WO2016113921A1 - 複数の撮像光学系及びそれを有する撮像装置 - Google Patents

複数の撮像光学系及びそれを有する撮像装置 Download PDF

Info

Publication number
WO2016113921A1
WO2016113921A1 PCT/JP2015/059060 JP2015059060W WO2016113921A1 WO 2016113921 A1 WO2016113921 A1 WO 2016113921A1 JP 2015059060 W JP2015059060 W JP 2015059060W WO 2016113921 A1 WO2016113921 A1 WO 2016113921A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging optical
optical systems
lens group
optical system
focus lens
Prior art date
Application number
PCT/JP2015/059060
Other languages
English (en)
French (fr)
Inventor
河村一輝
岩佐和行
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to CN201580002442.2A priority Critical patent/CN107111108A/zh
Priority to JP2016521367A priority patent/JP6511044B2/ja
Priority to US15/180,390 priority patent/US9671596B2/en
Publication of WO2016113921A1 publication Critical patent/WO2016113921A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/02Optical objectives with means for varying the magnification by changing, adding, or subtracting a part of the objective, e.g. convertible objective
    • G02B15/04Optical objectives with means for varying the magnification by changing, adding, or subtracting a part of the objective, e.g. convertible objective by changing a part
    • G02B15/08Optical objectives with means for varying the magnification by changing, adding, or subtracting a part of the objective, e.g. convertible objective by changing a part by changing the rear part
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B7/00Control of exposure by setting shutters, diaphragms or filters, separately or conjointly
    • G03B7/20Control of exposure by setting shutters, diaphragms or filters, separately or conjointly in accordance with change of lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/12Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only
    • G02B9/14Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only arranged + - +
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/02Focusing arrangements of general interest for cameras, projectors or printers moving lens along baseboard
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/12Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only
    • G02B9/14Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only arranged + - +
    • G02B9/24Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only arranged + - + two of the components having compound lenses
    • G02B9/28Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only arranged + - + two of the components having compound lenses the middle and rear components having compound lenses

