WO2016109909A1 - 无主栅高效率背接触太阳能电池、组件及其制备工艺 - Google Patents

无主栅高效率背接触太阳能电池、组件及其制备工艺 Download PDF

Info

Publication number
WO2016109909A1
WO2016109909A1 PCT/CN2015/000347 CN2015000347W WO2016109909A1 WO 2016109909 A1 WO2016109909 A1 WO 2016109909A1 CN 2015000347 W CN2015000347 W CN 2015000347W WO 2016109909 A1 WO2016109909 A1 WO 2016109909A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
conductive
electrode
layer
line
Prior art date
Application number
PCT/CN2015/000347
Other languages
English (en)
French (fr)
Inventor
林建伟
夏文进
孙玉海
Original Assignee
苏州中来光伏新材股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州中来光伏新材股份有限公司 filed Critical 苏州中来光伏新材股份有限公司
Priority to MYPI2017702401A priority Critical patent/MY190470A/en
Priority to KR1020177021944A priority patent/KR101925233B1/ko
Priority to US15/541,335 priority patent/US20170365731A1/en
Priority to SG11201705389QA priority patent/SG11201705389QA/en
Priority to JP2017535742A priority patent/JP6524237B2/ja
Priority to EP15876420.9A priority patent/EP3244454B1/en
Priority to ES15876420T priority patent/ES2947503T3/es
Publication of WO2016109909A1 publication Critical patent/WO2016109909A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0516Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module specially adapted for interconnection of back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/0201Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising specially adapted module bus-bar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the field of solar cells, in particular to a high-efficiency back contact solar cell without a main gate, a component and a preparation process thereof.
  • Solar energy is the enormous energy released by the hydrogen nuclei in the sun at super high temperatures. Most of the energy required by humans comes directly or indirectly from the sun.
  • the fossil fuels such as coal, oil and natural gas required for life are all formed by the conversion of solar energy into chemical energy by photosynthesis in plants, and then the underground plants and animals are formed through a long geological period.
  • water, wind, tidal energy, current energy, etc. are also converted from solar energy.
  • the solar energy that illuminates the earth is very large.
  • the solar energy that illuminates the earth in about 40 minutes is enough for the global human energy consumption for one year. It can be said that solar energy is a truly inexhaustible renewable energy source, and solar power generation is absolutely safe and pollution-free is an ideal energy source.
  • a crystalline silicon solar cell that is dominant and mass-commercialized has its emitter and emitter electrodes located on the front side of the cell (the light side), that is, the main gate and the auxiliary gate line are located on the front side of the cell. Due to the short electron diffusion distance of the solar grade silicon material, the emitter area is located on the front side of the battery to improve the collection efficiency of the carriers. However, since the grid line on the front side of the battery blocks part of the sunlight (about 8%), the effective light-receiving area of the solar cell is reduced and a part of the current is lost. In addition, when the battery cells are connected in series, Use a tinned copper strip to solder from the front of one battery to the back of the other.
  • a thicker tinned copper strip If a thicker tinned copper strip is used, it will be too hard to break the cell, but if it is made of thin tinned copper. The belt will block too much light. Therefore, no matter what type of tin-plated ribbon is used, energy loss and optical loss due to series resistance are generated, which is disadvantageous for sheet flaking.
  • a back contact solar cell refers to a solar cell in which the emitter electrode and the base electrode of the battery are both located on the back of the battery.
  • the back contact battery There are many advantages to the back contact battery: 1 high efficiency, which improves the battery efficiency by completely eliminating the shading loss of the front gate electrode.
  • the battery can be thinned, the metal connecting devices used in series are on the back of the battery, and there is no connection from the front to the back. Thinner silicon wafers can be used, thereby reducing the cost. 3 is more beautiful, the front color of the battery is even, which meets the aesthetic requirements of consumers.
  • Back contact solar cells include various structures such as MWT, EWT and IBC.
  • the key to large-scale commercial production of back-contact solar cells is how to efficiently and cost-effectively connect back-contact solar cells in series and make them into solar modules.
  • the MWT component is usually prepared by using a composite conductive backing plate, applying a conductive adhesive on the conductive backing plate, punching the conductive adhesive at a corresponding position on the packaging material, and inserting the back contact solar cell accurately on the packaging material.
  • the conductive dots on the conductive backplane are brought into contact with the electrodes on the back contact solar cells through the conductive paste, and then the upper layer EVA and the glass are laid on the battery sheets, and the entire laminated module is turned into a laminator for lamination.
  • the process has the following defects: 1.
  • the composite conductive backsheet used is a composite conductive metal foil in the backsheet, usually a copper foil, and requires laser etching or chemical etching of the copper foil. Since laser etching is still easy to operate for simple patterns, the etching speed is slow and the production efficiency is low for complex patterns, while the chemical etching requires the preparation of a complex shape and corrosion-resistant mask, environmental pollution and etching solution to the polymer. Corrosion of the substrate. Therefore, the manufacturing method of the conductive back sheet manufactured by this method is complicated and the cost is extremely high. 2. It is necessary to punch the encapsulating material of the back layer of the solar cell in order to make the conductive adhesive penetrate the encapsulating material.
  • the encapsulating material is usually a viscoelastic body, it is extremely difficult to perform precise punching. 3. Need precise dispensing equipment to apply conductive adhesive to the corresponding position of the backboard. For batteries with less back contact points such as MWT, it can be operated, and the back contact battery with small area and large number of back contact points such as IBC. It is simply not possible to use a dispensing device.
  • the IBC battery uses a technique of shallow diffusion, light doping, and SiO 2 passivation layer on the front side to reduce the composite loss, and the diffusion area is limited to a small area on the back side of the battery. These diffusion areas are arranged in a lattice on the back of the cell, and the diffusion region is metal. Contact is limited to a small number of small contact points that are limited to a small range.
  • the IBC battery reduces the area of the re-diffusion zone on the back side of the cell, and the saturated dark current of the doped region can be greatly reduced, and the open circuit voltage and conversion efficiency are improved. At the same time, collecting current through a large number of small contact points shortens the transmission distance of the current on the back surface, and greatly reduces the series internal resistance of the component.
  • IBC back contact battery has attracted much attention from the industry due to its high efficiency that is difficult to achieve with conventional solar cells, and has become a research hotspot of new generation solar cell technology.
  • the P-N junctions of the IBC solar cell modules are located adjacent to each other and are all on the back side of the cell sheet, and it is difficult to connect the IBC battery modules in series and prepare them into components.
  • various improvements have been made to the IBC back contact solar cells in the prior art.
  • Sunpower has invented that adjacent P or N emitters are connected through a fine grid line of silver paste screen to finally conduct current. To the edge of the battery, a large solder joint is printed on the edge of the cell and then connected by a connecting strip. Since the invention of the screen printing technology, the mainstream products in the solar field have been using this technology to form a current sink, such as the newly applied patent 201410038687.8, 201410115631.8.
  • the IBC battery can also screen a relatively wide silver paste gate line between adjacent P or N emitters to reduce the series resistance, but the increase in the amount of silver will bring about a sharp increase in cost.
  • the wide grid line also causes the problem that the insulation effect between the PNs is deteriorated and the electric leakage is easy.
  • No. US20110041908A1 discloses a back contact solar cell having an elongated interdigitated emitter region and a base region on the back surface and a method for producing the same, having a semiconductor substrate having an elongated base region on a back surface of the semiconductor substrate And an elongated emitter region, the base region being of a base semiconductor type, the emitter region being provided with an emitter semiconductor type opposite to the base semiconductor type;
  • the emitter region is provided with an elongated emitter electrode for electrically contacting the emitter region, and the elongated base region is provided with an elongated base electrode for electrically contacting the base region; wherein the elongated emitter region has a longer elongated emitter
  • the electrode has a small structural width, and wherein the elongated base region has a smaller structural width than the elongated base electrode.
  • Patent EP 2 709 162 A1 discloses a solar cell for use in a back contact solar cell, which discloses an electrode contact unit which is separated and alternately arranged, the electrode contact unit being a contact island and defining a width of the block contact of 10 ⁇ m. ⁇ 1mm.
  • the electrode contact unit is connected by a longitudinal connector; however, the structure is connected twice on the cell, the first time the cell is connected to the electrode contact unit, and then the electrode contact unit is connected through the connector, and the connection is made twice.
  • the complexity of the process, as well as the excessive electrode contact points may cause "disconnection" or "misconnection", which is not conducive to the overall performance of the back contact solar cell.
  • Patent WO2011143341A2 discloses a back contact solar cell comprising a substrate, a plurality of adjacent P-doped layers and an N-doped layer on the back side of the substrate, the P-doped layer and the N-doped layer being laminated with the metal contact layer, and A passivation layer is disposed between the P-doped layer and the N-doped layer and the metal contact layer, and the passivation layer has a plurality of nano-connection holes thereon, and the nano-connection holes are connected to the P-doped layer and the N-doped layer
  • the metal contact layer however, the invention utilizes the nanopore to connect the metal contact layer to increase the electrical resistance, and the manufacturing process is complicated, and the manufacturing equipment has high requirements.
  • the invention cannot integrate a plurality of solar cells and an electrical connection layer into one module, and integrating the battery sheets into solar battery modules not only facilitates assembly into components, but also facilitates adjustment of series-parallel connection between modules, thereby facilitating adjustment of solar battery modules.
  • the series and parallel connection of the cells reduces the connection resistance of the components.
  • the thin silicon wafers will be subjected to longitudinal stress of the conductive wires and are easily bent. And if the whole series of solar cells are strung together using the same conductive wire, the difficulty of series connection and the probability of "misconnection” will be increased, and the thinning development of the solar cell will be hindered (the theoretical thickness of the solar cell is 45 micrometers). can).
  • the object of the present invention is to provide a non-main gate high efficiency back with simple structure, convenient assembly of cells, low cost, low series resistance, crack resistance, high efficiency, high stability and low stress. Contact solar cells, components and their preparation processes.
  • a high efficiency back-contact solar cell without a main gate comprising a solar cell sheet and an electrical connection layer, the solar cell backlight surface having a P electrode connected to the P-type doped layer and a N connected to the N-type doped layer
  • An electrode wherein the electrical connection layer comprises a plurality of conductive fine gate lines, a part of the conductive fine gate lines are connected to a P electrode of a backlight surface of the solar cell sheet; and another part of the conductive fine grid lines and the solar energy
  • the N electrodes of the backlight surface of the battery are connected, and the conductive fine grid lines are of a multi-stage structure.
  • the plurality of conductive fine grid lines are arranged in an interdigitated manner in parallel.
  • the electrode can be prevented Insulating medium that conducts between.
  • the P electrode is a point P electrode or a line type P electrode
  • the N electrode is a point N electrode or a line type N electrode
  • the number of dot/line electrodes interconnected by the conductive fine gate lines is 2-17 / Article.
  • the diameter of the point P electrode is 0.2 mm to 1.5 mm, and the distance between two adjacent point P electrodes connected on the same conductive thin grid line is 0.7 mm to 10 mm; the width of the line type P electrode is 0.4 mm to 1.5 mm; the diameter of the dot-shaped N electrode is 0.2 mm to 1.5 mm, and the distance between two adjacent dot-shaped N electrodes connected on the same conductive fine grid line is 0.7 mm to 10 mm; Type N electrode The width is 0.4 mm to 1.5 mm; the total number of the dot P electrodes and the dot N electrodes is 1000 to 40,000.
  • the dot electrode or the wire electrode is any one of a silver paste, a conductive paste, a polymer conductive material, or a solder.
  • the material of the conductive fine grid line is a sintered silver paste or a conductive line having a width of 10 to 300 ⁇ m and an aspect ratio of 1:0.01 to 1:1.
  • the number of dot/line electrodes interconnected by the conductive fine gate lines is 2, 3, 5, 7, 9, 11, 13, 15, or 17 strips.
  • Conductive lines are disposed on the electrical connection layer, the conductive lines are connected to a plurality of conductive fine gate lines or P electrodes connected to the P electrodes, and the conductive lines are connected to a plurality of conductive fine grid lines connected to the N electrodes or N electrode.
  • the conductive line is perpendicularly connected to a center line of the plurality of conductive fine gate lines.
  • the conductive line and the conductive fine grid line form a "bumpy"-shaped structure or a comb-toothed structure, and the "bumpy"-shaped structure or the comb-toothed structure is arranged in a cross.
  • the surface of the conductive wire is plated with an anti-oxidation coating material or coated with a conductive paste;
  • the anti-oxidation coating material is any one of tin, tin-lead alloy, tin-bismuth alloy or tin-lead-silver alloy;
  • the plating layer or the conductive adhesive layer has a thickness of 5 ⁇ m to 50 ⁇ m;
  • the conductive adhesive is a low resistivity conductive adhesive, the main component of which is conductive particles and a polymer adhesive;
  • the conductive particles in the conductive adhesive are gold, silver, Any one or a combination of copper, gold-plated nickel, silver-plated nickel, and silver-plated copper;
  • the shape of the conductive particles is any one of a spherical shape, a sheet shape, an olive shape, and a needle shape;
  • the polymer adhesive in the conductive paste is any one or a combination of an epoxy resin, a urethane resin, an acrylic resin or a silicone resin, and the
  • the electrical connection layer is provided with a P bus bar electrode and an N bus bar electrode, and the P bus bar electrode and the N bus bar electrode are disposed on both sides of the electrical connection layer; the surface of the bus bar electrode has a concave-convex shape .
  • the insulating medium is a thermoplastic resin or a thermosetting resin; the resin is any of polyimide, polycaprolactam, polyolefin resin, epoxy resin, urethane resin, acrylic resin, and silicone resin. One or several combinations.
  • a high efficiency back-contact solar cell module without a main gate comprising a front layer material connected from top to bottom, a packaging material, a solar cell layer, a packaging material, a back layer material, wherein the solar cell layer comprises a plurality of solar cells
  • the solar cell is the solar cell described in the above technical solution.
  • the solar cells of the solar cell layer are electrically connected by bus bars disposed on both sides of the electrical connection layer.
  • the number of solar cells of the solar cell module is from 1 to 120.
  • a method for preparing a high efficiency back-contact solar cell module without a main gate comprising: the following steps:
  • Step 1 The solar cell is connected in series to form a solar cell layer, and the electrical connection layer of the backlight surface of the solar cell has a plurality of conductive thin gate lines connected to the P electrodes and a plurality of conductive thin gate lines connected to the N electrodes, the conductive fine grid lines a multi-segment structure; electrically connecting a plurality of conductive lines to electrodes or conductive thin grid lines of the first solar cell sheet, and aligning the second solar cell sheet with the first solar cell sheet to make the second solar cell sheet
  • the P electrode and the N electrode on the first cell sheet are on one conductive line, and then electrically connected to the electrode of the second solar cell sheet or the conductive fine grid line, and the above operation is repeated to form a series structure to form a solar cell layer;
  • Step 2 laminating in the order of the front layer material, the encapsulating material, the solar cell layer, the encapsulating material, and the back layer material, and laminating to obtain a solar cell module.
