CN113877643B - 检测水污染的纤维素3d增强拉曼光谱微流芯片及其应用 - Google Patents

检测水污染的纤维素3d增强拉曼光谱微流芯片及其应用 Download PDF

Info

Publication number
CN113877643B
CN113877643B CN202111098641.1A CN202111098641A CN113877643B CN 113877643 B CN113877643 B CN 113877643B CN 202111098641 A CN202111098641 A CN 202111098641A CN 113877643 B CN113877643 B CN 113877643B
Authority
CN
China
Prior art keywords
cellulose
nano
wire
microfluidic chip
enhanced raman
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111098641.1A
Other languages
English (en)
Other versions
CN113877643A (zh
Inventor
王丹
姚凯彬
黄映洲
唐军
郭昌川
雒鑫伟
郑颖
康一骏
韩水平
吴小祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Yikang Environmental Protection Engineering Co ltd
Chongqing University
Original Assignee
Chongqing Yikang Environmental Protection Engineering Co ltd
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Yikang Environmental Protection Engineering Co ltd, Chongqing University filed Critical Chongqing Yikang Environmental Protection Engineering Co ltd
Priority to CN202111098641.1A priority Critical patent/CN113877643B/zh
Publication of CN113877643A publication Critical patent/CN113877643A/zh
Application granted granted Critical
Publication of CN113877643B publication Critical patent/CN113877643B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/03Polysaccharides or derivatives thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/04Vegetal fibres
    • D06M2101/06Vegetal fibres cellulosic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Textile Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种检测水污染的纤维素3D增强拉曼光谱微流芯片,第一步,材料及设备准备;第二步,纳米纤维素线净化;第三步,纤维素线羧化处理;第四步,纤维素线AgNPs银纳米粒子的合成:先将羧化处理后的纤维素线放入硝酸银溶液中浸泡,再放入硼氢化钠溶液中浸泡,得到表面泛黄的3D包裹银纳米的纤维素线,通入去离子水缓缓冲洗去除未反应的杂质,最后放入干燥箱中干燥;第五步,在微流管道中放入一根3D包裹银纳米的纤维素线作为微流控芯片,通过plasma等离子体键合,将微流控芯片键合在载玻片上。同时,本发明还公开了检测水污染的纤维素3D增强拉曼光谱微流芯片的应用。低成本、高灵敏度、制作工艺简便,能对水中污染物进行快速、精确检测。

