WO2016113838A1 - インバータの制御装置 - Google Patents

インバータの制御装置 Download PDF

Info

Publication number
WO2016113838A1
WO2016113838A1 PCT/JP2015/050628 JP2015050628W WO2016113838A1 WO 2016113838 A1 WO2016113838 A1 WO 2016113838A1 JP 2015050628 W JP2015050628 W JP 2015050628W WO 2016113838 A1 WO2016113838 A1 WO 2016113838A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
inverter
lower limit
power
limit value
Prior art date
Application number
PCT/JP2015/050628
Other languages
English (en)
French (fr)
Inventor
祐司 松岡
達明 安保
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to CN201580073173.9A priority Critical patent/CN107155382A/zh
Priority to PCT/JP2015/050628 priority patent/WO2016113838A1/ja
Priority to JP2016569146A priority patent/JP6366083B2/ja
Priority to EP15877793.8A priority patent/EP3247018A4/en
Priority to US15/543,140 priority patent/US9985553B2/en
Publication of WO2016113838A1 publication Critical patent/WO2016113838A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to an inverter control device used for photovoltaic power generation.
  • an inverter is used in a photovoltaic power generation system in order to link with a power system.
  • the inverter converts DC power generated by the solar battery into AC power synchronized with the power system and supplies the AC power to the power system.
  • the system voltage is detected, and the system interconnection that controls the booster circuit so as to obtain an optimum boosted voltage that is higher than the detected system voltage by a predetermined voltage value.
  • An apparatus is disclosed (for example, see Patent Document 1).
  • An object of the present invention is to provide an inverter control device that widens a control range so that electric power output from a solar cell is maximized.
  • An inverter control device is an inverter control device that converts electric power generated by a solar cell into alternating current power connected to an electric power system, and detects a system voltage of the electric power system. Voltage detection means; DC voltage control means for controlling the DC voltage so that the power output from the solar cell is maximized when the DC voltage applied to the inverter is higher than a lower limit; and the system voltage When the system voltage detected by the detecting means is lower than a predetermined voltage, lower limit value determining means for lowering the lower limit value, and the inverter based on the system voltage detected by the system voltage detecting means Reactive power control means for controlling the reactive power output from.
  • FIG. 1 is a configuration diagram illustrating a configuration of a photovoltaic power generation system to which a control device according to a first embodiment of the present invention is applied.
  • FIG. 2 is a characteristic diagram showing characteristics of power generated by the solar cell according to the first embodiment.
  • FIG. 3 is a configuration diagram showing a configuration of a photovoltaic power generation system to which the control device according to the second embodiment of the present invention is applied.
  • FIG. 1 is a configuration diagram showing a configuration of a photovoltaic power generation system 10 to which a control device 2 according to the first embodiment of the present invention is applied.
  • symbol is attached
  • the solar power generation system 10 includes an inverter 1, a control device 2, a solar cell 3, a smoothing capacitor 4, an AC filter 5, an interconnection transformer 6, a power system 7, a DC voltage detector 11, a DC current detector 12, and AC current detection. And an AC voltage detector 14.
  • the solar cell 3 is a battery that generates power by light (sunlight).
  • the solar cell 3 supplies the generated power to the inverter 1.
  • the solar cell 3 is connected to the DC side of the inverter 1 without going through a booster circuit such as a chopper.
  • the inverter 1 converts the DC power supplied from the solar cell 3 into three-phase AC power synchronized with the power system 7.
  • the inverter 1 supplies the converted AC power to the power system 7 via the interconnection transformer 6.
  • the inverter 1 is subjected to power conversion control by pulse width modulation (PWM, pulse width modulation) by the gate signal Gt output from the control device 2.
  • PWM pulse width modulation
  • Gt gate signal output from the control device 2.
  • the inverter 1 is, for example, a PCS (power conditioning system).
  • the smoothing capacitor 4 is provided on the DC side (input side) of the inverter 1.
  • the smoothing capacitor 4 smoothes the DC voltage supplied from the solar cell 3 to the inverter 1.
  • the AC filter 5 includes a reactor 51 and a capacitor 52.
  • the AC filter 5 suppresses harmonics output from the inverter 1.
  • the DC voltage detector 11 is a detector for measuring the voltage Vdc on the DC side of the inverter 1 (the voltage of the smoothing capacitor 4). The DC voltage detector 11 outputs the detected DC voltage Vdc to the control device 2.
  • the DC current detector 12 is a detector for measuring the current Idc flowing on the DC side of the inverter 1.
  • the DC current detector 12 outputs the detected DC current Idc to the control device 2.