  • the solar cell string includes more than one solar cell sheet, and bus bar electrodes are disposed on both sides of the solar cell string, and the series bus bar electrodes are formed too Solar battery layer.
  • the preparation process of the conductive fine grid line is that the silver-containing paste is segment printed on the solar cell sheet by screen printing, the fine grid line of the solar cell sheet printed with the silver paste electrode is dried, and then the whole is sintered to obtain a strip. There are several solar cells with conductive fine grid lines.
  • the parameters of the lamination are set according to the vulcanization characteristics of the encapsulating material, the encapsulating material is EVA, and the lamination parameters are laminated at 120 to 180 ° C for 9 to 35 minutes.
  • the solar cell sheet and the conductive wire are electrically connected by applying a conductive paste on the P-type doped layer and the N-type doped layer of the cell sheet by screen printing, and the conductive paste can be heated during the heating process.
  • Another electrical connection between the solar cell and the conductive wire is to plate the low melting point material by a plating process on the conductive wire, and after the heating process, the conductive wire is mixed with the P-type doped layer or the N-type doping.
  • the impurity layer is fixed by fusion welding of a low melting point material to form a P electrode and an N electrode, and the electrical connection between the conductive wire and the battery piece is achieved, and the low melting point material is any one of solder, tin-lead alloy, tin-bismuth alloy or tin-lead-silver alloy.
  • Another electrical connection between the solar cell and the conductive wire is by laser welding.
  • the present invention appropriately arranges the dot electrodes with a large number of back surface contacts of the solar cell sheet to reduce the difficulty of serial connection between the battery sheets, so as to facilitate industrial production; the aluminum back can be omitted, and the cost is reduced; in particular, The implementation of the invention reduces the amount of silver paste and reduces the cost.
  • the arrangement of the multi-stage conductive fine grid lines reduces the series resistance and reduces the electron transmission distance, improves the efficiency, and effectively reduces the conductive fine grid line to the battery sheet.
  • the structure of the present invention is a plurality of "bumpy"-shaped structures, stress dispersion, reducing the stress of the conductive wire on the battery sheet, and the battery sheet is not deformed, which facilitates the development of thinning of the silicon wafer.
  • the invention can realize the flaking of the battery, and the metal connecting devices used in series are on the back of the battery, eliminating the connection of the battery from the front to the back, and can be carried out by using a thinner metal connector. Connection, thus making it possible to use thinner silicon wafers, thereby reducing costs;
  • the back contact solar cell of the invention is generally applicable to various structures such as MWT, EWT and IBC, and is more practical;
  • the component-integrated photovoltaic system produced by the technology of the present invention can completely avoid the problem that the current of the entire string will be significantly reduced due to the cracking of a cell and the loss of a certain current, thereby making the whole system manufacturing and transportation.
  • the cracking and microcracking generated during installation and use are extremely tolerant and reflect good overall performance.
  • the solar cell electrode and the metal connector are in a multi-point distributed contact, which reduces the electron collection distance and greatly reduces the series resistance of the component;
  • the back contact solar cell used in the present invention does not require a main grid, greatly reducing the amount of silver paste used, and significantly reducing the manufacturing cost of the back contact battery.
  • the back contact solar cell used in the invention does not need the main grid of the silver paste, greatly reduces the use amount of the silver paste, and significantly reduces the manufacturing cost of the back contact battery; first, the conversion efficiency is high, and second, the assembly efficiency is high, and the front gate electrode is eliminated.
  • the shading loss, thereby improving the battery efficiency; in the present invention, the solar cell electrode and the electrical connection layer are in multiple distributed contact, reducing the electron collection distance and greatly reducing the series resistance of the component. It is also possible to realize the flaking of the battery, and the metal connecting devices used in series are on the back of the battery, and there is no connection from the front to the back, and a thinner silicon wafer can be used, thereby reducing the cost;
  • the integrated photovoltaic system produced by the technology of the present invention can completely avoid the problem that the current of the entire string will be significantly reduced due to the cracking of a cell and the loss of a certain current, due to the invention.
  • the proposed multi-gate high-efficiency multi-stage fine grid line technology realizes multi-point connection between the electric conductor and the cell sheet, which can improve the tolerance of the entire system to cracks and micro-cracks during manufacturing, transportation, installation and use. degree.
  • the conductive fine grid line arrangement can reduce the migration distance of electrons and holes, and enhance the ability of the battery to collect electrons.
  • connection points are more densely distributed, which can reach several thousand or even tens of thousands, and the path of current conduction in the cracked and microcracked portions of the silicon wafer is more optimized. Therefore, the loss caused by microcracking is greatly reduced, and the quality of the product is improved.
  • photovoltaic In the system, after the cell is cracked, part of the area on the cell will be separated from the main gate, and the current generated in this area will not be collected. Photovoltaic systems are formed in a matrix to form a matrix with obvious bucket effect.
  • the component-integrated photovoltaic system produced by the technology can completely avoid such problems, and the multi-gate high-efficiency multi-stage fine grid line technology proposed by the invention realizes the multi-point connection between the electric conductor and the battery sheet, so that the whole Photovoltaic systems are extremely tolerant to cracks and micro-cracks produced during manufacturing, transportation, installation and use.
  • a simple example can be used to illustrate that the solar modules produced by conventional technology are like ordinary glass. A point is crushed by crushing the whole piece of glass, and the components are produced by the high-efficiency multi-stage fine grid line technology without the main gate.
  • the non-main gate back-discharge technology can solve the connection problem of low-cost and high-efficiency back-contact solar cells, and reduce the cost by using copper wires instead of the silver main gate, realizing the real industrial scale production of back-contact solar cells, while improving efficiency. Reducing costs, providing photovoltaic systems with higher efficiency, lower cost, higher stability, better crack resistance and better photovoltaic modules, greatly enhance the competitiveness of photovoltaic systems and traditional energy.
  • FIG. 1 is a schematic view of a back surface of a high-efficiency back contact solar cell without a main gate (Example 1)
  • FIG. 2 Schematic diagram of the back side of the point-like main grid-free high-efficiency back contact solar cell sheet (Embodiment 1)
  • FIG. 3 Schematic diagram of the cross section of the conductive wire (Fig. 3a, cross-section of the conductive layer of the single-layer material, Figure 3b, cross-section of the conductive layer with two layers of material, Figure 3c, cross-section of the conductive layer of the three-layer material)
  • FIG. 4 is a schematic diagram of a series connection of a point-free main gate high efficiency back contact solar cell (Example 1)
  • Figure 5 is a schematic diagram of the back side of the point-like main gate high efficiency back contact solar cell sheet (Example 2)
  • Figure 6 is a schematic diagram of the back side of the point-like main gate high efficiency back contact solar cell sheet (Example 2)
  • FIG. 7 is a schematic diagram of a series connection of a point-free main gate high efficiency back contact solar cell (Example 2)
  • Figure 8 is a schematic view of the back of a line-type non-main gate high efficiency back contact solar cell
  • Figure 9 Schematic diagram of a high efficiency back-contact solar cell module without a main gate
  • a main gate-free high efficiency back contact solar cell includes a solar cell sheet 1 and an electrical connection layer, and the backlight surface of the solar cell sheet 1 has a P-type doped layer. a connected P electrode and an N electrode connected to the N-type doped layer, wherein the electrical connection layer comprises a plurality of conductive fine gate lines, and a part of the conductive fine gate lines and the backlight surface of the solar cell sheet 1 The electrode is connected; another part of the conductive thin grid line is connected to the N electrode of the backlight surface of the solar cell sheet 1, and the conductive fine grid line has a multi-segment structure.
  • the dot P electrode 2 has 15 rows, 16 in each row, the total number is 240, and the dot N electrode 3 has 16 in total. Rows, 16 in each row, the total number is 256; the diameter of the point P electrode 2 is 0.2 mm to 1.5 mm, between two adjacent point P electrodes 2 connected on the same conductive thin grid line
  • the distance between the two point-shaped N electrodes 3 connected to the same conductive thin grid line is from 0.7 mm to 10 mm; the distance between the two adjacent point-shaped N electrodes 3 is from 0.7 mm to 10 mm;
  • the dot P The diameter of the electrode 2 is 0.9 mm, and the distance between two adjacent point-like P electrodes 2 connected to the same conductive thin grid line is 10 mm; the diameter of the point N electrode 3 is 0.8 mm, and the same conductive fine grid line
  • the distance between two adjacent point N electrodes 3 connected is 10 mm,
  • a sintered silver paste is preferred, and the conductive fine grid line has a width of 10 to 300 ⁇ m and a width and a height.
  • the conductive fine gate line has a width of 30 ⁇ m in the embodiment; the leftmost three dot N electrodes 3 are connected by a conductive fine gate line, and the conductive fine grid line is sintered.
  • the silver-containing paste has a gate line width of 30 ⁇ m, and every five dot-shaped N-electrodes 3 in the middle portion are also connected by the same conductive fine grid line, and the rightmost three dot-shaped N Electrode 3 is also connected by the same conductive fine gate line.
  • the battery conversion efficiency was 23.2%.
  • FIG. 2 there is a main gate-free high-efficiency back contact solar cell panel 281, wherein the dot-shaped N-electrode 3 has 15 rows, 16 in each row, the total number is 240, and the dot-shaped P-electrode 2 has 16 in total.
  • the diameter of the point P electrode 2 is 0.2 mm to 1.5 mm, between two adjacent point P electrodes 2 connected on the same conductive thin grid line
  • the distance between the two point-shaped N electrodes 3 connected to the same conductive thin grid line is from 0.7 mm to 10 mm; the distance between the two adjacent point-shaped N electrodes 3 is from 0.7 mm to 10 mm;
  • the diameter of the dot-shaped P electrode 2 is 0.9 mm, and the distance between two adjacent dot-shaped P electrodes 2 connected on the same conductive thin grid line is 10 mm;
  • the dot-shaped N electrode The diameter of 3 is 0.8 mm, the distance between two adjacent dot-shaped N electrodes 3 connected on the same conductive thin grid line is 10 mm, and the center between the line of the dot-shaped P electrode 2 and the line of the point N electrode 3 The distance is 10 mm; the plurality of conductive fine grid lines are arranged in an interdigitated manner in parallel
  • the material of the conductive fine grid lines is a sintered silver paste or a conductive line.
  • a sintered silver paste is preferred, and the conductive fine grid is preferred.
  • the line width is 10 to 300 ⁇ m, and the aspect ratio is between 1:0.01 and 1:1.
  • the electric fine grid line has a width of 30 ⁇ m; the leftmost three dot-shaped P electrodes 2 are connected by a conductive fine grid line, the gate line is a sintered silver-containing paste, the gate line width is 30 ⁇ m, and the middle portion is every 5 point-shaped P electrodes 2 Also connected by the same conductive fine gate lines, the rightmost three dot-shaped P electrodes 2 are also connected by the same conductive fine gate lines.
  • the battery conversion efficiency was 23.4%.
  • the dot electrodes with a large number of back surface contacts of the solar cell sheet 1 are appropriately concentrated to reduce the difficulty of serial connection between the battery sheets, so as to facilitate industrial production;
  • FIG. 4 is a schematic diagram showing the back side of a dot-shaped non-main gate high-efficiency back contact solar cell in series, and the conductive connection layer is further disposed on the electrical connection layer on the non-main gate high efficiency back contact solar cell.
  • the conductive line 7 is connected to a plurality of conductive thin gate lines or P electrodes connected to the P electrode, and the conductive lines 7 are connected to a plurality of conductive thin gate lines or N electrodes connected to the N electrodes; adjacent dots
  • the P electrode 2 or the dot N electrode 3 is converged through the conductive fine grid lines, and the collected current is led out through the conductive line 7; preferably, the conductive line 7 is perpendicularly connected to the center lines of the plurality of conductive thin gate lines
  • the conductive line 7 and the conductive fine grid line form a "bumpy"-shaped structure or a comb-tooth structure, and the "bumpy"-shaped structure or the comb-toothed structure is arranged in a cross.
  • the implementation of the embodiment reduces the amount of silver paste and reduces the cost.
  • the setting of the multi-stage conductive fine grid line reduces the series resistance and reduces the transmission distance of the fill factor, improves the efficiency, and effectively reduces the conductive line 7 to the battery sheet.
  • the stress of the present invention is a plurality of "bumpy"-shaped structures, and the stress is dispersed, which reduces the stress of the conductive wires 7 on the battery sheets, and facilitates the development of thinning of the silicon wafers.
  • the conductive fine grid line and the conductive intersection have an insulating medium 6 capable of preventing conduction between the electrodes;
  • the insulating medium 6 is a thermoplastic resin or a thermosetting resin; and the resin is polyimide, polycaprolactam, polyolefin resin, Any one or a combination of two kinds of epoxy resin, urethane resin, acrylic resin, silicone resin; this resin can function to separate the insulating emitter electrode and the base electrode on the one hand, and on the other hand in the lamination process To bond the back contact solar cell sheet 1 and the packaging material.
  • the conductive line 7 in this embodiment may be any one of FIG. 3, FIG. 3a, a single-layer conductive line cross-sectional view, FIG. 3b, a two-layer material conductive line cross-sectional view, and FIG. 3c, having three layers of conductive line cross-section.
  • the conductive wire used in the embodiment is a plated conductive wire 7 having a three-layer structure, the innermost layer of the conductive wire having a diameter of 0.8 mm, the intermediate layer of the copper layer having a thickness of 0.2 mm, and the outermost layer being a tin-plated layer having a thickness of 0.3mm.
  • the coated conductive wire has a circular cross section and a diameter of 1.3 mm.
  • the surface of the conductive wire 7 may be plated with an anti-oxidation coating material or coated with a conductive paste;
  • the anti-oxidation coating material is any one of tin, tin-lead alloy, tin-bismuth alloy or tin-lead-silver alloy;
  • the conductive layer 7 has a plating layer or a conductive adhesive layer having a thickness of 5 ⁇ m to 50 ⁇ m;
  • the conductive adhesive is a low resistivity conductive adhesive, the main component of which is conductive particles and a polymer binder;
  • the conductive particles in the conductive paste are Any one or a combination of gold, silver, copper, gold-plated nickel, silver-plated nickel, and silver-plated copper;
  • the conductive particles are in the shape of a spherical shape, a sheet shape, an olive shape, or a needle shape;
  • the particle diameter of the particles is 0.01 ⁇ m to 5 ⁇ m;
  • the polymer binder in the conductive paste is
  • the embodiment further provides a non-main gate high efficiency back contact solar cell module, comprising a top layer material connected from top to bottom, a packaging material, a solar cell layer, a packaging material, and a back layer material, wherein:
  • the solar cell layer includes a plurality of solar cells, which are solar cells as defined in the above embodiments.
  • the method for preparing the non-main gate high-efficiency back contact solar cell module can be implemented in the following manners. First, sequentially, a plurality of solar cell sheets 1 including a plurality of fine gate lines are connected in series, and finally a group of P bus bar electrodes 10 and The N bus bar electrode 11 is led; laminated to obtain a solar cell module; secondly, a plurality of thin gate lines and a conductive line 7 are formed on the single cell sheet, and the conductive line 7 connected to the N electrode is connected to The N bus bar electrode 11 connects the conductive line 7 connected to the P electrode to the P bus bar electrode 10, and the series bus bar electrode is laminated to obtain a solar cell module; and third, a plurality of fine grid lines are formed on the two or more cell sheets and The conductive wire 7 forms a solar cell string composed of a plurality of solar cell sheets, the conductive line 7 connected to the N electrode is connected to the N bus bar electrode 11, and the conductive line 7 connected to the P electrode is connected to the P bus bar electrode 10, The bus bar
