WO2016109911A1 - 一种基于银纳米粒子四面体拉曼多重检测的方法 - Google Patents
一种基于银纳米粒子四面体拉曼多重检测的方法 Download PDFInfo
- Publication number
- WO2016109911A1 WO2016109911A1 PCT/CN2015/000721 CN2015000721W WO2016109911A1 WO 2016109911 A1 WO2016109911 A1 WO 2016109911A1 CN 2015000721 W CN2015000721 W CN 2015000721W WO 2016109911 A1 WO2016109911 A1 WO 2016109911A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- agnp
- raman
- silver nanoparticle
- tetrahedron
- dna1
- Prior art date
Links
- 238000001069 Raman spectroscopy Methods 0.000 title claims abstract description 63
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 54
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 title claims abstract description 51
- 229910052709 silver Inorganic materials 0.000 title claims abstract description 51
- 239000004332 silver Substances 0.000 title claims abstract description 51
- 238000001514 detection method Methods 0.000 title claims abstract description 29
- MJBWDEQAUQTVKK-IAGOWNOFSA-N aflatoxin M1 Chemical compound C=1([C@]2(O)C=CO[C@@H]2OC=1C=C(C1=2)OC)C=2OC(=O)C2=C1CCC2=O MJBWDEQAUQTVKK-IAGOWNOFSA-N 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims abstract description 17
- 239000000126 substance Substances 0.000 claims abstract description 10
- 239000012634 fragment Substances 0.000 claims abstract 2
- 239000000243 solution Substances 0.000 claims description 13
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 claims description 12
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 12
- WCDSVWRUXWCYFN-UHFFFAOYSA-N 4-aminobenzenethiol Chemical compound NC1=CC=C(S)C=C1 WCDSVWRUXWCYFN-UHFFFAOYSA-N 0.000 claims description 10
- 229910017745 AgNP Inorganic materials 0.000 claims description 10
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 238000001237 Raman spectrum Methods 0.000 claims description 6
- 239000000872 buffer Substances 0.000 claims description 6
- 238000010276 construction Methods 0.000 claims description 6
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 6
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 6
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 6
- 239000011780 sodium chloride Substances 0.000 claims description 6
- 239000006228 supernatant Substances 0.000 claims description 6
- PTDVPWWJRCOIIO-UHFFFAOYSA-N (4-methoxyphenyl)methanethiol Chemical compound COC1=CC=C(CS)C=C1 PTDVPWWJRCOIIO-UHFFFAOYSA-N 0.000 claims description 5
- 239000007864 aqueous solution Substances 0.000 claims description 5
- 230000004048 modification Effects 0.000 claims description 5
- 238000012986 modification Methods 0.000 claims description 5
- 229910001961 silver nitrate Inorganic materials 0.000 claims description 5
- 229910000033 sodium borohydride Inorganic materials 0.000 claims description 5
- 239000012279 sodium borohydride Substances 0.000 claims description 5
- 238000012360 testing method Methods 0.000 claims description 5
- 229910021642 ultra pure water Inorganic materials 0.000 claims description 5
- 239000012498 ultrapure water Substances 0.000 claims description 5
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- 238000002360 preparation method Methods 0.000 claims description 4
- 238000003786 synthesis reaction Methods 0.000 claims description 4
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 claims description 3
- 102100033072 DNA replication ATP-dependent helicase DNA2 Human genes 0.000 claims description 3
- 101000927313 Homo sapiens DNA replication ATP-dependent helicase DNA2 Proteins 0.000 claims description 3
- 239000004327 boric acid Substances 0.000 claims description 3
- 230000005284 excitation Effects 0.000 claims description 3
- 108091008104 nucleic acid aptamers Proteins 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 3
- 238000009396 hybridization Methods 0.000 claims description 2
- 150000007523 nucleic acids Chemical group 0.000 claims description 2
- 230000009467 reduction Effects 0.000 claims description 2
- 239000012086 standard solution Substances 0.000 claims description 2
- 108020004414 DNA Proteins 0.000 claims 3
- 108091028043 Nucleic acid sequence Proteins 0.000 claims 1
- 238000002156 mixing Methods 0.000 claims 1
- 229930073161 aflatoxin M1 Natural products 0.000 abstract description 19
- 239000002108 aflatoxin M1 Substances 0.000 abstract description 19
- RWQKHEORZBHNRI-BMIGLBTASA-N ochratoxin A Chemical compound C([C@H](NC(=O)C1=CC(Cl)=C2C[C@H](OC(=O)C2=C1O)C)C(O)=O)C1=CC=CC=C1 RWQKHEORZBHNRI-BMIGLBTASA-N 0.000 abstract description 15
- 108091023037 Aptamer Proteins 0.000 abstract description 2
- 230000002776 aggregation Effects 0.000 abstract description 2
- 238000004220 aggregation Methods 0.000 abstract description 2
- 229930183344 ochratoxin Natural products 0.000 abstract description 2
- ZZORFUFYDOWNEF-UHFFFAOYSA-N sulfadimethoxine Chemical compound COC1=NC(OC)=CC(NS(=O)(=O)C=2C=CC(N)=CC=2)=N1 ZZORFUFYDOWNEF-UHFFFAOYSA-N 0.000 abstract 3
- 230000004075 alteration Effects 0.000 abstract 2
- 239000000758 substrate Substances 0.000 abstract 2
- 230000001404 mediated effect Effects 0.000 abstract 1
- 238000001338 self-assembly Methods 0.000 abstract 1
- 230000035945 sensitivity Effects 0.000 abstract 1
- RMSFTZDTJHYIFE-UHFFFAOYSA-N 4-amino-n-(4,6-dimethoxypyrimidin-2-yl)benzenesulfonamide Chemical compound COC1=CC(OC)=NC(NS(=O)(=O)C=2C=CC(N)=CC=2)=N1 RMSFTZDTJHYIFE-UHFFFAOYSA-N 0.000 description 17
- VYLQGYLYRQKMFU-UHFFFAOYSA-N Ochratoxin A Natural products CC1Cc2c(Cl)cc(CNC(Cc3ccccc3)C(=O)O)cc2C(=O)O1 VYLQGYLYRQKMFU-UHFFFAOYSA-N 0.000 description 13
- DAEYIVCTQUFNTM-UHFFFAOYSA-N ochratoxin B Natural products OC1=C2C(=O)OC(C)CC2=CC=C1C(=O)NC(C(O)=O)CC1=CC=CC=C1 DAEYIVCTQUFNTM-UHFFFAOYSA-N 0.000 description 13
- 230000000694 effects Effects 0.000 description 4
- 238000004416 surface enhanced Raman spectroscopy Methods 0.000 description 4
- AXBVSRMHOPMXBA-UHFFFAOYSA-N 4-nitrothiophenol Chemical compound [O-][N+](=O)C1=CC=C(S)C=C1 AXBVSRMHOPMXBA-UHFFFAOYSA-N 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 229930195730 Aflatoxin Natural products 0.000 description 2
- XWIYFDMXXLINPU-UHFFFAOYSA-N Aflatoxin G Chemical compound O=C1OCCC2=C1C(=O)OC1=C2C(OC)=CC2=C1C1C=COC1O2 XWIYFDMXXLINPU-UHFFFAOYSA-N 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- 239000005409 aflatoxin Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000003053 toxin Substances 0.000 description 2
- 231100000765 toxin Toxicity 0.000 description 2
- 241000228212 Aspergillus Species 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 206010007269 Carcinogenicity Diseases 0.000 description 1
- 230000005778 DNA damage Effects 0.000 description 1
- 231100000277 DNA damage Toxicity 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 206010028400 Mutagenic effect Diseases 0.000 description 1
- 241000228143 Penicillium Species 0.000 description 1
- 208000024770 Thyroid neoplasm Diseases 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 231100000260 carcinogenicity Toxicity 0.000 description 1
- 230000007670 carcinogenicity Effects 0.000 description 1
- 238000001444 catalytic combustion detection Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000000816 effect on animals Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 208000007475 hemolytic anemia Diseases 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 210000005228 liver tissue Anatomy 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 231100000243 mutagenic effect Toxicity 0.000 description 1
- 230000003505 mutagenic effect Effects 0.000 description 1
- 231100000299 mutagenicity Toxicity 0.000 description 1
- 230000007886 mutagenicity Effects 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 229930000044 secondary metabolite Natural products 0.000 description 1
- 238000004557 single molecule detection Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229960002135 sulfadimidine Drugs 0.000 description 1
- ASWVTGNCAZCNNR-UHFFFAOYSA-N sulfamethazine Chemical compound CC1=CC(C)=NC(NS(=O)(=O)C=2C=CC(N)=CC=2)=N1 ASWVTGNCAZCNNR-UHFFFAOYSA-N 0.000 description 1
- 231100000378 teratogenic Toxicity 0.000 description 1
- 230000003390 teratogenic effect Effects 0.000 description 1
- 201000002510 thyroid cancer Diseases 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
Definitions
- the invention relates to a method based on silver nanoparticle tetrahedral Raman multiple detection, belonging to the technical field of analytical chemistry.
- the electromagnetic field enhancement effect on the surface of noble metal nanomaterials causes the Raman enhancement effect on the molecules adsorbed on the surface.
- the SERS Raman molecular Raman signals may be enhanced 106-fold to achieve single molecule detection of the Raman spectrum.
- SERS detection can maintain the original state of the sample well, is not affected by the sample mechanism and back ground, the peak width of the spectrum is narrow, has a unique molecular fingerprint, can be used in high temperature, high pressure environment, etc. Used in the fields of pharmaceutical, drug identification, biomedical, food hazard detection.
- SDM Sulfadimethoxypyrimidine
- SDM Sulfadimethoxypyrimidine
- OTA Ochratoxin A
- Aflatoxin M1 belongs to one of a class of structurally similar compounds of aflatoxin, and has the highest probability of aflatoxin in foods and feeds in hot and humid regions. Aflatoxin M1 is mainly caused by carcinogenicity and mutagenicity, and has a destructive effect on human and animal liver tissues, which can lead to liver cancer and even death.
- the object of the present invention is to construct a silver nanoparticle tetrahedron and apply it to multi-Raman spectroscopy detection of sulfamethazine (SDM) and aflatoxin M1 (AFM1), ochratoxin (OTA) and the like.
- SDM sulfamethazine
- AFM1 aflatoxin M1
- OTA ochratoxin
- the technical scheme of the invention a method based on silver nanoparticle tetrahedral Raman multiple detection:
- Silver nanoparticles with a particle size of 10 nm were synthesized by sodium borohydride reduction silver nitrate method.
- the synthesized silver nanoparticles and the thiol-modified DNA are coupled to form AgNP-DNA1, AgNP-DNA2, AgNP-DNA3, AgNP-DNA4 complex.
- Raman beacon molecules 4-aminothiophenol (4-ATP), 4-nitrobenzenethiol (NTP) and 4-methoxybenzyl mercaptan (MATT) were respectively modified to AgNP-DNA1.
- AgNP-DNA2, AgNP-DNA3 surface obtained AgNP-DNA1-ATP, AgNP-DNA2-NTP, AgNP-DNA3-MATT.
- the AgNP-DNA1-ATP, AgNP-DNA2-NTP, AgNP-DNA3-MATT, and AgNP-DNA4 prepared above were mixed, and a silver nanoparticle tetrahedron was obtained by base-pair pairing hybridization.
- a series of different concentrations of SDM, AFM1, and OTA standard solutions were added to the silver nanoparticle tetrahedral system prepared in the step (4), and the Raman signals were respectively determined according to the Raman signal intensity of the three different beacons and the object to be tested.
- the concentration establishes a standard curve.
- a clean conical flask was placed in an ice bath, followed by 20 mL of ultrapure water, 5 mL of 1% polyvinylpyrrolidone and 0.6 mL of a 0.01 mol/L aqueous solution of sodium borohydride. Then, 5 mL of a 1% polyvinylpyrrolidone and 5 mL of a 1% silver nitrate aqueous solution were simultaneously added to the Erlenmeyer flask at a rate of 30 mL/h, and the solution was changed from colorless to yellow while stirring. The obtained silver nanoparticles had a diameter of 10 nm.
- Raman beacon molecules 4-aminothiophenol (4-ATP), 4-nitrobenzenethiol (NTP) and 4-methoxybenzyl mercaptan (MATT) were respectively added to AgNP-DNA1.
- the final concentration of Raman beacon molecules in the solution was 3 ⁇ M.
- the beacon molecules were added to the system for reaction overnight, and each was centrifuged at 13000 r/min for 10 min to remove the supernatant and then to the system. The original volume was recovered by adding 20 mM Tris-HCl buffer.
- AgNP-DNA1-ATP, AgNP-DNA2-NTP, AgNP-DNA3-MATT complexes were prepared.