  • the alternating current detector 13 is a detector for measuring the current Iiv on the alternating current side (output side) of the inverter 1.
  • the alternating current detector 13 outputs the detected alternating current Iiv to the control device 2.
  • the AC voltage detector 14 is a detector for measuring the system voltage Vr of the power system 7.
  • the AC voltage detector 14 outputs the detected system voltage Vr to the control device 2.
  • the control device 2 controls active power and reactive power output from the inverter 1.
  • the control device 2 includes a power calculation unit 21, a DC voltage lower limit calculation unit 22, an MPPT execution unit 23, a DC voltage control unit 24, a power control unit 25, and a PWM control unit 26.
  • the electric power calculation unit 21 calculates the DC power Pdc based on the DC voltage Vdc detected by the DC voltage detector 11 and the DC current Idc detected by the DC current detector 12. The power calculation unit 21 outputs the calculated DC power Pdc to the MPPT execution unit 23.
  • the DC voltage lower limit calculator 22 determines the lower limit VL of the DC voltage Vdc of the inverter 1 based on the system voltage Vr detected by the AC voltage detector 14. Control device 2 controls DC voltage Vdc within a range that does not fall below the determined lower limit value VL.
  • the lower limit value VL is set to a value at which at least the output current Iiv of the inverter 1 does not flow backward with respect to the detected system voltage Vr.
  • the lower limit value VL is desirably determined to a value that does not distort the waveform of the output current Iiv in addition to the backflow of the output current Iiv. Whether the waveform of the output current Iiv is a value that does not distort can be determined from the superposition rate of each harmonic.
  • the DC voltage lower limit calculation unit 22 determines a preset value as the lower limit value VL if the system voltage Vr is equal to or higher than a preset threshold (for example, rated voltage). If system voltage Vr is lower than a preset threshold value, DC voltage lower limit value calculation unit 22 calculates lower limit value VL based on system voltage Vr. The DC voltage lower limit value calculation unit 22 outputs the preset lower limit value VL or the calculated lower limit value VL to the MPPT execution unit 23.
  • a preset threshold for example, rated voltage
  • the lower limit value VL of the DC voltage Vdc that can be operated by the inverter 1 is determined by the AC voltage output from the inverter 1.
  • the reactive power output from the inverter 1 becomes inductive.
  • the output voltage of the inverter 1 is lowered. Therefore, the lower limit value VL of the DC voltage Vdc of the inverter 1 can also be lowered.
  • the MPPT execution unit 23 increases the DC voltage based on the DC power Pdc calculated by the power calculation unit 21, the lower limit value VL calculated by the DC voltage lower limit calculation unit 22, and the preset upper limit value VH.
  • a voltage increase / decrease signal Vn to be decreased is output to the DC voltage control unit 24.
  • the MPPT execution unit 23 outputs the voltage increase / decrease signal Vn determined by the maximum power point tracking control.
  • FIG. 2 is a characteristic diagram showing characteristics of power generated by the solar cell 3 according to the present embodiment.
  • the voltage (maximum power point voltage) Vmpp at the maximum power point Pmpp is between the lower limit value VL and the upper limit value VH.
  • the power point voltage Vmpp may not be between the lower limit value VL and the upper limit value VH.
  • the MPPT execution unit 23 When the DC voltage Vdc is between the lower limit value VL and the upper limit value VH, the MPPT execution unit 23 performs control (maximum power point tracking control) for tracking the maximum power point voltage Vmpp shown in FIG. 2 as follows. .
  • the MPPT execution unit 23 measures the DC power Pdc at the current DC voltage Vdc.
  • the MPPT execution unit 23 outputs a voltage increase / decrease signal Vn that boosts (or steps down) the DC voltage Vdc by a predetermined level of voltage. After boosting (or dropping) the DC voltage Vdc, the MPPT execution unit 23 measures the DC power Pdc. The MPPT execution unit 23 compares the DC power Pdc measured last time with the DC power Pdc newly measured this time.
  • the MPPT execution unit 23 outputs the same voltage increase / decrease signal Vn as the previous time. That is, if the previous voltage increase / decrease signal Vn is a signal to be boosted, the voltage increase / decrease signal Vn is also output as a signal to boost this time. If the previous voltage increase / decrease signal Vn is a signal to be stepped down, this time it is also output as a signal to step down the voltage increase / decrease signal Vn. On the other hand, when the DC power Pdc newly measured this time is smaller, the MPPT execution unit 23 outputs a voltage increase / decrease signal Vn opposite to the previous time.
  • the MPPT execution unit 23 controls the DC voltage Vdc so that it is always near the maximum power point voltage Vmpp.