Definitions

  • the present invention relates to a plurality of imaging optical systems, and more particularly to a plurality of imaging optical systems in which a unit for driving a diaphragm member and a focus lens group is shared by the plurality of imaging optical systems.
  • the present invention also relates to an imaging apparatus having a plurality of imaging optical systems.
  • imaging optical systems with various specifications have been developed. Particularly in an interchangeable lens camera, the imaging optical system can be exchanged according to the scene. Therefore, the user can shoot various scenes. It can be said that it is a favorable situation for the user that the options of the imaging optical system increase.
  • Patent Documents 1 to 3 propose a technique for sharing parts in an imaging optical system having different specifications.
  • the configuration in which the magnifying optical system is taken in and out of the optical path can reduce the load on the manufacturer, but it is difficult to achieve downsizing, which is a merit for the user.
  • an object of the present invention is to provide a plurality of imaging optical systems that can reduce the development load of the manufacturer and can also reduce the size and weight of the product. It is another object of the present invention to provide an imaging apparatus having a plurality of imaging optical systems.
  • a plurality of imaging optical systems of the present invention includes: A plurality of imaging optical systems having at least two imaging optical systems having different focal lengths, Each imaging optical system in the plurality of imaging optical systems has the same diaphragm member, Each imaging optical system, in order from the object side, A front lens group having positive refractive power; A focus lens group having negative refractive power; A rear lens group having positive refractive power, The diaphragm member is disposed in the vicinity of the focus lens group, During focusing, only the focus lens group moves on the optical axis, Each imaging optical system satisfies the following conditional expression (1), and A plurality of imaging optical systems satisfy the following conditional expressions (2) and (3).
  • f ff is the focal length of the front lens group in each imaging optical system
  • f fb is the focal length of the rear lens group in each imaging optical system
  • AP ⁇ max is the maximum diameter among the diameters of the aperture stops in the plurality of imaging optical systems
  • AP ⁇ min is the smallest diameter among the aperture stops in the plurality of imaging optical systems
  • f foLA is the maximum focal length among the focal lengths of the focus lens group in the plurality of imaging optical systems
  • f foSM is the minimum focal length among the focal lengths of the focus lens group in the plurality of imaging optical systems
  • the maximum focal length and the minimum focal length are obtained by comparing the focal lengths with absolute values.
  • a plurality of imaging optical systems having at least two imaging optical systems having different focal lengths Each imaging optical system in the plurality of imaging optical systems has the same focus unit, Each imaging optical system includes a front lens group having positive refractive power in order from the object side, A focus lens group having negative refractive power, Each imaging optical system has a diaphragm member, The diaphragm member is disposed in the vicinity of the focus lens group, During focusing, only the focus lens group moves on the optical axis, A plurality of imaging optical systems satisfy the following conditional expressions (3) and (4).
  • f foLA is the maximum focal length among the focal lengths of the focus lens group in the plurality of imaging optical systems
  • f foSM is the minimum focal length among the focal lengths of the focus lens group in the plurality of imaging optical systems
  • K max is the maximum of K
  • K min is the smallest K among K
  • f is the focal length of the entire system when focusing on an object point at infinity in each imaging optical system
  • MG fo is the focus sensitivity in each imaging optical system
  • Focus sensitivity is the amount of movement of the image plane relative to the amount of unit movement of the focus lens group when focusing on an object point at infinity. It is.
  • the imaging device of the present invention is An imaging optical system; An imaging device having an imaging surface and converting an image formed on the imaging surface by an imaging optical system into an electrical signal;
  • the imaging optical system is one of the plurality of imaging optical systems described above.
  • the main parts in the imaging optical system can be shared by a plurality of imaging optical systems, while reducing the development load of the manufacturer by reducing the size and weight of these main parts, A plurality of imaging optical systems that can be reduced in size and weight can be provided. An imaging device having a plurality of imaging optical systems can be provided.
  • FIG. 6 is an aberration diagram when focusing on an object point at infinity according to Example A and an aberration diagram when focusing on a close object point. It is sectional drawing which follows the optical axis which shows the optical structure at the time of infinity object point focusing of the imaging optical system of Example B.
  • FIG. 6 is an aberration diagram when focusing on an object point at infinity according to Example B and an aberration diagram when focusing on a close object point. It is sectional drawing which follows the optical axis which shows the optical structure at the time of infinity object point focusing of the imaging optical system of Example C.
  • FIG. 6 is an aberration diagram when focusing on an object point at infinity according to Example A and an aberration diagram when focusing on a close object point.
  • FIG. 6 is an aberration diagram when focusing on an object point at infinity according to Example C and an aberration diagram when focusing on a close object point. It is sectional drawing which follows the optical axis which shows the optical structure at the time of infinity object point focusing of the imaging optical system of Example D.
  • FIG. 6 is an aberration diagram when focusing on an object point at infinity according to Example D and an aberration diagram when focusing on a close object point.
  • the main components in the imaging optical system are shared by the plurality of imaging optical systems.
  • main parts include a diaphragm member and a focus unit.
  • the plurality of imaging optical systems of the first embodiment are a plurality of imaging optical systems having at least two imaging optical systems having different focal lengths, and each imaging optical system in the plurality of imaging optical systems has the same aperture member.
  • Each imaging optical system includes, in order from the object side, a front lens group having positive refracting power, a focus lens group having negative refracting power, and a rear lens group having positive refracting power.
  • the member is disposed in the vicinity of the focus lens group, and during focusing, only the focus lens group moves on the optical axis, each imaging optical system satisfies the following conditional expression (1), and a plurality of imaging optics The system satisfies the following conditional expressions (2) and (3).
  • f ff is the focal length of the front lens group in each imaging optical system
  • f fb is the focal length of the rear lens group in each imaging optical system
  • AP ⁇ max is the maximum diameter among the diameters of the aperture stops in the plurality of imaging optical systems
  • AP ⁇ min is the smallest diameter among the aperture stops in the plurality of imaging optical systems
  • f foLA is the maximum focal length among the focal lengths of the focus lens group in the plurality of imaging optical systems
  • f foSM is the minimum focal length among the focal lengths of the focus lens group in the plurality of imaging optical systems
  • the maximum focal length and the minimum focal length are obtained by comparing the focal lengths with absolute values.
  • the plurality of imaging optical systems of the first embodiment are a plurality of imaging optical systems having at least two imaging optical systems having different focal lengths, and each imaging optical system in the plurality of imaging optical systems has the same aperture member.
  • Each imaging optical system includes, in order from the object side, a front lens group having positive refracting power, a focus lens group having negative refracting power, and a rear lens group having positive refracting power.
  • the member is disposed in the vicinity of the focus lens group, and only the focus lens group moves on the optical axis during focusing.
  • the plurality of imaging optical systems of the first embodiment have at least two imaging optical systems having different focal lengths. And in each imaging optical system in a some imaging optical system, the aperture member is used in common.
  • the throttle member is composed of at least three parts.
  • the three parts are a member for determining a diaphragm diameter, a diaphragm spring member, and a first drive actuator.
  • the first drive actuator is used to drive the diaphragm.
  • the aperture stop is a member that determines the stop diameter or a stop-shaft member.
  • the diaphragm member is arranged near the focus lens group. Specifically, the diaphragm member is disposed on the object side of the focus lens group.
  • the plurality of imaging optical systems according to the first embodiment include, in order from the object side, a front lens group having positive refractive power, a focus lens group having negative refractive power, and a rear lens group having positive refractive power. .
  • first arrangement in an imaging optical system that uses a diaphragm member in common, the refractive power of the optical system closer to the object side than the focus lens group having negative refractive power. Becomes positive refractive power.
  • the focus lens group is disposed at the position where the luminous flux is converged, so that the imaging magnification of the focus lens group can be increased. Since the focus sensitivity is increased by increasing the imaging magnification of the focus lens group, the moving distance of the focus lens group can be reduced.
  • a second drive actuator is used to move the focus lens group.
  • the focus lens group can be reduced in diameter and weight. Further, by arranging the diaphragm member in the vicinity of the focus lens group, the diaphragm member can be reduced in size.
  • the moving distance of the focus lens group can be reduced, and the diaphragm member can be reduced in size.
  • the drive means is at least one of a first drive actuator and a second drive actuator.
  • the refractive power of the optical system closer to the image side than the focus lens group having negative refractive power becomes positive refractive power.
  • each imaging optical system can realize a configuration capable of obtaining good imaging performance while reducing the space of the driving unit and shortening the total length of the optical system by the first arrangement. it can.
  • it is possible to easily realize a configuration that enables common use of the diaphragm member.
  • the focus lens group is configured so that the refractive power of the focus lens group differs in each imaging optical system. By doing so, it is possible to satisfactorily correct mainly the spherical aberration and the curvature of field while increasing the focus sensitivity in each imaging optical system. As a result, these aberration fluctuations during focusing can be reduced.
  • Each imaging optical system satisfies the following conditional expression (1). 0.5 ⁇ f ff / f fb ⁇ 1.9 (1)
  • f ff is the focal length of the front lens group in each imaging optical system
  • f fb is the focal length of the rear lens group in each imaging optical system
  • Conditional expression (1) is a conditional expression regarding the balance of refractive power of the front lens group and the rear lens group in each imaging optical system.
  • conditional expression (1) If the upper limit of conditional expression (1) is exceeded, the refractive power of the front lens group becomes small, so that it becomes difficult to shorten the overall length of the optical system, and the focus sensitivity decreases. Decreasing focus sensitivity increases the amount of movement of the focus lens group, making it difficult to secure a sufficient space for the focus unit. Also, spherical aberration and field curvature cannot be corrected satisfactorily.
  • conditional expression (1) if the lower limit of conditional expression (1) is not reached, the refractive power of the front lens group becomes large, so that spherical aberration and curvature of field cannot be corrected satisfactorily.
  • the plurality of imaging optical systems satisfy the following conditional expressions (2) and (3).
  • AP ⁇ max is the maximum diameter among the diameters of the aperture stops in the plurality of imaging optical systems
  • AP ⁇ min is the smallest diameter among the aperture stops in the plurality of imaging optical systems
  • f foLA is the maximum focal length among the focal lengths of the focus lens group in the plurality of imaging optical systems
  • f foSM is the minimum focal length among the focal lengths of the focus lens group in the plurality of imaging optical systems
  • the maximum focal length and the minimum focal length are obtained by comparing the focal lengths with absolute values.
  • Conditional expression (2) is a conditional expression that prescribes the ratio between the maximum value and the minimum value of the diameter of the aperture stop in a plurality of imaging optical systems. If a member for determining the aperture diameter and a diaphragm spring member are made common without satisfying the conditional expression (2), the shape of the aperture in the open aperture state becomes a polygon in at least one imaging optical system. When the shape of the opening is a polygon, the bokeh is worsened. Therefore, it is not preferable to fall below the lower limit value of conditional expression (2) or to exceed the upper limit value.
  • Conditional expression (3) is a conditional expression that prescribes the ratio between the maximum value and the minimum value of the focal length of the focus lens group in a plurality of imaging optical systems.
  • the focal length of the entire system of the imaging optical system having the longest focal length of the focus lens group and the imaging optical system having the shortest focal length of the focus lens group is the same. I can't widen the distance. Therefore, an effective specification difference as an imaging optical system cannot be obtained. In particular, it is possible to reduce the aberration variation during focusing and reduce the size of the optical system while maintaining good spherical aberration and curvature of field in each imaging optical system while having an effective specification difference as the imaging optical system. It becomes difficult.
  • the diameter of the focus lens group will be greatly different for each imaging optical system. That is, the difference in the diameter of the focus lens group becomes too large between the imaging optical system with the largest diameter of the focus lens group and the imaging optical system with the smallest diameter of the focus lens group. In this case, the arrangement location and the arrangement space of the driving means are changed in each imaging optical system, so that it is difficult to share the diaphragm member.
  • the diaphragm member is disposed in the vicinity of the focus lens group. Further, there are other lenses and lens frame members before and after the aperture member. When a sufficient space is secured before and after the aperture member, no problem occurs in the movement of the aperture member. However, in an optical system aimed at miniaturization, the space that can be secured before and after the aperture member is limited. For this reason, it is necessary to change the diaphragm member itself in order to prevent interference with the lens and the frame member.
  • conditional expression (1) ′′ it is preferable to satisfy the following conditional expression (1) ′′ instead of conditional expression (1). 0.60 ⁇ f ff / f fb ⁇ 1.75 (1) '' Further, it is more preferable that the following conditional expression (1) ′ ′′ is satisfied instead of conditional expression (1). 0.65 ⁇ f ff / f fb ⁇ 1.65 (1) ′ ′′
  • conditional expression (3) ′ is satisfied instead of conditional expression (3). 1.03 ⁇ f foLA / f foSM ⁇ 2.00 (3) ′ It is more preferable to satisfy the following conditional expression (3) ′′ instead of conditional expression (3). 1.04 ⁇ f foLA / f foSM ⁇ 1.50 (3) ''
  • the plurality of imaging optical systems of the second embodiment are a plurality of imaging optical systems having at least two imaging optical systems having different focal lengths, and each imaging optical system in the plurality of imaging optical systems has the same focus unit.
  • Each imaging optical system has, in order from the object side, a front lens group having a positive refractive power and a focus lens group having a negative refractive power, and each imaging optical system has a diaphragm member,
  • the aperture member is disposed in the vicinity of the focus lens group. At the time of focusing, only the focus lens group moves on the optical axis, and the plurality of imaging optical systems satisfy the following conditional expressions (3) and (4).
  • f foLA is the maximum focal length among the focal lengths of the focus lens group in the plurality of imaging optical systems
  • f foSM is the minimum focal length among the focal lengths of the focus lens group in the plurality of imaging optical systems
  • K max is the maximum of K
  • K min is the smallest K among K
  • f is the focal length of the entire system when focusing on an object point at infinity in each imaging optical system
  • MG fo is the focus sensitivity in each imaging optical system
  • Focus sensitivity is the amount of movement of the image plane relative to the amount of unit movement of the focus lens group when focusing on an object point at infinity. It is.
  • the plurality of imaging optical systems of the second embodiment are a plurality of imaging optical systems having at least two imaging optical systems having different focal lengths, and each imaging optical system in the plurality of imaging optical systems has the same focus unit.
  • Each imaging optical system has, in order from the object side, a front lens group having a positive refractive power and a focus lens group having a negative refractive power, and each imaging optical system has a diaphragm member,
  • the aperture member is disposed in the vicinity of the focus lens group, and only the focus lens group moves on the optical axis during focusing.
  • the plurality of imaging optical systems of the second embodiment has at least two imaging optical systems having different focal lengths.
  • a focus unit is commonly used in each of the imaging optical systems in the plurality of imaging optical systems.
  • the focus unit is composed of at least a second drive actuator.
  • the second drive actuator is used to move the focus lens group.
  • the plurality of imaging optical systems according to the second embodiment include, in order from the object side, a front lens group having a positive refractive power and a focus lens group having a negative refractive power.
  • second arrangement in an imaging optical system that uses a focus unit in common, the optical system closer to the object side than the focus lens group having negative refractive power is positively refracted. helpful.
  • the focus lens group is disposed at the position where the luminous flux is converged, so that the imaging magnification of the focus lens group can be increased. Since the focus sensitivity is increased by increasing the imaging magnification of the focus lens group, the moving distance of the focus lens group can be reduced.
  • the focus lens group can be reduced in diameter and weight.
  • the diaphragm member can be reduced in size by disposing the diaphragm member in the vicinity of the focus lens group.
  • the moving distance of the focus lens group can be reduced, and the diaphragm member can be reduced in size.
  • both the space necessary for moving the focus lens group and the arrangement space for the driving means can be reduced.
  • each imaging optical system can realize a configuration capable of obtaining good imaging performance while reducing the space of the driving unit and shortening the total length of the optical system by the second arrangement. it can.
  • it is possible to easily realize a configuration that enables common focus units.
  • the plurality of imaging optical systems satisfy the following conditional expressions (3) and (4). 1.02 ⁇ f foLA / f foSM ⁇ 2.50 (3) 1 ⁇ K max / K min ⁇ 1.65 (4)
  • f foLA is the maximum focal length among the focal lengths of the focus lens group in the plurality of imaging optical systems
  • f foSM is the minimum focal length among the focal lengths of the focus lens group in the plurality of imaging optical systems, The maximum focal length and the minimum focal length are obtained by comparing the focal lengths in absolute values.
  • K max is the maximum of K
  • K min is the smallest K among K
  • f is the focal length of the entire system when focusing on an object point at infinity in each imaging optical system
  • MG fo is the focus sensitivity in each imaging optical system
  • Focus sensitivity is the amount of movement of the image plane relative to the amount of unit movement of the focus lens group when focusing on an object point at infinity. It is.
  • conditional expression (3) Since the technical significance of conditional expression (3) has already been explained, explanation here is omitted.
  • Conditional expression (4) is a conditional expression that defines the ratio between the maximum value and the minimum value of the drive amount in the focus unit. This drive amount can be obtained based on the amount of movement of the focus lens group.
  • the drive amount of the focus unit is greatly different for each imaging optical system. That is, the difference in driving amount between the imaging optical system with the largest driving amount and the imaging optical system with the smallest driving amount becomes too large. In this case, even in an imaging optical system with a small driving amount, it is necessary to secure the same space as that of the imaging optical system with the largest driving amount, so that it is difficult to reduce the size of the imaging optical system.
  • conditional expression (4) ′′ is satisfied instead of conditional expression (4). 1 ⁇ K max / K min ⁇ 1.50 (4) '' Further, it is more preferable that the following conditional expression (4) ′ ′′ is satisfied instead of conditional expression (4). 1 ⁇ K max / K min ⁇ 1.30 (4) '''
  • the diaphragm member in each imaging optical system, is It is preferably disposed between the front lens group and the focus lens group.
  • the central beam diameter varies relatively greatly depending on the position on the optical axis. Therefore, by arranging the diaphragm member between them, the aperture diaphragm diameter can be easily controlled. This makes it easier to share the diaphragm member.
  • each imaging optical system satisfies the following conditional expression (5).
  • ⁇ LD is the maximum effective aperture in the focus lens group in each imaging optical system
  • ⁇ c is the maximum on-axis imaging light beam diameter in the focus lens group in each imaging optical system
  • Conditional expression (5) is a conditional expression that prescribes the ratio between the effective aperture of the focus lens group and the axial imaging light beam diameter in each imaging optical system.
  • the F number is determined by the focus lens group. In this case, the F number changes as the focus lens moves, but the amount of change increases. If the upper limit of conditional expression (5) is exceeded, the effective aperture of the focus lens group becomes too large, making it difficult to reduce the diameter of the optical system.
  • conditional expression (5) ′ instead of conditional expression (5). 1.03 ⁇ LD / ⁇ c ⁇ 1.20 (5) ′ Further, it is more preferable to satisfy the following conditional expression (5) ′′ instead of conditional expression (5). 1.04 ⁇ LD / ⁇ c ⁇ 1.15 (5) ''
  • a rear lens group having positive refractive power is disposed on the image side of the focus lens group in each imaging optical system.
  • the refractive power of the optical system on the image side becomes positive refracting power than the focus lens group having negative refracting power.
  • the arrangement of refractive power is positive refractive power, negative refractive power, and positive refractive power. Therefore, it is possible to satisfactorily correct mainly spherical aberration and curvature of field in each imaging optical system. As a result, each imaging optical system can realize a configuration in which the variation in aberration during focusing is small and the overall length of the optical system can be easily shortened.
  • the plurality of imaging optical systems of the first embodiment it is preferable that the plurality of imaging optical systems satisfy the following conditional expression (4) ′.
  • K max is the maximum of K
  • K min is the smallest K among K
  • f is the focal length of the entire system when focusing on an object point at infinity in each imaging optical system
  • MG fo is the focus sensitivity in each imaging optical system
  • Focus sensitivity is the amount of movement of the image plane relative to the amount of unit movement of the focus lens group when focusing on an object point at infinity. It is.
  • Conditional expression (4) defines the ratio between the maximum value and the minimum value of the drive amount in the focus unit.
  • the technical significance of conditional expression (4) ' is the same as the technical significance of conditional expression (4).
  • conditional expression (4) ′′ instead of conditional expression (4) ′. 1 ⁇ K max / K min ⁇ 1.50 (4) '' It is more preferable that the following conditional expression (4) ′ ′′ is satisfied instead of conditional expression (4) ′. 1 ⁇ K max / K min ⁇ 1.30 (4) '''
  • each imaging optical system satisfies the following conditional expression (1) ′. 0.5 ⁇ f ff / f fb ⁇ 1.8 (1) ′
  • f ff is the focal length of the front lens group in each imaging optical system
  • f fb is the focal length of the rear lens group in each imaging optical system
  • Conditional expression (1) ′ is a conditional expression regarding the balance of refractive power of the front lens group and the rear lens group in each imaging optical system.
  • the technical significance of conditional expression (1) ' is the same as the technical significance of conditional expression (1).
  • conditional expression (1) ′′ is satisfied instead of conditional expression (1) ′. 0.60 ⁇ f ff / f fb ⁇ 1.75 (1) '' It is more preferable that the following conditional expression (1) ′ ′′ is satisfied instead of conditional expression (1) ′. 0.65 ⁇ f ff / f fb ⁇ 1.65 (1) ′ ′′
  • each imaging optical system satisfies the following conditional expression (6). 0.06 ⁇
  • f fo is the focal length of the focus lens group in each imaging optical system
  • f is the focal length of the entire system when focusing on an object point at infinity in each imaging optical system, It is.
  • Conditional expression (6) is a conditional expression that prescribes the refractive power of the focus lens group in each imaging optical system.
  • Conditional expression (6) standardizes the focal length of the entire system in each imaging optical system.
  • conditional expression (6) If the lower limit of conditional expression (6) is not reached, the refractive power of the focus lens group becomes large, so that mainly spherical aberration occurs. For this reason, it is difficult to obtain good imaging performance during focusing. Improvement in imaging performance leads to an increase in the number of lenses, making it difficult to reduce the weight of the focus unit.
  • the amount of movement of the focus lens group during focusing increases. In this case, it is necessary to secure a wide space for movement, so that it is difficult to shorten the overall length of the optical system.
  • the positive refractive power of the front lens group is increased, the amount of spherical aberration, coma aberration, and astigmatism generated in the front lens group increases. Therefore, it becomes difficult to obtain good imaging performance over the entire focus area.
  • conditional expression (6) ′ is satisfied instead of conditional expression (6).
  • conditional expression (6) ′ is satisfied instead of conditional expression (6).
  • conditional expression (6) ′′ is satisfied instead of conditional expression (6).
  • the plurality of imaging optical systems have a positive lens or a negative lens as a common lens, and at least two of the plurality of imaging optical systems are each It is preferable to have a common lens in the front lens group.
  • a positive lens or a negative lens having a correction function for spherical aberration and axial chromatic aberration is used as a common lens.
  • the common lens is preferably shared by at least two imaging optical systems.
  • the focus unit in at least two imaging optical systems among the plurality of imaging optical systems, the focus unit is configured by the same member and satisfies the following conditional expression (7). preferable. 1 ⁇ LDW max / LDW min ⁇ 1.65 (7)
  • LDW max is the maximum total weight of the total lens weight of the focus lens group in the plurality of imaging optical systems
  • LDW min is the minimum total weight of the total lens weight of the focus lens group in the plurality of imaging optical systems, It is.
  • the imaging magnification of the focus lens group can be increased by the first arrangement and the second arrangement. Since the focus sensitivity is increased by increasing the imaging magnification of the focus lens group, the moving distance of the focus lens group can be reduced. Furthermore, the diameter and weight of the focus lens group can be reduced. In addition, since the focus lens group is disposed at the position where the light beam is converged, the focus lens group can be reduced in diameter and weight. In addition, the diaphragm member can be reduced in size by disposing the diaphragm member in the vicinity of the focus lens group.
  • the moving distance of the focus lens group can be reduced, and the diaphragm member can be downsized.
  • both the space necessary for moving the focus lens group and the arrangement space for the driving means can be reduced. This facilitates the realization of a configuration in which at least the second drive actuator is commonly used in the plurality of imaging optical systems.
  • Conditional expression (7) is a conditional expression related to the total weight of the focus lens group in the plurality of imaging optical systems, and is a conditional expression that prescribes the ratio between the maximum value and the minimum value of the total weight.
  • conditional expression (7) If the upper limit value of conditional expression (7) is exceeded, when the second drive actuator is used in common, the focus drive speed decreases greatly in the imaging optical system in which the total weight of the focus lens group becomes the maximum value. Therefore, it is not preferable to exceed the upper limit value of conditional expression (7).
  • conditional expression (7) ′ is satisfied instead of conditional expression (7).
  • conditional expression (7) ′′ instead of conditional expression (7).
  • each imaging optical system satisfies the following conditional expression (8). -2 ⁇ f fo / f fb ⁇ -0.27 (8)
  • f fo is the focal length of the focus lens group in each imaging optical system
  • f fb is the focal length of the rear lens group in each imaging optical system
  • Conditional expression (8) is a conditional expression that prescribes the ratio of the focal length of the rear lens group of the focus lens group, and is a conditional expression that particularly takes into consideration the refractive power and aberration balance that the rear lens group bears.
  • conditional expression (8) If the lower limit of conditional expression (8) is not reached, the focus sensitivity will be too small. In this case, since the space for arranging the focus unit increases, it is difficult to reduce the size of the optical system. If the upper limit value of conditional expression (8) is exceeded, the aberration correction effect of the rear lens group cannot be sufficiently obtained, so that spherical aberration and curvature of field mainly deteriorate.
  • conditional expression (8) ′ instead of conditional expression (8).
  • conditional expression (8) ′′ instead of conditional expression (8).
  • the positive lens among the common lenses satisfies the following conditional expression (9). 80 ⁇ d P (9)
  • ⁇ d P is the Abbe number of the positive lens among the common lenses, It is.
  • conditional expression (9) good chromatic aberration can be secured in the common design of each imaging optical system.
  • each imaging optical system satisfies the following conditional expression (10). 0.023 ⁇ SC / L ⁇ 0.110 (10)
  • SC is the distance from the diaphragm member in each imaging optical system to the lens surface located on the object side of the focus lens group, and the distance when focusing on an object point at infinity
  • L is the total length of the optical system in each imaging optical system, It is.
  • Conditional expression (10) is a conditional expression that defines the length from the aperture member to the lens surface located on the object side of the focus lens group.
  • Conditional expression (10) standardizes the entire length of the optical system. Further, the reference on the diaphragm member side when calculating the SC is based on the member that determines the F number of the diaphragm members.
  • conditional expression (10) If the lower limit value of conditional expression (10) is not reached, it is not possible to obtain a sufficient light beam convergence effect due to the positive refractive power of the lens group located closer to the object side than the stop (aperture member). This increases the diameter of the focus lens group. If the upper limit of conditional expression (10) is exceeded, it is easy to reduce the diameter of the focus lens group, but it is difficult to shorten the overall length of the optical system.
  • conditional expression (10) ′ is satisfied instead of conditional expression (10).
  • conditional expression (10) ′ is satisfied instead of conditional expression (10).
  • conditional expression (10) ′′ instead of conditional expression (10).
  • each imaging optical system satisfies the following conditional expression (11). 0.2 ⁇ SC / AP ⁇ ⁇ 1.0 (11)
  • SC is the distance from the diaphragm member in each imaging optical system to the lens surface located on the object side of the focus lens group, and the distance when focusing on an object point at infinity
  • AP ⁇ is the diameter of the aperture stop in each imaging optical system, It is.
  • Conditional expression (11) is a conditional expression that defines the length from the aperture member to the lens surface located on the object side of the focus lens group.
  • Conditional expression (11) standardizes the aperture stop diameter.
  • conditional expression (11) If the lower limit value of conditional expression (11) is not reached, it is not possible to obtain a sufficient light beam convergence effect due to the positive refractive power of the lens group located closer to the object side than the stop. This increases the diameter of the focus lens group. If the upper limit of conditional expression (11) is exceeded, it is easy to reduce the diameter of the focus lens group, but it is difficult to shorten the overall length of the optical system.
  • conditional expression (11) ′ it is preferable to satisfy the following conditional expression (11) ′ instead of conditional expression (11). 0.30 ⁇ SC / AP ⁇ ⁇ 0.95 (11) ′ It is more preferable to satisfy the following conditional expression (11) ′′ instead of conditional expression (11). 0.45 ⁇ SC / AP ⁇ ⁇ 0.80 (11) ′′
  • two imaging optical systems among the plurality of imaging optical systems satisfy the following conditional expression (12).
  • f L is the longer focal length of the two imaging optical systems when focusing on an object point at infinity
  • f S is the shorter focal length of the two imaging optical systems when focusing on an object point at infinity
  • Conditional expression (12) is a conditional expression that prescribes the ratio of the focal lengths in any two of the plurality of imaging optical systems.
  • conditional expression (12) If the lower limit value of conditional expression (12) is not reached, effective specifications cannot be obtained in each of the two imaging optical systems.
  • each imaging optical system has the same diaphragm member.
  • each imaging optical system has the same focus unit. Therefore, by providing the same diaphragm member for the diaphragm member, it is possible to increase the number of the same parts, that is, parts that can be used in common for a plurality of imaging optical systems. As a result, the manufacturing cost of each imaging optical system can be significantly reduced.
  • the diameter of the aperture stop of the diaphragm member in each imaging optical system is AP ⁇ max .
  • AP ⁇ max is the maximum diameter among the diameters of the aperture stops in the plurality of imaging optical systems, It is.
  • the diameter of the aperture stop in each imaging optical system is set to the maximum diameter among the diameters of the aperture stops in the plurality of imaging optical systems. Then, the imaging optical system required opening diameter smaller than APfai max, using an aperture member having a smaller opening diameter than AP ⁇ max. At that time, for example, using the wings like aperture as an aperture member, by squeezing the aperture diameter by the diaphragm blades and the like, it may be realized opening diameter smaller than AP ⁇ max. By doing in this way, a diaphragm member can be constituted efficiently. When two opening members are used, a combination of a fixed opening and a variable opening and a combination of two variable openings are conceivable.
  • the aperture in an imaging optical system having an optical aperture diameter smaller than that of the aperture member, the aperture is set to an aperture F that is limited to the open F number, and the aperture is an odd number of 7 or more. It is preferable to be configured.
  • the open aperture shape due to apertures can be made close to a perfect circle. Further, by making the number of apertures to be an odd number of 7 or more, the diffraction intensity due to the aperture can be reduced.
  • a circular opening is formed in the vicinity of the aperture frame member so as to have a predetermined open F number. It is preferable that a light-shielding member is additionally arranged.
  • the imaging apparatus of the present embodiment includes an imaging optical system and an imaging element that has an imaging surface and converts an image formed on the imaging surface by the imaging optical system into an electrical signal. It is one of the plurality of imaging optical systems described above.
  • the imaging apparatus of the present embodiment since the plurality of imaging optical systems of the present embodiment can be used, various subjects can be imaged while being small and light.
  • each of the above-described configurations may satisfy a plurality of configurations simultaneously. This is preferable for obtaining a plurality of good imaging optical systems. Moreover, the combination of a preferable structure is arbitrary. For each conditional expression, only the upper limit value or lower limit value of the numerical range of the more limited conditional expression may be limited.
  • a flare stop other than the brightness stop may be arranged.
  • the flare stop is placed on the object side of the front lens group, between the front lens group and the focus lens group, between the focus lens group and the rear lens group, and between the rear lens group and the image plane. You may do it.
  • the frame member may be used as a light blocking part of the flare stop, and the flare light may be blocked by this frame member, or the light blocking part may be formed by another member.
  • the light shielding portion may be printed directly on the optical system or may be painted. Further, a seal or the like may be adhered to the optical system as a light shielding part.
  • the shape of the light shielding portion may be any shape such as a circle, an ellipse, a rectangle, a polygon, or a range surrounded by a function curve. Further, not only harmful light beams but also light beams such as coma flare around the screen may be cut.
  • anti-reflection coating may be applied to each lens to reduce ghosts and flares.
  • a multi-coat is desirable because it can effectively reduce ghost and flare.
  • Infrared cut coating may be applied to the lens surface, cover glass, or the like.
  • an antireflection coating is generally applied to the air contact surface of the lens.
  • the refractive index of the adhesive is sufficiently higher than the refractive index of air on the cemented surface of the cemented lens.
  • the refractive index of the cemented surface of the cemented lens is often the same as that of the single layer coat or less than that. For this reason, it is rare to darely coat the cemented surface of the cemented lens.
  • an anti-reflection coating is also applied to the joint surface, ghosts and flares can be further reduced, so that still better images can be obtained.
  • high refractive index glass materials have become widespread.
  • a high refractive index glass material has a high aberration correction effect, and is therefore frequently used in camera optical systems.
  • reflection on the cemented surface cannot be ignored. In such a case, it is particularly effective to provide an antireflection coating on the joint surface.
  • Ta 2 O 5 , TiO 2 , Nb 2 O 5 , ZrO 2 , HfO 2 , CeO having a relatively high refractive index is selected according to the refractive index of the base lens and the refractive index of the adhesive.
  • coating material such as SnO 2 , In 2 O 3 , ZnO, Y 2 O 3 , coating material such as MgF 2 , SiO 2 , Al 2 O 3 with relatively low refractive index, etc.
  • the film thickness may be set so as to satisfy the above.
  • the joint surface coat may be a multi-coat.
  • the coating on the air contact surface of the lens may be a multi-coat.
  • the plurality of imaging optical systems of Example 1 include the imaging optical system of Example A, the imaging optical system of Example B, the imaging optical system of Example C, and the imaging optical system of Example D.
  • the plurality of imaging optical systems of Example 2 includes the imaging optical system of Example A, the imaging optical system of Example B, and the imaging optical system of Example C.
  • the plurality of imaging optical systems of Example 3 includes the imaging optical system of Example B and the imaging optical system of Example C.
  • FIG. 1 is a cross-sectional view (lens cross-sectional view) along the optical axis showing the optical configuration of the imaging optical system of Example A when focusing on an object point at infinity.
  • the front lens group is indicated by GF
  • the focus lens group is indicated by Fo
  • the rear lens group is indicated by GR
  • the aperture stop (brightness stop)
  • the image plane (imaging surface) is indicated by I. .
  • FIG. 2 is an aberration diagram of the image pickup optical system according to Example A.
  • FIY is the image height.
  • the symbols in the aberration diagrams are the same in Examples B to D described later.
  • SA spherical aberration
  • AS astigmatism
  • DT chromatic aberration of magnification
  • SA spherical aberration
  • AS astigmatism
  • DT distortion aberration
  • CC lateral chromatic aberration
  • the imaging optical system of Example A has a front lens group GF having a positive refractive power, a focus lens Fo having a negative refractive power, and a positive refractive power in order from the object side to the image side, as shown in FIG. And a rear lens group GR.
  • the aperture stop S is disposed between the front lens group GF and the focus lens Fo.
  • the front lens group GF includes a positive meniscus lens L1 having a convex surface facing the object side, a positive meniscus lens L2 having a convex surface facing the object side, a negative meniscus lens L3 having a convex surface facing the object side, and a convex surface facing the object side.
  • a positive meniscus lens L4, a biconvex positive lens L5, and a biconcave negative lens L6 are cemented.
  • the biconvex positive lens L5 and the biconcave negative lens L6 are cemented.
  • the focus lens Fo is composed of a positive meniscus lens L7 having a convex surface facing the image side and a biconcave negative lens L8.
  • the positive meniscus lens L7 and the biconcave negative lens L8 are cemented.
  • the rear lens group GR includes a negative meniscus lens L9 having a convex surface facing the object side, and a biconvex positive lens L10.
  • the focus lens Fo moves along the optical axis. More specifically, the focus lens Fo moves to the image side during focusing from an object at infinity to a close object.
  • FIG. 3 is a cross-sectional view along the optical axis showing the optical configuration of the imaging optical system of Example B when focusing on an object point at infinity.
  • FIG. 4 is an aberration diagram of Example B when focusing on an object point at infinity and an aberration diagram when focusing on a close object point.
  • the imaging optical system of Example B has a front lens group GF having a positive refractive power, a focus lens Fo having a negative refractive power, and a positive refractive power in order from the object side to the image side. And a rear lens group GR.
  • the aperture stop S is disposed between the front lens group GF and the focus lens Fo.
  • the front lens group GF includes a positive meniscus lens L1 having a convex surface facing the object side, a biconvex positive lens L2, a biconcave negative lens L3, a negative meniscus lens L4 having a convex surface facing the object side, and a biconvex positive lens.
  • the lens includes L5, a biconvex positive lens L6, a biconcave negative lens L7, a biconcave negative lens L8, and a biconvex positive lens L9.
  • the biconvex positive lens L2 and the biconcave negative lens L3 are cemented.
  • the negative meniscus lens L4 and the biconvex positive lens L5 are cemented.
  • the biconvex positive lens L6 and the biconcave negative lens L7 are cemented.
  • the biconcave negative lens L8 and the biconvex positive lens L9 are cemented.
  • the focus lens Fo is composed of a positive meniscus lens L10 having a convex surface facing the image side, and a biconcave negative lens L11.
  • the rear lens group GR includes a negative meniscus lens L12 having a convex surface facing the object side, a biconvex positive lens L13, a biconvex positive lens L14, a biconcave negative lens L15, a biconcave negative lens L16, and a biconvex lens.
  • the lens includes a positive lens L17, a biconvex positive lens L18, and a negative meniscus lens L19 having a convex surface facing the image side.
  • the negative meniscus lens L12 and the biconvex positive lens L13 are cemented.
  • the biconvex positive lens L14 and the biconcave negative lens L15 are cemented.
  • the biconvex positive lens L18 and the negative meniscus lens L19 are cemented.
  • the focus lens Fo moves along the optical axis. More specifically, the focus lens Fo moves to the image side during focusing from an object at infinity to a close object.
  • FIG. 5 is a cross-sectional view along the optical axis showing the optical configuration of the imaging optical system of Example C when focusing on an object point at infinity.
  • FIG. 6 is an aberration diagram of Example C when focusing on an object point at infinity and an aberration diagram when focusing on a close object point.
  • the imaging optical system of Example C has a front lens group GF having a positive refractive power, a focus lens Fo having a negative refractive power, and a positive refractive power in order from the object side to the image side. And a rear lens group GR.
  • the aperture stop S is disposed between the front lens group GF and the focus lens Fo.
  • the front lens group GF includes a positive meniscus lens L1 having a convex surface facing the object side, a biconvex positive lens L2, a biconcave negative lens L3, a negative meniscus lens L4 having a convex surface facing the object side, and a biconvex positive lens.
  • the lens includes L5, a biconvex positive lens L6, a biconcave negative lens L7, a biconcave negative lens L8, and a biconvex positive lens L9.
  • the biconvex positive lens L2 and the biconcave negative lens L3 are cemented.
  • the negative meniscus lens L4 and the biconvex positive lens L5 are cemented.
  • biconvex positive lens L6 and the biconcave negative lens L7 are cemented.
  • the biconcave negative lens L8 and the biconvex positive lens L9 are cemented.
  • the front lens group GF of Example C and the front lens group GF of Example B are the same.
  • the focus lens Fo is composed of a biconvex positive lens L10 and a biconcave negative lens L11.
  • the biconvex positive lens L10 and the biconcave negative lens L11 are cemented.
  • the rear lens group GR includes a biconcave negative lens L12, a biconvex positive lens L13, a positive meniscus lens L14 having a convex surface facing the image side, a biconcave negative lens L15, a biconcave negative lens L16, and a biconvex lens.
  • the lens includes a positive lens L17, a negative meniscus lens L18 having a convex surface facing the image side, and a positive meniscus lens L19 having a convex surface facing the object side.
  • the biconcave negative lens L12 and the biconvex positive lens L13 are cemented.
  • the positive meniscus lens L14 and the biconcave negative lens L15 are cemented.
  • a biconvex positive lens L17 and a negative meniscus lens L18 are cemented.
  • the focus lens Fo moves along the optical axis. More specifically, the focus lens Fo moves to the image side during focusing from an object at infinity to a close object.
  • FIG. 7 is a cross-sectional view along the optical axis showing the optical configuration of the imaging optical system of Example D when focusing on an object point at infinity.
  • FIG. 8 is an aberration diagram when focusing on an object point at infinity according to Example D and an aberration diagram when focusing on a close object point.
  • the imaging optical system of Example D has a front lens group GF having a positive refractive power, a focus lens Fo having a negative refractive power, and a positive refractive power in order from the object side to the image side. And a rear lens group GR.
  • the aperture stop S is disposed between the front lens group GF and the focus lens Fo.
  • the front lens group GF includes a negative meniscus lens L1 having a convex surface facing the object side, a biconcave negative lens L2, a biconvex positive lens L3, a biconcave negative lens L4, and a negative meniscus lens having a convex surface facing the image side.
  • L5 a positive meniscus lens L6 having a convex surface facing the image side
  • a biconvex positive lens L7, a biconvex positive lens L8 and a negative meniscus lens L9 having a convex surface facing the image side.
  • the biconvex positive lens L3 and the biconcave negative lens L4 are cemented.
  • the biconvex positive lens L8 and the negative meniscus lens L9 are cemented.
  • the focus lens Fo is composed of a negative meniscus lens L10 having a convex surface facing the object side.
  • the rear lens group GR includes a biconvex positive lens L11, a biconvex positive lens L12, a biconcave negative lens L13, and a positive meniscus lens L14 having a convex surface facing the object side.
  • the biconvex positive lens L12 and the biconcave negative lens L13 are cemented.
  • the focus lens Fo moves along the optical axis. More specifically, the focus lens Fo moves to the image side during focusing from an object at infinity to a close object.
  • the aspheric surfaces are provided on a total of four surfaces including both surfaces of the biconcave negative lens L2 and both surfaces of the negative meniscus lens L10.
  • Examples A to D The numerical data of Examples A to D are shown below. Symbols are the above, r is the radius of curvature of each lens surface, d is the distance between the lens surfaces, nd is the refractive index of the d-line of each lens, ⁇ d is the Abbe number of each lens, and * is an aspherical surface .
  • F is the focal length of the entire imaging optical system, FNO. Is the F number, ⁇ is the half field angle, and FB is the back focus. FB represents the distance from the last lens surface to the paraxial image plane in terms of air. Further, infinity means when an object point at infinity is in focus, and close means when an object point is in focus. The numerical value indicated next to the nearest is the distance to the object point.
  • the aspherical shape is expressed by the following equation when the optical axis direction is z, the direction orthogonal to the optical axis is y, the conical coefficient is k, and the aspherical coefficients are A4, A6, A8, and A10. .
  • z (y 2 / r) / [1+ ⁇ 1 ⁇ (1 + k) (y / r) 2 ⁇ 1/2 ] + A4y 4 + A6y 6 + A8y 8 + A10y 10
  • “en” (n is an integer) represents “10 ⁇ n ”.
  • the symbols of these specification values are common to the numerical data of the examples described later.
  • Numerical example B Unit mm Surface data Surface number r d nd ⁇ d Object ⁇ ⁇ 1 105.798 5.500 1.48749 70.23 2 192.463 31.336 3 67.537 11.600 1.49700 81.54 4 -650.917 2.000 1.73400 51.47 5 292.344 27.708 6 86.044 2.000 1.83400 37.16 7 41.513 9.800 1.48749 70.23 8 -234.925 1.115 9 49.500 7.900 1.43875 94.93 10 -120.588 2.000 1.75500 52.32 11 85.250 3.176 12 -159.120 2.000 1.80440 39.59 13 185.280 3.500 1.80810 22.76 14 -182.761 2.755 15 (Aperture) ⁇ Variable 16 1235.721 1.800 1.84666 23.78 17 -129.241 0.100 18 -129.241 1.000 1.71300 53.87 19 32.003 Variable 20 35.348 1.000 1.92286 18.90 21 23.584
  • Example 1 Example 2
  • Example 3 (2) AP ⁇ max / AP ⁇ min 1.04 1.03 1.01
  • f foLA / f foSM 1.45 1.16 1.16 (4)
  • f L / f S See Table 1
  • Example A Example B
  • Example C Example D (1) f ff / f fb 1.6 0.99 0.68 0.81 (5) ⁇ LD / ⁇ c 1.16 1.07 1.11 1.00 (6)
  • FIG. 9 is a cross-sectional view of a single lens mirrorless camera as an imaging device.
  • a photographing optical system 2 is arranged in a lens barrel of the single lens mirrorless camera 1.
  • the mount unit 3 allows the photographing optical system 2 to be attached to and detached from the body of the single lens mirrorless camera 1.
  • a screw type mount, a bayonet type mount, or the like is used as the mount unit 3.
  • a bayonet type mount is used.
  • An imaging element surface 4 and a back monitor 5 are disposed on the body of the single lens mirrorless camera 1.
  • a small CCD or CMOS is used as the image sensor.
  • the photographing optical system 2 of the single-lens mirrorless camera 1 for example, the imaging optical systems shown in the above embodiments A to D are used.
  • FIG. 10 and 11 are conceptual diagrams of the configuration of the imaging apparatus.
  • FIG. 10 is a front perspective view showing the appearance of a single-lens mirrorless camera 40 as an imaging device
  • FIG. 11 is a rear perspective view of the same.
  • the imaging optical system shown in Examples A to D is used for the photographing optical system 41 of the single lens mirrorless camera 40.
  • the single-lens mirrorless camera 40 includes a photographing optical system 41 located on the photographing optical path 42, a shutter button 45, a liquid crystal display monitor 47, and the like, and a shutter button 45 disposed above the single-lens mirrorless camera 40.
  • photographing optical system 41 for example, the imaging optical system of Example A in conjunction with it.
  • An object image formed by the photographing optical system 41 is formed on an image sensor (photoelectric conversion surface) provided in the vicinity of the imaging surface.
  • the object image received by the image sensor is displayed on the liquid crystal display monitor 47 provided on the back of the camera as an electronic image by the processing means.
  • the taken electronic image can be recorded in the storage means.
  • FIG. 12 is a block diagram showing an internal circuit of a main part of the single-lens mirrorless camera 40.
  • the processing means described above is configured by, for example, the CDS / ADC unit 24, the temporary storage memory 17, the image processing unit 18, and the like, and the storage unit is configured by the storage medium unit 19 or the like.
  • the single lens mirrorless camera 40 is connected to the operation unit 12, the control unit 13 connected to the operation unit 12, and the control signal output port of the control unit 13 via buses 14 and 15.
  • the image pickup drive circuit 16 the temporary storage memory 17, the image processing unit 18, the storage medium unit 19, the display unit 20, and the setting information storage memory unit 21 are provided.
  • the temporary storage memory 17, the image processing unit 18, the storage medium unit 19, the display unit 20, and the setting information storage memory unit 21 can input and output data with each other via the bus 22.
  • a CCD 49 and a CDS / ADC unit 24 are connected to the imaging drive circuit 16.
  • the operation unit 12 includes various input buttons and switches, and notifies the control unit 13 of event information input from the outside (camera user) via these buttons.
  • the control unit 13 is a central processing unit composed of, for example, a CPU and has a built-in program memory (not shown) and controls the entire single-lens mirrorless camera 40 according to a program stored in the program memory.
  • the CCD 49 is an image pickup element that is driven and controlled by the image pickup drive circuit 16, converts the light amount of each pixel of the object image formed via the photographing optical system 41 into an electric signal, and outputs the electric signal to the CDS / ADC unit 24.
  • the CDS / ADC unit 24 amplifies the electrical signal input from the CCD 49 and performs analog / digital conversion, and raw video data (Bayer data, hereinafter referred to as RAW data) obtained by performing the amplification and digital conversion. Is output to the temporary storage memory 17.
  • the temporary storage memory 17 is a buffer made of, for example, SDRAM, and is a memory device that temporarily stores RAW data output from the CDS / ADC unit 24.
  • the image processing unit 18 reads out the RAW data stored in the temporary storage memory 17 or the RAW data stored in the storage medium unit 19, and includes distortion correction based on the image quality parameter designated by the control unit 13. It is a circuit that performs various image processing electrically.
  • the storage medium unit 19 is detachably mounted with a card-type or stick-type recording medium made of, for example, a flash memory, and the RAW data transferred from the temporary storage memory 17 or the image processing unit 18 to these flash memories. Image-processed image data is recorded and held.
  • the display unit 20 includes a liquid crystal display monitor 47 and the like, and displays captured RAW data, image data, an operation menu, and the like.
  • the setting information storage memory unit 21 includes a ROM unit that stores various image quality parameters in advance, and a RAM unit that stores image quality parameters read from the ROM unit by an input operation of the operation unit 12.
  • the single-lens mirrorless camera 40 configured as described above can capture various subjects while adopting a plurality of imaging optical systems of the present invention as the imaging optical system 41 while being small and light.
  • the plurality of imaging optical systems of the present invention can also be used in an imaging apparatus having a quick return mirror.
  • the present invention reduces the development load of the manufacturer by reducing the size and weight of the main parts while sharing the main parts in the imaging optical system with a plurality of imaging optical systems.
  • the present invention is useful for a plurality of imaging optical systems that can reduce the product size and weight.
  • it is useful for an imaging apparatus having a plurality of imaging optical systems.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Diaphragms For Cameras (AREA)