Description

检测水污染的纤维素3D增强拉曼光谱微流芯片及其应用
技术领域
本发明涉及水中污染物成分检测技术领域,具体涉及到一种纤维素3D增强拉曼光谱微流芯片,及其应用。
背景技术
拉曼光谱提供了指纹光谱,可实现分子的无标记传感。然而,由于光谱分辨率低,拉曼散射信号的整体强度太弱难以实现复用传感,需要开发能够以超高灵敏度和高光谱分辨率检测分子的原位技术。表面增强拉曼光谱(SERS)是一种这样的技术,它具有高灵敏度。当SERS与微流体通道耦合时,可以实现连续SERS检测。为了获得SERS集成的微流控平台,SERS活性材料应在微流控通道内制造。目前已经开发了几种沉积方法来制造SERS活性金属纳米结构,例如电子束蒸发器、激光沉积、Langmuir-Blodgett技术和热蒸发。然而,这些方法对器材及材料要求较高,并且生成的SERS活性材料与待测样接触面积仅有一面,接触面积较小影响芯片的灵敏度。
近年来,发展中国家因工业快速发展而造成的重金属污染日益严重,已成为一个严重的环境问题。因此,检测水和食品中痕量污染物对于保护环境和人类健康至关重要。对于这些有毒物质的现场检测,最好选择封闭的环境。然而,只有少数研究专注于在封闭的微流体通道中制造金属纳米结构阵列,因为制造这种设备既复杂又耗时。纳米结构以允许在微通道中进行测量,胶体金属纳米粒子必须注入通道中,同时还需要小心控制流速和在此类系统中精心设计的微流体芯片。
发明内容
针对上述问题,本发明旨在提供一种低成本、高灵敏度、制作工艺简便的3D增强拉曼光谱微流芯片,能对水中污染物进行快速、精确检测。
为此,本发明所采用的技术方案为:一种检测水污染的纤维素3D增强拉曼光谱微流芯片,包括以下步骤:
第一步,材料及设备准备;
硝酸银、硼氢化钠、氢氧化钠、羧化壳聚糖、醋酸、去离子水;
纳米纤维素线、微流管道、真空干燥箱;
第二步,纳米纤维素线净化:将纳米纤维素线用1%-3%w/v的氢氧化钠溶液在80±5℃水浴加热搅拌3±0.5h,去除木质素和半纤维素;再用去离子水洗涤纳米纤维素线,然后保存在去离子水中;
第三步,纤维素线羧化处理:将羧化壳聚糖溶解于醋酸中配置成羧化酸溶液,配置比例为:1g羧化壳聚糖:50ml1%v/v醋酸;再将净化后的纳米纤维素线从去离子水中取出放入羧化酸溶液中,在60±5℃下搅拌50-70min,然后保存在去离子水中;
第四步,纤维素线AgNPs银纳米粒子的合成:先将羧化处理后的纤维素线放入浓度为1mol/L的硝酸银溶液中浸泡5-20min,再取出纤维素线放入浓度为1mol/L的硼氢化钠溶液中浸泡5-20min,得到表面泛黄的3D包裹银纳米的纤维素线,通入去离子水缓缓冲洗去除未反应的杂质,最后放入干燥箱中干燥;
第五步,在微流管道中放入一根3D包裹银纳米的纤维素线作为微流控芯片,通过plasma等离子体键合,将微流控芯片键合在载玻片上。
作为上述方案的优选,所述去离子水为0.8%-0.9%w/w。
进一步优选为,第二步中,采用浓度为2%w/v的氢氧化钠溶液,水浴温度为80℃,搅拌时间为3h。
进一步优选为,第三步中,采用的羧化壳聚糖1g,醋酸50ml,温度为60℃,搅拌60min。
进一步优选为,第四步中,1mol/L的硝酸银、1mol/L的硼氢化钠溶液各5ml,均提前15min制备以保持新鲜。
同时,本发明还公布了一种上述的检测水污染的纤维素3D增强拉曼光谱微流芯片的应用,将污水通入检测水污染的纤维素3D增强拉曼光谱微流芯片中,再对吸附后的微流控芯片进行SERS检测。
作为上述方案的优选,SERS检测采用的拉曼激光波长633nm,积分时间为20s,拉曼检测参数为0.7mw。
本发明的有益效果:
(1)采用纳米纤维素线依次浸泡硝酸银溶液和硼氢化钠溶液,进行银纳米粒子的3D包裹,相比传统的通过微流泵依次向微流管道中以20微升/分钟的规定速度缓慢通入上述两种溶液,不需要小心控制流速,操作更加轻松简便;
(2)采用浸泡的方式,能使银纳米粒子在纤维素线外形成3D包裹,纤维素线状立体结构可以360度吸附银颗粒,同时纤维素线具有褶皱性表面,增大了吸附银颗粒的面积,羧化处理的纤维素线也更容易与银颗粒相结合,再将其置入微流管道中作为微流控芯片,能增大芯片与待测样品的接触面积,提高灵敏度和检测精准度;而传统的直接向微流管道中通入硝酸银溶液和硼氢化钠溶液的方式,由于重力作用,仅能在微流管道底部合成银纳米粒子,造成芯片与待测样品的接触面积小,检测灵敏度和精准度不高;
(3)此方法针对于水中污染物的检测不会影响水质发生变化,检测方法简单,对器材及材料要求较低,因此具有普遍性。
附图说明
图1为纤维素线的SEM图。
图2为微流管道模拟图。
图3为用于含三聚氰胺污水检测时,传统微流控芯片与本发明SERS信号对比图。
具体实施方式
下面通过实施例并结合附图,对本发明作进一步说明:
结合图1—图3所示,一种检测水污染的纤维素3D增强拉曼光谱微流芯片,包括以下步骤:
第一步,材料及设备准备。
硝酸银、硼氢化钠、氢氧化钠、羧化壳聚糖、醋酸、去离子水。
纳米纤维素线、微流管道、真空干燥箱。
第二步,纳米纤维素线净化。
将纳米纤维素线用1%-3%w/v的氢氧化钠溶液在80±5℃水浴加热搅拌3±0.5h,去除木质素和半纤维素;再用去离子水洗涤纳米纤维素线,然后保存在去离子水中;
优选为:采用0.8%-0.9%w/w的去离子水,采用浓度为2%w/v的氢氧化钠溶液,水浴温度为80℃,搅拌时间为3h。
第三步,纤维素线羧化处理:将羧化壳聚糖溶解于醋酸中配置成羧化酸溶液,配置比例为:1g羧化壳聚糖:50ml1%v/v醋酸;再将净化后的纳米纤维素线从去离子水中取出放入羧化酸溶液中,在60±5℃下搅拌50-70min,然后保存在去离子水中。
优选为:采用的羧化壳聚糖1g,醋酸50ml,温度为60℃,搅拌60min。
第四步,纤维素线AgNPs银纳米粒子的合成。
先将羧化处理后的纤维素线放入浓度为1mol/L的硝酸银溶液(0.01689g/ml)中浸泡5-20min,再取出纤维素线放入浓度为1mol/L的硼氢化钠溶液(0.00398g/ml)中浸泡5-20min,得到表面泛黄的3D包裹银纳米的纤维素线,通入去离子水缓缓冲洗去除未反应的杂质,最后放入干燥箱中干燥。
优选为:1mol/L的硝酸银、1mol/L的硼氢化钠溶液各5ml,均提前15min制备以保持新鲜。
第五步,在微流管道中放入一根3D包裹银纳米的纤维素线作为微流控芯片,通过plasma等离子体键合,将微流控芯片键合在载玻片上。
上述检测水污染的纤维素3D增强拉曼光谱微流芯片的应用,将污水通入检测水污染的纤维素3D增强拉曼光谱微流芯片中,再对吸附后的微流控芯片进行SERS检测。
优选为:SERS检测采用的拉曼激光波长633nm,积分时间为20s,拉曼检测参数为0.7mw。

Claims (7)

1.一种检测水污染的纤维素3D增强拉曼光谱微流芯片,其特征在于,包括以下步骤:
第一步,材料及设备准备;
硝酸银、硼氢化钠、氢氧化钠、羧化壳聚糖、醋酸、去离子水;
纳米纤维素线、微流管道、真空干燥箱;
第二步,纳米纤维素线净化:将纳米纤维素线用1%-3%w/v的氢氧化钠溶液在80±5°C水浴加热搅拌3±0.5h,去除木质素和半纤维素;再用去离子水洗涤纳米纤维素线,然后保存在去离子水中;
第三步,纤维素线羧化处理:将羧化壳聚糖溶解于醋酸中配置成羧化酸溶液,配置比例为:1g羧化壳聚糖:50ml1%v/v醋酸;再将净化后的纳米纤维素线从去离子水中取出放入羧化酸溶液中,在60±5°C下搅拌50-70min,然后保存在去离子水中;
第四步,纤维素线AgNPs银纳米粒子的合成:先将羧化处理后的纤维素线放入浓度为1mol/L的硝酸银溶液中浸泡5-20min,再取出纤维素线放入浓度为1mol/L的硼氢化钠溶液中浸泡5-20min,得到表面泛黄的3D包裹银纳米的纤维素线,通入去离子水缓缓冲洗去除未反应的杂质,最后放入干燥箱中干燥;
第五步,在微流管道中放入一根3D包裹银纳米的纤维素线作为微流控芯片,通过plasma等离子体键合,将微流控芯片键合在载玻片上。
2.按照权利要求1所述的检测水污染的纤维素3D增强拉曼光谱微流芯片,其特征在于:所述去离子水为0.8%-0.9%w/w。
3.按照权利要求1所述的检测水污染的纤维素3D增强拉曼光谱微流芯片,其特征在于:第二步中,采用浓度为2%w/v的氢氧化钠溶液,水浴温度为80°C,搅拌时间为3h。
4.按照权利要求1所述的检测水污染的纤维素3D增强拉曼光谱微流芯片,其特征在于:第三步中,采用的羧化壳聚糖1g,醋酸50ml,温度为60°C,搅拌60min。
5.按照权利要求1所述的检测水污染的纤维素3D增强拉曼光谱微流芯片,其特征在于:第四步中,1mol/L的硝酸银、1mol/L的硼氢化钠溶液各5ml,均提前15min制备以保持新鲜。
6.权利要求1—5中任一项所述的检测水污染的纤维素3D增强拉曼光谱微流芯片的应用,其特征在于:将污水通入检测水污染的纤维素3D增强拉曼光谱微流芯片中,再对吸附后的微流控芯片进行SERS检测。
7.按照权利要求6所述的检测水污染的纤维素3D增强拉曼光谱微流芯片的应用,其特征在于:SERS检测采用的拉曼激光波长633nm,积分时间为20s,拉曼检测参数为0.7MW。
CN202111098641.1A 2021-09-18 2021-09-18 检测水污染的纤维素3d增强拉曼光谱微流芯片及其应用 Active CN113877643B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111098641.1A CN113877643B (zh) 2021-09-18 2021-09-18 检测水污染的纤维素3d增强拉曼光谱微流芯片及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111098641.1A CN113877643B (zh) 2021-09-18 2021-09-18 检测水污染的纤维素3d增强拉曼光谱微流芯片及其应用