- the above prepared AgNP-DNA1-ATP, AgNP-DNA2-NTP, AgNP-DNA3-MATT, AgNP-DNA4 were each 100 ⁇ L in a 1.5 mL centrifuge tube and mixed uniformly. 4 ⁇ L of 5 M NaCl solution was added, shaken and mixed, and a 90 ° C water bath was added. After 5 min, it was slowly lowered to room temperature in water vapor to prepare a silver nanoparticle tetrahedron.
- SDM For the simultaneous detection of SDM, AFM1, and OTA, three substances were added to the system one by one in sequence, with each substance separated by 30 min.
- the added concentration of SDM was 0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5 fM; the concentration of AFM1 was 0, 0.1, 0.5, 1, 5, 10, 50 fM; the concentration of OTA was 0, 0.01. , 0.05, 0.1, 0.5, 1, 5 fM.
- the Raman spectra of all the three substances were added and the reaction was completed, and the concentration standard curves of SDM, AFM1 and OTA were established according to the intensity of the Raman signals of 4-ATP, NTP and MATT, respectively.
- the Raman spectroscopy test time was 20 s and the excitation wavelength was 633 nm.
- a general-purpose method based on silver nanoparticle tetrahedron Raman multiplex detection, Raman multiplex detection of corresponding analytes can be prepared by changing the sequence of nucleic acid aptamer used in the preparation of silver nanoparticle tetrahedron sensor.
- the Raman enhancement effect of silver nanoparticles is more remarkable than that of other precious metals, and is a good Raman base material.
- the detection is based on the controllable adjustment of the spatial structure of the nanoparticle tetrahedron. There is no irregular aggregation of nanoparticles during the whole detection process, which reduces the interference of the external environment.
- the target is caused by the identification of the aptamer.
- the tetrahedral structure changes and has good specificity.
- the tetrahedron has six DNA edges, which can be used for simultaneous detection of multiple targets, and can be used for detection of small molecules as well as macromolecules such as proteins. Quantitative testing.
- Figure 1 is a schematic diagram of the invention based on silver nanoparticle tetrahedral Raman detection.
- FIG. 1 Silver nanoparticle tetrahedron: (A) TEM image, (B) frozen electron three-dimensional imaging image, (C) spatial configuration diagram; silver nanoparticle tetrahedron after SDM addition: (D) TEM image, ( E) Three-dimensional imaging image of frozen electrons, (F) Schematic diagram of spatial configuration.
- Figure 3 (A) Silver nanoparticle tetrahedron for Raman fingerprinting of SDM, AFM1 and OTA detection; (B) Simultaneous detection of SDM, AFM1 and OTA based on silver nanoparticle tetrahedron multiplex detection system, in which the concentration of SDM is in turn 0, 0.001, 0.005, 0.01, 0.05, 0.1 fM; the concentration of AFM1 is 0, 0.1, 0.5, 1, 5, 10, 50 fM; the concentration of OTA is 0, 0.01, 0.05, 0.1, 0.5, 1, respectively. 5fM; (C) from left to right: standard curve of SDM concentration and Raman signal intensity, standard curve of AFM1 concentration and Raman signal intensity, standard curve of OTA concentration and Raman signal intensity.
- Figure 4 shows the Raman spectrum of SDM in milk based on silver nanoparticle tetrahedron.
- a clean conical flask was placed in an ice bath, followed by 20 mL of ultrapure water, 5 mL of 1% polyvinylpyrrolidone and 0.6 mL of 0.01 molar per liter of aqueous sodium borohydride solution. Then, 5 mL of a 1% polyvinylpyrrolidone and 5 mL of a 1% silver nitrate aqueous solution were simultaneously added to the Erlenmeyer flask at a rate of 30 mL/h, and the solution was changed from colorless to yellow while stirring. The resulting silver nanoparticles were 10 nm in diameter.
- the above prepared AgNP-DNA1-ATP, AgNP-DNA2-NTP, AgNP-DNA3-MATT, AgNP-DNA4 were each 100 uL and mixed uniformly in a 1.5 mL centrifuge tube, and 4 uL of 5 M NaCl solution was added, shaken and mixed, and a 90 ° C water bath was prepared. After 5 min, it was slowly lowered to room temperature in water vapor to prepare a silver nanoparticle tetrahedron.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Zoology (AREA)
- Immunology (AREA)
- Wood Science & Technology (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
一种基于银纳米粒子四面体拉曼多重检测的方法。该方法利用DNA介导纳米粒子自组装技术组装得到银纳米粒子四面体,利用四面体的空间构型,通过在银纳米粒子四面体中引入三段含有待测物磺胺二甲氧嘧啶(SDM)、黄曲霉毒素M1(AFM1)、赭曲霉毒素(OTA)核酸适配体片段的DNA和三种信标分子,构建了基于银纳米粒子四面体的拉曼多重检测体系。当存在待测物时,四面体的空间构型发生改变引起拉曼信号的变化,进而进行检测。三种信标分子拉曼信号的变化对应于三种目标物的浓度,从而实现了对三种目标物SDM,AFM1和OTA的同时检测。该方法的灵敏度高、具有良好的特异性,并且避免了纳米粒子无序聚集,有利于拉曼传感检测技术在实际中的应用。
Description
本发明涉及一种基于银纳米粒子四面体拉曼多重检测的方法,属于分析化学技术领域。
1928年,印度科学家拉曼首次发现了拉曼散射现象,即当一个已知能量或波长、频率的光子和一个分子相互作用时,引起分子振动和能量损失的过程。随后拉曼先生发明了第一台拉曼光谱仪,并因此获得诺贝尔物理学奖。但是由于拉曼信号比较弱,该技术一直没有得到广泛的应用。后来随着激光器、CCD和滤光片的发明使得拉曼光谱仪的性能大大改进,因而才有了后来拉曼光谱仪大范围的普及和应用。表面增强拉曼散射(SERS)是在原有拉曼散射的基础之上,利用贵金属纳米材料(如金、银等)表面的电磁场增强效应,使得吸附在其表面的分子产生拉曼增强效应的现象。一般情况下,SERS可以将拉曼分子的拉曼信号增强106倍,从而实现拉曼光谱的单个分子检测。另外,由于SERS检测能很好的保持样品的原有状态、不受样品机制和背地的影响、图谱峰宽较窄、具有独特的分子指纹图谱、可用以高温、高压环境等优点,目前已广泛用于制药、毒品鉴别、生物医学、食品危害因子检测等领域。
磺胺二甲氧嘧啶(SDM)是一类人工合成广谱抑菌剂药物,添加在饲料中可以增肥家畜,预防和治疗细菌性疾病。这种药物容易残留在动物体内并对人体健康造成严重的影响,如损害脑神经系统,造成溶血性贫血,过敏反应,引发甲状腺癌等。鉴于此,很多国家对动物源性食品中SDM的含量做出规定,中国的限量是100mg/mL。赭曲霉毒素A(OTA)是曲霉菌属和青霉菌属的某些产毒菌株的次级代谢产物,在全球范围内对农作物的污染都比较严重,是一种强烈的肾毒素和肝毒素,还具有免疫抑制性,直接危害人类健康,引起DNA的损伤,有致畸、致癌和致突变的作用。黄曲霉毒素M1属于黄曲霉毒素一类结构相似的化合物中的一种,在湿热地区食品和饲料中出现黄曲霉毒素的机率最高。黄曲霉毒素M1危害主要表现在致癌性和致突变性,对人及动物肝脏组织有破坏作用,可导致肝癌甚至死亡。
发明内容
本发明的目的是构建一种银纳米粒子四面体,并应用于磺胺二甲嘧啶(SDM)及黄曲霉毒素M1(AFM1)、赭曲霉毒素(OTA)等的多重拉曼光谱检测。
本发明的技术方案:一种基于银纳米粒子四面体拉曼多重检测的方法:
(1)10纳米粒径银纳米粒子(AgNP)合成
采用硼氢化钠还原硝酸银法合成粒径为10纳米的银纳米粒子。
(2)银纳米粒子修饰DNA
上述合成的银纳米粒子和巯基修饰的DNA(DNA1,DNA2,DNA3,DNA4)进行偶联形成AgNP-DNA1,AgNP-DNA2,AgNP-DNA3,AgNP-DNA4复合体。
(3)拉曼信标分子的修饰
将三种拉曼信标分子4-氨基苯硫酚(4-ATP)、4-硝基苯硫醇(NTP)、4-甲氧基苄硫醇(MATT)分别对应修饰到AgNP-DNA1、AgNP-DNA2、AgNP-DNA3表面得到AgNP-DNA1-ATP,AgNP-DNA2-NTP,AgNP-DNA3-MATT。
(4)银纳米粒子四面体的组装
将上述制备的AgNP-DNA1-ATP,AgNP-DNA2-NTP,AgNP-DNA3-MATT,AgNP-DNA4混合,利用碱基互补配对杂交得到银纳米粒子四面体。
表1 检测目标物核酸适配体的名称和序列
Sequence(5’-3’) | |
SDM | GAG GGC AAC GAG TGT TTA TAG A |
AFM1 | ACT GCT AGA GAT TTT CCA CAT |
OTA | GAT CGG GTG TGG GTG GCG TAA AGG GAG CAT CGG ACA |
表2 用于构建银纳米粒子四面体的核酸序列。
(5)基于银纳米颗粒四面体拉曼传感器的构建与应用
向步骤(4)制备出的银纳米粒子四面体体系中加入一系列不同浓度的SDM、AFM1、OTA标准溶液,分别测定其拉曼信号,根据三种不同信标的拉曼信号强度与待测物浓度建立标准曲线。
具体为:
(1)10nm粒径银纳米粒子(AgNP)合成
取一洁净的锥形瓶置于冰浴中,依次加入20mL超纯水,5mL质量分数为1%的聚乙烯吡咯烷酮和0.6mL0.01mol/L的硼氢化钠水溶液。然后将5mL质量分数为1%的聚乙烯吡咯烷酮和5mL质量分数为1%的硝酸银水溶液同时以30mL/h的速度加入到锥形瓶中,边加入边搅拌,溶液由无色变成黄色。所得的银纳米粒子直径为10nm。
(2)银纳米粒子修饰DNA
取30μL 20nM上述合成的银纳米粒子于PCR管中,加入1μL 10μM的DNA1混匀后,依次向体系中加入5μL 5×tris-硼酸缓冲液和1.25μL 2mol/L NaCl溶液,室温振摇反应12h,13000r/min离心10min,去除上清液,加超纯水至原体积,得AgNP-DNA1。AgNP-DNA2,AgNP-DNA3,AgNP-DNA4复合体的制备方法与AgNP-DNA1类似。
(3)拉曼信标分子的修饰
将三种拉曼信标分子4-氨基苯硫酚(4-ATP)、4-硝基苯硫醇(NTP)、4-甲氧基苄硫醇(MATT)分别对应加入到AgNP-DNA1、AgNP-DNA2、AgNP-DNA3体系中,溶液中拉曼信标分子的终浓度均为3μM,信标分子加入到体系中反应过夜,各自以13000r/min离心10min,去除上清液,再向体系中加入20mM Tris-HCl缓冲液恢复到原体积。制备得到AgNP-DNA1-ATP,AgNP-DNA2-NTP,AgNP-DNA3-MATT复合体。
(4)银纳米粒子四面体的组装
将上述制备的AgNP-DNA1-ATP,AgNP-DNA2-NTP,AgNP-DNA3-MATT,AgNP-DNA4各取100μL于1.5mL离心管中混合均匀,加入4μL 5M NaCl溶液,震荡混匀,90℃水浴5min,再在水蒸气中缓慢降到室温,即制备得到银纳米粒子四面体。
(5)基于银纳米颗粒四面体拉曼传感器的构建与应用
对于SDM、AFM1、OTA的同时检测,三种物质按照先后顺序逐个加入到体系中,每种物质中间间隔30min。SDM的添加浓度依次为0,0.001,0.005,0.01,0.05,0.1,0.5fM;AFM1的添加浓度依次为0,0.1,0.5,1,5,10,50fM;OTA的添加浓度依次为0,0.01,0.05,0.1,0.5,1,5fM。三种物质全部加入并反应结束后测体系的拉曼光谱,分别根据4-ATP,NTP及MATT的拉曼信号的强度建立SDM、AFM1、OTA的浓度标准曲线。拉曼光谱测试时间为20s,激发波长为633nm。
一种通用型基于银纳米粒子四面体拉曼多重检测的方法,通过对银纳米粒子四面体制备过程中使用的核酸适配体序列的改变,即可制备得到对应待测物的拉曼多重检测传感器。
本发明的有益效果:首先,银纳米颗粒的拉曼增强效果比其他贵金属明显,是很好的拉曼基底材料。其次,检测是基于对纳米颗粒四面体空间结构的可控调节,在整个检测过程中没有出现纳米颗粒的无规则聚集现象,减少了外界环境的干扰;再次,目标物通过与适配体识别引起四面体结构发生变化,具有很好的特异性;最后,四面体具有六个DNA边,可用于多个目标物的同时检测,既可以用于小分子的检测,也可以用于蛋白质等大分子的定量检测。
图1本发明基于银纳米颗粒四面体拉曼检测的原理图。
图2银纳米颗粒四面体的:(A)TEM图,(B)冷冻电子三维成像图,(C)空间构型示意图;加入SDM后的银纳米颗粒四面体的:(D)TEM图,(E)冷冻电子三维成像图,(F)空间构型示意图。
图3(A)银纳米颗粒四面体用于SDM、AFM1和OTA检测的拉曼指纹图谱;(B)基于银纳米颗粒四面体的多重检测体系同时检测SDM、AFM1和OTA,其中SDM的浓度依次为0,0.001,0.005,0.01,0.05,0.1fM;AFM1的浓度依次为0,0.1,0.5,1,5,10,50fM;OTA的浓度依次为0,0.01,0.05,0.1,0.5,1,5fM;(C)从左到右依次为:SDM浓度与拉曼信号强度的标准曲线,AFM1浓度与拉曼信号强度的标准曲线,OTA浓度与拉曼信号强度的标准曲线。
图4基于银纳米颗粒四面体检测牛奶中SDM的拉曼光谱。
实施例1
(1)10纳米粒径银纳米粒子(AgNP)合成
取一洁净的锥形瓶置于冰浴中,依次加入20mL超纯水,5mL质量分数为1%的聚乙烯吡咯烷酮和0.6mL 0.01摩尔每升的硼氢化钠水溶液。然后将5mL质量分数为1%的聚乙烯吡咯烷酮和5mL质量分数为1%的硝酸银水溶液同时以30mL/h的速度加入到锥形瓶中,边加入边搅拌,溶液由无色变成黄色。所得的银纳米粒子直径为10纳米。
(2)银纳米粒子修饰DNA
取30μL 20nM上述合成的银纳米粒子于PCR管中,加入1μL10μM的DNA1混匀后,依次向体系中加入5μL 5×tris-硼酸缓冲液和1.25μL 2摩尔每升NaCl溶液,室
温振摇反应12h,13000r/min,离心10min,去除上清液,加超纯水至原体积,得AgNP-DNA1。AgNP-DNA2,AgNP-DNA3,AgNP-DNA4复合体的制备方法与AgNP-DNA1类似。
(3)拉曼信标分子的修饰
将三种拉曼信标分子4-氨基苯硫酚(4-ATP),4-硝基苯硫醇(NTP)和4-甲氧基苄硫醇(MATT)分别加入到AgNP-DNA1,AgNP-DNA2,AgNP-DNA3体系中,溶液中拉曼信标分子的终浓度均为3uM,信标分子加入到体系中反应过夜,各自以13000r/min,离心10min,去除上清液,再向体系中加入20mM Tris-HCl缓冲液恢复到原体积。制备得到AgNP-DNA1-ATP,AgNP-DNA2-NTP,AgNP-DNA3-MATT复合体。
(4)银纳米粒子四面体的组装
将上述制备的AgNP-DNA1-ATP,AgNP-DNA2-NTP,AgNP-DNA3-MATT,AgNP-DNA4各取100uL于1.5mL离心管中混合均匀,加入4uL 5M NaCl溶液,震荡混匀,90℃水浴5min,再在水蒸气中缓慢降到室温,即制备得到银纳米粒子四面体。
(5)基于银纳米颗粒四面体拉曼传感器的构建与应用
对于SDM、AFM1、OTA的同时检测,三种物质按照先后顺序逐个加入到体系中,每种物质中间间隔30min。SDM的添加浓度依次为0,0.001,0.005,0.01,0.05,0.1,0.5fM;AFM1的添加浓度依次为0,0.1,0.5,1,5,10,50fM;OTA的添加浓度依次为0,0.01,0.05,0.1,0.5,1,5fM。三种物质全部加入并反应结束后测体系的拉曼光谱,分别根据4-ATP,NTP和MATT的拉曼信号的强度建立SDM、AFM1、OTA的浓度标准曲线。拉曼光谱测试时间为20s,激发波长为633nm。
Claims (6)
- 一种基于银纳米粒子四面体拉曼多重检测的方法,其特征在于利用含有待测物SDM,AFM1,OTA核酸适配体片段的DNA组装得到银纳米粒子四面体,当存在待测物时,四面体的空间构型发生改变引起拉曼信号的变化,进而进行检测;工艺步骤为:(1)10nm粒径银纳米粒子AgNP合成采用硼氢化钠还原硝酸银法合成粒径为10nm的AgNP;(2)银纳米粒子修饰DNA上述合成的银纳米粒子AgNP分别和巯基修饰的DNA1,DNA2,DNA3,DNA4进行偶联形成AgNP-DNA1,AgNP-DNA2,AgNP-DNA3,AgNP-DNA4复合体;构建银纳米粒子四面体的核酸序列:DNA1:5’-TTT ATT GAG GGC AAC GAG TGT TTA TAG ACT TTC CCT ATT AGA AGG TCT CAG GTG CGC GTT TCC AGC CAT ACC TTA GGT ACT TCT GCC-3’;DNA2:5’-TTT CGC GCA CCT GAG ACC TTC TAA TAG GGT TTG CGA CAG TCG TTC AAC TAG AAT GCC CTT TGG GCT GTT CCG GGT GTG GCT CGT CGG-3’;DNA3:5’-TTT ACT GCT AGA GAT TTT CCA CAT GGC TAT TT GAT CGG GTG TGG GTG GCG TAA AGG GAG CAT ACA TTT CC GAC GAG CCA CAC CCG GAA CAG CCC-3’;DNA4:5’-TTT GTC TAT AAA CAC TCG TTG CCC TCA ATT TT TGA CGA TCT CTA AAA GGT GTA CCG ATT TTG GGC ATT CTA G TTG AAC GAC TGT CGC-3’;(3)拉曼信标分子的修饰将三种拉曼信标分子4-氨基苯硫酚4-ATP,4-硝基苯硫醇NTP、4-甲氧基苄硫醇MATT对应修饰到AgNP-DNA1,AgNP-DNA2,AgNP-DNA3表面得到AgNP-DNA1-ATP,AgNP-DNA2-NTP,AgNP-DNA3-MATT;(4)银纳米粒子四面体的组装将上述制备的AgNP-DNA1-ATP,AgNP-DNA2-NTP,AgNP-DNA3-MATT,AgNP-DNA4混合,利用碱基互补配对杂交得到银纳米粒子四面体;(5)基于银纳米颗粒四面体拉曼传感器的构建与应用向步骤(4)制备出的银纳米粒子四面体体系中加入一系列不同浓度的SDM、AFM1、OTA标准溶液,分别测定其拉曼信号,根据三种不同信标的拉曼信号强度与待测物浓度建立标准曲线。
- 根据权利要求1所述的基于银纳米粒子四面体拉曼多重检测的方法,其特征在于10nm粒径银纳米粒子AgNP合成:取一洁净的锥形瓶置于冰浴中,依次加入20mL超纯水,5mL质量分数为1%的聚乙烯吡咯烷酮和0.6mL 0.01mol/L的硼氢化钠水溶液,然后将5mL质量分数为1%的聚乙烯吡咯烷酮和5mL质量分数为1%的硝酸银水溶液同时以30mL/h的速度加入到锥形瓶中,边加入边搅拌,溶液由无色变成黄色,得到10nm粒径银纳米粒子AgNP。
- 根据权利要求1所述的基于银纳米粒子四面体拉曼多重检测的方法,其特征在于银纳米粒子修饰DNA:取30μL 20nM所述合成的银纳米粒子AgNP于PCR管中,加入1μL 10μM的DNA1混匀后,依次向体系中加入5μL 5×tris-硼酸缓冲液和1.25μL 2mol/L NaCl溶液,室温振摇反应12h,13000r/min离心10min,去除上清液,加超纯水至原体积,得AgNP-DNA1;AgNP-DNA2,AgNP-DNA3,AgNP-DNA4复合体的制备方法与AgNP-DNA1类似。
- 根据权利要求1所述的基于银纳米粒子四面体拉曼多重检测的方法,其特征在于拉曼信标分子的修饰:将三种拉曼信标分子4-氨基苯硫酚4-ATP、4-硝基苯硫醇NTP、4-甲氧基苄硫醇MATT分别对应加入到AgNP-DNA1、AgNP-DNA2、AgNP-DNA3体系中,溶液中拉曼信标分子的终浓度均为3μM,信标分子加入到体系中反应过夜,各自以13000r/min离心10min,去除上清液,再向体系中加入20mM Tris-HCl缓冲液恢复到原体积,制备得到AgNP-DNA1-ATP,AgNP-DNA2-NTP,AgNP-DNA3-MATT复合体。
- 根据权利要求1所述的基于银纳米粒子四面体拉曼多重检测的方法,其特征在于银纳米粒子四面体的组装:将上述制备的AgNP-DNA1-ATP,AgNP-DNA2-NTP,AgNP-DNA3-MATT,AgNP-DNA4各取100μL于1.5mL离心管中混合均匀,加入4μL 5M NaCl溶液,震荡混匀,90℃水浴5min,再在水蒸气中缓慢降到室温,即制备得到银纳米粒子四面体。
- 根据权利要求1所述的基于银纳米粒子四面体拉曼多重检测的方法,其特征在于基于银纳米颗粒四面体拉曼传感器的构建与应用:对于SDM、AFM1、OTA的同时检测,三种物质按照先后顺序逐个加入到体系中,每种物质中间间隔30min;SDM的添加浓度依次为0,0.001,0.005,0.01,0.05,0.1,0.5fM;AFM1的添加浓度依次为0,0.1,0.5,1,5,10,50fM;OTA的添加浓度依次为0,0.01,0.05,0.1,0.5,1,5fM;三种物质全部加入并反应结束后测体系的拉曼光谱,分别根据4-ATP,NTP及MATT的拉曼信号的强度建立SDM、AFM1、OTA的浓度标准曲线;拉曼光谱测试时间为20s,激发波长为633nm。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510012180.X | 2015-01-09 | ||
CN201510012180.XA CN104597027B (zh) | 2015-01-09 | 2015-01-09 | 一种基于银纳米粒子四面体拉曼多重检测的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016109911A1 true WO2016109911A1 (zh) | 2016-07-14 |
Family
ID=53122948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/000721 WO2016109911A1 (zh) | 2015-01-09 | 2015-10-28 | 一种基于银纳米粒子四面体拉曼多重检测的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104597027B (zh) |
WO (1) | WO2016109911A1 (zh) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111349688A (zh) * | 2020-03-27 | 2020-06-30 | 上海健康医学院 | 一种纳米结构人工酶信号探针的多通道Fibrin检测方法 |
CN111662900A (zh) * | 2020-05-13 | 2020-09-15 | 重庆师范大学 | 一种磺胺二甲嘧啶核酸适配体筛选方法、试剂盒及应用 |
CN112748096A (zh) * | 2020-12-29 | 2021-05-04 | 山西大学 | 一种磺胺二甲氧嘧啶的室温磷光检测方法及应用 |
CN113092438A (zh) * | 2021-03-26 | 2021-07-09 | 陕西理工大学 | 凝胶、纳米材料拉曼基底的构建及对菊酯类农残检测方法 |
CN113125407A (zh) * | 2020-01-16 | 2021-07-16 | 武汉市农业科学院 | 一种Cr6+离子快速检测方法 |
CN113877643A (zh) * | 2021-09-18 | 2022-01-04 | 重庆市益康环保工程有限公司 | 检测水污染的纤维素3d增强拉曼光谱微流芯片及其应用 |
CN114624223A (zh) * | 2022-03-15 | 2022-06-14 | 山东农业大学 | 一种基于嵌入特异性核酸酶dna水凝胶的表面增强拉曼光谱传感器检测链霉素的方法 |
CN115032252A (zh) * | 2022-04-28 | 2022-09-09 | 江南大学 | 一种检测赭曲霉毒素a的电化学传感分析方法 |
CN115184335A (zh) * | 2022-07-08 | 2022-10-14 | 西安交通大学 | 一种基于聚沉剂诱导纳米金颗粒表面原位形成包覆层的拉曼检测方法 |
CN115728285A (zh) * | 2022-10-31 | 2023-03-03 | 山东农业大学 | 一种基于“生物静默区”标签的表面增强拉曼传感器及其检测组胺的方法 |
CN115944606A (zh) * | 2023-01-09 | 2023-04-11 | 蒋彬灿 | 一种靶向鼻咽肿瘤细胞的载药纳米粒及其制备方法与应用 |
CN116008546A (zh) * | 2022-07-27 | 2023-04-25 | 中国人民解放军陆军军医大学第一附属医院 | Dna链置换的四面体纳米探针在制备基于熵驱动检测atp的试剂中的应用及方法和产品 |
CN116660238A (zh) * | 2023-05-08 | 2023-08-29 | 江南大学 | 一种基于免标记sers金属纳米探针的黄曲霉毒素亚型分析方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104597027B (zh) * | 2015-01-09 | 2017-07-25 | 江南大学 | 一种基于银纳米粒子四面体拉曼多重检测的方法 |
CN105738342B (zh) * | 2016-02-26 | 2018-09-25 | 中国人民解放军军事医学科学院军事兽医研究所 | 一种以适配体为支架原位合成纳米银的sers方法 |
CN106290873B (zh) * | 2016-07-28 | 2018-03-30 | 江南大学 | 一种基于具有拉曼和荧光双重信号的金‑上转换空间四面体结构的制备及应用 |
CN109806275B (zh) * | 2017-11-22 | 2021-04-23 | 成都腾达树纳米生物科技有限公司 | Dna四面体在促神经修复药物制备中的用途 |
CN108785106B (zh) * | 2018-06-05 | 2021-03-16 | 中国科学院上海硅酸盐研究所 | 一种胶状含银磷酸钙纳米复合材料及其制备方法和应用 |
CN111198177B (zh) * | 2019-12-18 | 2021-03-09 | 江南大学 | 一种比率型表面增强拉曼光谱的金空间四面体结构的制备方法及其应用 |
CN115728284B (zh) * | 2022-10-28 | 2024-04-26 | 南京师范大学 | 一种基于表面增强拉曼光谱测定核酸适配体与小分子靶标间相互作用的方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070059203A1 (en) * | 2005-09-09 | 2007-03-15 | General Electric Company | Raman-active lateral flow device and methods of detection |
CN101571536A (zh) * | 2009-06-09 | 2009-11-04 | 宋玉军 | 单个纳米颗粒及其阵列基生物分子检测器的制备工艺 |
CN102912020A (zh) * | 2012-10-20 | 2013-02-06 | 江南大学 | 一种测定赭曲霉毒素a的适配体传感器的构建方法 |
US20130157254A1 (en) * | 2011-12-16 | 2013-06-20 | Real-Time Analyzers, Inc. | Method and apparatus for two-step surface-enhanced raman spectroscopy |
CN103412081A (zh) * | 2013-08-21 | 2013-11-27 | 江南大学 | 基于大小银二聚体手性信号的超灵敏检测磺胺二甲氧嘧啶的方法 |
CN104198464A (zh) * | 2014-09-23 | 2014-12-10 | 南京农业大学 | 一种表面增强拉曼散射检测体系的构建方法 |
CN104597027A (zh) * | 2015-01-09 | 2015-05-06 | 江南大学 | 一种基于银纳米粒子四面体拉曼多重检测的方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101726480B (zh) * | 2009-11-23 | 2012-05-23 | 南京大学 | 基于类金刚石薄膜修饰金属纳米结构的表面增强拉曼衬底及其制备方法 |
CN104034714B (zh) * | 2013-03-07 | 2018-01-30 | 厦门大学 | 一种超痕量物质的拉曼光谱检测方法 |
CN103983632A (zh) * | 2014-06-09 | 2014-08-13 | 哈尔滨工业大学 | 液/液界面自组装银纳米颗粒表面增强拉曼光谱滤纸基底的制备方法 |
CN104101630B (zh) * | 2014-07-24 | 2017-01-18 | 南京大学 | 一种基于纳米颗粒自组装制备纳米多孔结构的方法及其应用 |
-
2015
- 2015-01-09 CN CN201510012180.XA patent/CN104597027B/zh active Active
- 2015-10-28 WO PCT/CN2015/000721 patent/WO2016109911A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070059203A1 (en) * | 2005-09-09 | 2007-03-15 | General Electric Company | Raman-active lateral flow device and methods of detection |
CN101571536A (zh) * | 2009-06-09 | 2009-11-04 | 宋玉军 | 单个纳米颗粒及其阵列基生物分子检测器的制备工艺 |
US20130157254A1 (en) * | 2011-12-16 | 2013-06-20 | Real-Time Analyzers, Inc. | Method and apparatus for two-step surface-enhanced raman spectroscopy |
CN102912020A (zh) * | 2012-10-20 | 2013-02-06 | 江南大学 | 一种测定赭曲霉毒素a的适配体传感器的构建方法 |
CN103412081A (zh) * | 2013-08-21 | 2013-11-27 | 江南大学 | 基于大小银二聚体手性信号的超灵敏检测磺胺二甲氧嘧啶的方法 |
CN104198464A (zh) * | 2014-09-23 | 2014-12-10 | 南京农业大学 | 一种表面增强拉曼散射检测体系的构建方法 |
CN104597027A (zh) * | 2015-01-09 | 2015-05-06 | 江南大学 | 一种基于银纳米粒子四面体拉曼多重检测的方法 |
Non-Patent Citations (3)
Title |
---|
ELLINGTON, A.D. ET AL.: "In Vitro Selection of RNA Molecules that Bind Specific Ligands", NATURE, vol. 346, 30 August 1990 (1990-08-30), pages 818 - 822, XP002547962, DOI: doi:10.1038/346818a0 * |
LIU, GUODONG;: "Aptamer-nanoparticle Strip Biosensor for Sensitive Detection of Cancer Cells", ANAL. CHEM., vol. 81, no. 24, 5 December 2009 (2009-12-05), pages 10013 - 10018 * |
YAN, WENJING ET AL.: "Self-assembly of Chiral Nanoparticle Pyramids with Strong R/S Optical Activity", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 134, 19 August 2012 (2012-08-19), pages 15114 - 15121 * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113125407A (zh) * | 2020-01-16 | 2021-07-16 | 武汉市农业科学院 | 一种Cr6+离子快速检测方法 |
CN113125407B (zh) * | 2020-01-16 | 2024-05-03 | 武汉市农业科学院 | 一种Cr6+离子快速检测方法 |
CN111349688A (zh) * | 2020-03-27 | 2020-06-30 | 上海健康医学院 | 一种纳米结构人工酶信号探针的多通道Fibrin检测方法 |
CN111349688B (zh) * | 2020-03-27 | 2023-07-04 | 上海健康医学院 | 一种纳米结构人工酶信号探针的多通道Fibrin检测方法 |
CN111662900A (zh) * | 2020-05-13 | 2020-09-15 | 重庆师范大学 | 一种磺胺二甲嘧啶核酸适配体筛选方法、试剂盒及应用 |
CN111662900B (zh) * | 2020-05-13 | 2023-06-27 | 重庆师范大学 | 一种磺胺二甲嘧啶核酸适配体筛选方法、试剂盒及应用 |
CN112748096A (zh) * | 2020-12-29 | 2021-05-04 | 山西大学 | 一种磺胺二甲氧嘧啶的室温磷光检测方法及应用 |
CN113092438A (zh) * | 2021-03-26 | 2021-07-09 | 陕西理工大学 | 凝胶、纳米材料拉曼基底的构建及对菊酯类农残检测方法 |
CN113877643B (zh) * | 2021-09-18 | 2022-09-13 | 重庆市益康环保工程有限公司 | 检测水污染的纤维素3d增强拉曼光谱微流芯片及其应用 |
CN113877643A (zh) * | 2021-09-18 | 2022-01-04 | 重庆市益康环保工程有限公司 | 检测水污染的纤维素3d增强拉曼光谱微流芯片及其应用 |
CN114624223A (zh) * | 2022-03-15 | 2022-06-14 | 山东农业大学 | 一种基于嵌入特异性核酸酶dna水凝胶的表面增强拉曼光谱传感器检测链霉素的方法 |
CN115032252A (zh) * | 2022-04-28 | 2022-09-09 | 江南大学 | 一种检测赭曲霉毒素a的电化学传感分析方法 |
CN115184335A (zh) * | 2022-07-08 | 2022-10-14 | 西安交通大学 | 一种基于聚沉剂诱导纳米金颗粒表面原位形成包覆层的拉曼检测方法 |
CN116008546A (zh) * | 2022-07-27 | 2023-04-25 | 中国人民解放军陆军军医大学第一附属医院 | Dna链置换的四面体纳米探针在制备基于熵驱动检测atp的试剂中的应用及方法和产品 |
CN115728285A (zh) * | 2022-10-31 | 2023-03-03 | 山东农业大学 | 一种基于“生物静默区”标签的表面增强拉曼传感器及其检测组胺的方法 |
CN115944606A (zh) * | 2023-01-09 | 2023-04-11 | 蒋彬灿 | 一种靶向鼻咽肿瘤细胞的载药纳米粒及其制备方法与应用 |
CN116660238A (zh) * | 2023-05-08 | 2023-08-29 | 江南大学 | 一种基于免标记sers金属纳米探针的黄曲霉毒素亚型分析方法 |
CN116660238B (zh) * | 2023-05-08 | 2024-06-07 | 江南大学 | 一种基于免标记sers金属纳米探针的黄曲霉毒素亚型分析方法 |
Also Published As
Publication number | Publication date |
---|---|
CN104597027A (zh) | 2015-05-06 |
CN104597027B (zh) | 2017-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016109911A1 (zh) | 一种基于银纳米粒子四面体拉曼多重检测的方法 | |
Huang et al. | AuNanostar@ 4-MBA@ Au core–shell nanostructure coupled with exonuclease III-assisted cycling amplification for ultrasensitive SERS detection of ochratoxin A | |
Rong et al. | Rapid and sensitive detection of diazinon in food based on the FRET between rare-earth doped upconversion nanoparticles and graphene oxide | |
Zhang et al. | A fluorescent aptasensor based on DNA-scaffolded silver nanoclusters coupling with Zn (II)-ion signal-enhancement for simultaneous detection of OTA and AFB1 | |
Yue et al. | Simultaneous detection of Ochratoxin A and fumonisin B1 in cereal samples using an aptamer–photonic crystal encoded suspension Array | |
Gedi et al. | Detection and characterization of cancer cells and pathogenic bacteria using aptamer-based nano-conjugates | |
Yin et al. | Novel metal nanoparticle-enhanced fluorescence for determination of trace amounts of fluoroquinolone in aqueous solutions | |
Liang et al. | A sensitive spectrofluorometric method for detection of berberine hydrochloride using Ag nanoclusters directed by natural fish sperm DNA | |
Liu et al. | An ultrasensitive aptasensor for detection of Ochratoxin A based on shielding effect-induced inhibition of fluorescence resonance energy transfer | |
Zhang et al. | Upconversion luminescence resonance energy transfer-based aptasensor for the sensitive detection of oxytetracycline | |
Zhao et al. | Bilayer magnetic-plasmonic satellite nanoassemblies for SERS detection of tobramycin with exonuclease amplification | |
Wang et al. | Highly sensitive aflatoxin B1 sensor based on DNA-guided assembly of fluorescent probe and TdT-assisted DNA polymerization | |
CN102830113A (zh) | 目标诱导链释放和限制性内切酶酶切循环的信号放大技术建立及赭曲霉素a的检测 | |
CN104237136B (zh) | 一种基于金核-银卫星手性组装体的赭曲霉毒素a的超灵敏检测方法 | |
He et al. | Recent advances in the application of Raman spectroscopy for fish quality and safety analysis | |
Xing et al. | Development of a label-free plasmonic gold nanoparticles aggregates sensor on the basis of charge neutralization for the detection of zearalenone | |
Yu et al. | A fluorescent “turn-off” probe for the determination of curcumin using upconvert luminescent carbon dots | |
Lee et al. | Recent advances in biological applications of aptamer-based fluorescent biosensors | |
Duan et al. | Ratiometric SERS aptasensing for simultaneous quantitative detection of histamine and tyramine in fishes | |
CN113005180A (zh) | 磁性sers生物传感器及其制备方法和应用 | |
Yang et al. | Well-ordered Au@ Ag NBPs/SiO2 nanoarray for sensitive detection of chloramphenicol via DNAzyme-assisted SERS sensing | |
CN113640274A (zh) | 一种基于适配体门控介孔二氧化硅的金黄色葡萄球菌检测方法 | |
CN113418884B (zh) | 一种基于DNA-AuNPs体系的比色阵列传感器及其制备方法 | |
He et al. | Establishment of a dual-signal sandwich sensor for detection of Shigella sonnei based on truncated aptamers | |
Lee et al. | Combining DNA-stabilized silver nanocluster synthesis with exonuclease III amplification allows label-free detection of coralyne |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15876422 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15876422 Country of ref document: EP Kind code of ref document: A1 |