Abstract

 焦点距離が異なる2つの撮像光学系を有する複数の撮像光学系であって、各撮像光学系は同一の絞り部材を有し、物体側から順に、正屈折力の前側レンズ群GFと、負屈折力のフォーカスレンズ群Foと、正屈折力の後側レンズ群GRと、を有し、絞り部材はフォーカスレンズ群Foの近傍に配置され、フォーカスレンズ群Foのみが光軸上を移動し、各撮像光学系が以下の条件式(1)を満たし、且つ、複数の撮像光学系が、以下の条件式(2)、(3)を満たす。 0.5<fff/ffb<1.9 (1) 1≦APΦmax/APΦmin≦1.15 (2) 1.02<ffoLA/ffoSM<2.50 (3)

Description

複数の撮像光学系及びそれを有する撮像装置
 本発明は複数の撮像光学系に関し、特に、絞り部材やフォーカスレンズ群を駆動するユニットを、複数の撮像光学系で共通にした複数の撮像光学系に関する。また、本発明は複数の撮像光学系を有する撮像装置に関する。
 近年、様々な仕様の撮像光学系が開発されている。特にレンズ交換式カメラにおいては、シーンに応じて撮像光学系を交換することができる。そのため、ユーザーは、様々なシーンを撮影することができる。撮像光学系の選択肢が増えることは、ユーザーにとって好ましい状況と言える。
 一方で、撮像光学系の種類の増加に従い、撮像光学系を構成する部品数も増加している。そのため、撮像光学系の開発に要する期間やコスト、更には、生産ライン数や生産設備費用も増加している。このように、撮像光学系の種類の増加は、メーカーにとって負荷の増加になっている。
 この様な問題を解決するために、光学系を共通で使用する技術が考案されている。仕様の違う撮像光学系において部品の共通化をもくろんだ技術が、特許文献1~3で提案されている。
特開平7-199067号公報 特開2010-191211号公報 特開2006-126806号公報
 特許文献1~3では、何れも拡大光学系を光路内に出し入れして焦点距離を変える手段をとっている。このような手段では、拡大光学系を光路に挿入すると、それに合わせて収差も拡大することになる。そのため、拡大光学系を光路に入れない時の光学性能を予め高くしておかないと、拡大光学系を挿入した後の光学性能を十分に確保することができない。すなわち、拡大光学系を光路に入れない状態であれば十分な光学性能であるにもかかわらず、それ以上に高い光学性能が要求されることになる。
 それを達成するためには、必要以上に各レンズの屈折力を緩めて(小さくして)光学系の全長を伸ばし、更に拡大光学系の挿入スペースを確保することが必要となる。つまり、拡大光学系を光路内に出し入れする構成はメーカーにとっての負荷は減らせるものの、ユーザーにとってのメリットである小型化を達成することは困難な構成である。
 本発明はこのような状況に鑑みてなされたものであって、撮像光学系における主要部品について複数の撮像光学系で共通化を図りつつも、それらの主要部品の小型化と軽量化を図ることでメーカーの開発負荷を減らし、しかも製品の小型化と軽量化も図ることができる複数の撮像光学系を提供することを目的とする。また、複数の撮像光学系を有する撮像装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の複数の撮像光学系は、
 焦点距離が異なる2つの撮像光学系を少なくとも有する複数の撮像光学系であって、
 複数の撮像光学系における各撮像光学系は、同一の絞り部材を有し、
 各撮像光学系は、物体側から順に、
 正屈折力を有する前側レンズ群と、
 負屈折力を有するフォーカスレンズ群と、
 正屈折力を有する後側レンズ群と、を有し、
 絞り部材は、フォーカスレンズ群の近傍に配置され、
 フォーカシング時は、フォーカスレンズ群のみが光軸上を移動し、
 各撮像光学系が、以下の条件式(1)を満たし、且つ、
 複数の撮像光学系が、以下の条件式(2)、(3)を満たすことを特徴とする。
 0.5<fff/ffb<1.9   (1)
 1≦APΦmax/APΦmin≦1.15   (2)
 1.02<ffoLA/ffoSM<2.50   (3)
 但し、
 fffは、各撮像光学系における前側レンズ群の焦点距離、
 ffbは、各撮像光学系における後側レンズ群の焦点距離、
 APΦmaxは、複数の撮像光学系における開口絞りの直径のうちで最大となる直径、
 APΦminは、複数の撮像光学系における開口絞りの直径のうちで最小となる直径、
 ffoLAは、複数の撮像光学系におけるフォーカスレンズ群の焦点距離のうちで最大となる焦点距離、
 ffoSMは、複数の撮像光学系におけるフォーカスレンズ群の焦点距離のうちで最小となる焦点距離、であって、
 最大となる焦点距離と最小となる焦点距離は、焦点距離を絶対値で比較して求めるものとする。
 また、本発明の別の複数の撮像光学系は、
 焦点距離が異なる2つの撮像光学系を少なくとも有する複数の撮像光学系であって、
 複数の撮像光学系における各撮像光学系は、同一のフォーカスユニットを有し、
 各撮像光学系は、物体側から順に
 正屈折力を有する前側レンズ群と、
 負屈折力を有するフォーカスレンズ群と、を有し、
 各撮像光学系は、絞り部材を有し、
 絞り部材は、フォーカスレンズ群の近傍に配置され、
 フォーカシング時は、フォーカスレンズ群のみが光軸上を移動し、
 複数の撮像光学系が以下の条件式(3)、(4)を満たすことを特徴とする。
 1.02<ffoLA/ffoSM<2.50   (3)
 1≦Kmax/Kmin≦1.65   (4)
 但し、
 ffoLAは、複数の撮像光学系におけるフォーカスレンズ群の焦点距離のうちで最大となる焦点距離、
 ffoSMは、複数の撮像光学系におけるフォーカスレンズ群の焦点距離のうちで最小となる焦点距離、であって、
 最大となる焦点距離と最小となる焦点距離は、焦点距離を絶対値で比較して求めるものとし、
 Kmaxは、Kのうちで最大となるK、
 Kminは、Kのうちで最小となるK、
 Kは、K=fbLD/MGfoで表される値(単位はmm)であり、
 fbLDは、fbLD=f/2000mmで表され、
 fは、各撮像光学系における無限遠物点合焦時の全系の焦点距離、
 MGfoは、各撮像光学系におけるフォーカス感度、
 フォーカス感度は、無限遠物点合焦時のフォーカスレンズ群の単位移動量に対する像面の移動量、
である。
 また、本発明の撮像装置は、
 撮像光学系と、
 撮像面を持ち且つ撮像光学系により撮像面上に形成された像を電気信号に変換する撮像素子と、を有し、
 撮像光学系が、上記の複数の撮像光学系のうちの1つであることを特徴とする。
 本発明によれば、撮像光学系における主要部品について複数の撮像光学系で共通化を図りつつも、それらの主要部品の小型化と軽量化を図ることでメーカーの開発負荷を減らし、しかも製品の小型化と軽量化も図ることができる複数の撮像光学系を提供することができる。また、複数の撮像光学系を有する撮像装置を提供することができる。
実施例Aの撮像光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。 実施例Aの無限遠物点合焦時の収差図と至近物点合焦時の収差図である。 実施例Bの撮像光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。 実施例Bの無限遠物点合焦時の収差図と至近物点合焦時の収差図である。 実施例Cの撮像光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。 実施例Cの無限遠物点合焦時の収差図と至近物点合焦時の収差図である。 実施例Dの撮像光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。 実施例Dの無限遠物点合焦時の収差図と至近物点合焦時の収差図である。 撮像装置の断面図である。 撮像装置の概観を示す前方斜視図である。 撮像装置の後方斜視図である。 撮像装置の主要部の内部回路の構成ブロック図である。
 以下に、本発明に係る複数の撮像光学系の実施形態及び実施例を、図面に基づいて詳細に説明する。なお、この実施形態及び実施例によりこの発明が限定されるものではない。また、これらの実施形態の複数の撮像光学系では、撮像光学系における主要部品について複数の撮像光学系で共通化が図られている。主要部品としては、例えば、絞り部材とフォーカスユニットがある。
 第1実施形態の複数の撮像光学系は、焦点距離が異なる2つの撮像光学系を少なくとも有する複数の撮像光学系であって、複数の撮像光学系における各撮像光学系は、同一の絞り部材を有し、各撮像光学系は、物体側から順に、正屈折力を有する前側レンズ群と、負屈折力を有するフォーカスレンズ群と、正屈折力を有する後側レンズ群と、を有し、絞り部材は、フォーカスレンズ群の近傍に配置され、フォーカシング時は、フォーカスレンズ群のみが光軸上を移動し、各撮像光学系が、以下の条件式(1)を満たし、且つ、複数の撮像光学系が、以下の条件式(2)、(3)を満たすことを特徴とする。
 0.5<fff/ffb<1.9   (1)
 1≦APΦmax/APΦmin≦1.15   (2)
 1.02<ffoLA/ffoSM<2.50   (3)
 但し、
 fffは、各撮像光学系における前側レンズ群の焦点距離、
 ffbは、各撮像光学系における後側レンズ群の焦点距離、
 APΦmaxは、複数の撮像光学系における開口絞りの直径のうちで最大となる直径、
 APΦminは、複数の撮像光学系における開口絞りの直径のうちで最小となる直径、
 ffoLAは、複数の撮像光学系におけるフォーカスレンズ群の焦点距離のうちで最大となる焦点距離、
 ffoSMは、複数の撮像光学系におけるフォーカスレンズ群の焦点距離のうちで最小となる焦点距離、であって、
 最大となる焦点距離と最小となる焦点距離は、焦点距離を絶対値で比較して求めるものとする。
 第1実施形態の複数の撮像光学系は、焦点距離が異なる2つの撮像光学系を少なくとも有する複数の撮像光学系であって、複数の撮像光学系における各撮像光学系は、同一の絞り部材を有し、各撮像光学系は、物体側から順に、正屈折力を有する前側レンズ群と、負屈折力を有するフォーカスレンズ群と、正屈折力を有する後側レンズ群と、を有し、絞り部材は、フォーカスレンズ群の近傍に配置され、フォーカシング時は、フォーカスレンズ群のみが光軸上を移動する。
 第1実施形態の複数の撮像光学系は、焦点距離が異なる2つの撮像光学系を少なくとも有する。そして、複数の撮像光学系における各撮像光学系で、絞り部材を共通で使用している。
 絞り部材は、少なくとも3つの部品で構成されている。3つの部品は、絞り径を決める部材、絞りハネ部材及び第1の駆動アクチュエータである。第1の駆動アクチュエータは、絞りの駆動に用いられる。また、開口絞りは、絞り径を決める部材又は絞りハネ部材である。
 絞り部材はフォーカスレンズ群の近傍に配置されている。具体的には、絞り部材はフォーカスレンズ群よりも物体側に配置されている。
 第1実施形態の複数の撮像光学系では、物体側から順に、正屈折力を有する前側レンズ群と、負屈折力を有するフォーカスレンズ群と、正屈折力を有する後側レンズ群と、を有する。このようなレンズ群の配置(以下、「第1の配置」という)では、絞り部材を共通で使用する撮像光学系において、負屈折力を有するフォーカスレンズ群よりも物体側の光学系の屈折力が正屈折力になる。これにより、光束が収斂した位置にフォーカスレンズ群が配置されることになるので、フォーカスレンズ群の結像倍率を高めることができる。そして、フォーカスレンズ群の結像倍率が高まることで、フォーカス感度が高まるので、フォーカスレンズ群の移動距離を少なくできる。フォーカスレンズ群の移動には、第2の駆動アクチュエータが用いられる。
 更に、光束が収斂した位置にフォーカスレンズ群が配置されることで、フォーカスレンズ群の小径化と軽量化ができる。また、フォーカスレンズ群の近傍に絞り部材を配置することで、絞り部材を小型化できる。
 このように、第1実施形態の複数の撮像光学系では、フォーカスレンズ群の移動距離を少なくできると共に、絞り部材を小型化できる。その結果、フォーカスレンズ群の移動に必要なスペースと駆動手段の配置スペースを、共に狭くすることができる。駆動手段は、第1の駆動アクチュエータと第2の駆動アクチュエータの少なくとも一方である。
 また、負屈折力を有するフォーカスレンズ群よりも像側の光学系の屈折力が正屈折力になる。このようにすることで、各撮像光学系において、屈折力の並びが、正屈折力、負屈折力、正屈折力となる。そのため、各撮像光学系において、主に球面収差と像面湾曲を良好に補正することができる。その結果、フォーカシング時の収差変動が少なく、光学系の全長短縮が容易な構成を、各撮像光学系において得ることができる。
 このように、第1の配置によって、駆動手段の小スペース化と光学系の全長の短縮化を行いつつ、良好な結像性能を得ることができる構成を、各撮像光学系において実現することができる。また、複数の撮像光学系において、絞り部材の共通化を可能にする構成の実現を容易とすることができる。
 また、各撮像光学系において、フォーカスレンズ群の屈折力がそれぞれ異なるように、フォーカスレンズ群を構成することが好ましい。このようにすることで、各撮像光学系において、フォーカス感度を高めつつ、主に球面収差と像面湾曲を良好に補正できる。その結果、フォーカシング時のこれらの収差変動を減らすことができる。
 そして、各撮像光学系は以下の条件式(1)を満たす。
 0.5<fff/ffb<1.9   (1)
 但し、
 fffは、各撮像光学系における前側レンズ群の焦点距離、
 ffbは、各撮像光学系における後側レンズ群の焦点距離、
である。
 条件式(1)は、各撮像光学系における前側レンズ群と後側レンズ群の屈折力のバランスに関する条件式である。
 条件式(1)の上限値を上回ると、前側レンズ群の屈折力が小さくなるので、光学系の全長の短縮が困難になると共に、フォーカス感度が低下する。フォーカス感度が低下することで、フォーカスレンズ群の移動量が増加するので、フォーカスユニットのスペースを十分に確保することが難しくなる。また、球面収差や像面湾曲が良好に補正できなくなる。
 また、条件式(1)の下限値を下回ると、前側レンズ群の屈折力が大きくなるので、球面収差や像面湾曲が良好に補正できなくなる。
 更に、複数の撮像光学系は以下の条件式(2)、(3)を満たす。
 1≦APΦmax/APΦmin≦1.15   (2)
 1.02<ffoLA/ffoSM<2.50   (3)
 但し、
 APΦmaxは、複数の撮像光学系における開口絞りの直径のうちで最大となる直径、
 APΦminは、複数の撮像光学系における開口絞りの直径のうちで最小となる直径、
 ffoLAは、複数の撮像光学系におけるフォーカスレンズ群の焦点距離のうちで最大となる焦点距離、
 ffoSMは、複数の撮像光学系におけるフォーカスレンズ群の焦点距離のうちで最小となる焦点距離、であって、
 最大となる焦点距離と最小となる焦点距離は、焦点距離を絶対値で比較して求めるものとする。
 条件式(2)は、複数の撮像光学系における開口絞りの直径の最大値と最小値の比について規定した条件式である。条件式(2)を満たさない状態で、絞り径を決める部材や絞りハネ部材を共通化すると、少なくとも1つの撮像光学系で、開放絞りの状態での開口の形状が多角形になる。開口の形状が多角形だと、ボケ味を悪化させる。よって、条件式(2)の下限値を下回ることや、上限値を上回ることは好ましくない。
 条件式(3)は、複数の撮像光学系におけるフォーカスレンズ群の焦点距離の最大値と最小値の比について規定した条件式である。
 条件式(3)の下限値を下回ると、フォーカスレンズ群の焦点距離が最も長い撮像光学系とフォーカスレンズ群の焦点距離が最も短い最小値を持つ撮像光学系とで、両者の全系の焦点距離の差を広げられない。そのため、撮像光学系としての有効なスペック差が得られない。特に、撮像光学系としての有効なスペック差を持たせながら、各撮像光学系において、球面収差や像面湾曲を良好に保ちつつ、フォーカシング時の収差変動を減らして光学系を小型化することが困難になる。
 また、条件式(3)の上限値を上回ると、フォーカスレンズ群の径が各撮像光学系で大きく異なってしまう。すなわち、フォーカスレンズ群の径が最も大きい撮像光学系とフォーカスレンズ群の径が最も小さい撮像光学系とで、フォーカスレンズ群の径の差が大きくなりすぎてしまう。この場合、駆動手段の配置場所や配置スペースが各撮像光学系で変わってしまうため、絞り部材の共通化が難しくなる。
 例えば、フォーカスレンズ群の径の差が大きくなることで、撮像光学系のFナンバーを所望の値に設定するために、絞り部材を光軸方向へずらす必要が生じる。上述のように、絞り部材はフォーカスレンズ群の近傍に配置されている。また、絞り部材の前後には、他のレンズやレンズの枠部材が存在する。絞り部材の前後に十分なスペースが確保されている場合は、絞り部材の移動に問題は生じない。しかしながら、小型化を狙った光学系では、絞り部材の前後で確保できるスペースは限られてくる。このようなことから、レンズや枠部材との干渉を防ぐために、絞り部材自体の変更が必要になる。
 特に、第1の駆動アクチュエータによる絞り部材の駆動では、光軸方向のスペースを広く使う。光軸方向のスペースを広くすると、光軸方向において、レンズや枠部材等と絞り部材とが干渉し易くなるので、アクチュエータ自体の変更、又は絞り部材内でのアクチュエータ位置の変更が必要となる。そのため、絞り部材の共通化が難しくなる。このようなことから、条件式(3)を満足することが好ましい。
 条件式(1)に代えて、以下の条件式(1)’’を満足することが好ましい。
 0.60<fff/ffb<1.75   (1)’’
 また、条件式(1)に代えて、以下の条件式(1)’’’を満足することがより好ましい。
 0.65<fff/ffb<1.65   (1)’’’
 条件式(3)に代えて、以下の条件式(3)’を満足することが好ましい。
 1.03<ffoLA/ffoSM<2.00   (3)’
 また、条件式(3)に代えて、以下の条件式(3)’’を満足することがより好ましい。
 1.04<ffoLA/ffoSM<1.50   (3)’’
 第2実施形態の複数の撮像光学系は、焦点距離が異なる2つの撮像光学系を少なくとも有する複数の撮像光学系であって、複数の撮像光学系における各撮像光学系は、同一のフォーカスユニットを有し、各撮像光学系は、物体側から順に、正屈折力を有する前側レンズ群と、負屈折力を有するフォーカスレンズ群と、を有し、各撮像光学系は、絞り部材を有し、絞り部材は、フォーカスレンズ群の近傍に配置され、フォーカシング時は、フォーカスレンズ群のみが光軸上を移動し、複数の撮像光学系が以下の条件式(3)、(4)を満たすことを特徴とする。
 1.02<ffoLA/ffoSM<2.50   (3)
 1≦Kmax/Kmin≦1.65   (4)
 但し、
 ffoLAは、複数の撮像光学系におけるフォーカスレンズ群の焦点距離のうちで最大となる焦点距離、
 ffoSMは、複数の撮像光学系におけるフォーカスレンズ群の焦点距離のうちで最小となる焦点距離、であって、
 最大となる焦点距離と最小となる焦点距離は、焦点距離を絶対値で比較して求めるものとし、
 Kmaxは、Kのうちで最大となるK、
 Kminは、Kのうちで最小となるK、
 Kは、K=fbLD/MGfoで表される値(単位はmm)であり、
 fbLDは、fbLD=f/2000mmで表され、
 fは、各撮像光学系における無限遠物点合焦時の全系の焦点距離、
 MGfoは、各撮像光学系におけるフォーカス感度、
 フォーカス感度は、無限遠物点合焦時のフォーカスレンズ群の単位移動量に対する像面の移動量、
である。
 第2実施形態の複数の撮像光学系は、焦点距離が異なる2つの撮像光学系を少なくとも有する複数の撮像光学系であって、複数の撮像光学系における各撮像光学系は、同一のフォーカスユニットを有し、各撮像光学系は、物体側から順に、正屈折力を有する前側レンズ群と、負屈折力を有するフォーカスレンズ群と、を有し、各撮像光学系は、絞り部材を有し、絞り部材は、フォーカスレンズ群の近傍に配置され、フォーカシング時は、フォーカスレンズ群のみが光軸上を移動する。
 第2実施形態の複数の撮像光学系は、焦点距離が異なる2つの撮像光学系を少なくとも有する。そして、複数の撮像光学系における各撮像光学系で、フォーカスユニットを共通で使用している。
 フォーカスユニットは、少なくとも、第2の駆動アクチュエータにより構成されている。第2の駆動アクチュエータは、フォーカスレンズ群の移動に用いられる。
 第2実施形態の複数の撮像光学系では、物体側から順に、正屈折力を有する前側レンズ群と、負屈折力を有するフォーカスレンズ群と、を有する。このようなレンズ群の配置(以下、「第2の配置」という)では、フォーカスユニットを共通で使用する撮像光学系において、負屈折力を有するフォーカスレンズ群よりも物体側の光学系が正屈折力になる。これにより、光束が収斂した位置にフォーカスレンズ群が配置されることになるので、フォーカスレンズ群の結像倍率を高めることができる。そして、フォーカスレンズ群の結像倍率が高まることで、フォーカス感度が高まるので、フォーカスレンズ群の移動距離を少なくできる。
 更に、光束が収斂した位置にフォーカスレンズ群が配置されることで、フォーカスレンズ群の小径化と軽量化ができる。また、フォーカスレンズ群の近傍に絞り部材を配置することで、絞り部材の小型化ができる。
 このように、第2実施形態の複数の撮像光学系では、フォーカスレンズ群の移動距離を少なくできると共に、絞り部材を小型化できる。その結果、フォーカスレンズ群の移動に必要なスペースと駆動手段の配置スペースを、共に狭くすることができる。
 このように、第2の配置によって、駆動手段の小スペース化と光学系の全長の短縮化を行いつつ、良好な結像性能を得ることができる構成を、各撮像光学系において実現することができる。また、複数の撮像光学系において、フォーカスユニットの共通化を可能にする構成の実現を容易とすることができる。
 そして、複数の撮像光学系は、以下の条件式(3)、(4)を満たす。
 1.02<ffoLA/ffoSM<2.50   (3)
 1≦Kmax/Kmin≦1.65   (4)
 但し、
 ffoLAは、複数の撮像光学系におけるフォーカスレンズ群の焦点距離のうちで最大となる焦点距離、
 ffoSMは、複数の撮像光学系におけるフォーカスレンズ群の焦点距離のうちで最小となる焦点距離、であって、
 最大となる焦点距離と最小となる焦点距離は、焦点距離を絶対値で比較して求めるものとし、
 Kmaxは、Kのうちで最大となるK、
 Kminは、Kのうちで最小となるK、
 Kは、K=fbLD/MGfoで表される値(単位はmm)であり、
 fbLDは、fbLD=f/2000mmで表され、
 fは、各撮像光学系における無限遠物点合焦時の全系の焦点距離、
 MGfoは、各撮像光学系におけるフォーカス感度、
 フォーカス感度は、無限遠物点合焦時のフォーカスレンズ群の単位移動量に対する像面の移動量、
である。
 条件式(3)の技術的意義については既に説明したので、ここでの説明は省略する。
 条件式(4)は、フォーカスユニットにおける駆動量の最大値と最小値の比について規定した条件式である。この駆動量は、フォーカスレンズ群の移動量に基づいて求めることができる。
 条件式(4)の上限値を上回る状態でフォーカスユニットを共通化すると、フォーカスユニットにおける駆動量が各撮像光学系で大きく異なってしまう。すなわち、駆動量が最も多い撮像光学系と駆動量が最も少ない撮像光学系とで、駆動量の差が大きくなりすぎてしまう。この場合、駆動量が少ない撮像光学系においても、駆動量が最も多い撮像光学系と同じスペースを確保する必要があるので、撮像光学系の小型化が困難になる。
 条件式(4)に代えて、以下の条件式(4)’’を満足することが好ましい。
 1≦Kmax/Kmin≦1.50   (4)’’
 また、条件式(4)に代えて、以下の条件式(4)’’’を満足することがより好ましい。
 1≦Kmax/Kmin≦1.30   (4)’’’
 また、第1実施形態の複数の撮像光学系と第2実施形態の複数の撮像光学系(以下、「本実施形態の複数の撮像光学系」という)では、各撮像光学系において、絞り部材は、前側レンズ群とフォーカスレンズ群との間に配置されることが好ましい。
 前側レンズ群とフォーカスレンズ群との間では、光軸上の位置によって中心光束径が比較的大きく変化する。そのため、この間に絞り部材を配置することで、開口絞り径のコントロールが容易となる。これにより、絞り部材の共通化がより容易となる。
 また、本実施形態の複数の撮像光学系では、各撮像光学系が以下の条件式(5)を満たすことが好ましい。
 1.0<ΦLD/Φc<1.25   (5)
 但し、
 ΦLDは、各撮像光学系におけるフォーカスレンズ群での最大有効口径、
 Φcは、各撮像光学系におけるフォーカスレンズ群での最大軸上結像光束径、
である。
 条件式(5)は、各撮像光学系におけるフォーカスレンズ群の有効口径と軸上結像光束径の比について規定した条件式である。
 条件式(5)の下限値を下回ると、Fナンバーがフォーカスレンズ群で決まることになる。この場合、フォーカスレンズの移動に伴ってFナンバーが変化するが、その変化量が大きくなる。条件式(5)の上限値を上回ると、フォーカスレンズ群の有効口径が大きくなりすぎるので、光学系の小径化が難しくなる。
 条件式(5)に代えて、以下の条件式(5)’を満足することが好ましい。
 1.03<ΦLD/Φc<1.20   (5)’
 また、条件式(5)に代えて、以下の条件式(5)’’を満足することがより好ましい。
 1.04<ΦLD/Φc<1.15   (5)’’
 また、第2実施形態の複数の撮像光学系では、各撮像光学系において、フォーカスレンズ群の像側に、正屈折力を有する後側レンズ群が配置されることが好ましい。
 このような構成を採用することで、負屈折力を有するフォーカスレンズ群よりも像側の光学系の屈折力が正屈折力になる。この場合、各撮像光学系において、屈折力の並びが、正屈折力、負屈折力、正屈折力となる。そのため、各撮像光学系において、主に球面収差と像面湾曲を良好に補正することができる。その結果、フォーカシング時の収差変動が少なく、光学系の全長短縮が容易な構成を、各撮像光学系において実現することができる。
 また、第1実施形態の複数の撮像光学系では、複数の撮像光学系が以下の条件式(4)’を満たすことが好ましい。
 1≦Kmax/Kmin≦1.60   (4)’
 但し、
 Kmaxは、Kのうちで最大となるK、
 Kminは、Kのうちで最小となるK、
 Kは、K=fbLD/MGfoで表される値(単位はmm)であり、
 fbLDは、fbLD=f/2000mmで表され、
 fは、各撮像光学系における無限遠物点合焦時の全系の焦点距離、
 MGfoは、各撮像光学系におけるフォーカス感度、
 フォーカス感度は、無限遠物点合焦時のフォーカスレンズ群の単位移動量に対する像面の移動量、
である。
 条件式(4)’はフォーカスユニットにおける駆動量の最大値と最小値の比について規定したものである。条件式(4)’の技術的意義は、条件式(4)の技術的意義と同じである。
 条件式(4)’に代えて、以下の条件式(4)’’を満足することが好ましい。
 1≦Kmax/Kmin≦1.50   (4)’’
 また、条件式(4)’に代えて、以下の条件式(4)’’’を満足することがより好ましい。
 1≦Kmax/Kmin≦1.30   (4)’’’
 また、第2実施形態の複数の撮像光学系では、各撮像光学系が以下の条件式(1)’を満たすことが好ましい。
 0.5<fff/ffb<1.8   (1)’
 但し、
 fffは、各撮像光学系における前側レンズ群の焦点距離、
 ffbは、各撮像光学系における後側レンズ群の焦点距離、
である。
 条件式(1)’は各撮像光学系における前側レンズ群と後側レンズ群の屈折力のバランスに関する条件式である。条件式(1)’の技術的意義は、条件式(1)の技術的意義と同じである。
 条件式(1)’に代えて、以下の条件式(1)’’を満足することが好ましい。
 0.60<fff/ffb<1.75   (1)’’
 また、条件式(1)’に代えて、以下の条件式(1)’’’を満足することがより好ましい。
 0.65<fff/ffb<1.65   (1)’’’
 また、本実施形態の撮像光学系では、各撮像光学系が以下の条件式(6)を満たすことが好ましい。
 0.06<|ffo/f|<0.4   (6)
 但し、
 ffoは、各撮像光学系におけるフォーカスレンズ群の焦点距離、
 fは、各撮像光学系における無限遠物点合焦時の全系の焦点距離、
である。
 条件式(6)は、各撮像光学系におけるフォーカスレンズ群の屈折力について規定した条件式である。条件式(6)では、各撮像光学系における全系の焦点距離で規格化を行っている。
 条件式(6)の下限値を下回ると、フォーカスレンズ群の屈折力が大きくなるので、主に球面収差が大きく発生する。そのため、フォーカシング時に良好な結像性能を得ることが困難になる。結像性能の向上はレンズ枚数の増加につながるので、フォーカスユニットの軽量化が難しくなる。
 また条件式(6)の上限値を上回ると、フォーカシング時のフォーカスレンズ群の移動量が増加する。この場合、移動のためのスペースを広く確保しなくてはならないので、光学系の全長の短縮が難しくなる。フォーカスレンズ群の移動量を抑えるためには、フォーカス感度を高めれば良いが、そのためには、前側レンズ群の正屈折力を大きくする必要がある。しかしながら、前側レンズ群の正屈折力を大きくすると、前側レンズ群での球面収差、コマ収差及び非点収差の発生量が増大してしまう。そのため、フォーカス域の全域で良好な結像性能を得ることが困難になる。
 条件式(6)に代えて、以下の条件式(6)’を満足することが好ましい。
 0.1<|ffo/f|<0.3   (6)’
 また、条件式(6)に代えて、以下の条件式(6)’’を満足することがより好ましい。
 0.1<|ffo/f|<0.25   (6)’’
 また、本実施形態の複数の撮像光学系では、複数の撮像光学系は、共通レンズとして正レンズ又は負レンズを有し、複数の撮像光学系のうち、少なくとも2つの撮像光学系は、各々、前側レンズ群に共通レンズを有していることが好ましい。
 望遠系の撮像光学系では、球面収差と軸上色収差を良好に補正することが、良好な結像性能を実現するために重要である。球面収差と軸上色収差は、正レンズと負レンズとで良好に補正することができる。そこで、球面収差と軸上色収差の補正作用を持つ正レンズ又は負レンズを、共通レンズとする。そして、この共通レンズを、少なくとも2つ以上の撮像光学系で共通化することが好ましい。
 このようにすることで、レンズを共通化しても、共通化設計の段階で、各撮像光学系についてバランスのとれた結像性能を確保することが容易となる。その結果、複数の撮像光学系に望遠系の撮像光学系が含まれる場合であっても、各撮像光学系で良好な結像性能を維持することができる。
 また、レンズの共通化により、各撮像光学系でレンズの加工に用いる冶工具類を共通に使用できるので、低コスト化を図れる。
 また、本実施形態の複数の撮像光学系では、複数の撮像光学系のうち、少なくとも2つの撮像光学系において、フォーカスユニットが同一の部材で構成され、以下の条件式(7)を満たすことが好ましい。
 1≦LDWmax/LDWmin≦1.65   (7)
 但し、
 LDWmaxは、複数の撮像光学系におけるフォーカスレンズ群のレンズ総重量のうちで最大となる総重量、
 LDWminは、複数の撮像光学系におけるフォーカスレンズ群のレンズ総重量のうちで最小となる総重量、
である。
 上述のように、第1の配置や第2の配置により、フォーカスレンズ群の結像倍率を高めることができる。そして、フォーカスレンズ群の結像倍率が高まることで、フォーカス感度が高まるので、フォーカスレンズ群の移動距離を少なくできる。更に、フォーカスレンズ群の小径化と軽量化ができる。また、光束が収斂した位置にフォーカスレンズ群が配置されることで、フォーカスレンズ群の小径化と軽量化ができる。また、フォーカスレンズ群の近傍に絞り部材を配置することで、絞り部材の小型化ができる。
 このように、本実施形態の複数の撮像光学系では、フォーカスレンズ群の移動距離を少なくできると共に、絞り部材を小型化できる。その結果、フォーカスレンズ群の移動に必要なスペースと駆動手段の配置スペースを、共に狭くすることができる。これにより、複数の撮像光学系において、少なくとも第2の駆動アクチュエータを共通で使用する構成の実現が容易となる。
 条件式(7)は、複数の撮像光学系におけるフォーカスレンズ群の総重量に関する条件式であって、総重量の最大値と最小値の比について規定した条件式である。
 条件式(7)の上限値を上回ると、第2の駆動アクチュエータを共通で使用した際に、フォーカスレンズ群の総重量が最大値となる撮像光学系でフォーカス駆動速度の低下が大きくなる。よって、条件式(7)の上限値を上回ることは好ましくない。
 条件式(7)に代えて、以下の条件式(7)’を満足することが好ましい。
 1≦LDWmax/LDWmin≦1.50   (7)’
 また、条件式(7)に代えて、以下の条件式(7)’’を満足することがより好ましい。
 1≦LDWmax/LDWmin≦1.40   (7)’’
 また、本実施形態の複数の撮像光学系では、各撮像光学系が以下の条件式(8)を満たすことが好ましい。
 -2<ffo/ffb<-0.27   (8)
 但し、
 ffoは、各撮像光学系におけるフォーカスレンズ群の焦点距離、
 ffbは、各撮像光学系における後側レンズ群の焦点距離、
である。
 条件式(8)は、フォーカスレンズ群の後側レンズ群の焦点距離の比について規定した条件式であって、特に後側レンズ群の担う屈折力と収差バランスについて考慮した条件式である。
 条件式(8)の下限値を下回ると、フォーカス感度が小さくなりすぎる。この場合、フォーカスユニットを配置するスペースが増えるので、光学系の小型化が難しくなる。また、条件式(8)の上限値を上回ると、後側レンズ群の収差補正効果を十分得ることができないため、主に球面収差と像面湾曲が悪化する。
 条件式(8)に代えて、以下の条件式(8)’を満足することが好ましい。
 -1.7<ffo/ffb<-0.3   (8)’
 また、条件式(8)に代えて、以下の条件式(8)’’を満足することがより好ましい。
 -1.5<ffo/ffb<-0.3   (8)’’
 また、本実施形態の複数の撮像光学系では、共通レンズのうちの正レンズが以下の条件式(9)を満たすことが好ましい。
 80<νdP   (9)
 但し、
 νdPは、共通レンズのうちの正レンズのアッベ数、
である。
 条件式(9)を満たすことで、各撮像光学系の共通設計において、良好な色収差を確保できる。正レンズが複数の場合、1つの正レンズが条件式(9)を満たしていれば良い。
 また、本実施形態の複数の撮像光学系では、各撮像光学系が以下の条件式(10)を満たすことが好ましい。
 0.023≦SC/L≦0.110   (10)
 但し、
 SCは、各撮像光学系における絞り部材からフォーカスレンズ群の物体側に位置するレンズ面までの距離であって、無限遠物点合焦時の距離、
 Lは、各撮像光学系における光学系の全長、
である。
 条件式(10)は、絞り部材からフォーカスレンズ群の物体側に位置するレンズ面までの長さについて規定した条件式である。条件式(10)では、光学系の全長で規格化を行なっている。また、SCを算出する際の絞り部材側の基準は、絞り部材のうちのFナンバーを決める部材が基準になる。
 条件式(10)の下限値を下回ると、絞り(絞り部材)よりも物体側に位置するレンズ群の正屈折力による光束の収束効果を十分得ることができない。そのため、フォーカスレンズ群の径が大きくなる。また、条件式(10)の上限値を上回ると、フォーカスレンズ群の小径化は容易となるが、光学系の全長の短縮が困難になる。
 条件式(10)に代えて、以下の条件式(10)’を満足することが好ましい。
 0.025≦SC/L≦0.100   (10)’
 また、条件式(10)に代えて、以下の条件式(10)’’を満足することがより好ましい。
 0.040≦SC/L≦0.090   (10)’ ’
 また、本実施形態の複数の撮像光学系では、各撮像光学系が以下の条件式(11)を満たすことが好ましい。
 0.2≦SC/APΦ≦1.0   (11)
 但し、
 SCは、各撮像光学系における絞り部材からフォーカスレンズ群の物体側に位置するレンズ面までの距離であって、無限遠物点合焦時の距離、
 APΦは、各撮像光学系における開口絞りの直径、
である。
 条件式(11)は、絞り部材からフォーカスレンズ群の物体側に位置するレンズ面までの長さについて規定した条件式である。条件式(11)では、開口絞り径で規格化を行なっている。
 条件式(11)の下限値を下回ると、絞りよりも物体側に位置するレンズ群の正屈折力による光束の収束効果を十分得ることができない。そのため、フォーカスレンズ群の径が大きくなる。また、条件式(11)の上限値を上回ると、フォーカスレンズ群の小径化は容易となるが、光学系の全長の短縮が困難になる。
 条件式(11)に代えて、以下の条件式(11)’を満足することが好ましい。
 0.30≦SC/APΦ≦0.95   (11)’
 また、条件式(11)に代えて、以下の条件式(11)’’を満足することがより好ましい。
 0.45≦SC/APΦ≦0.80   (11)’’
 また、本実施形態の複数の撮像光学系では、複数の撮像光学系のうち、2つの撮像光学系が以下の条件式(12)を満たすことが好ましい。
 1.2<fL/fS   (12)
 但し、
 fLは、2つの撮像光学系の全系の無限遠物点合焦時の焦点距離のうちで長い方の焦点距離、
 fSは、2つの撮像光学系の全系の無限遠物点合焦時の焦点距離のうちで短い方の焦点距離、
である。
 条件式(12)は、複数の撮像光学系のうちの任意の2つの撮像光学系における焦点距離の比について規定した条件式である。
 条件式(12)の下限値を下回ると、2つの撮像光学系において、各々、有効なスペックを得ることができない。
 また、第2実施形態の複数の撮像光学系では、各撮像光学系が同一の絞り部材を有することが好ましい。
 第2実施形態の複数の撮像光学系では、各撮像光学系が同一のフォーカスユニットを有している。そこで、絞り部材についても同一の絞り部材を備えることで、同じ部品、すなわち、複数の撮像光学系に共通して使用できる部品の数を多くすることができる。その結果、各撮像光学系の製造コストを大幅に下げることが可能となる。
 また、本実施形態の複数の撮像光学系では、各撮像光学系における絞り部材の開口絞りの直径をAPΦmaxとすることが好ましい。
 但し、
 APΦmaxは、複数の撮像光学系における開口絞りの直径のうちで最大となる直径、
である。
 絞り部材を複数の撮像光学系で共通化する際には、各撮像光学系における開口絞りの直径を、複数の撮像光学系における開口絞りの直径のうちで最大となる直径にする。そして、APΦmaxよりも小さい開口径が必要な撮像光学系には、APΦmaxよりも小さい開口径を持つ開口部材を用いる。その際、例えば、開口部材として絞りハネ等を用い、絞りハネ等で開口径を絞ることで、APΦmaxよりも小さい開口径を実現すれば良い。このようにすることで、絞り部材を効率良く構成することができる。2つの開口部材を用いる場合、固定開口と可変開口の組み合わせ、2つの可変開口の組み合わせが考えられる。
 また、本実施形態の複数の撮像光学系では、絞り部材よりも光学絞り径の小さい撮像光学系においては、開放Fナンバーに絞った絞りハネで設定し、絞りハネは7枚以上の奇数枚で構成されていることが好ましい。
 絞りハネを7枚以上とすることで、絞りハネによる開放絞り形状を真円に近い形状とすることができる。また、絞りハネ枚数を7枚以上の奇数枚とすることで、絞りによる回折強度を減らすことができる。
 また、本実施形態の複数の撮像光学系では、同一の絞り部材よりも光学絞り径が小さい撮像光学系においては、絞り枠部材近傍に、所定の開放Fナンバーとなる様に円形の開口部を持つ遮光部材が追加配置されていることが好ましい。
 このような構成を取ることにより、より真円に近い開放絞りとすることができる。
 また、本実施形態の撮像装置は、撮像光学系と、撮像面を持ち且つ撮像光学系により撮像面上に形成された像を電気信号に変換する撮像素子と、を有し、撮像光学が、上記のいずれかの複数の撮像光学系のうちの1つであることを特徴とする。
 本実施形態の撮像装置によれば、本実施形態の複数の撮像光学系を用いることができるので、小型軽量でありながら、様々な被写体を撮像することができる。
 なお、上述の各構成は、複数の構成を同時に満足してもよい。このようにすることが、良好な複数の撮像光学系を得る上で好ましい。また、好ましい構成の組み合わせは任意である。また、各条件式について、より限定した条件式の数値範囲の上限値あるいは下限値のみを限定しても構わない。
 本発明に係る複数の撮像光学系の実施例を、図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。
 ゴースト、フレア等の不要光をカットするために、明るさ絞り以外にフレア絞りを配置してもかまわない。フレア絞りは、前側レンズ群の物体側、前側レンズ群とフォーカスレンズ群との間、フォーカスレンズ群と後側レンズ群との間、後側レンズ群と像面との間のいずれの場所に配置しても良い。
 枠部材をフレア絞りの遮光部として用い、この枠部材によりフレア光線を遮光するように構成しても良いし、別の部材で遮光部を構成しても良い。また、遮光部は光学系に直接印刷しても、塗装しても良い。また、シールなどを遮光部として光学系に接着してもかまわない。
 また、遮光部の形状は円形、楕円形、矩形、多角形、関数曲線で囲まれる範囲等、いかなる形状でもかまわない。また有害光束をカットするだけでなく画面周辺のコマフレア等の光束をカットしても良い。
 また、各レンズには反射防止コートを行い、ゴースト、フレアを軽減してもかまわない。マルチコートであれば効果的にゴースト、フレアを軽減できるので望ましい。また赤外カットコートをレンズ面、カバーガラス等に行ってもかまわない。
 ゴースト・フレアの発生を防止するためにレンズの空気接触面に反射防止コートを施すことは一般的に行われている。一方、接合レンズの接合面では接着材の屈折率が空気の屈折率よりも十分高い。そのため、接合レンズの接合面の屈折率は、もともと単層コート並み、あるいはそれ以下の反射率となっていることが多い。そのため、接合レンズの接合面に、あえてコートを施すことは少ない。しかしながら、接合面にも積極的に反射防止コートを施せばさらにゴースト・フレアを軽減できるので、なお良好な画像を得ることができるようになる。
 特に、最近では高屈折率硝材が普及している。高屈折率硝材は収差補正効果が高いため、カメラ光学系に多用されるようになってきている。ただし、高屈折率硝材を接合レンズとして用いた場合、接合面での反射も無視できなくなってくる。そのような場合、接合面に反射防止コートを施しておくことは特に効果的である。
 接合面コートの効果的な使用法に関しては、特開平2-27301号公報、特開2001-324676号公報、特開2005-92115号公報、USP7116482公報等に開示されている。
 これらの文献では、特に正先行ズームレンズの第1群内の接合レンズ面コートについて述べられている。そこで、本発明の正屈折力の前側レンズ群内の接合レンズ面についても、これら文献に開示されているごとく接合面コートを実施すればよい。
 使用するコート材としては、基盤となるレンズの屈折率と接着材の屈折率に応じて、比較的高屈折率なTa25、TiO2、Nb25、ZrO2、HfO2、CeO2、SnO2、In23、ZnO、Y23などのコート材、比較的低屈折率なMgF2、SiO2、Al23などのコート材、などを適宜選択し、位相条件を満たすような膜厚に設定すれば良い。
 当然のことながら、レンズの空気接触面へのコーティング同様、接合面コートをマルチコートとしても良い。2層あるいはそれ以上の膜数のコート材や膜厚を適宜組み合わせることで、更なる反射率の低減や、反射率の分光特性・角度特性等のコントロールなどを行うことが可能となる。また前側レンズ群以外のレンズ接合面についても、同様の思想に基づいて接合面コートを行うことが効果的なのは言うまでもない。
 実施例1の複数の撮像光学系は、実施例Aの撮像光学系、実施例Bの撮像光学系、実施例Cの撮像光学系及び実施例Dの撮像光学系を有する。
 実施例2の複数の撮像光学系は、実施例Aの撮像光学系、実施例Bの撮像光学系及び実施例Cの撮像光学系を有する。
 実施例3の複数の撮像光学系は、実施例Bの撮像光学系と実施例Cの撮像光学系を有する。
 実施例Aの撮像光学系について説明する。図1は、実施例Aの撮像光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図(レンズ断面図)である。実施例A~Dの全てにおいて、前側レンズ群はGF、フォーカスレンズ群はFo、後側レンズ群はGR、開口絞り(明るさ絞り)はS、像面(撮像面)はIで示してある。
 図2は、実施例Aの撮像光学系の収差図である。ここで、FIYは像高である。なお、収差図における記号は、後述の実施例B~Dにおいても共通である。
 また、これらの収差図において、(a)、(b)、(c)、(d)は、それぞれ、無限遠物点合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示している。
 また、(e)、(f)、(g)、(h)は、それぞれ、至近物点合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示している。
 実施例Aの撮像光学系は、図1に示すように、物体側から像側に順に、正屈折力を有する前側レンズ群GFと、負屈折力を有するフォーカスレンズFoと、正屈折力を有する後側レンズ群GRと、で構成されている。開口絞りSは、前側レンズ群GFとフォーカスレンズFoとの間に配置されている。
 前側レンズ群GFは、物体側に凸面を向けた正メニスカスレンズL1と、物体側に凸面を向けた正メニスカスレンズL2と、物体側に凸面を向けた負メニスカスレンズL3と、物体側に凸面を向けた正メニスカスレンズL4と、両凸正レンズL5と、両凹負レンズL6と、で構成されている。ここで、負メニスカスレンズL3と正メニスカスレンズL4とが接合されている。また、両凸正レンズL5と両凹負レンズL6とが接合されている。
 フォーカスレンズFoは、像側に凸面を向けた正メニスカスレンズL7と、両凹負レンズL8と、で構成されている。ここで、正メニスカスレンズL7と両凹負レンズL8とが接合されている。
 後側レンズ群GRは、物体側に凸面を向けた負メニスカスレンズL9と、両凸正レンズL10と、で構成されている。
 フォーカシング時、フォーカスレンズFoが光軸に沿って移動する。より詳しくは、無限遠物体から至近物体へのフォーカシング時、フォーカスレンズFoは像側に移動する。
 実施例Bの撮像光学系について説明する。図3は、実施例Bの撮像光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。図4は、実施例Bの無限遠物点合焦時の収差図と至近物点合焦時の収差図である。
 実施例Bの撮像光学系は、図3に示すように、物体側から像側に順に、正屈折力を有する前側レンズ群GFと、負屈折力を有するフォーカスレンズFoと、正屈折力を有する後側レンズ群GRと、で構成されている。開口絞りSは、前側レンズ群GFとフォーカスレンズFoとの間に配置されている。
 前側レンズ群GFは、物体側に凸面を向けた正メニスカスレンズL1と、両凸正レンズL2と、両凹負レンズL3と、物体側に凸面を向けた負メニスカスレンズL4と、両凸正レンズL5と、両凸正レンズL6と、両凹負レンズL7と、両凹負レンズL8と、両凸正レンズL9と、で構成されている。ここで、両凸正レンズL2と両凹負レンズL3とが接合されている。また、負メニスカスレンズL4と両凸正レンズL5とが接合されている。また、両凸正レンズL6と両凹負レンズL7とが接合されている。また、両凹負レンズL8と両凸正レンズL9とが接合されている。
 フォーカスレンズFoは、像側に凸面を向けた正メニスカスレンズL10と、両凹負レンズL11と、で構成されている。
 後側レンズ群GRは、物体側に凸面を向けた負メニスカスレンズL12と、両凸正レンズL13と、両凸正レンズL14と、両凹負レンズL15と、両凹負レンズL16と、両凸正レンズL17と、両凸正レンズL18と、像側に凸面を向けた負メニスカスレンズL19と、で構成されている。ここで、負メニスカスレンズL12と両凸正レンズL13とが接合されている。また、両凸正レンズL14と両凹負レンズL15とが接合されている。また、両凸正レンズL18と負メニスカスレンズL19とが接合されている。
 フォーカシング時、フォーカスレンズFoが光軸に沿って移動する。より詳しくは、無限遠物体から至近物体へのフォーカシング時、フォーカスレンズFoは像側に移動する。
 実施例Cの撮像光学系について説明する。図5は、実施例Cの撮像光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。図6は、実施例Cの無限遠物点合焦時の収差図と至近物点合焦時の収差図である。
 実施例Cの撮像光学系は、図5に示すように、物体側から像側に順に、正屈折力を有する前側レンズ群GFと、負屈折力を有するフォーカスレンズFoと、正屈折力を有する後側レンズ群GRと、で構成されている。開口絞りSは、前側レンズ群GFとフォーカスレンズFoとの間に配置されている。
 前側レンズ群GFは、物体側に凸面を向けた正メニスカスレンズL1と、両凸正レンズL2と、両凹負レンズL3と、物体側に凸面を向けた負メニスカスレンズL4と、両凸正レンズL5と、両凸正レンズL6と、両凹負レンズL7と、両凹負レンズL8と、両凸正レンズL9と、で構成されている。ここで、両凸正レンズL2と両凹負レンズL3とが接合されている。また、負メニスカスレンズL4と両凸正レンズL5とが接合されている。また、両凸正レンズL6と両凹負レンズL7とが接合されている。また、両凹負レンズL8と両凸正レンズL9とが接合されている。実施例Cの前側レンズ群GFと実施例Bの前側レンズ群GFは同一である。
 フォーカスレンズFoは、両凸正レンズL10と、両凹負レンズL11と、で構成されている。ここで、両凸正レンズL10と両凹負レンズL11とが接合されている。
 後側レンズ群GRは、両凹負レンズL12と、両凸正レンズL13と、像側に凸面を向けた正メニスカスレンズL14と、両凹負レンズL15と、両凹負レンズL16と、両凸正レンズL17と、像側に凸面を向けた負メニスカスレンズL18と、物体側に凸面を向けた正メニスカスレンズL19と、で構成されている。ここで、両凹負レンズL12と両凸正レンズL13とが接合されている。また、正メニスカスレンズL14と両凹負レンズL15とが接合されている。また、両凸正レンズL17と負メニスカスレンズL18とが接合されている。
 フォーカシング時、フォーカスレンズFoが光軸に沿って移動する。より詳しくは、無限遠物体から至近物体へのフォーカシング時、フォーカスレンズFoは像側に移動する。
 実施例Dの撮像光学系について説明する。図7は、実施例Dの撮像光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。図8は、実施例Dの無限遠物点合焦時の収差図と至近物点合焦時の収差図である。
 実施例Dの撮像光学系は、図7に示すように、物体側から像側に順に、正屈折力を有する前側レンズ群GFと、負屈折力を有するフォーカスレンズFoと、正屈折力を有する後側レンズ群GRと、で構成されている。開口絞りSは、前側レンズ群GFとフォーカスレンズFoとの間に配置されている。
 前側レンズ群GFは、物体側に凸面を向けた負メニスカスレンズL1と、両凹負レンズL2と、両凸正レンズL3と、両凹負レンズL4と、像側に凸面を向けた負メニスカスレンズL5と、像側に凸面を向けた正メニスカスレンズL6と、両凸正レンズL7と、両凸正レンズL8と、像側に凸面を向けた負メニスカスレンズL9と、で構成されている。ここで、両凸正レンズL3と両凹負レンズL4とが接合されている。また、両凸正レンズL8と負メニスカスレンズL9とが接合されている。
 フォーカスレンズFoは、物体側に凸面を向けた負メニスカスレンズL10で構成されている。
 後側レンズ群GRは、両凸正レンズL11と、両凸正レンズL12と、両凹負レンズL13と、物体側に凸面を向けた正メニスカスレンズL14と、で構成されている。ここで、両凸正レンズL12と両凹負レンズL13とが接合されている。
 フォーカシング時、フォーカスレンズFoが光軸に沿って移動する。より詳しくは、無限遠物体から至近物体へのフォーカシング時、フォーカスレンズFoは像側に移動する。
 非球面は、両凹負レンズL2の両面と、負メニスカスレンズL10両面との、合計4面に設けられている。
 以下に、実施例A~Dの数値データを示す。記号は上記の外、rは各レンズ面の曲率半径、dは各レンズ面間の間隔、ndは各レンズのd線の屈折率、νdは各レンズのアッベ数、*印は非球面である。また、fは撮像光学系全系の焦点距離、FNO.はFナンバー、ωは半画角、FBはバックフォーカスである。FBは、レンズ最終面から近軸像面までの距離を空気換算して表したものである。また、無限遠は無限遠物点合焦時、至近は至近物点合焦時を意味する。至近の横に記載されている数値は、物点までの距離である。
 また、非球面形状は、光軸方向をz、光軸に直交する方向をyにとり、円錐係数をk、非球面係数をA4、A6、A8、A10としたとき、次の式で表される。
 z=(y2/r)/[1+{1-(1+k)(y/r)21/2
    +A4y4+A6y6+A8y8+A10y10
 また、非球面係数において、「e-n」(nは整数)は、「10-n」を示している。なお、これら諸元値の記号は後述の実施例の数値データにおいても共通である。
数値実施例A
単位  mm
 
面データ
  面番号       r              d             nd             νd
    物面       ∞             ∞
     1      126.986          6.449        1.48749          70.23
     2      679.711          2.000
     3       52.008         10.412        1.49700          81.54
     4      133.435         18.710
     5       72.403          2.000        1.77250          49.60
     6       30.114         11.959        1.49700          81.61
     7     1931.805          1.100
     8       46.268          8.500        1.49700          81.61
     9      -90.298          2.000        1.69680          55.53
    10       50.008         10.555
    11(絞り)   ∞            可変
    12     -272.027          2.100        1.84666          23.78
    13      -58.125          1.000        1.65412          39.68
    14       33.116          可変
    15      156.817          1.000        1.78470          26.29
    16       59.134         15.500
    17       67.376          4.264        1.83400          37.16
    18     -111.407
    像面       ∞
 
各種データ
                   無限遠      至近(1.4m)
f                 195.998       189.768
FNO.            3.177         3.61
2ω                6.3
FB               35.658        35.658
d11                11.000        24.804
d14                23.680         9.876
数値実施例B
単位  mm
 
面データ
  面番号       r              d             nd             νd
    物面       ∞             ∞
     1      105.798          5.500        1.48749          70.23
     2      192.463         31.336
     3       67.537         11.600        1.49700          81.54
     4     -650.917          2.000        1.73400          51.47
     5      292.344         27.708
     6       86.044          2.000        1.83400          37.16
     7       41.513          9.800        1.48749          70.23
     8     -234.925          1.115
     9       49.500          7.900        1.43875          94.93
    10     -120.588          2.000        1.75500          52.32
    11       85.250          3.176
    12     -159.120          2.000        1.80440          39.59
    13      185.280          3.500        1.80810          22.76
    14     -182.761          2.755
    15(絞り)   ∞            可変  
    16     1235.721          1.800        1.84666          23.78
    17     -129.241          0.100
    18     -129.241          1.000        1.71300          53.87
    19       32.003          可変
    20       35.348          1.000        1.92286          18.90
    21       23.584          5.300        1.53996          59.46
    22      -95.147          3.100
    23      210.359          3.300        1.84666          23.78
    24      -34.267          0.900        1.77250          49.60
    25       26.998          3.917
    26      -40.458          0.800        1.72916          54.68
    27       52.932          3.300
    28       64.666          3.850        1.72047          34.71
    29      -94.366          1.022
    30       53.290          8.100        1.56732          42.82
    31      -28.431          1.500        1.92286          18.90
    32      -43.962
    像面       ∞
 
各種データ
                   無限遠      至近(1.4m)
f                 294.894       214.374
FNO.            4.141         4.59
2ω                4.2  
FB               33.351        33.351
d15                21.854        39.925
d19                22.511         4.439
数値実施例C
単位  mm
 
面データ
  面番号       r              d             nd             νd
    物面       ∞             ∞
     1      105.798          5.500        1.48749          70.23
     2      192.463         31.336
     3       67.537         11.600        1.49700          81.54
     4     -650.917          2.000        1.73400          51.47
     5      292.344         27.708
     6       86.044          2.000        1.83400          37.16
     7       41.513          9.800        1.48749          70.23
     8     -234.925          1.115
     9       49.500          7.900        1.43875          94.93
    10     -120.588          2.000        1.75500          52.32
    11       85.250          3.176
    12     -159.120          2.000        1.80440          39.59
    13      185.280          3.500        1.80810          22.76
    14     -182.761         13.755
    15(絞り)   ∞            可変  
    16      101.605          2.200        1.69895          30.13
    17      -89.326          1.000        1.81600          46.62
    18       34.780          可変
    19     -144.791          1.000        1.92286          18.90
    20       38.776          5.300        1.84666          23.78
    21      -59.700          3.100
    22     -328.811          3.300        1.84666          23.78
    23      -34.760          0.100
    24      -34.760          0.900        1.77250          49.60
    25       55.939          1.692
    26     -199.510          0.800        1.77250          49.60
    27       46.239          3.000
    28       51.079         12.000        1.64769          33.79
    29      -32.908          1.200        1.84666          23.78
    30     -119.520         29.615
    31       37.374          5.000        1.51633          64.14
    32      226.417
    像面       ∞
 
各種データ
                   無限遠      至近(2.5m)
f                 392.014       345.512
FNO.            5.681         6.10
2ω                3.2  
FB               32.938        32.938
d15                11.280        21.348
d18                16.121         6.053
数値実施例D
単位  mm
 
面データ
  面番号       r              d             nd             νd
    物面       ∞             ∞
     1       25.254          1.500        1.48749          70.23
     2       12.200          7.696
     3*    -316.050          1.000        1.49700          81.54
     4*      25.646          1.645
     5       81.831          2.949        1.90366          31.32
     6      -54.137          1.000        1.43700          95.10
     7       41.580          6.025
     8      -13.671          2.192        2.00069          25.46
     9      -18.688          1.336
    10      -64.491          3.960        1.72916          54.68
    11      -23.230          0.200
    12       50.703          7.172        1.49700          81.61
    13      -31.464          0.200
    14       47.122          6.059        1.49700          81.61
    15      -30.236          1.200        2.00069          25.46
    16      -81.845          0.700
    17(絞り)   ∞            可変
    18*     760.015          1.201        1.49700          81.54
    19*      18.926          可変
    20       43.543          4.541        1.49700          81.61
    21      -32.595          1.200
    22       31.543          3.887        1.88300          40.76
    23      -79.658          1.000        1.73800          32.26
    24       19.779          1.208
    25       31.477          3.497        1.72916          54.68
    26       98.075
    像面       ∞
 
非球面データ 
第3面
k=0.0000
A4=5.0113e-007,A6=1.2729e-008,A8=0.0000e+000,A10=0.0000e+000
第4面
k=0.0000
A4=3.6857e-006,A6=-3.3589e-008,A8=0.0000e+000,A10=0.0000e+000
第18面
k=0.0000
A4=-1.4818e-005,A6=0.0000e+000,A8=0.0000e+000,A10=0.0000e+000
第19面
k=0.0000
A4=-1.0604e-005,A6=-4.2279e-008,A8=-6.9745e-011,A10=0.0000e+000
 
各種データ
                   無限遠      至近(0.25m)
f                  17.270        17.643
FNO.            1.230         1.31
2ω               65.2
FB               13.902        13.902
d17                 2.600         5.597
d19                 8.710         5.713
 次に、各実施例における条件式(1)~(12)の値を掲げる。なお、-(ハイフン)
は該当する構成がないことを示す。
                        実施例1    実施例2    実施例3
(2)APΦmax/APΦmin        1.04        1.03        1.01
(3)ffoLA/ffoSM            1.45        1.16        1.16
(4)Kmax/Kmin             41.49        1.42        1.12
(7)LDWmax/LDWmin         1.53        1.33        1.33
(12)fL/f                          表1を参照
Figure JPOXMLDOC01-appb-T000001
                    実施例A    実施例B    実施例C    実施例D
(1)fff/ffb            1.6         0.99        0.68       0.81
(5)ΦLDc           1.16        1.07        1.11       1.00
(6)|ffo/f|           0.26        0.17        0.14       2.26
(8)ffo/ffb           -0.71       -0.38       -0.30      -1.44
(9)νdP                -         81.54       81.54        -
(10)SC/L             0.066       0.095       0.044      0.039
(11)SC/APΦ         0.440       0.903       0.466      0.142
APΦ                25          24.2        24.2       23.98
ffo                 -51         -48.7731    -56.818    -39.0742
K                     7.416       9.387      10.496      0.253
f                   196         294.89384   392.014     17.27
 図9は、撮像装置としての一眼ミラーレスカメラの断面図である。図9において、一眼ミラーレスカメラ1の鏡筒内には撮影光学系2が配置される。マウント部3は、撮影光学系2を一眼ミラーレスカメラ1のボディに着脱可能とする。マウント部3としては、スクリュータイプのマウントやバヨネットタイプのマウント等が用いられる。この例では、バヨネットタイプのマウントを用いている。また、一眼ミラーレスカメラ1のボディには、撮像素子面4、バックモニタ5が配置されている。なお、撮像素子としては、小型のCCD又はCMOS等が用いられている。
 そして、一眼ミラーレスカメラ1の撮影光学系2として、例えば上記実施例A~Dに示した撮像光学系が用いられる。
 図10、図11は、撮像装置の構成の概念図を示す。図10は撮像装置としての一眼ミラーレスカメラ40の外観を示す前方斜視図、図11は同後方斜視図である。この一眼ミラーレスカメラ40の撮影光学系41に、上記実施例A~Dに示した撮像光学系が用いられている。
 この実施形態の一眼ミラーレスカメラ40は、撮影用光路42上に位置する撮影光学系41、シャッターボタン45、液晶表示モニター47等を含み、一眼ミラーレスカメラ40の上部に配置されたシャッターボタン45を押圧すると、それに連動して撮影光学系41、例えば実施例Aの撮像光学系を通して撮影が行われる。撮影光学系41によって形成された物体像が、結像面近傍に設けられた撮像素子(光電変換面)上に形成される。この撮像素子で受光された物体像は、処理手段によって電子画像としてカメラ背面に設けられた液晶表示モニター47に表示される。また、撮影された電子画像は記憶手段に記録することができる。
 図12は、一眼ミラーレスカメラ40の主要部の内部回路を示すブロック図である。なお、以下の説明では、前述した処理手段は、例えばCDS/ADC部24、一時記憶メモリ17、画像処理部18等で構成され、記憶手段は、記憶媒体部19等で構成される。
 図12に示すように、一眼ミラーレスカメラ40は、操作部12と、この操作部12に接続された制御部13と、この制御部13の制御信号出力ポートにバス14及び15を介して接続された撮像駆動回路16並びに一時記憶メモリ17、画像処理部18、記憶媒体部19、表示部20、及び設定情報記憶メモリ部21を備えている。
 上記の一時記憶メモリ17、画像処理部18、記憶媒体部19、表示部20、及び設定情報記憶メモリ部21は、バス22を介して相互にデータの入力、出力が可能とされている。また、撮像駆動回路16には、CCD49とCDS/ADC部24が接続されている。
 操作部12は、各種の入力ボタンやスイッチを備え、これらを介して外部(カメラ使用者)から入力されるイベント情報を制御部13に通知する。制御部13は、例えばCPUなどからなる中央演算処理装置であって、不図示のプログラムメモリを内蔵し、プログラムメモリに格納されているプログラムにしたがって、一眼ミラーレスカメラ40全体を制御する。
 CCD49は、撮像駆動回路16により駆動制御され、撮影光学系41を介して形成された物体像の画素ごとの光量を電気信号に変換し、CDS/ADC部24に出力する撮像素子である。
 CDS/ADC部24は、CCD49から入力する電気信号を増幅し、かつ、アナログ/デジタル変換を行って、この増幅とデジタル変換を行っただけの映像生データ(ベイヤーデータ、以下RAWデータという。)を一時記憶メモリ17に出力する回路である。
 一時記憶メモリ17は、例えばSDRAM等からなるバッファであり、CDS/ADC部24から出力されるRAWデータを一時的に記憶するメモリ装置である。画像処理部18は、一時記憶メモリ17に記憶されたRAWデータ又は記憶媒体部19に記憶されているRAWデータを読み出して、制御部13にて指定された画質パラメータに基づいて歪曲収差補正を含む各種画像処理を電気的に行う回路である。
 記憶媒体部19は、例えばフラッシュメモリ等からなるカード型又はスティック型の記録媒体を着脱自在に装着して、これらのフラッシュメモリに、一時記憶メモリ17から転送されるRAWデータや画像処理部18で画像処理された画像データを記録して保持する。
 表示部20は、液晶表示モニター47などにて構成され、撮影したRAWデータ、画像データや操作メニューなどを表示する。設定情報記憶メモリ部21には、予め各種の画質パラメータが格納されているROM部と、操作部12の入力操作によってROM部から読み出された画質パラメータを記憶するRAM部が備えられている。
 このように構成された一眼ミラーレスカメラ40では、撮影光学系41として本発明の複数の撮像光学系を採用することで、小型軽量でありながら、様々な被写体を撮像することができる。なお、本発明の複数の撮像光学系は、クイックリターンミラーを持つタイプの撮像装置にも用いることができる。
 以上のように、本発明は、撮像光学系における主要部品について複数の撮像光学系で共通化を図りつつも、それらの主要部品の小型化と軽量化を図ることでメーカーの開発負荷を減らし、しかも製品の小型化と軽量化も図ることができる複数の撮像光学系に有用である。また、複数の撮像光学系を有する撮像装置に有用である。
 GF 前側レンズ群
 Fo フォーカシングレンズ群
 GR 後側レンズ群
 S 明るさ(開口)絞り
 I 像面
 1 一眼ミラーレスカメラ
 2 撮影光学系
 3 鏡筒のマウント部
 4 撮像素子面
 5 バックモニタ
 12 操作部
 13 制御部
 14、15 バス
 16 撮像駆動回路
 17 一時記憶メモリ
 18 画像処理部
 19 記憶媒体部
 20 表示部
 21 設定情報記憶メモリ部
 22 バス
 24 CDS/ADC部
 40 一眼ミラーレスカメラ
 41 撮影光学系
 42 撮影用光路
 45 シャッターボタン
 47 液晶表示モニター
 49 CCD

Claims (20)

  1.  焦点距離が異なる2つの撮像光学系を少なくとも有する複数の撮像光学系であって、
     前記複数の撮像光学系における各撮像光学系は、同一の絞り部材を有し、
     前記各撮像光学系は、物体側から順に、
     正屈折力を有する前側レンズ群と、
     負屈折力を有するフォーカスレンズ群と、
     正屈折力を有する後側レンズ群と、を有し、
     前記絞り部材は、前記フォーカスレンズ群の近傍に配置され、
     フォーカシング時は、前記フォーカスレンズ群のみが光軸上を移動し、
     前記各撮像光学系が以下の条件式(1)を満たし、且つ、
     前記複数の撮像光学系が以下の条件式(2)、(3)を満たすことを特徴とする複数の撮像光学系。
     0.5<fff/ffb<1.9   (1)
     1≦APΦmax/APΦmin≦1.15   (2)
     1.02<ffoLA/ffoSM<2.50   (3)
     但し、
     fffは、前記各撮像光学系における前記前側レンズ群の焦点距離、
     ffbは、前記各撮像光学系における前記後側レンズ群の焦点距離、
     APΦmaxは、前記複数の撮像光学系における開口絞りの直径のうちで最大となる直径、
     APΦminは、前記複数の撮像光学系における開口絞りの直径のうちで最小となる直径、
     ffoLAは、前記複数の撮像光学系における前記フォーカスレンズ群の焦点距離のうちで最大となる焦点距離、
     ffoSMは、前記複数の撮像光学系における前記フォーカスレンズ群の焦点距離のうちで最小となる焦点距離、であって、
     前記最大となる焦点距離と前記最小となる焦点距離は、焦点距離を絶対値で比較して求めるものとする。
  2.  焦点距離が異なる2つの撮像光学系を少なくとも有する複数の撮像光学系であって、
     前記複数の撮像光学系における各撮像光学系は、同一のフォーカスユニットを有し、
     前記各撮像光学系は、物体側から順に、
     正屈折力を有する前側レンズ群と、
     負屈折力を有するフォーカスレンズ群と、を有し、
     前記各撮像光学系は、絞り部材を有し、
     前記絞り部材は、前記フォーカスレンズ群の近傍に配置され、
     フォーカシング時は、前記フォーカスレンズ群のみが光軸上を移動し、
     前記複数の撮像光学系が以下の条件式(3)、(4)を満たすことを特徴とする複数の撮像光学系。
     1.02<ffoLA/ffoSM<2.50   (3)
     1≦Kmax/Kmin≦1.65   (4)
     但し、
     ffoLAは、前記複数の撮像光学系における前記フォーカスレンズ群の焦点距離のうちで最大となる焦点距離、
     ffoSMは、前記複数の撮像光学系における前記フォーカスレンズ群の焦点距離のうちで最小となる焦点距離、であって、
     前記最大となる焦点距離と前記最小となる焦点距離は、焦点距離を絶対値で比較して求めるものとし、
     Kmaxは、Kのうちで最大となるK、
     Kminは、Kのうちで最小となるK、
     前記Kは、K=fbLD/MGfoで表される値(単位はmm)であり、
     前記fbLDは、fbLD=f/2000mmで表され、
     fは、前記各撮像光学系における無限遠物点合焦時の全系の焦点距離、
     MGfoは、前記各撮像光学系におけるフォーカス感度、
     前記フォーカス感度は、無限遠物点合焦時の前記フォーカスレンズ群の単位移動量に対する像面の移動量、
    である。
  3.  前記各撮像光学系において、前記絞り部材は、前記前側レンズ群と前記フォーカスレンズ群との間に配置されることを特徴とする請求項1又は2に記載の複数の撮像光学系。
  4.  前記各撮像光学系が以下の条件式(5)を満たすことを特徴とする請求項1又は2に記載の複数の撮像光学系。
     1.0<ΦLD/Φc<1.25   (5)
     但し、
     ΦLDは、前記各撮像光学系における前記フォーカスレンズ群での最大有効口径、
     Φcは、前記各撮像光学系における前記フォーカスレンズ群での最大軸上結像光束径、
    である。
  5.  前記各撮像光学系において、前記フォーカスレンズ群の像側に、正屈折力を有する後側レンズ群が配置されることを特徴とする請求項2に記載の複数の撮像光学系。
  6.  前記複数の撮像光学系が以下の条件式(4)’を満たすことを特徴とする請求項1に記載の複数の撮像光学系。
     1≦Kmax/Kmin≦1.60   (4)’
     但し、
     Kmaxは、Kのうちで最大となるK、
     Kminは、Kのうちで最小となるK、
     前記Kは、K=fbLD/MGfoで表される値(単位はmm)であり、
     前記fbLDは、fbLD=f/2000mmで表され、
     fは、前記各撮像光学系における無限遠物点合焦時の全系の焦点距離、
     MGfoは、前記各撮像光学系におけるフォーカス感度、
     前記フォーカス感度は、無限遠物点合焦時の前記フォーカスレンズ群の単位移動量に対する像面の移動量、
    である。
  7.  前記各撮像光学系が以下の条件式(1)’を満たすことを特徴とする請求項5に記載の複数の撮像光学系。
     0.5<fff/ffb<1.8   (1)’
     但し、
     fffは、前記各撮像光学系における前記前側レンズ群の焦点距離、
     ffbは、前記各撮像光学系における前記後側レンズ群の焦点距離、
    である。
  8.  前記各撮像光学系が以下の条件式(6)を満たすことを特徴とする請求項1又は2に記載の複数の撮像光学系。
     0.06<|ffo/f|<0.4   (6)
     但し、
     ffoは、前記各撮像光学系における前記フォーカスレンズ群の焦点距離、
     fは、前記各撮像光学系における無限遠物点合焦時の全系の焦点距離、
    である。
  9.  前記複数の撮像光学系は、共通レンズとして正レンズ又は負レンズを有し、
     前記複数の撮像光学系のうち、少なくとも2つの撮像光学系は、各々、前記前側レンズ群に前記共通レンズを有していることを特徴とする請求項1又は2に記載の複数の撮像光学系。
  10.  前記複数の撮像光学系のうち、少なくとも2つの撮像光学系において、前記フォーカスユニットが同一の部材で構成され、
     以下の条件式(7)を満たすことを特徴とする請求項1又は2に記載の複数の撮像光学系。
     1≦LDWmax/LDWmin≦1.65   (7)
     但し、
     LDWmaxは、前記複数の撮像光学系における前記フォーカスレンズ群のレンズ総重量のうちで最大となる総重量、
     LDWminは、前記複数の撮像光学系における前記フォーカスレンズ群のレンズ総重量のうちで最小となる総重量、
    である。
  11.  前記各撮像光学系が以下の条件式(8)を満たすことを特徴とする請求項1又は5に記載の複数の撮像光学系。
     -2<ffo/ffb<-0.27   (8)
     但し、
     ffoは、前記各撮像光学系における前記フォーカスレンズ群の焦点距離、
     ffbは、前記各撮像光学系における前記後側レンズ群の焦点距離、
    である。
  12.  前記共通レンズのうちの前記正レンズが以下の条件式(9)を満たすことを特徴とする請求項9に記載の複数の撮像光学系。
     80<νdP   (9)
     但し、
     νdPは、前記共通レンズのうちの前記正レンズのアッベ数、
    である。
  13.  前記各撮像光学系が以下の条件式(10)を満たすことを特徴とする請求項1又は2に記載の複数の撮像光学系。
     0.023≦SC/L≦0.110   (10)
     但し、
     SCは、前記各撮像光学系における前記絞り部材から前記フォーカスレンズ群の物体側に位置するレンズ面までの距離であって、無限遠物点合焦時の距離、
     Lは、前記各撮像光学系における光学系の全長、
    である。
  14.  前記各撮像光学系が以下の条件式(11)を満たすことを特徴とする請求項1又は2に記載の複数の撮像光学系。
     0.2≦SC/APΦ≦1.0   (11)
     但し、
     SCは、前記各撮像光学系における前記絞り部材から前記フォーカスレンズ群の物体側に位置するレンズ面までの距離であって、無限遠物点合焦時の距離、
     APΦは、前記各撮像光学系における開口絞りの直径、
    である。
  15.  前記複数の撮像光学系のうち、2つの撮像光学系が以下の条件式(12)を満たすことを特徴とする請求項1又は2に記載の複数の撮像光学系。
     1.2<fL/fS   (12)
     但し、
     fLは、前記2つの撮像光学系の全系の無限遠物点合焦時の焦点距離のうちで長い方の焦点距離、
     fSは、前記2つの撮像光学系の全系の無限遠物点合焦時の焦点距離のうちで短い方の焦点距離、
    である。
  16.  前記各撮像光学系が同一の絞り部材を有することを特徴とする請求項2に記載の複数の撮像光学系。
  17.  前記各撮像光学系における前記絞り部材の開口絞りの直径をAPΦmaxとすることを特徴とする請求項1又は16に記載の複数の撮像光学系。
     但し、
     APΦmaxは、前記複数の撮像光学系における開口絞りの直径のうちで最大となる直径、
    である。
  18.  前記絞り部材よりも光学絞り径の小さい撮像光学系においては、開放Fナンバーに絞った絞りハネで設定し、
     前記絞りハネは7枚以上の奇数枚で構成されていることを特徴とする請求項17に記載の複数の撮像光学系。
  19.  前記同一の絞り部材よりも光学絞り径が小さい撮像光学系においては、絞り枠部材近傍に、所定の開放Fナンバーとなる様に円形の開口部を持つ遮光部材が追加配置されていることを特徴とする請求項16に記載の複数の撮像光学系。
  20.  撮像光学系と、
     撮像面を持ち且つ前記撮像光学系により前記撮像面上に形成された像を電気信号に変換する撮像素子と、を有し、
     前記撮像光学系が、請求項1~19のいずれか一項に記載の複数の撮像光学系のうちの1つであることを特徴とする撮像装置。
PCT/JP2015/059060 2015-01-14 2015-03-25 複数の撮像光学系及びそれを有する撮像装置 WO2016113921A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580002442.2A CN107111108A (zh) 2015-01-14 2015-03-25 复式摄像光学系统和具有该复式摄像光学系统的摄像装置
JP2016521367A JP6511044B2 (ja) 2015-01-14 2015-03-25 複数の撮像光学系の製造方法
US15/180,390 US9671596B2 (en) 2015-01-14 2016-06-13 Plurality of imaging optical systems and image pickup apparatus using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-005145 2015-01-14
JP2015005145 2015-01-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/180,390 Continuation US9671596B2 (en) 2015-01-14 2016-06-13 Plurality of imaging optical systems and image pickup apparatus using the same

Publications (1)

Publication Number Publication Date
WO2016113921A1 true WO2016113921A1 (ja) 2016-07-21

Family

ID=56405480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059060 WO2016113921A1 (ja) 2015-01-14 2015-03-25 複数の撮像光学系及びそれを有する撮像装置

Country Status (4)

Country Link
US (1) US9671596B2 (ja)
JP (1) JP6511044B2 (ja)
CN (1) CN107111108A (ja)
WO (1) WO2016113921A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018216789A1 (ja) * 2017-05-26 2018-11-29 株式会社nittoh 撮像用の光学系および撮像装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016113920A1 (ja) * 2015-01-14 2016-07-21 オリンパス株式会社 複数の撮像光学系及びそれを有する撮像装置
CN107608055B (zh) * 2017-09-22 2019-12-24 福建福光股份有限公司 地面夜间星敏感器光学镜头
CN109975950B (zh) * 2017-12-27 2021-06-04 宁波舜宇车载光学技术有限公司 光学镜头
US20220390711A1 (en) * 2019-10-28 2022-12-08 Samyang Optics Co., Ltd Lens optical system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566346A (ja) * 1991-03-01 1993-03-19 Leica Camera Gmbh 光学写真機用望遠レンズ
JP2011002555A (ja) * 2009-06-17 2011-01-06 Canon Inc 光学素子及びそれを有する光学系
JP2012002999A (ja) * 2010-06-16 2012-01-05 Canon Inc 撮影光学系及びそれを有する撮像装置
JP2012042791A (ja) * 2010-08-20 2012-03-01 Canon Inc 光学系及びそれを有する光学機器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07199067A (ja) 1993-12-28 1995-08-04 Nikon Corp 撮像サイズ変換光学系
JP4967288B2 (ja) 2004-09-30 2012-07-04 株式会社ニコン 共通ズーム光学系、ズームレンズ、及びレンズシステム
JP5359350B2 (ja) 2009-02-18 2013-12-04 株式会社ニコン コンバータレンズ、光学装置
JP6440450B2 (ja) * 2013-11-08 2018-12-19 オリンパス株式会社 結像レンズ系及びそれを備えた撮像装置
WO2015072245A1 (ja) * 2013-11-18 2015-05-21 オリンパス株式会社 撮像装置及び撮像システム
WO2016113920A1 (ja) * 2015-01-14 2016-07-21 オリンパス株式会社 複数の撮像光学系及びそれを有する撮像装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566346A (ja) * 1991-03-01 1993-03-19 Leica Camera Gmbh 光学写真機用望遠レンズ
JP2011002555A (ja) * 2009-06-17 2011-01-06 Canon Inc 光学素子及びそれを有する光学系
JP2012002999A (ja) * 2010-06-16 2012-01-05 Canon Inc 撮影光学系及びそれを有する撮像装置
JP2012042791A (ja) * 2010-08-20 2012-03-01 Canon Inc 光学系及びそれを有する光学機器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018216789A1 (ja) * 2017-05-26 2018-11-29 株式会社nittoh 撮像用の光学系および撮像装置
CN110709747A (zh) * 2017-05-26 2020-01-17 株式会社日东 摄像用的光学系统和摄像装置
CN110709747B (zh) * 2017-05-26 2021-09-14 株式会社日东 摄像用的光学系统和摄像装置
US11314042B2 (en) 2017-05-26 2022-04-26 Nittoh Inc. Optical system for image pickup, and image pickup device

Also Published As

Publication number Publication date
JPWO2016113921A1 (ja) 2017-10-19
US9671596B2 (en) 2017-06-06
CN107111108A (zh) 2017-08-29
US20160291298A1 (en) 2016-10-06
JP6511044B2 (ja) 2019-05-08

Similar Documents

Publication Publication Date Title
JP5846973B2 (ja) インナーフォーカスレンズ系及びそれを備えた撮像装置
JP5750729B2 (ja) リアフォーカスレンズ系及びそれを備えた撮像装置
JP6383214B2 (ja) 結像光学系及びそれを備えた光学装置
JP5769606B2 (ja) ズームレンズ及びそれを備えた撮像装置
JP5393278B2 (ja) ズームレンズ及びそれを備えた撮像装置
CN104635327A (zh) 变焦透镜以及摄像装置
JP2014095781A (ja) ズームレンズ及びそれを備えた撮像装置
JP2014178478A (ja) ズームレンズ及びそれを有する撮像装置
CN107533214A (zh) 变焦镜头和具有该变焦镜头的摄像装置
JP5902537B2 (ja) ズームレンズ及びそれを備えた撮像装置
JP2014235190A (ja) ズームレンズ及びそれを有する撮像装置
CN107407793A (zh) 变焦镜头和具有该变焦镜头的摄像装置
JP2010250233A (ja) 撮影用2群ズームレンズ及びそれを備えた撮像装置
JP6511044B2 (ja) 複数の撮像光学系の製造方法
WO2016194110A1 (ja) 単焦点光学系及びそれを備えた光学装置
CN106199933A (zh) 变焦镜头和具有该变焦镜头的摄像装置
JP2017062318A (ja) ズームレンズ及びそれを備えた撮像装置
JP5613070B2 (ja) ズームレンズ及びそれを備えた撮像装置
US9989728B2 (en) Plurality of imaging optical systems and image pickup apparatus using the same
JP5948130B2 (ja) ズームレンズ及びそれを用いた撮像装置
JP2007086296A (ja) 2群ズームレンズ及びそれを有する交換レンズ及びそれを有する電子撮像装置
JP5695433B2 (ja) ズームレンズ及びそれを備えた撮像装置
JP5638973B2 (ja) ズームレンズ及びそれを備えた撮像装置
CN107407792A (zh) 变焦镜头和具有该变焦镜头的摄像装置
JP2016009170A (ja) 広角レンズ及びそれを有する撮像装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016521367

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877873

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15877873

Country of ref document: EP

Kind code of ref document: A1