  • Method for preparing non-main gate high efficiency back contact solar cell module characterized in that it comprises The following steps:
  • Step 1 The solar cell is connected in series to form a solar cell layer, and the electrical connection layer of the backlight surface of the solar cell has a plurality of conductive thin gate lines connected to the P electrodes and a plurality of conductive thin gate lines connected to the N electrodes, the conductive fine grid lines
  • the multi-segment structure is electrically connected to the P electrode in the solar cell sheet 8 or the conductive fine grid line connected to the P electrode, and the solar cell sheet 81 and the solar cell sheet 8 are aligned, and the solar cell sheet is placed.
  • the P electrode on the second electrode 81 and the N electrode on the solar cell sheet 8 are on a conductive line 7, and the conductive line 7 is electrically connected to the N electrode of the solar cell sheet 81 or the conductive fine grid line connected to the N electrode.
  • the solar cell sheet 81 and the solar cell sheet 8 are connected in series, and then the solar cell sheet 8 is placed and the conductive line 7 is electrically connected to the solar cell sheet 8 to repeat the above operation to form a series structure to form a solar cell layer;
  • connection mode is soldering.
  • the conductive line 7 coated with a low melting point material is used.
  • the low melting point material is any one of solder, tin-lead alloy, tin-bismuth alloy or tin-lead-silver alloy.
  • the plating process is any one of hot dip plating, electroplating or electroless plating; in this embodiment, the solder is preferably plated, and the conductive line 7 is the same as the P-type doped layer or the N-type after the heating process.
  • the doped layer is fixed by fusion welding with a low melting point material to form a P electrode and an N electrode, thereby electrically connecting the conductive wire 7 to the cell sheet, and the soldering temperature is 300 to 400 ° C, preferably 300 ° C in this embodiment, and the battery can be used in the soldering process.
  • the heating pad is used on the front side of the sheet to prevent the temperature difference between the two sides of the battery from being excessively large, resulting in breakage or cracking of the battery sheet.
  • the temperature of the heating mat is controlled at 40 to 80 ° C, preferably 70 ° C in this embodiment; the heating method is infrared radiation and resistance wire heating.
  • the heating temperature is 150 ° C ⁇ 500 ° C; this embodiment is preferably 300 ° C.
  • the preparation process of the conductive fine grid line is that the silver-containing paste is segment printed on the solar cell sheet by screen printing, the fine grid line of the solar cell sheet printed with the silver paste electrode is dried, and then the whole is sintered to obtain a strip. There are several solar cells with conductive fine grid lines.
  • connection mode of the embodiment can also be implemented in the following manner.
  • the solar cell sheet and the conductive line 7 are electrically connected by a screen printed on the P-type doped layer and the N-type doped layer of the cell sheet.
  • the conductive adhesive is coated on the conductive adhesive to form a P electrode and an N electrode during heating, and the conductive wire 7 is heated to form an ohmic connection with the P electrode or the N electrode through the conductive adhesive. Touching, electrically connecting the conductive wire 7 to the battery sheet;
  • Another electrical connection between the solar cell and the conductive wire 7 is by laser welding.
  • Step 2 The completed solar cell layer is connected in series using a conventional universal bus bar having a cross-sectional area of 5 ⁇ 0.22 mm, and the number of the solar cell sheets is selected according to requirements.
  • 32 solar cells are selected;
  • the glass, EVA, solar cell layer, EVA and back layer materials are laminated and visually inspected, and the laminated modules are fed into a laminator for lamination.
  • the lamination parameters are set according to the vulcanization characteristics of the EVA, usually Lamination at 145 ° C for 16 minutes.
  • the laminated module is mounted with a metal frame, a junction box is installed, and power testing and visual inspection are performed. Obtaining a solar cell module;
  • a method for preparing a non-main gate high efficiency back contact solar cell module comprising: the following steps:
  • Step 1 The solar cell is connected in series to form a solar cell layer, and the electrical connection layer of the backlight surface of the solar cell has a plurality of conductive thin gate lines connected to the P electrodes and a plurality of conductive thin gate lines connected to the N electrodes, the conductive fine grid lines
  • Step 2 six string solar cells will be produced, each string of 10, a total of 60 back contact cell sheets.
  • the lamination and visual inspection are sequentially performed in the order of glass, EVA, cell sheet, EVA, and backing material, and the laminated module is sent to a laminator for lamination, and lamination parameters are set according to the vulcanization characteristics of EVA. It is usually laminated at 120 ° C for 35 minutes. Finally, the laminated module is mounted with a metal frame, a junction box is installed, and power testing and visual inspection are performed. Get the battery assembly.
  • a non-main gate high efficiency back contact solar cell includes an electrical connection layer composed of more than one solar cell sheet 1, a conductive line 7 and a conductive thin grid line, the solar energy
  • the silicon substrate backlight surface of the battery chip 1 has a P electrode connected to the P-type doped layer and an N electrode connected to the N-type doped layer, and the electrical connection layer of the backlight surface of the solar cell sheet 1 has a plurality of electrodes connected to the P electrode.
  • a conductive thin gate line and a plurality of conductive fine gate lines connected to the N electrode wherein the conductive fine gate line is a multi-segment structure, and the conductive fine gate line and the conductive line 7 are disposed at an intersection thereof to prevent the conductive fine gate line
  • the dot P electrode 2 has 15 rows, 15 in each row, the total number is 225, and the dot N electrode 3 has 15 in total. Row, every 15 rows, the total number is 225; the diameter of the point P electrode 2 is 0.2 mm to 1.5 mm, and the distance between two adjacent point P electrodes 2 connected on the same conductive thin grid line is 0.7 Mm ⁇ 10mm; the diameter of the point N electrode 3 is 0.2mm ⁇ 1.5mm, the distance between two adjacent point N electrodes 3 connected on the same conductive fine grid line is 0.7mm ⁇ 10mm; as this implementation
  • the diameter of the dot-shaped P electrode 2 is 1.5 mm, and the distance between two adjacent dot-shaped P electrodes 2 connected on the same conductive thin grid line is 5 mm; the diameter of the dot-shaped N electrode 3 1.5 mm, the distance between two adjacent point N electrodes 3 connected to the same conductive fine grid line is 5 mm, and
  • the plurality of conductive fine gate lines are arranged in an interdigitated manner in parallel; the number of dot electrodes interconnected by the conductive fine gate lines may be 2, 3, 5, 7, 9, 11, 13, 15 or 17 Preferably, the embodiment is 3, 5, and 7, and each of the five P-electrodes 2 are connected by a conductive fine gate line.
  • the material of the conductive fine gate line is a sintered silver paste or a conductive line.
  • the conductive fine gate is preferred in this embodiment.
  • the conductive fine gate line has a width of 10 to 300 ⁇ m and an aspect ratio of 1:0.01 to 1:1. In the embodiment, the conductive fine grid line has a width of 300 ⁇ m; and the leftmost 7 point N electrodes 3 pass.
  • a conductive fine grid line is connected, the gate line is a sintered silver-containing paste, the gate line width is 300 ⁇ m, and every five dot-shaped N-electrodes 3 in the middle portion are also connected by the same conductive fine grid line, and the rightmost three dot-shaped N The electrodes 3 are also connected by the same conductive fine grid lines.
  • the battery sheet is further provided with an insulating medium 6, and the battery conversion efficiency is 23.2%.
  • the dot P electrode 2 has 15 rows, 15 in each row, the total number is 225, and the dot N electrode 3 has 15 in total. Rows, 15 in each row, the total number is 225; the point P electrode 2 has a diameter of 0.2 mm to 1.5 mm, between two adjacent point P electrodes 2 connected on the same conductive thin grid line
  • the distance between the two point-shaped N electrodes 3 connected to the same conductive thin grid line is from 0.7 mm to 10 mm; the distance between the two adjacent point-shaped N electrodes 3 is from 0.7 mm to 10 mm;
  • the diameter of the dot-shaped P electrode 2 is 1.5 mm, and the distance between two adjacent dot-shaped P electrodes 2 connected on the same conductive thin grid line is 5 mm; the dot-shaped N electrode The diameter of 3 is 1.5 mm, and the distance between two adjacent dot-shaped N electrodes 3 connected on
  • a conductive fine gate line is preferred, and the conductive fine gate line has a width of 10 to 300 ⁇ m and an aspect ratio of 1 Between 0.01 and 1:1, in the embodiment, the conductive fine grid line width is 300 ⁇ m; the leftmost 7 point P electrodes 2 are connected by a conductive fine grid line, and the gate line is a sintered silver-containing paste.
  • the width of the gate line is 300 ⁇ m, and the five P-electrodes 2 in the middle portion are also connected by the same conductive fine gate lines, and the three right-point P electrodes 2 are also connected by the same conductive fine gate lines.
  • the battery sheet is further provided with an insulating medium 6, and the battery conversion efficiency is 23.2%.
  • FIG. 7 is a schematic diagram showing the back side of a point-shaped main-gate high-efficiency back contact solar cell in series, and the conductive connection layer is further disposed on the electrical connection layer on the main-gate high-efficiency back contact solar cell.
  • the conductive line 7 is connected to a plurality of conductive thin gate lines or P electrodes connected to the P electrode, and the conductive lines 7 are connected to a plurality of conductive thin gate lines or N electrodes connected to the N electrodes; adjacent dots
  • the P electrode 2 or the dot N electrode 3 is converged through the conductive fine grid lines, and the collected current is led out through the conductive line 7; preferably, the conductive line 7 is perpendicularly connected to the center lines of the plurality of conductive thin gate lines
  • the conductive line 7 and the conductive fine grid line form a "bumpy"-shaped structure or a comb-tooth structure, and the "bumpy"-shaped structure or the comb-toothed structure is arranged in a cross. The intersection
  • the embodiment further provides a non-main gate high efficiency back contact solar cell module, comprising a top layer material connected from top to bottom, a packaging material, a solar cell layer, a packaging material, and a back layer material, wherein:
  • the solar cell layer includes a plurality of solar cells, which are solar cells as defined above.
  • a method for preparing a non-main gate high efficiency back contact solar cell module comprising: the following steps:
  • Step 1 The solar cell is connected in series to form a solar cell layer, and the electrical connection layer of the backlight surface of the solar cell has a plurality of conductive thin gate lines connected to the P electrodes and a plurality of conductive thin gate lines connected to the N electrodes, the conductive fine grid lines a multi-segment structure; a plurality of conductive lines 7 and P in the solar cell sheet 3
  • the electrode or the conductive fine grid line connected to the P electrode is electrically connected, and the solar cell sheet 401 is placed in alignment with the solar cell sheet 39, and the P electrode on the solar cell sheet 43 and the N electrode on the solar cell sheet 3 are in a strip.
  • the conductive line 7 is electrically connected to the N electrode of the solar cell sheet 91 or the conductive fine grid line connected to the N electrode, so that the solar cell sheet 43 and the solar cell sheet 3 are connected in series, and then the solar energy is placed.
  • the battery piece 3 9 and the conductive line 7 and the solar cell sheet 3 9 are electrically connected, and the above operation is repeated to form a series structure to form a solar cell layer;
  • connection mode is soldering.
  • the conductive line 7 coated with a low melting point material is used.
  • the low melting point material is any one of solder, tin-lead alloy, tin-bismuth alloy or tin-lead-silver alloy.
  • the plating process is any one of hot dip plating, electroplating or electroless plating; in this embodiment, the solder is preferably plated, and the conductive line 7 is the same as the P-type doped layer or the N-type after the heating process.
  • the doped layer is fixed by welding and forming a P electrode and an N electrode through a low melting point material to realize electrical connection between the conductive wire 7 and the cell sheet.
  • the soldering temperature is 300 to 400 ° C, preferably 350 ° C in this embodiment, and the battery can be used in the soldering process.
  • the heating pad is used on the front side of the sheet to prevent the temperature difference between the two sides of the battery from being excessively large, resulting in breakage or cracking of the battery sheet.
  • the temperature of the heating mat is controlled at 40 to 80 ° C, preferably 40 ° C in this embodiment; the heating method is infrared radiation and resistance wire heating. Or any combination of the hot air heating, the heating temperature is 150 ° C ⁇ 500 ° C; this embodiment is preferably 150 ° C.
  • the preparation process of the conductive fine grid line is that the silver-containing paste is segment printed on the solar cell sheet by screen printing, the fine grid line of the solar cell sheet printed with the silver paste electrode is dried, and then the whole is sintered to obtain a strip.
  • Step 2 The completed solar cell layer is connected in series using a conventional universal bus bar having a cross-sectional area of 5 ⁇ 0.22 mm, and the number of the solar cell sheets is selected according to requirements.
  • 32 solar cells are selected;
  • the glass, EVA, solar cell layer, EVA and back layer materials are laminated and visually inspected, and the laminated modules are fed into a laminator for lamination.
  • the lamination parameters are set according to the vulcanization characteristics of the EVA, usually Lamination at 180 ° C for 9 minutes.
  • the laminated module is mounted with a metal frame, a junction box is installed, and power testing and visual inspection are performed.
  • a solar cell module is obtained; as shown in FIG.
  • the dot electrode of the solar cell sheet in the embodiment can be replaced by a line electrode, and the difference is mainly that the conductive fine grid line and the line type electrode cross the insulation material 6 for insulation treatment, as shown in the figure. 8 shows a high-efficiency back contact solar cell without a main gate, wherein the linear P electrode 21 has 10 rows, and the linear N electrode 31 has 10 rows; the linear P electrode 21 has a width of 0.4 mm to 1.5.
  • the linear N-electrode 31 has a width of 0.4 mm to 1.5 mm; the plurality of conductive fine grid lines are arranged in an interdigitated manner in parallel; the number of linear electrodes interconnected by the conductive fine grid lines may be 2, 3 5, 7, 9, 11, 13, 15 or 17, in this embodiment, preferably 2, 3, 5, each 5 linear N electrodes 31 are connected by a conductive fine grid line, the material of the conductive fine grid line
  • the present embodiment is preferably a conductive fine gate line having a width of 10 to 300 ⁇ m and an aspect ratio of 1:0.01 to 1:1, which is preferred in the embodiment.
  • the conductive fine grid line has a width of 300 ⁇ m; the leftmost three linear P electrodes 21 are connected by a conductive fine grid line, and the gate line is sintered.
  • the battery sheet is further provided with an insulating medium 6, and the battery conversion efficiency is 23.2%.
  • the present invention may also be a structure in which a dot electrode is mixed with a line electrode, and the principle thereof is similar to that of the above embodiment, and details are not described herein.
  • the solar cell module composed of the back contact solar cell prepared by the present invention can obtain a high filling factor, thereby improving the power generation efficiency of the module. It can effectively prevent short circuit between P electrode and N electrode, resist cracking, high efficiency, high stability, and has preparation The process is simple and the cost is greatly reduced.
  • the high-efficiency back contact solar cell without the main gate is distinguished (the solar cell sheet 1 in the first embodiment, the solar cell sheet 2; the solar cell sheet 3 in the second embodiment, the solar cell sheet 4)
  • the distinction between the two types of cells that are in contact with the electrode structure of the doped layer of the solar cell sheet is not distinguished by order, and the purpose is to make the embodiment of the present invention easy to understand, and the scope of protection of the present invention is not limited. effect.
  • the solar cell sheet may also be referred to as a primary sheet, and the solar cell sheet 2 may also be referred to as a secondary sheet; in the first embodiment, the P electrode of the solar cell sheet 1 has a total of X-1 rows, each row of Y, The N electrodes have a total of X rows, each row of Y.
  • the solar cell chip 2 includes N electrodes in a row, and each row has Y rows, and the P electrodes have a total of X rows, each row of Y, and X and Y take more than 2. Integer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种无主栅高效率背接触太阳能电池,包括太阳能电池片(1)和电连接层,太阳能电池片背光面具有与P型掺杂层连接的P电极(2)和与N型掺杂层连接的N电极(3),电连接层包括若干导电细栅线(4,5),一部分导电细栅线(4)与太阳能电池片背光面的P电极连接,另一部分导电细栅线(5)与太阳能电池片背光面的N电极连接,导电细栅线为多段结构。多段导电细栅线降低了串联电阻以及降低了填充因子的传输距离,提高了效率,降低导电细栅线对电池片的应力。

Description

无主栅高效率背接触太阳能电池、组件及其制备工艺 技术领域
本发明涉及太阳能电池领域,特别涉及无主栅高效率背接触太阳能电池、组件及其制备工艺。
背景技术
能源是人类活动的物质基础,随着人类社会的不断发展和进步,对能源的需求与日俱增。传统的化石能源属于不可再生能源已经很难继续满足社会发展的需求,因此全球各国近年来对新能源和可再生源的研究和利用日趋火热。其中太阳能发电技术具有将太阳光直接转化为电力、使用简单、环保无污染、能源利用率高等优势尤其受到普遍的重视。太阳能发电是使用大面积的P-N结二极管在阳光照射的情况下产生光生载流子发电。
太阳能是太阳中的氢原子核在超高温时聚变释放的巨大能量,人类所需能量的绝大部分都直接或间接地来自太阳。生活所需的煤炭、石油、天然气等化石燃料都是因为各种植物通过光合作用把太阳能转变成化学能在植物体内贮存下来后,再由埋在地下的动植物经过漫长的地质年代形成。此外,水能、风能、潮汐能、海流能等也都是由太阳能转换来的。照射在地球上的太阳能非常巨大,大约40分钟照射在地球上的太阳能,足以供全球人类一年能量的消费。可以说,太阳能是真正取之不尽、用之不竭的可再生能源,而且太阳能发电绝对安全、无污染是理想的能源。
现有技术中,占主导地位并大规模商业化的晶体硅太阳电池,其发射区和发射区电极均位于电池正面(向光面),即主栅、辅栅线均位于电池正面。由于太阳能级硅材料电子扩散距离较短,发射区位于电池正面有利于提高载流子的收集效率。但由于电池正面的栅线阻挡了部分阳光(约为8%),从而使太阳能电池的有效受光面积降低并由此而损失了一部分电流。另外在电池片串联时,需 要用镀锡铜带从一块电池的正面焊接到另一块电池的背面,如果使用较厚的镀锡铜带会由于其过于坚硬而导致电池片的碎裂,但若用细宽的镀锡铜带又会遮蔽过多的光线。因此,无论使用何种镀锡焊带都会产生串联电阻带来的能量损耗和光学损耗,同时不利于电池片的薄片化。为了解决上述技术问题,本领域技术人员将正面电极转移到电池背面,开发出背接触太阳能电池,背接触太阳电池是指电池的发射区电极和基区电极均位于电池背面的一种太阳电池。背接触电池有很多优点:①效率高,由于完全消除了正面栅线电极的遮光损失,从而提高了电池效率。②可实现电池的薄片化,串联使用的金属连接器件都在电池背面,不存在从正面到背面的连接可以使用更薄的硅片,从而降低成本。③更美观,电池的正面颜色均匀,满足了消费者的审美要求。
背接触太阳电池包括MWT、EWT和IBC等多种结构。背接触太阳电池大规模商业化生产的关键是在于如何高效而低成本的将背接触太阳电池串联起来并制作成太阳能组件。MWT组件通常的制备方法是使用复合导电背板,在导电背板上施加导电胶,在封装材料上对应的位置冲孔使导电胶贯穿封装材料,将背接触太阳电池准确地放置于封装材料上使导电背板上的导电点与背接触太阳电池上的电极通过导电胶接触,然后在电池片上铺设上层EVA和玻璃,再将整个层叠好的模组翻转进入层压机进行层压。此工艺存在以下几个缺陷:1、所使用的复合导电背板是在背板中复合导电金属箔,通常为铜箔,且需要对铜箔进行激光刻蚀或化学刻蚀。由于激光刻蚀对于简单图形尚可操作,对于复杂图案则刻蚀速度慢,生产效率低,而化学刻蚀则存在需要预先制备形状复杂且耐腐蚀的掩膜、环境污染和腐蚀液对高分子基材的腐蚀问题。所以此方式制造的导电型背板制造工艺复杂,成本极高。2、需要对太阳电池片后层的封装材料进行冲孔以便使导电胶贯穿封装材料,由于封装材料通常是粘弹体,要进行精确冲孔难度极大。3、需要精确的点胶设备将导电胶涂覆在背板的相应位置,对MWT这种背接触点较少的电池还可以操作,对IBC等背接触点面积小、数量大的背接触电池使用点胶设备根本无法实现。
IBC技术将P-N结放置于电池背面,正面无任何遮挡同时又减少了电子收集的距离,因此可大幅度提高电池片效率。IBC电池在正面使用浅扩散、轻掺杂和SiO2钝化层等技术减少复合损失,在电池背面将扩散区限制在较小的区域,这些扩散区在电池背面成点阵排列,扩散区金属接触被限制在很小的范围内呈现为数量众多的细小接触点。IBC电池减少了电池背面的重扩散区的面积,掺杂区域的饱和暗电流可以大幅减小,开路电压和转换效率得以提高。同时通过数量众多的小接触点收集电流使电流在背表面的传输距离缩短,大幅度降低组件的串联内阻。
IBC背接触电池由于具有常规太阳能电池难以达到的高效率而备受业界关注,已经成为新一代太阳能电池技术的研究热点。但现有技术中IBC太阳能电池模块P-N结位置相邻较近且均在电池片背面,难以对IBC电池模块进行串联并制备成组件。为解决上述问题,现有技术也出现了多种对IBC背接触太阳能电池的改进,Sunpower公司曾发明将相邻的P或N发射极通过银浆丝网印刷细栅线相连最终将电流导流至电池边缘,在电池片边缘印刷较大的焊点再使用连接带进行焊接串联,自从丝网印刷技术发明后,太阳能领域主流产品一直使用该技术形成电流的汇流,如最新申请的专利201410038687.8,201410115631.8。
然而,使用细栅线进行电流收集,在5寸电池片上尚可使用,但在现有技术中普遍流行的6寸或更大的硅片上就会遇到串联电阻上升和填充因子下降等问题,导致所制造的组件功率严重降低。在现有技术中的IBC电池也可以在相邻的P或N发射极之间丝网印刷比较宽的银浆栅线来降低串联电阻,但由于用银量的增加会带来成本的急剧上升,同时宽的栅线也会产生P-N之间的绝缘效果变差,易漏电的问题。
专利US20110041908A1公开了一种背面具有细长交叉指状发射极区域和基极区域的背接触式太阳能电池及其生产方法,具有半导体衬底,半导体衬底的背面表面上设有细长基极区域和细长发射极区域,基极区域为基极半导体类型,发射极区域设有与所述基极半导体类型相反的发射极半导体类型;细长发 射极区域设有用于电接触发射极区域的细长发射极电极,细长基极区域设有用于电接触基极区域的细长基极电极;其中细长发射极区域具有比细长发射极电极小的结构宽度,并且其中细长基极区域具有比所述细长基极电极小的结构宽度。但是需要有设置大量的导电件来有效收集电流,因此导致制造成本增加,工艺步骤复杂。
专利EP2709162A1公开了一种太阳能电池,运用于背接触太阳能电池,公开了彼此分开并交替排列的电极接触单元,电极接触单元为contact island(块状接触),并且限定了块状接触的宽度为10μm~1mm。通过纵向的连接体连接电极接触单元;但是该种结构在电池片上进行了两次连接,第一次是电池片与电极接触单元连接,然后还需要通过连接体连接电极接触单元,两次连接带来了工艺上的复杂性,以及造成过多的电极接触点,可能造成“断连”或者“错连”,不利于背接触太阳能电池的整体性能。
专利WO2011143341A2公开了一种背接触太阳能电池,包括衬底,多个相邻的P掺杂层和N掺杂层位于衬底背面,P掺杂层和N掺杂层与金属接触层层叠,并且P掺杂层和N掺杂层与金属接触层之间设置有钝化层,所述钝化层上具有大量的纳米连接孔,所述纳米连接孔连接P掺杂层和N掺杂层与金属接触层;但该发明利用纳米孔连接金属接触层会使电阻增大,况且制造工艺复杂,对制造设备有较高的要求。该发明不能把多片太阳能电池与电连接层集成为一个模块,而把电池片集成为太阳能电池模块之后不仅便于组装成组件,而且便于调整模块间的串并联,从而有利于调整太阳能电池模块中电池片的串并联方式,减小组件的连接电阻。
综上所述,完全使用细栅线进行电流收集,会遇到串联电阻上升和填充因子下降等问题,导致所制造的组件功率严重降低;丝网印刷比较宽的银浆栅线来降低串联电阻,但由于用银量的增加会带来成本的急剧上升,同时宽的栅线也会产生P-N之间的绝缘效果变差,易漏电的问题。如果完全使用金属导电线收集背接触太阳能电池的导电粒子,由于普通太阳能电池的厚度仅为180微米, 为了精确定位,焊接金属导电线时,一般需要施加一个张力再进行焊接,此时薄硅片将会受到导电线纵向的应力,容易弯曲。并且如果把整块太阳能电池的整串使用同一导电线串在一起将会增加串接难度及“错连”的概率,并阻碍了太阳能电池的薄片化发展(太阳能电池片理论上的厚度45微米就可以)。
发明内容
本发明的目的在于针对现有技术的不足,提供一种结构简单、组装电池片方便、低成本、低串联电阻、耐隐裂、高效率、高稳定性、低应力的无主栅高效率背接触太阳能电池、组件及其制备工艺。
本发明提供的一种无主栅高效率背接触太阳能电池的主要技术方案为:
无主栅高效率背接触太阳能电池,该太阳能电池包括太阳能电池片和电连接层,所述太阳能电池片背光面具有与P型掺杂层连接的P电极和与N型掺杂层连接的N电极,其特征在于:所述电连接层包括若干导电细栅线,一部分所述导电细栅线与所述太阳能电池片背光面的P电极连接;另一部分所述导电细栅线与所述太阳能电池片背光面的N电极连接,所述导电细栅线为多段结构。
本发明的一种无主栅高效率背接触太阳能电池还可以采用如下附属技术方案:
所述若干导电细栅线成叉指状平行排列。
所述太阳能电池片的所述P电极与所述N电极之间、电池片掺杂层电极与所述导电细栅线之间或者导电细栅线与导电细栅线之间具有可以防止电极之间导通的绝缘介质。
所述P电极为点状P电极或者线型P电极,所述N电极为点状N电极或者线型N电极;通过所述导电细栅线互联的点状/线型电极数量为2-17个/条。
所述点状P电极的直径为0.2mm~1.5mm,同一导电细栅线上连接的两个相邻点状P电极之间的距离为0.7mm~10mm;所述线型P电极的宽度为0.4mm~1.5mm;所述点状N电极的直径为0.2mm~1.5mm,同一导电细栅线上连接的两个相邻点状N电极之间的距离为0.7mm~10mm;所述线型N电极 的宽度为0.4mm~1.5mm;所述点状P电极和所述点状N电极的总个数为1000~40000个。
点状电极或线型电极为银浆、导电胶、高分子导电材料或焊锡中的任一种。
所述导电细栅线的材料为烧结银浆或者导电线,所述导电细栅线宽度为10~300μm,宽高比在1∶0.01~1∶1之间。
通过所述导电细栅线互联的点状/线型电极数量为2、3、5、7、9、11、13、15或17个/条。
所述电连接层上设置有导电线,所述导电线连接与所述P电极连接的若干导电细栅线或P电极,所述导电线连接与所述N电极连接的若干导电细栅线或N电极。
所述导电线与所述若干导电细栅线的中心线垂直连接。
所述导电线与所述导电细栅线形成“丰”字型结构或梳齿状结构,“丰”字型结构或梳齿状结构交叉排列。
所述导电线表面镀有防氧化镀层材料或涂覆有导电胶;所述防氧化镀层材料为锡、锡铅合金、锡铋合金或锡铅银合金中的任一种;所述导电线的镀层或导电胶层厚度为5μm~50μm;所述导电胶为低电阻率导电粘接胶,其主要成分为导电粒子和高分子粘接剂;所述导电胶中的导电粒子为金、银、铜、镀金镍、镀银镍、镀银铜中的任一种或几种组合;所述导电粒子的形状为球形、片状、橄榄状、针状中的任一种;导电粒子的粒径为0.01μm~5μm;所述导电胶中的高分子粘接剂为环氧树脂、聚氨酯树脂、丙烯酸树脂或有机硅树脂中的任一种或几种组合,粘接剂可进行热固化或光固化。
所述电连接层设置有P汇流条电极和N汇流条电极,所述P汇流条电极和所述N汇流条电极设置于所述电连接层两侧;所述汇流条电极的表面具有凹凸形状。
所述绝缘介质为热塑性树脂或热固性树脂;所述树脂为聚酰亚胺、聚己内酰胺、聚烯烃树脂、环氧树脂、聚氨酯树脂、丙烯酸树脂、有机硅树脂中的任 一种或几种组合。
本发明提供的一种无主栅高效率背接触太阳能电池组件的主要技术方案为:
无主栅高效率背接触太阳能电池组件,包括由上至下连接的前层材料、封装材料、太阳能电池层、封装材料、背层材料,其特征在于:所述太阳能电池层包括若干个太阳能电池,所述太阳能电池为上述技术方案所述的太阳能电池。
本发明提供的一种无主栅高效率背接触太阳能电池组件还可以包括以下技术方案:
所述太阳能电池层的所述太阳能电池通过设置在电连接层两侧的汇流条电连接。
所述太阳能电池组件的太阳能电池片个数为1~120个。
无主栅高效率背接触太阳能电池组件的制备方法,其特征在于:包括以下步骤:
步骤一:串联太阳能电池形成太阳能电池层,所述太阳能电池背光面的电连接层具有与P电极连接的若干导电细栅线和与N电极连接的若干导电细栅线,所述导电细栅线为多段结构;将若干导电线与第一块太阳能电池片的电极或者导电细栅线电连接,将第二块太阳能电池片与第一块太阳能电池片对齐放置,使第二块太阳能电池片上的P电极与第一块电池片上的N电极在一条导电线上,再将导电线与第二块太阳能电池片的电极或者导电细栅线电连接,重复上述操作形成串联结构,形成太阳能电池层;
步骤二:依次按前层材料、封装材料、太阳能电池层、封装材料、背层材料的顺序进行层叠,层压得到太阳能电池组件。
本发明提供的无主栅高效率背接触太阳能电池组件的制备方法还可以包括以下技术方案:
按照步骤一制得太阳能电池串,所述太阳能电池串包括一块以上的太阳能电池片,在所述太阳能电池串的两侧设置汇流条电极,串联汇流条电极形成太 阳能电池层。
所述导电细栅线的制备工艺为,使用丝网印刷将含银浆料分段印刷在太阳能电池片上,将印刷有银浆电极的太阳能电池片细栅线烘干,然后整体烧结,得到带有若干导电细栅线的太阳能电池。
所述层压的参数根据封装材料的硫化特性进行设定,所述封装材料为EVA,层压参数为120~180℃下层压9~35分钟。
所述步骤一中太阳能电池片与导电线的电连接方式为通过丝网印刷在电池片的P型掺杂层和N型掺杂层上涂覆导电胶,所述导电胶在加热过程中可以固化形成P电极和N电极,经加热后使所述导电线同所述P电极或所述N电极通过所述导电胶形成欧姆接触,实现导电线与电池片的电连接;
太阳能电池片与导电线的另一种电连接方式为通过在导电线上采用镀层工艺镀低熔点材料,经加热过程后使所述导电线同所述P型掺杂层或所述N型掺杂层通过低熔点材料熔化焊接固定形成P电极和N电极,实现导电线与电池片的电连接,所述低熔点材料为焊锡、锡铅合金、锡铋合金或锡铅银合金中的任一种;
太阳能电池片与导电线的另一种电连接方式为通过激光焊接。
本发明的实施包括以下技术效果:
1、本发明将背接触太阳能电池片背光面数量众多的点状电极进行适当的集中,降低电池片之间串接的难度,以利于工业化生产;可以不用铝背,降低了成本;特别是,本发明的实施降低了银浆的用量,降低了成本,多段导电细栅线的设置降低了串联电阻以及降低了电子的传输距离,提高了效率,还能有效降低导电细栅线对电池片的应力,本发明结构由于是多个“丰”字形结构,应力分散,降低了导电线对电池片的应力,电池片不会因为变形,利于电池硅片的薄片化发展。
2、本发明可实现电池的薄片化,串联使用的金属连接器件都在电池背面,消除了过去电池从正面到背面的连接,而且可以使用更细的金属连接器进行串 联,因而可以使用更薄的硅片,从而降低成本;
3、本发明的背接触太阳电池普遍适用于MWT、EWT和IBC等多种结构,实用性更强;
4、本发明技术生产的组件集成的光伏系统可以彻底避免因一块电池片发生隐裂并损失一定的电流而导致整个组串的电流将发生明显降低的问题,从而使整个系统对生产制造、运输、安装和使用过程中产生的隐裂和微裂具有极高的容忍度,体现出很好的整体性能。
5、本发明中太阳能电池电极与金属连接器多点分散式接触,减少电子收集距离,大幅度降低组件的串联电阻;
6、本发明所使用背接触太阳能电池无需主栅,大大降低银浆的使用量,使背接触电池的制造成本明显降低。本发明所使用背接触太阳能电池无需银浆主栅,大大降低银浆的使用量,使背接触电池的制造成本明显降低;一是转化效率高,二是组装效率高,消除了正面栅线电极的遮光损失,从而提高了电池效率;本发明中太阳能电池电极与电连接层多点分散式接触,减少电子收集距离,大幅度降低组件的串联电阻。还可实现电池的薄片化,串联使用的金属连接器件都在电池背面,不存在从正面到背面的连接可以使用更薄的硅片,从而降低成本;
7、耐隐裂,本发明技术生产的组件集成的光伏系统可以彻底避免因一块电池片发生隐裂并损失一定的电流而导致整个组串的电流将发生明显的降低的问题,由于此发明所提出的无主栅高效率多段细栅线技术实现了导电体与电池片之间的多点连接,可以提高整个系统对生产制造、运输、安装和使用过程中产生的隐裂和微裂的容忍度。导电细栅线设置可以减少电子以及空穴的迁移距离,增强电池片收集电子的能力。
此技术制备的组件中,背接触电池与导电体之间是多点连接,连接点分布更密集,可以达到几千甚至几万个,在硅片隐裂和微裂部位电流传导的路径更加优化,因此基于微裂造成的损失被大大减小,产品的质量提高。通常在光伏 系统中,电池片发生隐裂后电池片上部分区域会与主栅发生脱离,此区域产生的电流将无法被收集。光伏系统都是采用串联的方式形成矩阵,具有明显的水桶效应,当一块电池片发生隐裂并损失一定的电流时整个组串的电流将发生明显的降低,从而导致整个组串的发电效率大幅度降低。使用该技术生产的组件集成的光伏系统可以彻底避免此类问题发生,由于此发明所提出的无主栅高效率多段细栅线技术实现了导电体与电池片之间的多点连接,使整个光伏系统对生产制造、运输、安装和使用过程中产生的隐裂和微裂痕具有极高的容忍性。可以用一个简单的例子来说明,传统技术生产的太阳能组件就像是普通的玻璃,一个点被撞碎了整块玻璃就粉碎了,而用无主栅高效率多段细栅线技术生产的组件则像是夹胶安全玻璃,一个点碎裂了外观上看起来不美观了,但是整个玻璃的遮风挡雨的功能还在。此技术突破了传统的电池组串工艺,使电池排布更自由,更紧密,采用上述技术的组件有望更小更轻,对下游项目开发来说,这就意味着安装中更小的占地面积,更低的屋顶承重要求和更低的人力成本。无主栅背排线技术可以解决低成本、高效率的背接触太阳电池的连接问题,通过使用铜线代替银主栅降低成本,实现背接触太阳电池真正的工业化规模生产,在提高效率的同时降低成本,为光伏系统提供效率更高、成本更低、稳定性更高、耐隐裂更出色的光伏组件,大大提升光伏系统与传统能源的竞争力。
附图说明
图1点状无主栅高效率背接触太阳能电池片一背面示意图(实施例一)
图2点状无主栅高效率背接触太阳能电池片二背面示意图(实施例一)
图3.导电线截面示意图(图3a,单层材料导电线截面图,图3b,具有两层材料导电线截面图,图3c,具有三层材料导电线截面图)
图4点状无主栅高效率背接触太阳能电池片串接示意图(实施例一)
图5点状无主栅高效率背接触太阳能电池片三背面示意图(实施例二)
图6点状无主栅高效率背接触太阳能电池片四背面示意图(实施例二)
图7点状无主栅高效率背接触太阳能电池片串接示意图(实施例二)
图8线型无主栅高效率背接触太阳能电池片背面示意图
图9无主栅高效率背接触太阳能电池组件示意图
1、太阳能电池片;2、点状P电极;21、线型P电极;3、点状N电极;31、线型N电极;4、P电极间导电细栅线;5、N电极间导电细栅线;6、绝缘介质;7、导电线;71、为铜、铝或钢等金属材料,72、为与1不同的铝或钢等金属材料;73、为锡、锡铅、锡铋或锡铅银金属合金焊料;8、太阳能电池片一;81、太阳能电池片二;9、太阳能电池片三;91、太阳能电池片四;10、P汇流条电极;11、N汇流条电极;
具体实施方式
下面将结合实施例以及附图对本发明加以详细说明,需要指出的是,所描述的实施例仅旨在便于对本发明的理解,而对其不起任何限定作用。
实施例1
参照图1、图2和图4,一种无主栅高效率背接触太阳能电池,该太阳能电池包括太阳能电池片1和电连接层,所述太阳能电池片1背光面具有与P型掺杂层连接的P电极和与N型掺杂层连接的N电极,其特征在于:所述电连接层包括若干导电细栅线,一部分所述导电细栅线与所述太阳能电池片1背光面的P电极连接;另一部分所述导电细栅线与所述太阳能电池片1背光面的N电极连接,所述导电细栅线为多段结构。
如图1所示为一种无主栅高效率背接触太阳能电池片一8,其中点状P电极2共有15排,每排16个,总个数为240个,点状N电极3共有16排,每排16个,总个数为256个;所述点状P电极2的直径为0.2mm~1.5mm,同一导电细栅线上连接的两个相邻点状P电极2之间的距离为0.7mm~10mm;所述点状N电极3的直径为0.2mm~1.5mm,同一导电细栅线上连接的两个相邻点状N电极3之间的距离为0.7mm~10mm;作为本实施例优选的,所述点状P 电极2的直径为0.9mm,同一导电细栅线上连接的两个相邻点状P电极2之间的距离为10mm;所述点状N电极3的直径为0.8mm,同一导电细栅线上连接的两个相邻点状N电极3之间的距离为10mm,点状P电极2连线与点状N电极3连线之间的中心距离为10mm;所述若干导电细栅线成叉指状平行排列;通过所述导电细栅线互联的点状电极数量可以为2、3、5、7、9、11、13、15或17个,本实施例优选5个,每5个点状P电极2通过导电细栅线连接,所述导电细栅线的材料为烧结银浆或者导电线,本实施例优选烧结银浆,所述导电细栅线宽度为10~300μm,宽高比在1∶0.01~1∶1之间,本实施例优选所述导电细栅线宽度30μm;最左端三个点状N电极3通过一根导电细栅线连接,导电细栅线为烧结的含银浆料,栅线宽度30μm,中间部位每5个点状N电极3也通过同样的导电细栅线连接,最右端三个点状N电极3也通过同样的导电细栅线连接。电池转化效率为23.2%。
如图2所示为一种无主栅高效率背接触太阳能电池片二81,其中点状N电极3共有15排,每排16个,总个数为240个,点状P电极2共有16排,每排16个,总个数为256个;所述点状P电极2的直径为0.2mm~1.5mm,同一导电细栅线上连接的两个相邻点状P电极2之间的距离为0.7mm~10mm;所述点状N电极3的直径为0.2mm~1.5mm,同一导电细栅线上连接的两个相邻点状N电极3之间的距离为0.7mm~10mm;作为本实施例优选的,所述点状P电极2的直径为0.9mm,同一导电细栅线上连接的两个相邻点状P电极2之间的距离为10mm;所述点状N电极3的直径为0.8mm,同一导电细栅线上连接的两个相邻点状N电极3之间的距离为10mm,点状P电极2连线与点状N电极3连线之间的中心距离为10mm;所述若干导电细栅线成叉指状平行排列;通过所述导电细栅线互联的点状电极数量可以为2、3、5、7、9、11、13、15或17个,本实施例优选5个,每5个点状N电极3通过导电细栅线连接,所述导电细栅线的材料为烧结银浆或者导电线,本实施例优选烧结银浆,所述导电细栅线宽度为10~300μm,宽高比在1∶0.01~1∶1之间,本实施例优选所述导 电细栅线宽度30μm;最左端三个点状P电极2通过一根导电细栅线连接,栅线为烧结的含银浆料,栅线宽度30μm,中间部位每5个点状P电极2也通过同样的导电细栅线连接,最右端三个点状P电极2也通过同样的导电细栅线连接。电池转化效率为23.4%。本实施例将背接触太阳能电池片1背光面数量众多的点状电极进行适当的集中,以降低电池片之间串接的难度,以利于工业化生产;
如图4所示为点状无主栅高效率背接触太阳能电池片串接背面示意图,所述无主栅高效率背接触太阳能电池上的所述电连接层上还设置有导电线7,所述导电线7连接与所述P电极连接的若干导电细栅线或P电极,所述导电线7连接与所述N电极连接的若干导电细栅线或N电极;相邻的数个点状P电极2或点状N电极3通过所述导电细栅线进行汇流,将收集的电流通过导电线7导出;作为优选,所述导电线7与所述若干导电细栅线的中心线垂直连接,所述导电线7与所述导电细栅线形成“丰”字型结构或梳齿状结构,“丰”字型结构或梳齿状结构交叉排列。本实施例的实施降低了银浆的用量,降低了成本,多段导电细栅线的设置降低了串联电阻以及降低了填充因子的传输距离,提高了效率,还能有效降低导电线7对电池片的应力,本发明结构由于是多个“丰”字形结构,应力分散,降低了导电线7对电池片的应力,利于电池硅片的薄片化发展。
作为优选,所述太阳能电池片1背光面的所述P电极与所述N电极之间、电池片掺杂层电极与导电细栅线之间或者导电细栅线与导电细栅线之间、导电细栅线与导电性交叉处具有可以防止电极之间导通的绝缘介质6;所述绝缘介质6为热塑性树脂或热固性树脂;所述树脂为聚酰亚胺、聚己内酰胺、聚烯烃树脂、环氧树脂、聚氨酯树脂、丙烯酸树脂、有机硅树脂中的任一种或两种组合;此树脂一方面可以起到分离绝缘发射区电极和基区电极的作用,一方面在层压过程中起到粘接背接触太阳能电池片1和封装材料的作用。
本实施例所述导电线7可以为图3中的任一种,图3a,单层导电线截面图,图3b,具有两层材料导电线截面图,图3c,具有三层材料导电线截面图;本实 施例使用的导电线为具有三层结构的镀层导电线7,包括最内层的导电线直径为0.8mm,中间层的铜层,厚度为0.2mm,最外层为镀锡层,厚度为0.3mm。镀层导电线的横截面积为圆形,直径1.3mm。
作为优选,所述导电线7表面可以镀有防氧化镀层材料或涂覆有导电胶;所述防氧化镀层材料为锡、锡铅合金、锡铋合金或锡铅银合金中的任一种;导电线7的镀层或导电胶层厚度为5μm~50μm;所述导电胶为低电阻率导电粘接胶,其主要成分为导电粒子和高分子粘接剂;所述导电胶中的导电粒子为金、银、铜、镀金镍、镀银镍、镀银铜中的任一种或几种组合;所述导电粒子的形状为球形、片状、橄榄状、针状中的任一种;导电粒子的粒径为0.01μm~5μm;所述导电胶中的高分子粘接剂为环氧树脂、聚氨酯树脂、丙烯酸树脂或有机硅树脂中的任一种或两种组合,粘接剂可进行热固化或光固化。
本实施例还提供了一种无主栅高效率背接触太阳能电池组件,包括由上至下连接的前层材料、封装材料、太阳能电池层、封装材料、背层材料,其特征在于:所述太阳能电池层包括若干个太阳能电池,所述太阳能电池为上述实施例所限定的太阳能电池。
所述无主栅高效率背接触太阳能电池组件的制备方法可以用以下几种方式实现,第一、依次串联包括若干多段细栅线的太阳能电池片1,最后通过一组P汇流条电极10和N汇流条电极11导出;层压得到太阳电池组件;第二、在单块电池片上形成多段细栅线以及导电线7组成的太阳能电池电连接层,把与N电极连接的导电线7连接到N汇流条电极11,把与P电极连接的导电线7连接到P汇流条电极10,串联汇流条电极后层压得到太阳电池组件;第三、在两块以上电池片上形成多段细栅线以及导电线7形成由多块太阳能电池片组成的太阳能电池串,把与N电极连接的导电线7连接到N汇流条电极11,把与P电极连接的导电线7连接到P汇流条电极10,串联太阳能电池串的汇流条电极后层压得到太阳电池组件;具体如下:
一种无主栅高效率背接触太阳能电池组件的制备方法,其特征在于:包括 以下步骤:
步骤一:串联太阳能电池形成太阳能电池层,所述太阳能电池背光面的电连接层具有与P电极连接的若干导电细栅线和与N电极连接的若干导电细栅线,所述导电细栅线为多段结构;将若干导电线7与太阳能电池片一8中的P电极或者与P电极连接的导电细栅线电连接,将太阳能电池片二81与太阳能电池片一8对齐放置,太阳能电池片二81上的P电极与太阳能电池片一8上的N电极在一条导电线7上,再将导电线7与太阳能电池片二81的N电极或者与N电极连接的导电细栅线电连接,使太阳能电池片二81和太阳能电池片一8实现串联,再放置太阳能电池片一8并将导电线7与太阳能电池片一8电连接,重复上述操作形成串联结构,形成太阳能电池层;
本实施例中所述连接方式为焊接,本实施例采用镀有低熔点材料的导电线7,所述低熔点材料为焊锡、锡铅合金、锡铋合金或锡铅银合金中的任一种;所述镀层工艺为热浸镀、电镀或化学镀中的任一种;本实施例优选电镀焊锡,经加热过程后使所述导电线7同所述P型掺杂层或所述N型掺杂层通过低熔点材料熔化焊接固定形成P电极和N电极,实现导电线7与电池片的电连接,焊接的温度为300~400℃,本实施例优选300℃,焊接过程中可在电池片正面使用加热垫以预防电池两面温差过大造成电池片的破碎或隐裂,加热垫温度控制在40~80℃,本实施例优选70℃;所述的加热方式为红外辐射、电阻丝加热或热风加热中的任一种或几种组合,加热温度为150℃~500℃;本实施例优选300℃。所述导电细栅线的制备工艺为,使用丝网印刷将含银浆料分段印刷在太阳能电池片上,将印刷有银浆电极的太阳能电池片细栅线烘干,然后整体烧结,得到带有若干导电细栅线的太阳能电池。
本实施例的连接方式还可以使用下述方式实现,所述步骤一中太阳能电池片与导电线7的电连接方式为通过丝网印刷在电池片的P型掺杂层和N型掺杂层上涂覆导电胶,所述导电胶在加热过程中可以固化形成P电极和N电极,经加热后使所述导电线7同所述P电极或所述N电极通过所述导电胶形成欧姆接 触,实现导电线7与电池片的电连接;
太阳能电池片与导电线7的另一种电连接方式为通过激光焊接。
步骤二:将制造完成的太阳能电池层使用5×0.22mm横截面积的常规通用汇流条进行串联,所述太阳能电池片的个数根据需要选择,本实施例选择32片太阳能电池片;依次按照玻璃、EVA、太阳能电池层、EVA和背层材料的顺序进行层叠和外观检查,将层叠后的模组送入层压机进行层压,层压参数根据EVA的硫化特性进行设定,通常为145℃下层压16分钟。最后将层压完成的模组进行安装金属边框、安装接线盒并进行功率测试和外观检查。得到太阳能电池组件;
上述32片背接触组件的功率参数如下:
开路电压 Uoc(V)22.52
短路电流 Isc(A)9.33
工作电压 Ump(V)17.35
工作电流 Imp(A)9.22
最大功率 Pmax(W)159.97
填充因子 76.13%
一种无主栅高效率背接触太阳能电池组件的制备方法,其特征在于:包括以下步骤:
步骤一:串联太阳能电池形成太阳能电池层,所述太阳能电池背光面的电连接层具有与P电极连接的若干导电细栅线和与N电极连接的若干导电细栅线,所述导电细栅线为多段结构;将平行排列的若干导电线7拉直绷紧,将若干导电线7与太阳能电池片一8中的P电极或者与P电极连接的导电细栅线电连接,将太阳能电池片二81与太阳能电池片一8对齐放置,太阳能电池片二81上的P电极与太阳能电池片一8上的N电极在一条导电线7上,再将导电线7与太阳能电池片二81的N电极或者与N电极连接的导电细栅线电连接,使太阳能电池片二81和太阳能电池片一8实现串联,再放置太阳能电池片一8 并将导电线7与太阳能电池片一8电连接,重复上述操作形成10块太阳能电池片的串联结构,并在太阳能电池串两侧设置N汇流条电极11和P汇流条电极10;串联连接所述P汇流条电极10和所述N汇流条电极11,形成太阳能电池层;
步骤二、将制作出6串太阳能电池,每串10片,共60片背接触的电池片层。依次按照玻璃、EVA、电池片层、EVA和背层材料的顺序进行层叠和外观检查,将层叠后的模组送入层压机进行层压,层压参数根据EVA的硫化特性进行设定,通常为120℃下层压35分钟。最后将层压完成的模组进行安装金属边框、安装接线盒并进行功率测试和外观检查。得到电池组件。
上述60片背接触组件的功率参数如下:
开路电压 Uoc(V)41.81
短路电流 Isc(A)9.31
工作电压 Ump(V)32.97
工作电流 Imp(A)9.12
最大功率 Pmax(W)300.68
填充因子 77.26%
实施例2
参照图5、图6和图7,一种无主栅高效率背接触太阳能电池,该太阳能电池包括一块以上太阳能电池片1、导电线7和导电细栅线构成的电连接层,所述太阳能电池片1的硅基底背光面具有与P型掺杂层连接的P电极和与N型掺杂层连接的N电极,所述太阳能电池片1背光面的电连接层具有与P电极连接的若干导电细栅线和与N电极连接的若干导电细栅线,所述导电细栅线为多段结构,所述导电细栅线与所述导电线7的交叉处设置有防止所述导电细栅线与所述导电线7电导通的绝缘介质6。
如图5所示为一种无主栅高效率背接触太阳能电池片三9,其中点状P电极2共有15排,每排15个,总个数为225个,点状N电极3共有15排,每 排15个,总个数为225个;所述点状P电极2的直径为0.2mm~1.5mm,同一导电细栅线上连接的两个相邻点状P电极2之间的距离为0.7mm~10mm;所述点状N电极3的直径为0.2mm~1.5mm,同一导电细栅线上连接的两个相邻点状N电极3之间的距离为0.7mm~10mm;作为本实施例优选的,所述点状P电极2的直径为1.5mm,同一导电细栅线上连接的两个相邻点状P电极2之间的距离为5mm;所述点状N电极3的直径为1.5mm,同一导电细栅线上连接的两个相邻点状N电极3之间的距离为5mm,点状P电极2连线与点状N电极3连线之间的中心距离为5mm;所述若干导电细栅线成叉指状平行排列;通过所述导电细栅线互联的点状电极数量可以为2、3、5、7、9、11、13、15或17个,本实施例优选3、5、7个,每5个点状P电极2通过导电细栅线连接,所述导电细栅线的材料为烧结银浆或者导电线,本实施例优选导电细栅线,所述导电细栅线宽度为10~300μm,宽高比在1∶0.01~1∶1之间,本实施例优选所述导电细栅线宽度300μm;最左端7个点状N电极3通过一根导电细栅线连接,栅线为烧结的含银浆料,栅线宽度300μm,中间部位每5个点状N电极3也通过同样的导电细栅线连接,最右端3个点状N电极3也通过同样的导电细栅线连接。所述电池片上还设置有绝缘介质6,电池转化效率为23.2%。
如图6所示为一种无主栅高效率背接触太阳能电池片四91,其中点状P电极2共有15排,每排15个,总个数为225个,点状N电极3共有15排,每排15个,总个数为225个;所述点状P电极2的直径为0.2mm~1.5mm,同一导电细栅线上连接的两个相邻点状P电极2之间的距离为0.7mm~10mm;所述点状N电极3的直径为0.2mm~1.5mm,同一导电细栅线上连接的两个相邻点状N电极3之间的距离为0.7mm~10mm;作为本实施例优选的,所述点状P电极2的直径为1.5mm,同一导电细栅线上连接的两个相邻点状P电极2之间的距离为5mm;所述点状N电极3的直径为1.5mm,同一导电细栅线上连接的两个相邻点状N电极3之间的距离为5mm,点状P电极2连线与点状N电极3连线之间的中心距离为5mm;所述若干导电细栅线成叉指状平行排列;通过所 述导电细栅线互联的点状电极数量可以为2、3、5、7、9、11、13、15或17个,本实施例优选3、5、7个,每5个点状N电极3通过导电细栅线连接,所述导电细栅线的材料为烧结银浆或者导电线,本实施例优选导电细栅线,所述导电细栅线宽度为10~300μm,宽高比在1∶0.01~1∶1之间,本实施例优选所述导电细栅线宽度300μm;最左端7个点状P电极2通过一根导电细栅线连接,栅线为烧结的含银浆料,栅线宽度300μm,中间部位每5个点状P电极2也通过同样的导电细栅线连接,最右端3个点状P电极2也通过同样的导电细栅线连接。所述电池片上还设置有绝缘介质6,电池转化效率为23.2%。
如图7所示为点状无主栅高效率背接触太阳能电池片串接背面示意图,所述无主栅高效率背接触太阳能电池上的所述电连接层上还设置有导电线7,所述导电线7连接与所述P电极连接的若干导电细栅线或P电极,所述导电线7连接与所述N电极连接的若干导电细栅线或N电极;相邻的数个点状P电极2或点状N电极3通过所述导电细栅线进行汇流,将收集的电流通过导电线7导出;作为优选,所述导电线7与所述若干导电细栅线的中心线垂直连接,所述导电线7与所述导电细栅线形成“丰”字型结构或梳齿状结构,“丰”字型结构或梳齿状结构交叉排列。所述导电细栅线与所述导电线7的交叉处通过绝缘介质6电绝缘。
本实施例还提供了一种无主栅高效率背接触太阳能电池组件,包括由上至下连接的前层材料、封装材料、太阳能电池层、封装材料、背层材料,其特征在于:所述太阳能电池层包括若干个太阳能电池,所述太阳能电池为上述所限定的太阳能电池。
一种无主栅高效率背接触太阳能电池组件的制备方法,其特征在于:包括以下步骤:
步骤一:串联太阳能电池形成太阳能电池层,所述太阳能电池背光面的电连接层具有与P电极连接的若干导电细栅线和与N电极连接的若干导电细栅线,所述导电细栅线为多段结构;将若干导电线7与太阳能电池片三9中的P 电极或者与P电极连接的导电细栅线电连接,将太阳能电池片四91与太阳能电池片三9对齐放置,太阳能电池片四91上的P电极与太阳能电池片三9上的N电极在一条导电线7上,再将导电线7与太阳能电池片四91的N电极或者与N电极连接的导电细栅线电连接,使太阳能电池片四91和太阳能电池片三9实现串联,再放置太阳能电池片三9并将导电线7与太阳能电池片三9电连接,重复上述操作形成串联结构,形成太阳能电池层;
本实施例中所述连接方式为焊接,本实施例采用镀有低熔点材料的导电线7,所述低熔点材料为焊锡、锡铅合金、锡铋合金或锡铅银合金中的任一种;所述镀层工艺为热浸镀、电镀或化学镀中的任一种;本实施例优选电镀焊锡,经加热过程后使所述导电线7同所述P型掺杂层或所述N型掺杂层通过低熔点材料熔化焊接固定形成P电极和N电极,实现导电线7与电池片的电连接,焊接的温度为300~400℃,本实施例优选350℃,焊接过程中可在电池片正面使用加热垫以预防电池两面温差过大造成电池片的破碎或隐裂,加热垫温度控制在40~80℃,本实施例优选40℃;所述的加热方式为红外辐射、电阻丝加热或热风加热中的任一种或几种组合,加热温度为150℃~500℃;本实施例优选150℃。所述导电细栅线的制备工艺为,使用丝网印刷将含银浆料分段印刷在太阳能电池片上,将印刷有银浆电极的太阳能电池片细栅线烘干,然后整体烧结,得到带有若干导电细栅线的太阳能电池,所述导电细栅线连接3、5、7个点,如图7所示。
步骤二:将制造完成的太阳能电池层使用5×0.22mm横截面积的常规通用汇流条进行串联,所述太阳能电池片的个数根据需要选择,本实施例选择32片太阳能电池片;依次按照玻璃、EVA、太阳能电池层、EVA和背层材料的顺序进行层叠和外观检查,将层叠后的模组送入层压机进行层压,层压参数根据EVA的硫化特性进行设定,通常为180℃下层压9分钟。最后将层压完成的模组进行安装金属边框、安装接线盒并进行功率测试和外观检查。得到太阳能电池组件;如图9所示。
上述32片背接触组件的功率参数如下:
开路电压 Uoc(V)22.25
短路电流 Isc(A)9.25
工作电压 Ump(V)17.27
工作电流 Imp(A)9.08
最大功率 Pmax(W)156.78
填充因子 76.18%
同理,本实施例中所述太阳能电池片的点状电极可以换成线型电极,其区别点主要为导电细栅线与线型电极交叉的地方需要通过绝缘介质6进行绝缘处理,如图8所示,一种无主栅高效率背接触太阳能电池片,其中线型P电极21共有10排,线型N电极31共有10排;所述线型P电极21的宽度为0.4mm~1.5mm;所述线型N电极31的宽度为0.4mm~1.5mm;所述若干导电细栅线成叉指状平行排列;通过所述导电细栅线互联的线型电极数量可以为2、3、5、7、9、11、13、15或17个,本实施例优选2、3、5个,每5个线型N电极31通过导电细栅线连接,所述导电细栅线的材料为烧结银浆或者导电线7,本实施例优选导电细栅线,所述导电细栅线宽度为10~300μm,宽高比在1∶0.01~1∶1之间,本实施例优选所述导电细栅线宽度300μm;最左端3个线型P电极21通过一根导电细栅线连接,栅线为烧结的含银浆料,栅线宽度30μm,中间部位每5个线型P电极21也通过同样的导电细栅线连接,最右端2个线型P电极21也通过同样的导电细栅线连接。所述电池片上还设置有绝缘介质6,电池转化效率为23.2%。
作为另外一种实施例,本发明也可以为点状电极与线型电极混合的结构,其原理如上述实施例所类似,本处不在赘述。
由实施例的实验参数可知,由本发明制备的背接触太阳能电池所构成的太阳能电池组件可以获得很高的填充因子,从而提高组件的发电效率。能够有效防止P电极和N电极之间的短路、耐隐裂、高效率、高稳定性,同时具有制备 工艺简单,成本大大降低的优点。
本发明实施例中对无主栅高效率背接触太阳能电池片进行区分(实施例一中的太阳能电池片一、太阳能电池片二;实施例二中的太阳能电池片三、太阳能电池片四)仅是为了描述方便,对两种背接触太阳能电池片掺杂层的电极结构的电池片作出的区分,没有顺序等区别,目的是使本发明实施例易于理解,对本发明的保护范围不起任何限定作用。所述太阳能电池片一也可称作伯片,所述太阳能电池片二也可称作仲片;实施例一中所述太阳能电池片一的P电极共有X-1排,每排Y个,N电极共有X排,每排Y个,所述太阳能电池片二包括状N电极共有X-1排,每排Y个,P电极共有X排,每排Y个,X和Y取大于2的整数。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (22)

  1. 无主栅高效率背接触太阳能电池,该太阳能电池包括太阳能电池片和电连接层,所述太阳能电池片背光面具有与P型掺杂层连接的P电极和与N型掺杂层连接的N电极,其特征在于:所述电连接层包括若干导电细栅线,一部分所述导电细栅线与所述太阳能电池片背光面的P电极连接;另一部分所述导电细栅线与所述太阳能电池片背光面的N电极连接,所述导电细栅线为多段结构。
  2. 根据权利要求1所述的无主栅高效率背接触太阳能电池,其特征在于:所述若干导电细栅线成叉指状平行排列。
  3. 根据权利要求1所述的无主栅高效率背接触太阳能电池,其特征在于:所述太阳能电池片的所述P电极与所述N电极之间、电池片掺杂层电极与所述导电细栅线之间或者导电细栅线与导电细栅线之间具有可以防止电极之间导通的绝缘介质。
  4. 根据权利要求1所述的无主栅高效率背接触太阳能电池,其特征在于:所述P电极为点状P电极或者线型P电极,所述N电极为点状N电极或者线型N电极;通过所述导电细栅线互联的点状/线型电极数量为2-17个/条。
  5. 根据权利要求4所述的无主栅高效率背接触太阳能电池,其特征在于:所述点状P电极的直径为0.2mm~1.5mm,同一导电细栅线上连接的两个相邻点状P电极之间的距离为0.7mm~10mm;所述线型P电极的宽度为0.4mm~1.5mm;所述点状N电极的直径为0.2mm~1.5mm,同一导电细栅线上连接的两个相邻点状N电极之间的距离为0.7mm~10mm;所述线型N电极的宽度为0.4mm~1.5mm;所述点状P电极和所述点状N电极的总个数为1000~40000个。
  6. 根据权利要求4所述的无主栅高效率背接触太阳能电池,其特征在于:点状电极或线型电极为银浆、导电胶、高分子导电材料或焊锡中的任一种。
  7. 根据权利要求1所述的无主栅高效率背接触太阳能电池,其特征在于:所述导电细栅线的材料为烧结银浆或者导电线,所述导电细栅线宽度为10~ 300μm,宽高比在1∶0.01~1∶1之间。
  8. 根据权利要求4所述的无主栅高效率背接触太阳能电池,其特征在于:通过所述导电细栅线互联的点状/线型电极数量为2、3、5、7、9、11、13、15或17个/条。
  9. 根据权利要求1-8所述的无主栅高效率背接触太阳能电池,其特征在于:所述电连接层上设置有导电线,所述导电线连接与所述P电极连接的若干导电细栅线或P电极,所述导电线连接与所述N电极连接的若干导电细栅线或N电极。
  10. 根据权利要求9所述的无主栅高效率背接触太阳能电池,其特征在于:所述导电线与所述若干导电细栅线的中心线垂直连接。
  11. 根据权利要求9所述的无主栅高效率背接触太阳能电池,其特征在于:所述导电线与所述导电细栅线形成“丰”字型结构或梳齿状结构,“丰”字型结构或梳齿状结构交叉排列。
  12. 根据权利要求9所述的无主栅高效率背接触太阳能电池,其特征在于:所述导电线表面镀有防氧化镀层材料或涂覆有导电胶;所述防氧化镀层材料为锡、锡铅合金、锡铋合金或锡铅银合金中的任一种;所述导电线的镀层或导电胶层厚度为5μm~50μm;所述导电胶为低电阻率导电粘接胶,其主要成分为导电粒子和高分子粘接剂;所述导电胶中的导电粒子为金、银、铜、镀金镍、镀银镍、镀银铜中的任一种或几种组合;所述导电粒子的形状为球形、片状、橄榄状、针状中的任一种;导电粒子的粒径为0.01μm~5μm;所述导电胶中的高分子粘接剂为环氧树脂、聚氨酯树脂、丙烯酸树脂或有机硅树脂中的任一种或几种组合,粘接剂可进行热固化或光固化。
  13. 根据权利要求9所述的无主栅高效率背接触太阳能电池,其特征在于:所述电连接层设置有P汇流条电极和N汇流条电极,所述P汇流条电极和所述N汇流条电极设置于所述电连接层两侧;所述汇流条电极的表面具有凹凸形状。
  14. 根据权利要求3所述的无主栅高效率背接触太阳能电池,其特征在于: 所述绝缘介质为热塑性树脂或热固性树脂;所述树脂为聚酰亚胺、聚己内酰胺、聚烯烃树脂、环氧树脂、聚氨酯树脂、丙烯酸树脂、有机硅树脂中的任一种或几种组合。
  15. 无主栅高效率背接触太阳能电池组件,包括由上至下连接的前层材料、封装材料、太阳能电池层、封装材料、背层材料,其特征在于:所述太阳能电池层包括若干个太阳能电池,所述太阳能电池为权利要求1-14任一所述的太阳能电池。
  16. 根据权利要求15所述的无主栅高效率背接触太阳能电池组件,其特征在于:所述太阳能电池层的所述太阳能电池通过设置在电连接层两侧的汇流条连接。
  17. 根据权利要求15-16任一所述的无主栅高效率背接触太阳能电池组件,其特征在于:所述太阳能电池组件的太阳能电池片个数为1~120个。
  18. 无主栅高效率背接触太阳能电池组件的制备方法,其特征在于:包括以下步骤:
    步骤一:串联太阳能电池形成太阳能电池层,所述太阳能电池背光面的电连接层具有与P电极连接的若干导电细栅线和与N电极连接的若干导电细栅线,所述导电细栅线为多段结构;将若干导电线与第一块太阳能电池片的电极或者导电细栅线电连接,将第二块太阳能电池片与第一块太阳能电池片对齐放置,使第二块太阳能电池片上的P电极与第一块电池片上的N电极在一条导电线上,再将导电线与第二块太阳能电池片的电极或者导电细栅线电连接,重复上述操作形成串联结构,形成太阳能电池层;
    步骤二:依次按前层材料、封装材料、太阳能电池层、封装材料、背层材料的顺序进行层叠,层压得到太阳能电池组件。
  19. 根据权利要求18所述无主栅高效率背接触太阳能电池组件的制备方法,其特征在于:按照步骤一制得太阳能电池串,所述太阳能电池串包括一块以上的太阳能电池片,在所述太阳能电池串的两侧设置汇流条电极,串联汇流 条电极形成太阳能电池层。
  20. 根据权利要求18-19任一所述无主栅高效率背接触太阳能电池组件的制备方法,其特征在于:所述导电细栅线的制备工艺为,使用丝网印刷将含银浆料分段印刷在太阳能电池片上,将印刷有银浆电极的太阳能电池片细栅线烘干,然后整体烧结,得到带有若干导电细栅线的太阳能电池。
  21. 根据权利要求18-19任一所述无主栅高效率背接触太阳能电池组件的制备方法,其特征在于:所述层压的参数根据封装材料的硫化特性进行设定,所述封装材料为EVA,层压参数为120~180℃下层压9~35分钟。
  22. 根据权利要求18-19任一所述无主栅高效率背接触太阳能电池组件的制备方法,其特征在于:所述步骤一中太阳能电池片与导电线的电连接方式为通过丝网印刷在电池片的P型掺杂层和N型掺杂层上涂覆导电胶,所述导电胶在加热过程中可以固化形成P电极和N电极,经加热后使所述导电线同所述P电极或所述N电极通过所述导电胶形成欧姆接触,实现导电线与电池片的电连接;
    太阳能电池片与导电线的另一种电连接方式为通过在导电线上采用镀层工艺镀低熔点材料,经加热过程后使所述导电线同所述P型掺杂层或所述N型掺杂层通过低熔点材料熔化焊接固定形成P电极和N电极,实现导电线与电池片的电连接,所述低熔点材料为焊锡、锡铅合金、锡铋合金或锡铅银合金中的任一种;
    太阳能电池片与导电线的另一种电连接方式为通过激光焊接。
PCT/CN2015/000347 2015-01-05 2015-07-08 无主栅高效率背接触太阳能电池、组件及其制备工艺 WO2016109909A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
MYPI2017702401A MY190470A (en) 2015-01-05 2015-07-08 Main-gate-free and high-efficiency back-contact solar cell module, main-gate-free and high-efficiency back-contact assembly, and preparation process thereof
KR1020177021944A KR101925233B1 (ko) 2015-01-05 2015-07-08 메인 게이트가 없고 고효율적인 백 콘택 태양 전지, 어셈블리 및 그 제조공법
US15/541,335 US20170365731A1 (en) 2015-01-05 2015-07-08 Main-gate-free and high-efficiency back-contact solar cell module, main-gate-free and high-efficiency back-contact assembly, and preparation process thereof
SG11201705389QA SG11201705389QA (en) 2015-01-05 2015-07-08 Main-gate-free high-efficiency back contact solar cell and assembly and preparation process thereof
JP2017535742A JP6524237B2 (ja) 2015-01-05 2015-07-08 無メイングリッド高効率のバックコンタクト太陽電池、アセンブリ及びその製造プロセス
EP15876420.9A EP3244454B1 (en) 2015-01-05 2015-07-08 Main-gate-free high-efficiency back contact solar cell and assembly and preparation process thereof
ES15876420T ES2947503T3 (es) 2015-01-05 2015-07-08 Célula solar de contacto posterior de alta eficacia sin puerta principal y proceso de montaje y preparación de la misma

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2015100029818 2015-01-05
CN201510002981.8A CN104576778B (zh) 2015-01-05 2015-01-05 无主栅高效率背接触太阳能电池、组件及其制备工艺

Publications (1)

Publication Number Publication Date
WO2016109909A1 true WO2016109909A1 (zh) 2016-07-14

Family

ID=53092413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/000347 WO2016109909A1 (zh) 2015-01-05 2015-07-08 无主栅高效率背接触太阳能电池、组件及其制备工艺

Country Status (9)

Country Link
US (1) US20170365731A1 (zh)
EP (1) EP3244454B1 (zh)
JP (1) JP6524237B2 (zh)
KR (1) KR101925233B1 (zh)
CN (1) CN104576778B (zh)
ES (1) ES2947503T3 (zh)
MY (1) MY190470A (zh)
SG (1) SG11201705389QA (zh)
WO (1) WO2016109909A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106653912A (zh) * 2017-01-22 2017-05-10 晶澳(扬州)太阳能科技有限公司 一种无栅线全背接触太阳能电池组件
CN106887479A (zh) * 2017-03-03 2017-06-23 浙江爱旭太阳能科技有限公司 一种防氧化的p型perc双面太阳能电池及其制备方法
US10840394B2 (en) 2015-09-25 2020-11-17 Total Marketing Services Conductive strip based mask for metallization of semiconductor devices
CN114551610A (zh) * 2022-03-11 2022-05-27 浙江爱旭太阳能科技有限公司 一种太阳能电池、电极结构、电池组件、发电系统及制备方法
CN114649443A (zh) * 2022-03-03 2022-06-21 浙江爱旭太阳能科技有限公司 背接触太阳能电池串及其制备方法、电池组件及光伏系统
US11973157B2 (en) 2015-06-26 2024-04-30 Maxeon Solar Pte. Ltd. Metallization and stringing for back-contact solar cells

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105609584B (zh) * 2014-11-19 2023-10-24 苏州易益新能源科技有限公司 一种太阳能电池组件生产方法
CN104576778B (zh) * 2015-01-05 2017-08-08 苏州中来光伏新材股份有限公司 无主栅高效率背接触太阳能电池、组件及其制备工艺
CN106098807A (zh) * 2016-06-27 2016-11-09 泰州乐叶光伏科技有限公司 一种n型晶体硅太阳能电池结构及其制备方法
CN105914249B (zh) * 2016-06-27 2018-07-17 泰州隆基乐叶光伏科技有限公司 全背电极接触晶硅太阳能电池结构及其制备方法
CN106653880A (zh) * 2017-01-22 2017-05-10 泰州乐叶光伏科技有限公司 Ibc电池的电极互联结构
CN106653881B (zh) * 2017-02-24 2018-12-25 泰州中来光电科技有限公司 一种背接触太阳能电池串及其制备方法和组件、系统
CN106981544A (zh) * 2017-04-10 2017-07-25 泰州中来光电科技有限公司 全背接触太阳能电池的制备方法和电池及其组件、系统
WO2019195804A1 (en) 2018-04-06 2019-10-10 Sunpower Corporation Laser assisted metallization process for solar cell circuit formation
WO2019195786A1 (en) 2018-04-06 2019-10-10 Sunpower Corporation Local metallization for semiconductor substrates using a laser beam
US11362234B2 (en) 2018-04-06 2022-06-14 Sunpower Corporation Local patterning and metallization of semiconductor structures using a laser beam
JP2021521633A (ja) 2018-04-06 2021-08-26 サンパワー コーポレイション 太陽電池ストリングのレーザー支援メタライゼーションプロセス
WO2019195803A1 (en) 2018-04-06 2019-10-10 Sunpower Corporation Laser assisted metallization process for solar cell fabrication
EP3573113B1 (en) * 2018-05-24 2020-04-15 Solyco Technology GmbH Photovoltaic module
CN108767023A (zh) * 2018-06-26 2018-11-06 米亚索乐装备集成(福建)有限公司 栅电极、太阳能电池及其制备方法
JP2020107758A (ja) 2018-12-27 2020-07-09 パナソニック株式会社 太陽電池モジュール
AU2020233022A1 (en) * 2019-03-05 2021-10-14 Longi Solar Technology (Taizhou) Co., Ltd. Back-contact solar cell conductive composite board and preparation method therefor, back-contact solar cell interconnection structure, and double-sided back-contact solar cell assembly
CN111668331A (zh) * 2019-03-05 2020-09-15 泰州隆基乐叶光伏科技有限公司 一种背接触太阳能电池互联结构
CN110137291A (zh) * 2019-04-19 2019-08-16 泰州隆基乐叶光伏科技有限公司 一种太阳能电池片及太阳能电池组件
CN110379880A (zh) * 2019-08-07 2019-10-25 常州时创能源科技有限公司 一种太阳能电池片的串联结构
CN111370504B (zh) * 2020-03-12 2022-09-23 中威新能源(成都)有限公司 一种无主栅硅异质结shj太阳能电池及其制备方法
CN114093969B (zh) * 2020-07-31 2024-04-12 苏州阿特斯阳光电力科技有限公司 电池片和具有其的光伏组件及光伏组件的制作方法
CN114023832A (zh) 2021-11-05 2022-02-08 晶科能源(海宁)有限公司 一种无主栅ibc电池单元及ibc电池组件
CN113871491A (zh) * 2021-12-03 2021-12-31 南京日托光伏新能源有限公司 一种gps层及背接触电池组件效率提升的方法
CN114613883A (zh) * 2022-03-16 2022-06-10 安徽华晟新能源科技有限公司 电池串互联的方法及电池串互联结构
CN114823959A (zh) * 2022-04-07 2022-07-29 无锡奥特维科技股份有限公司 一种太阳能电池组件和太阳能电池组件生产方法
US20240088306A1 (en) * 2022-09-09 2024-03-14 Jinko Solar Co., Ltd. Solar cell, photovoltaic module, and method for manufacturing photovoltaic module
CN115621335A (zh) * 2022-10-31 2023-01-17 青海黄河上游水电开发有限责任公司西宁太阳能电力分公司 无主栅全背电极接触太阳能电池和光伏组件
CN118039521A (zh) * 2024-04-11 2024-05-14 滁州捷泰新能源科技有限公司 一种电池片细栅绝缘性测试装置、方法及背接触组件制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011011855A1 (en) * 2009-07-31 2011-02-03 Day4 Energy Inc. Method for interconnecting back contact solar cells and photovoltaic module employing same
CN102184976A (zh) * 2011-06-10 2011-09-14 山东力诺太阳能电力股份有限公司 背接触异质结太阳电池
CN104576778A (zh) * 2015-01-05 2015-04-29 苏州中来光伏新材股份有限公司 无主栅高效率背接触太阳能电池、组件及其制备工艺
CN204348742U (zh) * 2015-01-05 2015-05-20 苏州中来光伏新材股份有限公司 无主栅高效率背接触太阳能电池及其组件

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5356488A (en) * 1991-12-27 1994-10-18 Rudolf Hezel Solar cell and method for its manufacture
US6660930B1 (en) * 2002-06-12 2003-12-09 Rwe Schott Solar, Inc. Solar cell modules with improved backskin
JP5230089B2 (ja) * 2006-09-28 2013-07-10 三洋電機株式会社 太陽電池モジュール
JP2008135654A (ja) * 2006-11-29 2008-06-12 Sanyo Electric Co Ltd 太陽電池モジュール
CN101675531B (zh) * 2007-02-16 2013-03-06 纳克公司 太阳能电池结构、光生伏打模块及对应的工艺
EP2184787A1 (en) * 2007-08-23 2010-05-12 Sharp Kabushiki Kaisha Rear surface bonding type solar cell, rear surface bonding type solar cell having wiring board, solar cell string and soar cell module
US20100051085A1 (en) * 2008-08-27 2010-03-04 Weidman Timothy W Back contact solar cell modules
DE102008044910A1 (de) * 2008-08-30 2010-03-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Solarzelle und Solarzellenmodul mit einseitiger Verschaltung
US8691694B2 (en) * 2009-12-22 2014-04-08 Henry Hieslmair Solderless back contact solar cell module assembly process
US8394650B2 (en) * 2010-06-08 2013-03-12 Amerasia International Technology, Inc. Solar cell interconnection, module and panel method
JP2012052004A (ja) * 2010-08-31 2012-03-15 Dainippon Printing Co Ltd 太陽電池モジュール用封止材の製造方法
WO2012081813A1 (ko) * 2010-12-17 2012-06-21 현대중공업 주식회사 후면전극형 태양전지 및 그 제조방법
JP6021138B2 (ja) * 2011-05-27 2016-11-09 デクセリアルズ株式会社 太陽電池モジュール、太陽電池モジュールの製造方法、及び薄膜太陽電池用タブ線
NL2006932C2 (en) * 2011-06-14 2012-12-17 Stichting Energie Photovoltaic cell.
JP5708807B2 (ja) * 2011-07-25 2015-04-30 日立化成株式会社 素子及び太陽電池
KR101923658B1 (ko) * 2011-12-13 2018-11-30 인텔렉츄얼 키스톤 테크놀로지 엘엘씨 태양전지 모듈
JP5496229B2 (ja) * 2012-01-06 2014-05-21 三菱電機株式会社 太陽電池モジュールおよび太陽電池モジュールの製造方法
CN103208556A (zh) * 2012-01-13 2013-07-17 上海凯世通半导体有限公司 太阳能电池的制作方法及太阳能电池
EP2709162A1 (en) * 2012-09-13 2014-03-19 Roth & Rau AG Photovoltaic cell and photovoltaic cell module based thereon
JP5611486B2 (ja) * 2012-09-21 2014-10-22 丸正株式会社 太陽電池用リード線及びその製造方法
BR112015029020A2 (pt) * 2013-06-07 2017-07-25 Shinetsu Chemical Co célula de bateria solar do tipo de contato traseiro
CN203859122U (zh) * 2013-07-12 2014-10-01 苏州润阳光伏科技有限公司 全背接触太阳电池电极
EP3399556A1 (en) * 2014-07-07 2018-11-07 Lg Electronics Inc. Solar cell module
CN104253169B (zh) * 2014-09-28 2016-09-07 泰州中来光电科技有限公司 无主栅、高效率背接触太阳能电池模块、组件及制备工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011011855A1 (en) * 2009-07-31 2011-02-03 Day4 Energy Inc. Method for interconnecting back contact solar cells and photovoltaic module employing same
CN102184976A (zh) * 2011-06-10 2011-09-14 山东力诺太阳能电力股份有限公司 背接触异质结太阳电池
CN104576778A (zh) * 2015-01-05 2015-04-29 苏州中来光伏新材股份有限公司 无主栅高效率背接触太阳能电池、组件及其制备工艺
CN204348742U (zh) * 2015-01-05 2015-05-20 苏州中来光伏新材股份有限公司 无主栅高效率背接触太阳能电池及其组件

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11973157B2 (en) 2015-06-26 2024-04-30 Maxeon Solar Pte. Ltd. Metallization and stringing for back-contact solar cells
US10840394B2 (en) 2015-09-25 2020-11-17 Total Marketing Services Conductive strip based mask for metallization of semiconductor devices
US11444214B2 (en) 2015-09-25 2022-09-13 Total Marketing Services Conductive strip based mask for metallization of semiconductor devices
CN106653912A (zh) * 2017-01-22 2017-05-10 晶澳(扬州)太阳能科技有限公司 一种无栅线全背接触太阳能电池组件
CN106653912B (zh) * 2017-01-22 2023-10-24 晶澳(扬州)太阳能科技有限公司 一种无栅线全背接触太阳能电池组件
CN106887479A (zh) * 2017-03-03 2017-06-23 浙江爱旭太阳能科技有限公司 一种防氧化的p型perc双面太阳能电池及其制备方法
CN114649443A (zh) * 2022-03-03 2022-06-21 浙江爱旭太阳能科技有限公司 背接触太阳能电池串及其制备方法、电池组件及光伏系统
CN114649443B (zh) * 2022-03-03 2024-04-16 浙江爱旭太阳能科技有限公司 背接触太阳能电池串及其制备方法、电池组件及光伏系统
CN114551610A (zh) * 2022-03-11 2022-05-27 浙江爱旭太阳能科技有限公司 一种太阳能电池、电极结构、电池组件、发电系统及制备方法
CN114551610B (zh) * 2022-03-11 2024-05-31 广东爱旭科技有限公司 一种太阳能电池、电极结构、电池组件、发电系统及制备方法

Also Published As

Publication number Publication date
KR20170103886A (ko) 2017-09-13
EP3244454B1 (en) 2023-05-03
EP3244454A1 (en) 2017-11-15
US20170365731A1 (en) 2017-12-21
ES2947503T3 (es) 2023-08-10
SG11201705389QA (en) 2017-08-30
CN104576778A (zh) 2015-04-29
KR101925233B1 (ko) 2018-12-04
JP2018500775A (ja) 2018-01-11
CN104576778B (zh) 2017-08-08
JP6524237B2 (ja) 2019-06-05
EP3244454A4 (en) 2018-11-21
MY190470A (en) 2022-04-22

Similar Documents

Publication Publication Date Title
WO2016109909A1 (zh) 无主栅高效率背接触太阳能电池、组件及其制备工艺
WO2016045227A1 (zh) 无主栅、高效率背接触太阳能电池模块、组件及制备工艺
CN104810423B (zh) 新型无主栅高效率背接触太阳能电池和组件及制备工艺
CN104253169B (zh) 无主栅、高效率背接触太阳能电池模块、组件及制备工艺
CN104269462B (zh) 无主栅背接触太阳能电池背板、组件及制备工艺
CN204348742U (zh) 无主栅高效率背接触太阳能电池及其组件
CN102760777A (zh) 太阳电池、太阳电池组件及其制备方法
CN104269453B (zh) 无主栅、高效率背接触太阳能电池背板、组件及制备工艺
CN104269454B (zh) 无主栅、高效率背接触太阳能电池背板、组件及制备工艺
CN204651328U (zh) 新型无主栅高效率背接触太阳能电池及其组件
CN204204882U (zh) 无主栅高效率背接触太阳能电池组件
CN204204885U (zh) 无主栅高效率背接触太阳能电池背板
CN204230264U (zh) 无主栅高效率背接触太阳能电池背板及组件
CN104319301A (zh) 无主栅、高效率背接触太阳能电池背板、组件及制备工艺
CN104347746A (zh) 无主栅、高效率背接触太阳能电池模块、组件及制备工艺
CN204088344U (zh) 无主栅高效率背接触太阳能电池模块及组件
CN204144285U (zh) 无主栅高效率背接触太阳能电池模块及组件
CN204088345U (zh) 无主栅高效率背接触太阳能电池模块及组件
CN204088340U (zh) 无主栅高效率背接触太阳能电池背板
CN209981238U (zh) 太阳电池组件
KR102084854B1 (ko) 2이상의 태양전지 셀을 포함하는 태양전지 셀 스트링 및 그의 제조방법
KR101153591B1 (ko) 결정질 실리콘 태양전지의 구조 및 제조방법
CN204088341U (zh) 无主栅高效率背接触太阳能电池背板及组件
CN204088342U (zh) 无主栅高效率背接触太阳能电池组件
CN104347737B (zh) 无主栅、高效率背接触太阳能电池模块、组件及制备工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15876420

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015876420

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15541335

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017535742

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11201705389Q

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 20177021944

Country of ref document: KR

Kind code of ref document: A