  • the MPPT execution unit 23 When the voltage increase / decrease signal Vn to be stepped down is output, when the DC voltage Vdc falls below the lower limit value VL, the MPPT execution unit 23 outputs the voltage increase / decrease signal Vn to be boosted regardless of the measurement result of the DC power Pdc. Further, when the voltage increase / decrease signal Vn to be boosted is output, when the DC voltage Vdc exceeds the upper limit value VH, the MPPT execution unit 23 outputs the voltage increase / decrease signal Vn to be decreased regardless of the measurement result of the DC power Pdc.
  • the DC voltage control unit 24 receives the DC voltage Vdc detected by the DC voltage detector 11 and the voltage increase / decrease signal Vn determined by the MPPT execution unit 23.
  • the DC voltage control unit 24 calculates a DC voltage command value Vdcr for controlling the DC voltage Vdc based on the DC voltage Vdc and the voltage increase / decrease signal Vn.
  • the DC voltage control unit 24 outputs the calculated DC voltage command value Vdcr to the power control unit 25.
  • the power control unit 25 includes an output current Iiv detected by the AC current detector 13, a system voltage Vr of the power system 7 detected by the AC voltage detector 14, a DC power Pdc calculated by the power calculation unit 21, and The DC voltage command value Vdcr calculated by the DC voltage control unit 24 is input.
  • the power control unit 25 calculates an active power command value for controlling the active power output from the inverter 1 based on the output current Iiv, the DC power Pdc, and the DC voltage command value Vdcr. Further, the power control unit 25 calculates a reactive power command value for controlling the reactive power output from the inverter 1 based on the system voltage Vr.
  • the power control unit 25 calculates a voltage command value Vivr for controlling the three-phase AC voltage output from the inverter 1 based on the calculated reactive power command value and active power command value.
  • the power control unit 25 outputs the calculated voltage command value Vivr to the PWM control unit 26.
  • the voltage command value Vivr calculated by the power control unit 25 is input to the PWM control unit 26.
  • the PWM control unit 26 generates a gate signal Gt that drives the switching element of the inverter 1 so that the output voltage of the inverter 1 follows the voltage command value Vivr.
  • the PWM control unit 26 performs PWM control of the inverter 1 with the generated gate signal Gt.
  • the lower limit value VL of the range of the DC voltage Vdc for executing MPPT is lowered, so that the range for executing MPPT can be widened. Therefore, when the maximum power point voltage Vmpp is lower than the lower limit value VL, the power output from the solar cell 3 can be increased by lowering the lower limit value VL.
  • the MPPT execution range can be expanded according to the current system voltage Vr.
  • FIG. 3 is a configuration diagram showing a configuration of a solar power generation system 10A to which the control device 2A according to the second embodiment of the present invention is applied.
  • the solar power generation system 10A is obtained by replacing the control device 2 with the control device 2A in the solar power generation system 10 according to the first embodiment shown in FIG.
  • the control device 2A is obtained by replacing the DC voltage lower limit value calculation unit 22 with a DC voltage lower limit value selection unit 22A in the control device 2 according to the first embodiment. Others are the same as in the first embodiment.
  • the DC voltage lower limit selection unit 22A determines the lower limit value VL of the DC voltage Vdc of the inverter 1 based on the system voltage Vr detected by the AC voltage detector 14.
  • a lower limit value VL corresponding to each level of the system voltage Vr is set in advance. For example, the system voltage Vr is divided into a level that is higher than the rated voltage and a plurality of levels that are less than the rated voltage and subdivided into a plurality of voltage ranges.
  • the DC voltage lower limit selection unit 22A determines to which voltage range the detected system voltage Vr belongs.
  • the DC voltage lower limit value selection unit 22A selects a lower limit value VL corresponding to the determined level from a plurality of preset lower limit values VL.
  • the DC voltage lower limit value selection unit 22A outputs the selected lower limit value VL to the MPPT execution unit 23. Otherwise, the DC voltage lower limit value selection unit 22A is the same as the DC voltage lower limit value calculation unit 22 according to the first embodiment.
  • the calculation load during the operation of the control device 2A is the first implementation. It can be reduced more than the form.
  • control device 2A is configured to always perform reactive power control, but may have a function of stopping reactive power control.
  • the DC voltage lower limit calculation unit 22 according to the first embodiment or the DC voltage lower limit selection unit 22A according to the second embodiment receives a signal indicating that reactive power control is being executed. The process may be executed on the condition as described above.
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.
  • constituent elements over different embodiments may be appropriately combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