Publications (2)

Publication Number Publication Date
CN113877643A CN113877643A (zh) 2022-01-04
CN113877643B true CN113877643B (zh) 2022-09-13

Family

ID=79009964

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111098641.1A Active CN113877643B (zh) 2021-09-18 2021-09-18 检测水污染的纤维素3d增强拉曼光谱微流芯片及其应用

Country Status (1)

Country Link
CN (1) CN113877643B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114437389B (zh) * 2022-03-02 2023-11-07 五邑大学 一种具有高表面拉曼增强效应有序纳米褶皱纤维素复合膜及其制备方法
CN116162277B (zh) * 2023-04-24 2023-08-01 北京市农林科学院智能装备技术研究中心 一种水中磷酸根的快速测量方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016109911A1 (zh) * 2015-01-09 2016-07-14 江南大学 一种基于银纳米粒子四面体拉曼多重检测的方法
CN107589103A (zh) * 2017-08-05 2018-01-16 北京师范大学 银纳米花在纤维上的一步溶液相组装方法
CN110006873A (zh) * 2019-04-08 2019-07-12 重庆市环卫集团有限公司 基于三维微纳结构增强拉曼光谱的环境污染物检测方法
CN110669241A (zh) * 2019-08-30 2020-01-10 中山大学 一种微生物纤维素膜/纳米贵金属复合材料及其制备方法和应用
KR20210108899A (ko) * 2020-02-26 2021-09-03 사회복지법인 삼성생명공익재단 소변의 라만 신호를 이용한 암 진단 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007140573A1 (en) * 2006-04-24 2007-12-13 Axcelon Biopolymers Corporation Nanosilver coated bacterial cellulose
US9255843B2 (en) * 2011-09-26 2016-02-09 University Of Maryland, College Park Porous SERS analytical devices and methods of detecting a target analyte
CN110208245B (zh) * 2019-06-19 2020-09-08 清华大学 一种纸基柔性表面增强拉曼散射效应基片及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016109911A1 (zh) * 2015-01-09 2016-07-14 江南大学 一种基于银纳米粒子四面体拉曼多重检测的方法
CN107589103A (zh) * 2017-08-05 2018-01-16 北京师范大学 银纳米花在纤维上的一步溶液相组装方法
CN110006873A (zh) * 2019-04-08 2019-07-12 重庆市环卫集团有限公司 基于三维微纳结构增强拉曼光谱的环境污染物检测方法
CN110669241A (zh) * 2019-08-30 2020-01-10 中山大学 一种微生物纤维素膜/纳米贵金属复合材料及其制备方法和应用
KR20210108899A (ko) * 2020-02-26 2021-09-03 사회복지법인 삼성생명공익재단 소변의 라만 신호를 이용한 암 진단 방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Fast and straightforward in-situ synthesis of gold nanoparticles on a threadbased microfluidic device for application in surface-enhanced Raman scattering detection";Cristina Battesini Adamo;《Microchemical Journal》;20200505;第156卷;全文 *
"Microfluidic approach for in situ synthesis of nanoporous silver microstructures as on-chip SERS substrates";Duangtip Lawanstiend;《Sensors and Actuators B: Chemical》;20180525;第270卷;全文 *
"Preparation and application of microfluidic SERS substrate:Challenges and future perspectives";Jiuchuan Guo;《Journal of Materials Science & Technology》;20190829;第37卷;全文 *

Also Published As

Publication number Publication date
CN113877643A (zh) 2022-01-04

Similar Documents

Publication Publication Date Title
CN113877643B (zh) 检测水污染的纤维素3d增强拉曼光谱微流芯片及其应用
Luo et al. Femtosecond laser micro-nano structured Ag SERS substrates with unique sensitivity, uniformity and stability for food safety evaluation
Wang et al. Synthesis of novel decorated one-dimensional gold nanoparticle and its application in ultrasensitive detection of insecticide
KopyŚĆ et al. Determination of mercury by cold-vapor atomic absorption spectrometry with preconcentration on a gold-trap
Ma et al. One-step synthesis of silver/dopamine nanoparticles and visual detection of melamine in raw milk
Jiang et al. Two-photon ratiometric sensing of Hg 2+ by using cysteine functionalized Ag nanoparticles
Ma et al. A displacement principle for mercury detection by optical waveguide and surface enhanced Raman spectroscopy
Wang et al. Fluorescent sensors based on Cu-doped carbon quantum dots for the detection of rutin
Qu et al. A silver nanoparticle based surface enhanced resonance Raman scattering (SERRS) probe for the ultrasensitive and selective detection of formaldehyde
CN108414494A (zh) 用于痕量毒害物质检测的MOFs@贵金属表面增强拉曼散射基底、制备方法及应用
CN103411950A (zh) 基于表面增强拉曼活性芯片对牛奶中三聚氰胺进行检测的方法
Najarzadekan et al. Transparent polycaprolactam electrospun nanofibers doped with 1, 10-phenanthroline optical sensor for colorimetric determination of iron (II) and vitamin C
Lu et al. Improved SERS performance of a silver triangular nanoparticle/TiO 2 nanoarray heterostructure and its application for food additive detection
CN111175275A (zh) 一种SERS用的基于银修饰MoO3-x的多层结构
Vendamani et al. MoS2 nanosheets decorated plasmonic silicon nanowires as SERS substrates for ultra-sensitive multiple analyte detection
Yang et al. A dual sensor of fluorescent and colorimetric for the rapid detection of lead
Yan et al. Ultra-trace and quantitative SERS detection of polycyclic aromatic hydrocarbons based on Au nanoscale convex polyhedrons with embedded probe molecules
Bai et al. Selective colorimetric sensing of Co 2+ and Cu 2+ using 1-(2-pyridylazo)-2-naphthol derivative immobilized polyvinyl alcohol microspheres
WO2012071605A1 (en) Process for preparing gold nanoparticles
Tang et al. Tuning the aggregation/disaggregation behaviours of ZnSe quantum dots for high-sensitivity fluorescent rutin sensors
Lu et al. A nanocomposite of silver nanoparticles and porous g-C3N4 for Recyclable SERS detection of Trace Fluorene
Jin et al. In situ growth of silver nanoparticles on alkali-treated cotton swabs as a cheap and highly sensitive SERS substrate for rapid detection of food additives
Chen et al. A responsive photonic crystal film sensor for the ultrasensitive detection of uranyl ions
Fouladvandi et al. Ultra-Trace Determination of Silver in Water, Soil and Radiology Film Samples Using Dispersive Liquid-Liquid Microextraction and Microvolume UV–Vis Spectrophotometry
Liu et al. Fabrication of multifunctional g-C3N4-modified Au/Ag NRs arrays for ultrasensitive and recyclable SERS detection of bisphenol A residues

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant