of a trench gate type IGBT in which the conventional IE effect is improved.
  • n and p in the layer or region having n or p, it is meant that electrons or holes are majority carriers, respectively.
  • + and-attached to n and p mean that the impurity concentration is higher and the impurity concentration is lower than that of the layer or region to which it is not attached, respectively.
  • FIG. 1 is a cross-sectional view showing an active portion of the semiconductor device according to the embodiment.
  • the semiconductor device is a trench gate type IGBT.
  • the trench gate type IGBT includes a first trench 21, a gate electrode 3, a p-type first impurity region 22, an n-type second impurity region 23, a first insulating film 24, and a second insulating film 24.
  • a trench 25, a second insulating film 26, a third insulating film 27, an emitter electrode 9, a p-type third impurity layer 28 and a collector electrode 13 are provided.
  • the first groove 21 is provided on the front surface side of a semiconductor substrate 29 made of silicon of a first conductivity type, for example, n-type.
  • the second groove 25 is provided on the front surface side of the semiconductor substrate 29. The first groove 21 and the second groove 25 are provided apart from each other.
  • the conductivity type of the semiconductor substrate 29 is not particularly limited, but is, for example, n-type.
  • the semiconductor substrate 29 is, for example, an n ⁇ drift layer.
  • the gate electrode 3 is made of a conductor and is filled in the first groove 21.
  • This conductor may be made of, for example, polysilicon.
  • the width of the gate electrode 3 is narrower at the portion in contact with the lower half portion 31 of the first insulating film 24 than the width of the portion in contact with the upper half portion of the first insulating film 24 described later. Thereby, the gate-drain capacitance can be reduced, and the further dV / dt-Rg trade-off and the turn-on controllability of Rg can be improved.
  • the first impurity region 22 is provided in contact with the first groove 21 on the front surface side of the semiconductor substrate 29.
  • a p + impurity region 30 may be provided in the vicinity of the surface of the first impurity region 22.
  • the second impurity region 23 is provided in the vicinity of the surface of the first impurity region 22.
  • the second impurity region 23 is provided in contact with the first groove 21.
  • Second impurity region 23 is provided in contact with p + impurity region 30.
  • the first insulating film 24 is provided between the first groove 21 and the gate electrode 3.
  • the first insulating film 24 is a gate insulating film.
  • the first insulating film 24 may be made of an oxide film.
  • the first insulating film 24 is thicker in the lower half 31 in contact with the mesa 5 below the first impurity region 22 than in the upper half in contact with the first impurity region 22.
  • polysilicon 32 is filled in the second groove 25.
  • the width of the polysilicon 32 is narrower than the width of the portion in contact with the upper half portion of the second insulating film 26 described later, even if the portion in contact with the lower half portion 33 of the second insulating film 26 is narrower Good.
  • the potential of the polysilicon 32 in the second groove 25 may be the same as that of the gate electrode 3.
  • the potential of polysilicon in some of the second trenches 25 may be the emitter potential.
  • the second insulating film 26 is provided between the second groove 25 and the polysilicon 32 in the second groove 25.
  • the second insulating film 26 may be made of an oxide film.
  • the second insulating film 26 is thicker in the lower half 33 than in the upper half.
  • the third insulating film 27 is provided across the top of the first groove 21 and the top of the second groove 25.
  • the third insulating film 27 may be made of an oxide film.
  • the lower half 31 of the first insulating film 24 and the lower half 33 of the second insulating film 26 are connected.
  • a semiconductor is formed in a surrounding region 34 surrounded by the upper half and lower half 31 of the first insulating film 24, the upper half and lower half 33 of the second insulating film 26, and the third insulating film 27.
  • a portion of the substrate 29 may be included.
  • the impurity concentration of the portion of the semiconductor substrate 29 included in the surrounding region 34 may be the same as the impurity concentration of the first impurity region 22. As a result, the cost can be reduced because the manufacturing process can be shortened.
  • the surrounding region 34 may be a floating p layer floating in a potential manner. Alternatively, the potential of the surrounding region 34 may be the source potential.
  • the emitter electrode 9 is provided on the third insulating film 27. Emitter electrode 9 is in contact with second impurity region 23 and p + impurity region 30 via a contact hole provided in third insulating film 27. Emitter electrode 9 is electrically connected to first impurity region 22 and second impurity region 23.
  • the third impurity layer 28 is provided on the back side of the semiconductor substrate 29.
  • An n + field stop layer 35 may be provided between the semiconductor substrate 29 and the third impurity layer 28.
  • the collector electrode 13 is provided on the surface of the third impurity layer 28.
  • FIG. 2 is a cross-sectional view showing a state in the middle of manufacturing the semiconductor device shown in FIG.
  • FIG. 3 is a cross-sectional view showing the continuation of FIG.
  • FIG. 4 is a cross-sectional view showing the continuation of FIG.
  • FIG. 5 is a cross-sectional view showing the continuation of FIG. 4.
  • FIG. 6 is a cross-sectional view showing the continuation of FIG.
  • boron is ion-implanted into the front surface of an n-type semiconductor substrate 29, for example. Then, activation annealing is performed to form ap layer 41 on the front surface side of the semiconductor substrate 29.
  • the p-layer 41 is a surrounding region 34 having the same impurity concentration as the first impurity region 22 and the first impurity region 22.
  • the width of each of the first groove 21 and the second groove 25 at this stage may be, for example, about 0.1 ⁇ m or more and 1.5 ⁇ m or less, and each depth is For example, about 0.5 micrometers or more and 3.0 micrometers or less may be sufficient.
  • the distance between the first groove 21 and the second groove 25 and the distance between the adjacent second grooves 25 may be, for example, about 0.1 ⁇ m or more and 2.0 ⁇ m or less at a narrow portion.
  • a nitride film 42 is deposited on the front surface side of the semiconductor substrate 29. Then, photolithography and etching are performed to remove the nitride film at the bottom of each of the first groove 21 and the second groove 25.
  • the respective widths of the deeper groove 43 of the first groove 21 and the deeper groove 44 of the second groove 25 may be, for example, about 0.05 ⁇ m or more and 1.0 ⁇ m or less.
  • Each depth may be, for example, about 0.5 ⁇ m to 3.0 ⁇ m from the bottom of the first groove 21 and the bottom of the second groove 25.
  • sacrificial oxidation is performed on a portion not covered with the nitride film 42.
  • the oxide film 45 formed around the deeper groove 43 of the first groove 21 and the oxide film 46 formed around the deeper groove 44 of the second groove 25 are connected.
  • the oxide films 46 formed around the deeper grooves 44 of the second grooves 25 are connected.
  • the oxide film 45 generated around the deep groove 43 becomes the lower half 31 of the first insulating film 24.
  • the oxide film 46 formed around the deep groove 44 becomes the lower half 33 of the second insulating film 26.
  • thermal oxidation is performed to form a gate oxide film 47 on the side wall of the first groove 21 and an oxide film on the side wall of the second groove 25.
  • Generate 48 The gate oxide film 47 on the side wall portion of the first groove 21 becomes the upper half of the first insulating film 24.
  • the oxide film 48 on the side wall of the second groove 25 is the upper half of the second insulating film 26.
  • polysilicon is deposited on the front surface side of the semiconductor substrate 29 and etched back to fill the first groove 21 with polysilicon 49 and fill the second groove 25 with polysilicon 32.
  • the polysilicon 49 in the first groove 21 becomes the gate electrode 3.
  • photolithography, ion implantation of boron and activation annealing are performed to form p + impurity regions 30.
  • photolithography, arsenic ion implantation and activation annealing are performed to form a second impurity region 23.
  • an oxide film to be the third insulating film 27 is deposited on the front surface side of the semiconductor substrate 29 to a thickness of, for example, 0.1 ⁇ m to 6.0 ⁇ m by the CVD (Chemical Vapor Deposition) method. Then, contact holes are formed in the third insulating film 27 by photolithography and etching. Then, aluminum is deposited on the front surface side of the semiconductor substrate 29, and the emitter electrode 9 is formed by photolithography and etching.
  • the predetermined silicon thickness may be, for example, about 100 ⁇ m or more and 140 ⁇ m or less.
  • phosphorus, selenium or protons are ion implanted into the back surface of the semiconductor substrate 29 and activation annealing is performed to form an n + field stop layer 35.
  • boron is ion-implanted on the back surface of the semiconductor substrate 29 to form a third impurity layer 28 to be a collector layer.
  • the collector electrode 13 is formed on the surface of the third impurity layer 28. Then, the wafer is cut to complete the IGBT chip.
  • the lower half 31 of the first insulating film 24 and the lower half 33 of the second insulating film 26 are connected under the surrounding region 34, withstand voltage can be secured. Can improve the dV / dt-Rg trade-off and the turn-on controllability of Rg.
  • the lower half 31 of the first insulating film 24 is thick in the mesa 5, the resistance of the hole current is increased, and the IE effect can be improved.
  • advanced manufacturing techniques are not required. Therefore, the dV / dt-Rg trade-off of the IGBT and the improvement of the turn-on controllability of Rg can be made compatible with the improvement of the IE effect by an easy manufacturing process.
  • the capacitance of the collector floating portion can be reduced by setting the potential of the polysilicon 32 in the second groove 25 to the same potential as that of the gate electrode 3, so that dV / dt-Rg The trade-off and the turn-on controllability of Rg can be further improved.
  • the input capacitance can be increased by setting the potential of the polysilicon in some of the second trenches 25 to the emitter potential.
  • the gate-source capacitance Cgs can be increased, so that ringing can be suppressed.
  • An IGBT of 1200 V withstand voltage class manufactured according to the above-described method of manufacturing a semiconductor device is taken as an example.
  • an IGBT of 1200 V withstand voltage class of the conventional structure shown in FIG. 9 is taken as a conventional example.
  • FIG. 7 is a characteristic diagram showing the relationship between the dV / dt of the diode at turn-on and the turn-on loss Eon of the IGBT when the gate resistance Rg is changed in the example and the conventional example.
  • the vertical axis is the turn-on loss Eon of the IGBT
  • the horizontal axis is the dV / dt of the diode at turn-on.
  • FIG. 8 is a characteristic diagram showing a change in dV / dt of the diode at turn-on when the gate resistance Rg is changed between the example and the conventional example.
  • the vertical axis is the dV / dt of the diode at turn-on
  • the horizontal axis is the gate resistance Rg.
  • the IGBT of the embodiment is improved in the dV / dt-Rg trade-off of the IGBT and the turn-on controllability of Rg, and the improvement of the IE effect, as compared with the IGBT of the conventional example. Can be compatible. Then, the on-voltage Von of the IGBT can be lowered by the improvement of the IE effect.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made.
  • the dimensions, concentrations, and the like described in the embodiments are merely examples, and the present invention is not limited to those values.
  • the first conductivity type is n-type
  • the second conductivity type is p-type.
  • the present invention is equally applicable even if the first conductivity type is p-type and the second conductivity type is n-type. .
  • the semiconductor device according to the present invention and the method of manufacturing the same are useful for power semiconductor devices, and particularly suitable for IGBTs.

Abstract

 第1導電型の半導体基板(29)のおもて面側に第1の溝(21)及び第2の溝(25)が設けられており、第1の溝(21)内に導電体でできたゲート電極(3)が充填されている。半導体基板(29)のおもて面側には、第1の溝(21)に接するように第1の不純物領域(22)が設けられている。第1の溝(21)とゲート電極(3)との間に第1の絶縁膜(24)が設けられており、第1の絶縁膜(24)は、第1の不純物領域(22)に接する上半部よりも厚い下半部(31)を有する。第2の絶縁膜(26)は、第2の溝(25)内に設けられている。第1の絶縁膜(24)の下半部(31)と第2の絶縁膜(26)の下半部(33)とは繋がっている。このため、容易な製造プロセスで、IGBTのdV/dt-Rgトレードオフ及びRgのターンオン制御性の改善と、IE効果の向上と、を両立させることができる。

Description

半導体装置及びその製造方法
 この発明は、半導体装置及びその製造方法に関する。
 電力用半導体装置の一つにIGBT(Insulated Gate Bipolar Transistor、絶縁ゲート型バイポーラトランジスタ)がある。IGBTには、例えば400V、600V、1200V、1700V、3300V、またはそれ以上の耐圧を有するものがある。IGBTは、例えばコンバーター・インバーター等の電力変換装置に用いられることがある。
 電力用半導体装置には、低損失、高効率、高耐量と同時に低ノイズ(EMC)が求められる。EMCは、電圧の時間変化(dV/dt)に依存する。例えばインバータ動作時においては、ターンオンするダイオードの低電流時におけるdV/dtが最も大きくなりやすい。そのため、ゲート抵抗(Rg)を大きくしてスイッチングスピードを遅くすることによって、ターンオン時のdV/dtを適正な値まで小さくする必要がある。しかし、ターンオン時のdV/dtを小さくすると、IGBTのターンオン損失(Eon)が大きくなってしまう。そこで、Eon-dV/dtトレードオフの改善、及びRgによるターンオン時のdV/dt制御性の改善が重要となる。
 一方で、IGBTの損失を低減するためには、IGBTのオン電圧Vonとターンオフ損失Eoffとの間のトレードオフ関係(Von-Eoffトレードオフ)を改善することが求められる。その改善方法としてInjection Enhancement(IE)効果の向上が有効であることが知られている。例えばトレンチ底部の酸化膜を厚くすることによってIE効果を向上させる構造が報告されている(例えば、非特許文献1参照。)。
 また、ゲートとソースとの間の容量(ゲート-ソース間容量)Cgsを増やすことによって、リンギングの抑制という効果が期待できる。しかし、Cgsが増え過ぎると、スイッチングのためのゲート電流が増加してしまう。そのため、アプリケーションに応じてCgsを容易に調整できるのが好ましい。
 トレンチゲート構造を有するIGBTにおいて、隣り合うトレンチ間に、チャネルを生じないフローティングp層を設ける構造が報告されている(例えば、非特許文献2、3参照。)。フローティングp層を有するトレンチゲート型のIGBTにおいて、隣り合うトレンチ間のチャネルを生じるメサ部分を微細化することによってIE効果を向上させる構造が報告されている(例えば、非特許文献4参照。)。
 図9は、従来のトレンチゲート型IGBTの活性部を示す断面図である。活性部は、電流駆動を担う部分である。図9に示すように、n-型半導体基板1のおもて面側には、トレンチ型のMOSチャネルが形成されている。ゲート酸化膜2及びゲート電極3は、トレンチ4内に設けられている。隣り合うトレンチ4とトレンチ4との間のメサ部5には、チャネルを生じるp型層6が設けられている。
 p型層6の表面領域には、n+型層7が設けられている。n-型半導体基板1のおもて面側は、層間絶縁膜8により被覆されている。エミッタ電極9は、層間絶縁膜8の上に設けられており、コンタクトホールを介してp型層6及びn+型層7に接触し、p型層6及びn+型層7に電気的に接続されている。
 耐圧を確保するため、n-型半導体基板1のおもて面側において、トレンチ4を挟んでメサ部5の反対側には、チャネルを生じないフローティングp層10が設けられている。n-型半導体基板1の裏面側には、n+型フィールドストップ層11、p型コレクタ層12及びコレクタ電極13が設けられている。
 図10は、従来のIE効果を向上させたトレンチゲート型IGBTの活性部を示す断面図である。図10に示すように、IE効果を向上させたトレンチゲート型IGBTは、図9に示す従来のトレンチゲート型IGBTと比べて、トレンチ4の下半部における酸化膜14が上半部のゲート酸化膜2よりも厚くなっている。それによって、メサ部5のドリフト層と同じ濃度の領域に流れる電流密度が向上するため、IE効果が向上する。
 Eon-dV/dtトレードオフ及びRgによるターンオン時のdV/dt制御性をともに改善する構造として、ダミーゲート型構造がある。ダミーゲート型構造では、ダミーゲートとなるエミッタトレンチ内にゲート電極の代わりに例えばポリシリコンが充填されており、ダミーゲートの近傍にはn+エミッタ領域が設けられていない(例えば、特許文献1参照。)。
 ダミーゲート型構造では、ターンオン前半のような高電圧時には、エミッタトレンチ沿いにホールが蓄積されることによって、ホール電流をエミッタ電極に流す低抵抗のパスが生じる。それによって、フローティング部の電位上昇を抑えることができるため、Eon-dV/dtトレードオフ及びRgによるターンオン時のdV/dt制御性を改善することができる。
 また、トレンチゲート構造と、ゲート絶縁膜及びゲート電極が水平方向に伸びるプレーナ構造とを混在させた構造がある。プレーナ構造側のソース領域とエミッタ電極とが直接接続されていないため、プレーナ構造側ではチャネルが生じない(例えば、特許文献2参照。)。それによって、エミッタトレンチを用いずに、Eon-Rgトレードオフ及びRgによるターンオン時のdV/dt制御性を改善することができる。
 また、メサ領域全体に、互いに接するかまたは十分近接するようにダミートレンチを設けることによって、フローティングp層をなくした構造がある(例えば、特許文献3参照。)。フローティングp層をなくすことによって、Eon-Rgトレードオフ及びRgによるターンオン時のdV/dt制御性を改善することができる。
特開2002-353456号公報 特表2013-522924号公報 国際公開第2011/111500号公報
M. Sumitomo, et al., ISPSD’12, pp.17-20, 2012. N. Tokura, IEEJ Transactions on Industry Applications, Vol.130, No.6, pp. 728-733, 2010. Y. Onozawa, et al., ISPSD ’07, pp.13-16, 2007. M. Tanaka and I. Omura, ISPSD ’12, pp.177-180, 2012.
 しかしながら、図9または図10に示す従来の構造では、ターンオン時にフローティングp層にホール電流が流れる。それによって、フローティングp層の電位が上昇し、ゲートに変位電流が流れてdV/dtに関わる時間帯のターンオンスピードを決定してしまうため、制御性が悪化するという問題点がある。
 また、メサ部分を微細化すると、入力容量が極端に少なくなってしまうため、従来構造との外部回路の整合性が悪くなるという問題点がある。一方、ダミーゲート型構造では、オン状態のような低電圧時でもゲートトレンチに対してエミッタトレンチにホールが蓄積されやすく、メサ部を通り抜けるホール電流の抵抗を低下させてしまうため、IE効果が小さくなり、オン電圧Vonの増加を招くという問題点がある。
 また、トレンチゲート構造とプレーナ構造とを混在させた場合、ターンオン時にホール電流の低抵抗パスを積極的に用いていないため、ダミーゲート型構造よりもIE効果を損ないやすく、オン電圧VonとEon-Rgトレードオフとの両立が困難であるという問題点がある。また、近接させたダミートレンチでフローティングp層をなくした構造では、エミッタトレンチを形成する際に犠牲酸化で消滅可能な程度の細いSiピラーを形成する必要があるため、高度な製造技術が必要であるという問題点がある。
 この発明は、上述した従来技術による問題点を解消するため、容易な製造プロセスで、IGBTのdV/dt-Rgトレードオフ及びRgのターンオン制御性の改善と、IE効果の向上と、を両立させることができる半導体装置及びその製造方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するため、この発明にかかる半導体装置は、第1の溝、ゲート電極、第2導電型の第1の不純物領域、第1導電型の第2の不純物領域、第1の絶縁膜、第2の溝、第2の絶縁膜、第3の絶縁膜、エミッタ電極、第2導電型の第3の不純物層及びコレクタ電極を有する。第1の溝及び第2の溝は、第1導電型の半導体基板のおもて面側に設けられている。ゲート電極は、第1の溝内に充填された導電体でできている。第1の不純物領域は、半導体基板のおもて面側に第1の溝に接するように設けられている。第2の不純物領域は、第1の不純物領域の表面近傍領域に設けられている。第1の絶縁膜は、第1の溝とゲート電極との間に設けられており、第1の不純物領域に接する上半部よりも厚い下半部を有する。第2の絶縁膜は、第2の溝内に設けられ、上半部よりも厚い下半部を有する。第3の絶縁膜は、第1の溝の上と第2の溝の上とに跨って設けられている。エミッタ電極は、第3の絶縁膜上に設けられており、第1の不純物領域及び第2の不純物領域に電気的に接続されている。第3の不純物層は、半導体基板の裏面側に設けられている。コレクタ電極は、第3の不純物層の表面に設けられている。そして、第1の絶縁膜の下半部と第2の絶縁膜の下半部とが繋がっている。
 この発明によれば、チャネルの生じないフローティング部において、トレンチ下部の厚い絶縁膜が隣のトレンチ下部の厚い絶縁膜に連結しているため、フローティング部にp層がない状態で耐圧の確保が可能であり、dV/dt-Rgトレードオフ及びRgのターンオン制御性を改善することができる。メサ部内でドリフト層と接するトレンチ下部の絶縁膜が厚いため、ホール電流の抵抗が上昇し、IE効果を向上させることができる。
 また、この発明にかかる半導体装置は、上述した発明において、第1の絶縁膜の下半部に接する部分のゲート電極の幅が、第1の絶縁膜の上半部に接する部分のゲート電極の幅よりも狭いことを特徴とする。
 この発明によれば、ゲート-ドレイン間容量を減らすことができ、更なるdV/dt-Rgトレードオフ及びRgのターンオン制御性を改善することができる。
 また、この発明にかかる半導体装置は、上述した発明において、第1の絶縁膜と第2の絶縁膜と第3の絶縁膜とによって囲まれた領域に半導体基板の一部分を含むことを特徴とする。
 この発明によれば、ゲート-ソース間容量を増加させることができ、更なるdV/dt-Rgトレードオフ及びRgのターンオン制御性を改善することができる。
 また、この発明にかかる半導体装置は、上述した発明において、第1の絶縁膜と第2の絶縁膜と第3の絶縁膜とによって囲まれた半導体基板の一部分の不純物濃度が、第1の不純物領域の不純物濃度と同じであることを特徴とする。
 この発明によれば、製造工程が短縮できるためコストが低減できる。
 また、この発明にかかる半導体装置の製造方法は、まず、第1導電型の半導体基板に第1の溝の上半部及び第2の溝の上半部を形成する。次いで、第1の溝の側面及び第2の溝の側面をそれぞれ窒化膜で覆い、この窒化膜をマスクとして異方性エッチングを行って、第1の溝の上半部の底及び第2の溝の上半部の底に、それぞれ第1の溝の上半部及び第2の溝の上半部よりも狭い第1の溝の下半部及び第2の溝の下半部を形成する。次いで、窒化膜をマスクとして酸化処理を行って、第1の溝の下半部及び第2の溝の下半部のそれぞれの周囲に酸化膜を生成し、第1の溝の下半部の周囲の酸化膜と第2の溝の下半部の周囲の酸化膜とを繋げる。次いで、窒化膜を除去して、第1の溝の上半部及び第1の溝の下半部を導電体で埋める。
 この発明によれば、細いSiピラーを形成せずに済むため、高度な製造技術を必要としない。
 本発明にかかる半導体装置及びその製造方法によれば、容易な製造プロセスで、IGBTのdV/dt-Rgトレードオフ及びRgのターンオン制御性の改善と、IE効果の向上と、を両立させることができる。
図1は、実施の形態にかかる半導体装置の活性部を示す断面図である。 図2は、図1に示す半導体装置の製造途中の様子を示す断面図である。 図3は、図2の続きを示す断面図である。 図4は、図3の続きを示す断面図である。 図5は、図4の続きを示す断面図である。 図6は、図5の続きを示す断面図である。 図7は、実施例と従来例とでゲート抵抗Rgを変化させた時のターンオン時のダイオードのdV/dtとIGBTのターンオン損失Eonとの関係を示す特性図である。 図8は、実施例と従来例とでゲート抵抗Rgを変化させた時のターンオン時のダイオードのdV/dtの変化を示す特性図である。 図9は、従来のトレンチゲート型IGBTの活性部を示す断面図である。 図10は、従来のIE効果を向上させたトレンチゲート型IGBTの活性部を示す断面図である。
 以下に添付図面を参照して、この発明にかかる半導体装置及びその製造方法の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および-は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。
(実施の形態)
・半導体装置の構造
 図1は、実施の形態にかかる半導体装置の活性部を示す断面図である。図1に示すように、半導体装置は、トレンチゲート型のIGBTである。このトレンチゲート型IGBTは、第1の溝(トレンチ)21、ゲート電極3、p型の第1の不純物領域22、n型の第2の不純物領域23、第1の絶縁膜24、第2の溝(トレンチ)25、第2の絶縁膜26、第3の絶縁膜27、エミッタ電極9、p型の第3の不純物層28及びコレクタ電極13を有する。
 第1の溝21は、第1導電型、例えばn型のシリコンでできた半導体基板29のおもて面側に設けられている。第2の溝25は、半導体基板29のおもて面側に設けられている。第1の溝21と第2の溝25とは、互いに離れて設けられている。
 ここでは、半導体基板29の導電型は、特に限定しないが、例えばn型であるとする。半導体基板29は、例えばn-ドリフト層となる。
 ゲート電極3は、導電体でできており、第1の溝21内に充填されている。この導電体は、例えばポリシリコンでできていてもよい。ゲート電極3の幅は、後述する第1の絶縁膜24の上半部に接する部分の幅よりも、第1の絶縁膜24の下半部31に接する部分の方が狭くなっている。それによって、ゲート-ドレイン間容量を減らすことができ、更なるdV/dt-Rgトレードオフ及びRgのターンオン制御性を改善することができる。
 第1の不純物領域22は、半導体基板29のおもて面側において第1の溝21に接するように設けられている。第1の不純物領域22の表面近傍領域には、p+不純物領域30が設けられていてもよい。
 第2の不純物領域23は、第1の不純物領域22の表面近傍領域に設けられている。第2の不純物領域23は、第1の溝21に接して設けられている。第2の不純物領域23は、p+不純物領域30に接して設けられている。
 第1の絶縁膜24は、第1の溝21とゲート電極3との間に設けられている。第1の絶縁膜24は、ゲート絶縁膜となる。第1の絶縁膜24は、酸化膜でできていてもよい。第1の絶縁膜24は、第1の不純物領域22に接する上半部よりも、第1の不純物領域22の下側のメサ部5に接する下半部31の方が厚くなっている。
 第2の溝25内には、例えばポリシリコン32が充填されている。このポリシリコン32の幅は、後述する第2の絶縁膜26の上半部に接する部分の幅よりも、第2の絶縁膜26の下半部33に接する部分の方が狭くなっていてもよい。第2の溝25内のポリシリコン32の電位をゲート電極3と同じ電位にしてもよい。あるいは、一部の第2の溝25内のポリシリコンの電位をエミッタ電位にしてもよい。
 第2の絶縁膜26は、第2の溝25と第2の溝25内のポリシリコン32との間に設けられている。第2の絶縁膜26は、酸化膜でできていてもよい。第2の絶縁膜26は、第1の絶縁膜24と同様に、上半部よりも下半部33の方が厚くなっている。
 第3の絶縁膜27は、第1の溝21の上と第2の溝25の上とに跨って設けられている。第3の絶縁膜27は、酸化膜でできていてもよい。
 第1の絶縁膜24の下半部31と第2の絶縁膜26の下半部33とは繋がっている。第1の絶縁膜24の上半部及び下半部31と、第2の絶縁膜26の上半部及び下半部33と、第3の絶縁膜27とによって囲まれた囲繞領域34に半導体基板29の一部分を含んでいてもよい。それによって、ゲート-ソース間容量を増加させることができ、更なるdV/dt-Rgトレードオフ及びRgのターンオン制御性を改善することができる。
 また、囲繞領域34に含まれる半導体基板29の部分の不純物濃度が、第1の不純物領域22の不純物濃度と同じであってもよい。それによって、製造工程が短縮できるためコストが低減できる。この囲繞領域34を、電位的に浮いたフローティングp層としてもよい。あるいは、この囲繞領域34の電位をソース電位にしてもよい。
 エミッタ電極9は、第3の絶縁膜27上に設けられている。エミッタ電極9は、第3の絶縁膜27に設けられたコンタクトホールを介して第2の不純物領域23及びp+不純物領域30に接している。エミッタ電極9は、第1の不純物領域22及び第2の不純物領域23に電気的に接続されている。
 第3の不純物層28は、半導体基板29の裏面側に設けられている。半導体基板29と第3の不純物層28との間に、n+フィールドストップ層35が設けられていてもよい。コレクタ電極13は、第3の不純物層28の表面に設けられている。
・半導体装置の製造方法
 図2は、図1に示す半導体装置の製造途中の様子を示す断面図である。図3は、図2の続きを示す断面図である。図4は、図3の続きを示す断面図である。図5は、図4の続きを示す断面図である。図6は、図5の続きを示す断面図である。
 まず、図2に示すように、例えばn型の半導体基板29のおもて面に例えばボロンをイオン注入する。そして、活性化アニールを行って、半導体基板29のおもて面側にp層41を形成する。このp層41は、第1の不純物領域22、及び第1の不純物領域22と同じ不純物濃度を有する囲繞領域34となる。
 次いで、図3に示すように、p層41の表面に酸化膜を形成し、フォトリソグラフィ及びエッチングを行って酸化膜の一部を取り除く。そして、残った酸化膜をマスクにして異方性ドライエッチングを行って第1の溝21及び第2の溝25を形成する。例えば1200V耐圧クラスの場合、この段階での第1の溝21及び第2の溝25のそれぞれの幅は、例えば0.1μm以上1.5μm以下程度であってもよく、それぞれの深さは、例えば0.5μm以上3.0μm以下程度であってもよい。また、第1の溝21と第2の溝25との間隔、及び隣り合う第2の溝25同士の間隔は、狭い箇所で例えば0.1μm以上2.0μm以下程度であってもよい。
 次いで、図4に示すように、半導体基板29のおもて面側に窒化膜42を堆積する。そして、フォトリソグラフィ及びエッチングを行って第1の溝21及び第2の溝25のそれぞれの底部の窒化膜を除去する。
 続いて、第1の溝21及び第2の溝25のそれぞれの側壁部に残った窒化膜42をマスクにしてシリコンのエッチングを行って第1の溝21の底部にさらに深い溝43を形成するとともに、第2の溝25の底部にさらに深い溝44を形成する。例えば1200V耐圧クラスの場合、第1の溝21のさらに深い溝43及び第2の溝25のさらに深い溝44のそれぞれの幅は、例えば0.05μm以上1.0μm以下程度であってもよく、それぞれの深さは、第1の溝21の底部及び第2の溝25の底部から例えば0.5μm以上3.0μm以下程度であってもよい。
 次いで、図5に示すように、窒化膜42で覆われていない箇所の犠牲酸化を行う。そして、第1の溝21のさらに深い溝43の周囲に生成した酸化膜45と、第2の溝25のさらに深い溝44の周囲に生成した酸化膜46とを繋げる。また、第2の溝25同士が隣り合って設けられている場合には、第2の溝25のさらに深い溝44の周囲に生成した酸化膜46同士を繋げる。深い溝43の周囲に生成した酸化膜45は、第1の絶縁膜24の下半部31となる。深い溝44の周囲に生成した酸化膜46は、第2の絶縁膜26の下半部33となる。
 窒化膜42を剥離した後、図6に示すように、熱酸化を行って、第1の溝21の側壁部にゲート酸化膜47を生成するとともに、第2の溝25の側壁部に酸化膜48を生成する。第1の溝21の側壁部のゲート酸化膜47は、第1の絶縁膜24の上半部となる。第2の溝25の側壁部の酸化膜48は、第2の絶縁膜26の上半部となる。
 次いで、半導体基板29のおもて面側にポリシリコンを堆積し、エッチバックして第1の溝21をポリシリコン49で充填するとともに、第2の溝25をポリシリコン32で充填する。第1の溝21内のポリシリコン49は、ゲート電極3となる。
 次いで、図1に示すように、フォトリソグラフィ、ボロンのイオン注入及び活性化アニールを行って、p+不純物領域30を形成する。次いで、フォトリソグラフィ、ヒ素のイオン注入及び活性化アニールを行って、第2の不純物領域23を形成する。
 次いで、半導体基板29のおもて面側にCVD(Chemical Vapor Deposition)法により、第3の絶縁膜27となる酸化膜を例えば0.1μm以上6.0μm以下の厚さに堆積する。そして、フォトリソグラフィ及びエッチングにより第3の絶縁膜27にコンタクトホールを形成する。次いで、半導体基板29のおもて面側にアルミニウムを堆積し、フォトリソグラフィ及びエッチングによりエミッタ電極9を形成する。
 次いで、半導体基板29のおもて面にレジストを塗布して半導体基板29のおもて面側の素子構造を保護する。そして、シリコン厚が所定の厚さになるように、基板裏面の研磨及びエッチングを行う。例えば1200V耐圧クラスの場合、所定のシリコン厚は、例えば100μm以上140μm以下程度であってもよい。
 次いで、半導体基板29の裏面に例えばリン、セレンまたはプロトンをイオン注入し、活性化アニールを行ってn+フィールドストップ層35を形成する。次いで、半導体基板29の裏面に例えばボロンをイオン注入して、コレクタ層となる第3の不純物層28を形成する。次いで、第3の不純物層28の表面にコレクタ電極13を形成する。そして、ウェハをカットしてIGBTチップが完成する。
 実施の形態によれば、囲繞領域34の下方で第1の絶縁膜24の下半部31と第2の絶縁膜26の下半部33とが連結しているため、耐圧の確保が可能であり、dV/dt-Rgトレードオフ及びRgのターンオン制御性を改善することができる。また、メサ部5内で第1の絶縁膜24の下半部31が厚いため、ホール電流の抵抗が上昇し、IE効果を向上させることができる。また、製造プロセスにおいて、細いSiピラーを形成せずに済むため、高度な製造技術を必要としない。従って、容易な製造プロセスで、IGBTのdV/dt-Rgトレードオフ及びRgのターンオン制御性の改善と、IE効果の向上と、を両立させることができる。
 また、実施の形態によれば、第2の溝25内のポリシリコン32の電位をゲート電極3と同じ電位にすることによって、コレクターフローティング部の容量を減らすことができるため、dV/dt-Rgトレードオフ及びRgのターンオン制御性をより一層、改善することができる。あるいは、一部の第2の溝25内のポリシリコンの電位をエミッタ電位にすることによって、入力容量を大きくすることができる。
 また、実施の形態によれば、囲繞領域34の電位をソース電位にすることによって、ゲート-ソース間容量Cgsを増加させることができるため、リンギングを抑制することができる。
(実施例)
 上述した半導体装置の製造方法に従って作製した1200V耐圧クラスのIGBTを実施例とする。一方、比較のため、図9に示す従来構造の1200V耐圧クラスのIGBTを従来例とする。
 図7は、実施例と従来例とでゲート抵抗Rgを変化させた時のターンオン時のダイオードのdV/dtとIGBTのターンオン損失Eonとの関係を示す特性図である。図7において、縦軸はIGBTのターンオン損失Eonであり、横軸はターンオン時のダイオードのdV/dtである。また、図8は、実施例と従来例とでゲート抵抗Rgを変化させた時のターンオン時のダイオードのdV/dtの変化を示す特性図である。図8において、縦軸はターンオン時のダイオードのdV/dtであり、横軸はゲート抵抗Rgである。
 図7及び図8から明らかなように、実施例のIGBTは、従来例のIGBTに対して、IGBTのdV/dt-Rgトレードオフ及びRgのターンオン制御性の改善と、IE効果の向上と、を両立させることができる。そして、IE効果の向上によって、IGBTのオン電圧Vonを低くすることができる。
 以上において本発明は、上述した実施の形態に限らず、種々変更可能である。例えば、実施の形態中に記載した寸法や濃度などは一例であり、本発明はそれらの値に限定されるものではない。また、実施の形態では第1導電型をn型とし、第2導電型をp型としたが、本発明は第1導電型をp型とし、第2導電型をn型としても同様に成り立つ。
 以上のように、本発明にかかる半導体装置及びその製造方法は、電力用半導体装置に有用であり、特に、IGBTに適している。
 3 ゲート電極
 9 エミッタ電極
 13 コレクタ電極
 21 第1の溝
 22 第1の不純物領域
 23 第2の不純物領域
 24 第1の絶縁膜
 25 第2の溝
 26 第2の絶縁膜
 27 第3の絶縁膜
 28 第3の不純物層
 31 第1の絶縁膜の下半部

Claims (5)

  1.  第1導電型の半導体基板と、
     前記半導体基板のおもて面側に設けられた第1の溝と、
     前記第1の溝内に充填された導電体でできたゲート電極と、
     前記半導体基板のおもて面側に前記第1の溝に接するように設けられた第2導電型の第1の不純物領域と、
     前記第1の不純物領域の表面近傍領域に設けられた第1導電型の第2の不純物領域と、
     前記第1の溝と前記ゲート電極との間に設けられ、前記第1の不純物領域に接する上半部よりも厚い下半部を有する第1の絶縁膜と、
     前記半導体基板のおもて面側に設けられた第2の溝と、
     前記第2の溝内に設けられ、上半部よりも厚い下半部を有する第2の絶縁膜と、
     前記第1の溝の上と前記第2の溝の上とに跨って設けられた第3の絶縁膜と、
     前記第3の絶縁膜上に設けられ、前記第1の不純物領域及び前記第2の不純物領域に電気的に接続されたエミッタ電極と、
     前記半導体基板の裏面側に設けられた第2導電型の第3の不純物層と、
     前記第3の不純物層の表面に設けられたコレクタ電極と、を備え、
     前記第1の絶縁膜の下半部と前記第2の絶縁膜の下半部とが繋がっていることを特徴とする半導体装置。
  2.  前記第1の絶縁膜の下半部に接する部分の前記ゲート電極の幅は、前記第1の絶縁膜の上半部に接する部分の前記ゲート電極の幅よりも狭いことを特徴とする請求項1に記載の半導体装置。
  3.  前記第1の絶縁膜と前記第2の絶縁膜と前記第3の絶縁膜とによって囲まれた領域に前記半導体基板の一部分を含むことを特徴とする請求項1または2に記載の半導体装置。
  4.  前記第1の絶縁膜と前記第2の絶縁膜と前記第3の絶縁膜とによって囲まれた前記半導体基板の一部分の不純物濃度は、前記第1の不純物領域の不純物濃度と同じであることを特徴とする請求項3に記載の半導体装置。
  5.  第1導電型の半導体基板に第1の溝の上半部及び第2の溝の上半部を形成し、
     前記第1の溝の側面及び前記第2の溝の側面をそれぞれ窒化膜で覆い、
     前記窒化膜をマスクとして異方性エッチングを行って、前記第1の溝の上半部の底及び前記第2の溝の上半部の底に、それぞれ前記第1の溝の上半部及び前記第2の溝の上半部よりも狭い第1の溝の下半部及び第2の溝の下半部を形成し、
     前記窒化膜をマスクとして酸化処理を行って、前記第1の溝の下半部及び前記第2の溝の下半部のそれぞれの周囲に酸化膜を生成し、前記第1の溝の下半部の周囲の酸化膜と前記第2の溝の下半部の周囲の酸化膜とを繋げ、
     前記窒化膜を除去して、前記第1の溝の上半部及び前記第1の溝の下半部を導電体で埋めることを特徴とする半導体装置の製造方法。
PCT/JP2015/084539 2015-01-13 2015-12-09 半導体装置及びその製造方法 WO2016114043A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016569261A JP6350679B2 (ja) 2015-01-13 2015-12-09 半導体装置及びその製造方法
DE112015004505.8T DE112015004505T5 (de) 2015-01-13 2015-12-09 Halbleitervorrichtung und Verfahren zur Herstellung einer Halbleitervorrichtung
CN201580057250.1A CN107078155B (zh) 2015-01-13 2015-12-09 半导体装置及其制造方法
US15/583,982 US10103256B2 (en) 2015-01-13 2017-05-01 Semiconductor device and method of manufacturing semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-004051 2015-01-13
JP2015004051 2015-01-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/583,982 Continuation US10103256B2 (en) 2015-01-13 2017-05-01 Semiconductor device and method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
WO2016114043A1 true WO2016114043A1 (ja) 2016-07-21

Family

ID=56405598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084539 WO2016114043A1 (ja) 2015-01-13 2015-12-09 半導体装置及びその製造方法

Country Status (5)

Country Link
US (1) US10103256B2 (ja)
JP (1) JP6350679B2 (ja)
CN (1) CN107078155B (ja)
DE (1) DE112015004505T5 (ja)
WO (1) WO2016114043A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106057877A (zh) * 2016-08-01 2016-10-26 上海华虹宏力半导体制造有限公司 载流子存储型igbt及其制造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210003997A (ko) * 2019-07-02 2021-01-13 삼성전자주식회사 반도체 소자 및 그의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353456A (ja) * 2001-05-29 2002-12-06 Mitsubishi Electric Corp 半導体装置及びその製造方法
WO2011111500A1 (ja) * 2010-03-09 2011-09-15 富士電機システムズ株式会社 半導体装置
JP2011204711A (ja) * 2010-03-24 2011-10-13 Toshiba Corp 半導体装置およびその製造方法
JP2013522924A (ja) * 2010-03-23 2013-06-13 アーベーベー・テヒノロギー・アーゲー 電力半導体デバイス

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10203164B4 (de) 2002-01-28 2005-06-16 Infineon Technologies Ag Leistungshalbleiterbauelement und Verfahren zu dessen Herstellung
US6919248B2 (en) * 2003-03-14 2005-07-19 International Rectifier Corporation Angled implant for shorter trench emitter
US7075147B2 (en) * 2003-06-11 2006-07-11 International Rectifier Corporation Low on resistance power MOSFET with variably spaced trenches and offset contacts
JP2005340626A (ja) * 2004-05-28 2005-12-08 Toshiba Corp 半導体装置
US20060163650A1 (en) * 2005-01-27 2006-07-27 Ling Ma Power semiconductor device with endless gate trenches
DE102007020657B4 (de) * 2007-04-30 2012-10-04 Infineon Technologies Austria Ag Halbleiterbauelement mit einem Halbleiterkörper und Verfahren zur Herstellung desselben
US20090057713A1 (en) * 2007-08-31 2009-03-05 Infineon Technologies Austria Ag Semiconductor device with a semiconductor body
EP2342753B1 (en) * 2008-09-30 2018-01-17 Ixys Corporation Insulated gate bipolar transistor
JP5969771B2 (ja) * 2011-05-16 2016-08-17 ルネサスエレクトロニクス株式会社 Ie型トレンチゲートigbt
JP5973730B2 (ja) * 2012-01-05 2016-08-23 ルネサスエレクトロニクス株式会社 Ie型トレンチゲートigbt
JP6190206B2 (ja) * 2012-08-21 2017-08-30 ローム株式会社 半導体装置
US9419080B2 (en) * 2013-12-11 2016-08-16 Infineon Technologies Ag Semiconductor device with recombination region
US9570577B2 (en) * 2014-05-12 2017-02-14 Infineon Technologies Ag Semiconductor device and insulated gate bipolar transistor with source zones formed in semiconductor mesas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353456A (ja) * 2001-05-29 2002-12-06 Mitsubishi Electric Corp 半導体装置及びその製造方法
WO2011111500A1 (ja) * 2010-03-09 2011-09-15 富士電機システムズ株式会社 半導体装置
JP2013522924A (ja) * 2010-03-23 2013-06-13 アーベーベー・テヒノロギー・アーゲー 電力半導体デバイス
JP2011204711A (ja) * 2010-03-24 2011-10-13 Toshiba Corp 半導体装置およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASAHIRO TANAKA ET AL.: "Scaling Rule for Very Shallow Trench IGBT toward CMOS Process Compatibility", PROCEEDINGS OF THE 2012 24TH INTERNATIONAL SYMPOSIUM ON POWER SEMICONDUCTOR DEVICES AND ICS, June 2012 (2012-06-01), pages 177 - 180, XP032452795, DOI: doi:10.1109/ISPSD.2012.6229052 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106057877A (zh) * 2016-08-01 2016-10-26 上海华虹宏力半导体制造有限公司 载流子存储型igbt及其制造方法

Also Published As

Publication number Publication date
CN107078155B (zh) 2020-07-07
JPWO2016114043A1 (ja) 2017-08-31
JP6350679B2 (ja) 2018-07-04
US20170236927A1 (en) 2017-08-17
US10103256B2 (en) 2018-10-16
CN107078155A (zh) 2017-08-18
DE112015004505T5 (de) 2017-11-30

Similar Documents

Publication Publication Date Title
US11610884B2 (en) Semiconductor device
US20090283797A1 (en) Semiconductor device
JP2009033036A (ja) 半導体装置及びこれを用いた電気回路装置
JP2011119416A (ja) 半導体装置及びそれを用いた電力変換装置
US10297683B2 (en) Method of manufacturing a semiconductor device having two types of gate electrodes
JP6287407B2 (ja) 半導体装置
JP2012089822A (ja) 半導体装置
JP5412717B2 (ja) トレンチ型絶縁ゲート半導体装置
US9711628B2 (en) Semiconductor device
JP2014112625A (ja) 電力半導体素子およびその製造方法
JP2008153389A (ja) 半導体装置
JP2017191817A (ja) スイッチング素子の製造方法
JP6350679B2 (ja) 半導体装置及びその製造方法
KR101452098B1 (ko) 전력 반도체 소자 및 그 제조 방법
JP2014154739A (ja) 半導体装置
CN107579109B (zh) 半导体器件及其制造方法
WO2024062664A1 (ja) 半導体装置
KR102042833B1 (ko) 전력 반도체 소자 및 그 제조방법
KR102042834B1 (ko) 전력 반도체 소자 및 그 제조방법
US9502498B2 (en) Power semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877994

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015004505

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 2016569261

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15877994

Country of ref document: EP

Kind code of ref document: A1