 太陽電池(3)により発電される電力を電力系統(7)と連系する交流電力に変換するインバータの制御装置(2)であって、電力系統の系統電圧(Vr)を検出する交流電圧検出器(14)と、インバータ(1)に印加される直流電圧(Vdc)が下限値(VL)よりも高いとき、太陽電池(3)から出力される電力が最大となるように直流電圧(Vdc)を制御するMPPT実行部(23)と、系統電圧(Vr)が予め決められた電圧よりも低いとき、下限値(VL)を低くする直流電圧下限値演算部(22)と、系統電圧(Vr)に基づいて、インバータ(1)から出力される無効電力を制御する電力制御部(25)とを備える。

Description

インバータの制御装置
 本発明は、太陽光発電に用いるインバータの制御装置に関する。
 一般に、太陽光発電システムには、電力系統と連系するために、インバータが用いられる。インバータは、太陽電池により発電された直流電力を電力系統に同期した交流電力に変換して、電力系統に供給する。
 例えば、出力電流が逆流するのを防止するために、系統電圧を検出し、検出した系統電圧よりも予め定めた電圧値だけ高い最適な昇圧電圧になるように、昇圧回路を制御する系統連系装置が開示されている(例えば、特許文献1参照)。
 しかしながら、太陽電池から出力される電力が最大となるように、インバータを最大電力点追従制御(MPPT, maximum power point tracking)する場合は、直流電圧の下限値が予め設定される。このため、運転中に、インバータが下限値よりも低い直流電圧で運転可能な状態になっても、インバータの制御装置は、予め設定された下限値よりも低い直流電圧で制御することはできない。
特開平11-122818号公報
 本発明の目的は、太陽電池から出力される電力が最大となるように制御する範囲を広くするインバータの制御装置を提供することにある。
 本発明の観点に従ったインバータの制御装置は、太陽電池により発電される電力を電力系統と連系する交流電力に変換するインバータの制御装置であって、前記電力系統の系統電圧を検出する系統電圧検出手段と、前記インバータに印加される直流電圧が下限値よりも高いとき、前記太陽電池から出力される電力が最大となるように前記直流電圧を制御する直流電圧制御手段と、前記系統電圧検出手段により検出される前記系統電圧が予め決められた電圧よりも低いとき、前記下限値を低くする下限値決定手段と、前記系統電圧検出手段により検出される前記系統電圧に基づいて、前記インバータから出力される無効電力を制御する無効電力制御手段とを備える。
図1は、本発明の第1の実施形態に係る制御装置を適用した太陽光発電システムの構成を示す構成図である。 図2は、第1の実施形態に係る太陽電池による発電電力の特性を示す特性図である。 図3は、本発明の第2の実施形態に係る制御装置を適用した太陽光発電システムの構成を示す構成図である。
 以下、図面を参照して、本発明の実施形態を説明する。
(第1の実施形態)
 図1は、本発明の第1の実施形態に係る制御装置2を適用した太陽光発電システム10の構成を示す構成図である。なお、図面における同一部分には同一符号を付してその詳しい説明を省略し、異なる部分について主に述べる。
 太陽光発電システム10は、インバータ1、制御装置2、太陽電池3、平滑コンデンサ4、交流フィルタ5、連系トランス6、電力系統7、直流電圧検出器11、直流電流検出器12、交流電流検出器13、及び交流電圧検出器14を備える。
 太陽電池3は、光(太陽光)により発電する電池である。太陽電池3は、発電した電力をインバータ1に供給する。太陽電池3は、チョッパなどの昇圧回路を介さずに、インバータ1の直流側に接続される。
 インバータ1は、太陽電池3から供給される直流電力を電力系統7と同期する三相交流電力に変換する。インバータ1は、連系トランス6を介して、変換した交流電力を電力系統7に供給する。インバータ1は、制御装置2から出力されるゲート信号Gtにより、パルス幅変調(PWM, pulse width modulation)で電力変換制御される。インバータ1は、例えば、PCS(power conditioning system)である。
 平滑コンデンサ4は、インバータ1の直流側(入力側)に設けられている。平滑コンデンサ4は、太陽電池3からインバータ1に供給される直流電圧を平滑化する。
 交流フィルタ5は、リアクトル51及びコンデンサ52を備えている。交流フィルタ5は、インバータ1から出力される高調波を抑制する。
 直流電圧検出器11は、インバータ1の直流側の電圧Vdc(平滑コンデンサ4の電圧)を計測するための検出器である。直流電圧検出器11は、検出した直流電圧Vdcを制御装置2に出力する。
 直流電流検出器12は、インバータ1の直流側に流れる電流Idcを計測するための検出器である。直流電流検出器12は、検出した直流電流Idcを制御装置2に出力する。
 交流電流検出器13は、インバータ1の交流側(出力側)の電流Iivを計測するための検出器である。交流電流検出器13は、検出した交流電流Iivを制御装置2に出力する。
 交流電圧検出器14は、電力系統7の系統電圧Vrを計測するための検出器である。交流電圧検出器14は、検出した系統電圧Vrを制御装置2に出力する。
 制御装置2は、インバータ1から出力される有効電力及び無効電力を制御する。制御装置2は、電力演算部21と、直流電圧下限値演算部22と、MPPT実行部23と、直流電圧制御部24、電力制御部25と、PWM制御部26とを備えている。
 電力演算部21は、直流電圧検出器11により検出された直流電圧Vdc及び直流電流検出器12により検出された直流電流Idcに基づいて、直流電力Pdcを演算する。電力演算部21は、演算した直流電力PdcをMPPT実行部23に出力する。
 直流電圧下限値演算部22は、交流電圧検出器14により検出された系統電圧Vrに基づいて、インバータ1の直流電圧Vdcの下限値VLを決定する。制御装置2は、決定された下限値VLを下回らない範囲で直流電圧Vdcを制御する。下限値VLは、検出された系統電圧Vrに対して、少なくともインバータ1の出力電流Iivが逆流しない値にする。なお、下限値VLは、出力電流Iivが逆流しないことに加え、出力電流Iivの波形が歪まないような値に決定することが望ましい。出力電流Iivの波形が歪まない値か否かは、各高調波の重畳率などから判断することができる。系統電圧Vrが下がると、下限値VLは下がる。直流電圧下限値演算部22は、系統電圧Vrが予め設定された閾値(例えば、定格電圧)以上であれば、予め設定された値を下限値VLとして決定する。系統電圧Vrが予め設定された閾値よりも低ければ、直流電圧下限値演算部22は、系統電圧Vrに基づいて、下限値VLを演算する。直流電圧下限値演算部22は、予め設定された下限値VL又は演算した下限値VLをMPPT実行部23に出力する。
 ここで、系統電圧Vrの低下時に直流電圧Vdcの下限値VLを演算する理由について説明する。インバータ1が運転可能な直流電圧Vdcの下限値VLは、インバータ1が出力する交流電圧によって決まる。系統電圧Vrが下がると、インバータ1が出力する無効電力は、誘導性(inductive)となる。誘導性の無効電力をインバータ1から出力する場合、インバータ1の出力電圧は低くなる。従って、インバータ1の直流電圧Vdcの下限値VLも、下げることができる。
 MPPT実行部23は、電力演算部21により演算された直流電力Pdc、直流電圧下限値演算部22により演算された下限値VL、及び予め設定された上限値VHに基づいて、直流電圧の増加又は減少させる電圧増減信号Vnを直流電圧制御部24に出力する。MPPT実行部23は、最大電力点追従制御により決定された電圧増減信号Vnを出力する。
 図2を参照して、MPPT実行部23による直流電圧Vdcの制御について説明する。図2は、本実施形態に係る太陽電池3による発電電力の特性を示す特性図である。
 ここで、図2の特性図では、最大電力点Pmppのときの電圧(最大電力点電圧)Vmppが下限値VLと上限値VHとの間にあるが、太陽電池3の発電状態によっては、最大電力点電圧Vmppが下限値VLと上限値VHとの間にない場合がある。
 直流電圧Vdcが下限値VLと上限値VHの間にあるとき、MPPT実行部23は、図2に示す最大電力点電圧Vmppを追従する制御(最大電力点追従制御)を、次のように行う。
 まず、MPPT実行部23は、現在の直流電圧Vdcでの直流電力Pdcを計測する。
 次に、MPPT実行部23は、直流電圧Vdcを予め決められた1段階分の電圧を昇圧(又は降圧)させる電圧増減信号Vnを出力する。直流電圧Vdcの昇圧後(又は降圧後)、MPPT実行部23は、直流電力Pdcを計測する。MPPT実行部23は、前回計測した直流電力Pdcと今回新たに計測した直流電力Pdcを比較する。
 比較した結果、今回新たに計測した直流電力Pdcの方が大きい場合は、MPPT実行部23は、前回と同じ電圧増減信号Vnを出力する。即ち、前回の電圧増減信号Vnが昇圧させる信号であれば、今回も電圧増減信号Vnを昇圧させる信号として出力する。前回の電圧増減信号Vnが降圧させる信号であれば、今回も電圧増減信号Vnを降圧させる信号として出力する。一方、今回新たに計測した直流電力Pdcの方が小さい場合は、MPPT実行部23は、前回と反対の電圧増減信号Vnを出力する。
 上記の手順を繰り返すことにより、MPPT実行部23は、直流電圧Vdcが常に最大電力点電圧Vmppの近傍にあるように制御する。
 降圧する電圧増減信号Vnを出力すると、直流電圧Vdcが下限値VLを下回る場合、MPPT実行部23は、直流電力Pdcの計測結果に関係なく、昇圧する電圧増減信号Vnを出力する。また、昇圧する電圧増減信号Vnを出力すると、直流電圧Vdcが上限値VHを上回る場合、MPPT実行部23は、直流電力Pdcの計測結果に関係なく、降圧する電圧増減信号Vnを出力する。
 直流電圧制御部24には、直流電圧検出器11により検出された直流電圧Vdc及びMPPT実行部23により決定された電圧増減信号Vnが入力される。直流電圧制御部24は、直流電圧Vdc及び電圧増減信号Vnに基づいて、直流電圧Vdcを制御するための直流電圧指令値Vdcrを演算する。直流電圧制御部24は、演算した直流電圧指令値Vdcrを電力制御部25に出力する。
 電力制御部25には、交流電流検出器13により検出された出力電流Iiv、交流電圧検出器14により検出された電力系統7の系統電圧Vr、電力演算部21により演算された直流電力Pdc、及び直流電圧制御部24により演算された直流電圧指令値Vdcrが入力される。電力制御部25は、出力電流Iiv、直流電力Pdc、及び直流電圧指令値Vdcrに基づいて、インバータ1から出力する有効電力を制御するための有効電力指令値を演算する。また、電力制御部25は、系統電圧Vrに基づいて、インバータ1から出力する無効電力を制御するための無効電力指令値を演算する。電力制御部25は、演算した無効電力指令値及び有効電力指令値に基づいて、インバータ1から出力する三相交流電圧を制御するための電圧指令値Vivrを演算する。電力制御部25は、演算した電圧指令値VivrをPWM制御部26に出力する。
 PWM制御部26には、電力制御部25により演算された電圧指令値Vivrが入力される。PWM制御部26は、インバータ1の出力電圧を電圧指令値Vivrに追従させるように、インバータ1のスイッチング素子を駆動するゲート信号Gtを生成する。PWM制御部26は、生成したゲート信号Gtにより、インバータ1をPWM制御する。
 本実施形態によれば、系統電圧Vrが電圧降下している場合、MPPTを実行する直流電圧Vdcの範囲の下限値VLが下がるため、MPPTを実行する範囲を広くすることができる。従って、最大電力点電圧Vmppが下限値VLよりも低い場合、下限値VLが低くなることで、太陽電池3から出力される電力を高くすることができる。
 また、直流電圧Vdcの下限値VLを系統電圧Vrに基づいて演算することで、MPPTの実行範囲を現在の系統電圧Vrに応じて広げることができる。
(第2の実施形態)
 図3は、本発明の第2の実施形態に係る制御装置2Aを適用した太陽光発電システム10Aの構成を示す構成図である。
 太陽光発電システム10Aは、図1に示す第1の実施形態に係る太陽光発電システム10において、制御装置2を制御装置2Aに代えたものである。制御装置2Aは、第1の実施形態に係る制御装置2において、直流電圧下限値演算部22を直流電圧下限値選択部22Aに代えたものである。その他は、第1の実施形態と同様である。
 直流電圧下限値選択部22Aは、交流電圧検出器14により検出された系統電圧Vrに基づいて、インバータ1の直流電圧Vdcの下限値VLを決定する。直流電圧下限値選択部22Aには、系統電圧Vrのレベル毎に対応する下限値VLが予め設定されている。例えば、系統電圧Vrは、定格電圧以上とするレベルと、定格電圧未満で複数の電圧範囲に細分化された複数のレベルに分けられる。直流電圧下限値選択部22Aは、検出された系統電圧Vrがどのレベルの電圧範囲に属するかを判断する。直流電圧下限値選択部22Aは、判断したレベルに対応する下限値VLを予め設定された複数の下限値VLの中から選択する。直流電圧下限値選択部22Aは、選択した下限値VLをMPPT実行部23に出力する。その他は、直流電圧下限値選択部22Aは、第1の実施形態に係る直流電圧下限値演算部22と同様である。
 本実施形態によれば、第1の実施形態と同様の作用効果を得ることができる。
 また、予め設定された複数の下限値VLの中から、系統電圧Vrに基づいて1つの下限値VLを選択するように構成することで、制御装置2Aの運転中における演算負荷を第1の実施形態よりも軽減することができる。
 なお、各実施形態において、制御装置2Aは、無効電力制御を常に行う構成としたが、無効電力制御を止める機能が付いていてもよい。この場合、第1の実施形態に係る直流電圧下限値演算部22又は第2の実施形態に係る直流電圧下限値選択部22Aは、無効電力制御が実行されていることを示す信号を受信することを条件として、処理を実行するようにしてもよい。
 なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。

Claims (5)

  1.  太陽電池により発電される電力を電力系統と連系する交流電力に変換するインバータの制御装置であって、
     前記電力系統の系統電圧を検出する系統電圧検出手段と、
     前記インバータに印加される直流電圧が下限値よりも高いとき、前記太陽電池から出力される電力が最大となるように前記直流電圧を制御する直流電圧制御手段と、
     前記系統電圧検出手段により検出される前記系統電圧が予め決められた電圧よりも低いとき、前記下限値を低くする下限値決定手段と、
     前記系統電圧検出手段により検出される前記系統電圧に基づいて、前記インバータから出力される無効電力を制御する無効電力制御手段と
    を備えることを特徴とするインバータの制御装置。
  2.  前記下限値決定手段は、前記系統電圧に基づいて、前記下限値を演算すること
    を特徴とする請求項1に記載のインバータの制御装置。
  3.  前記下限値決定手段は、前記系統電圧に基づいて、予め設定された複数の値のうち1つを前記下限値として選択すること
    を特徴とする請求項1に記載のインバータの制御装置。
  4.  太陽電池と、
     前記太陽電池で発電される電力を電力系統と連系する交流電力に変換するインバータと、
     前記電力系統の系統電圧を検出する系統電圧検出手段と、
     前記インバータに印加される直流電圧が下限値よりも高いとき、前記太陽電池から出力される電力が最大となるように前記直流電圧を制御する直流電圧制御手段と、
     前記系統電圧検出手段により検出される前記系統電圧が予め決められた電圧よりも低いとき、前記下限値を低くする下限値決定手段と、
     前記系統電圧検出手段により検出される前記系統電圧に基づいて、前記インバータから出力される無効電力を制御する無効電力制御手段と
    を備えることを特徴とする太陽光発電システム。
  5.  太陽電池により発電される電力を電力系統と連系する交流電力に変換するインバータの制御方法であって、
     前記電力系統の系統電圧を検出し、
     前記インバータに印加される直流電圧が下限値よりも高いとき、前記太陽電池から出力される電力が最大となるように前記直流電圧を制御し、
     検出した前記系統電圧が予め決められた電圧よりも低いとき、前記下限値を低くし、
     検出した前記系統電圧に基づいて、前記インバータから出力される無効電力を制御すること
    を含むことを特徴とするインバータの制御方法。
PCT/JP2015/050628 2015-01-13 2015-01-13 インバータの制御装置 WO2016113838A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580073173.9A CN107155382A (zh) 2015-01-13 2015-01-13 逆变器的控制装置
PCT/JP2015/050628 WO2016113838A1 (ja) 2015-01-13 2015-01-13 インバータの制御装置
JP2016569146A JP6366083B2 (ja) 2015-01-13 2015-01-13 インバータの制御装置
EP15877793.8A EP3247018A4 (en) 2015-01-13 2015-01-13 Control device for inverter
US15/543,140 US9985553B2 (en) 2015-01-13 2015-01-13 Control device of inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/050628 WO2016113838A1 (ja) 2015-01-13 2015-01-13 インバータの制御装置

Publications (1)

Publication Number Publication Date
WO2016113838A1 true WO2016113838A1 (ja) 2016-07-21

Family

ID=56405406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050628 WO2016113838A1 (ja) 2015-01-13 2015-01-13 インバータの制御装置

Country Status (5)

Country Link
US (1) US9985553B2 (ja)
EP (1) EP3247018A4 (ja)
JP (1) JP6366083B2 (ja)
CN (1) CN107155382A (ja)
WO (1) WO2016113838A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121402A1 (ja) * 2015-01-28 2016-08-04 京セラ株式会社 電力制御装置、電力制御システム、および電力制御方法
US10431987B2 (en) * 2015-09-24 2019-10-01 Sunpower Corporation Methods and systems for maintaining photovoltaic power plant reactive power capability
JP7086820B2 (ja) * 2018-11-07 2022-06-20 三菱重工業株式会社 無効電力制御装置及び無効電力制御方法
CN114556259B (zh) * 2019-12-12 2023-04-28 东芝三菱电机产业系统株式会社 电力转换装置
WO2022133695A1 (zh) * 2020-12-22 2022-06-30 华为数字能源技术有限公司 一种光伏发电系统、功率控制方法及汇流箱

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09258838A (ja) * 1996-03-27 1997-10-03 Mitsubishi Electric Corp 太陽光発電システムの最大電力制御方法
JP2008182836A (ja) * 2007-01-25 2008-08-07 Daihen Corp 系統連系インバータ装置及びこの系統連系インバータ装置の電力制御方法
JP2011072137A (ja) * 2009-09-25 2011-04-07 Panasonic Electric Works Co Ltd 系統連系インバータ装置
JP2012016150A (ja) * 2010-06-30 2012-01-19 Tokyo Electric Power Co Inc:The 太陽光発電装置
JP2012252537A (ja) * 2011-06-03 2012-12-20 Daihen Corp 系統連系インバータ装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3591244B2 (ja) 1997-10-13 2004-11-17 オムロン株式会社 系統連系装置
CN1161678C (zh) * 1998-03-30 2004-08-11 三洋电机株式会社 太阳能发电装置
WO2011045447A1 (es) * 2009-10-14 2011-04-21 Acciona Energía, S. A. Procedimiento y sistema de generación solar
US8908404B2 (en) * 2010-08-27 2014-12-09 School Judicial Person Ikutokugakuen Solar power generation system, control device used for solar power generation system, and control method and program for same
CN103597694B (zh) * 2011-06-07 2016-07-06 东芝三菱电机产业系统株式会社 太阳能发电系统的运行控制装置
KR101297833B1 (ko) * 2011-09-22 2013-08-26 카코뉴에너지 주식회사 적응적 최대 전력점 추종 기능을 가진 태양광 발전 시스템 및 그 방법
US9136709B2 (en) * 2011-10-26 2015-09-15 General Electric Company Methods and systems for selectively coupling a power conversion system to an electrical grid
DE102011054939A1 (de) * 2011-10-28 2013-05-02 Sma Solar Technology Ag Nachführverfahren und -einrichtung für einen Spannungswandler für eine Photovoltaikanlage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09258838A (ja) * 1996-03-27 1997-10-03 Mitsubishi Electric Corp 太陽光発電システムの最大電力制御方法
JP2008182836A (ja) * 2007-01-25 2008-08-07 Daihen Corp 系統連系インバータ装置及びこの系統連系インバータ装置の電力制御方法
JP2011072137A (ja) * 2009-09-25 2011-04-07 Panasonic Electric Works Co Ltd 系統連系インバータ装置
JP2012016150A (ja) * 2010-06-30 2012-01-19 Tokyo Electric Power Co Inc:The 太陽光発電装置
JP2012252537A (ja) * 2011-06-03 2012-12-20 Daihen Corp 系統連系インバータ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3247018A4 *

Also Published As

Publication number Publication date
JP6366083B2 (ja) 2018-08-01
JPWO2016113838A1 (ja) 2017-10-26
US9985553B2 (en) 2018-05-29
CN107155382A (zh) 2017-09-12
EP3247018A1 (en) 2017-11-22
US20180006579A1 (en) 2018-01-04
EP3247018A4 (en) 2018-10-24

Similar Documents

Publication Publication Date Title
JP6031609B2 (ja) 太陽光発電用インバータの制御装置
US8547716B2 (en) Power converting apparatus, grid interconnection apparatus and grid interconnection system
US8988906B2 (en) Power conversion apparatus
JP6366083B2 (ja) インバータの制御装置
JP5608809B2 (ja) 電力変換装置
JP5349688B2 (ja) 系統連系形インバータ
JP6762680B2 (ja) 太陽光発電システム
US9300226B2 (en) Solar power generation system
JP2005269843A (ja) 系統連系装置
JP6232912B2 (ja) 太陽光発電用パワーコンディショナ
JP2014127081A (ja) 太陽光発電用パワーコンディショナ
JP6296878B2 (ja) 系統連系インバータおよび発電電力推定方法
JP2010183670A (ja) 電力変換装置
JP2013247779A (ja) 制御装置
JP2013208032A (ja) 系統連系電源装置の制御装置および系統連系電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877793

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016569146

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015877793

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15543140

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE