WO2016107081A1 - 一种圆偏振片及其制备方法、以及一种显示面板 - Google Patents

一种圆偏振片及其制备方法、以及一种显示面板 Download PDF

Info

Publication number
WO2016107081A1
WO2016107081A1 PCT/CN2015/081028 CN2015081028W WO2016107081A1 WO 2016107081 A1 WO2016107081 A1 WO 2016107081A1 CN 2015081028 W CN2015081028 W CN 2015081028W WO 2016107081 A1 WO2016107081 A1 WO 2016107081A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave plate
substrate
forming
quarter
grating structure
Prior art date
Application number
PCT/CN2015/081028
Other languages
English (en)
French (fr)
Inventor
李文波
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/892,639 priority Critical patent/US20160356934A1/en
Publication of WO2016107081A1 publication Critical patent/WO2016107081A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00634Production of filters
    • B29D11/00644Production of filters polarizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00865Applying coatings; tinting; colouring
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133541Circular polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133548Wire-grid polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n

Definitions

  • the present invention relates to the field of polarizing plate technology, and in particular to a circular polarizing plate and a method for preparing the same, and a display panel.
  • the circularly polarizing plate is generally attached to the upper substrate and/or the lower substrate of the display panel, which makes the structure of the display panel relatively complicated.
  • the invention provides a circular polarizing plate, a preparation method thereof, and a display panel.
  • the circular polarizing plate can be directly integrated on the upper substrate or/and the lower substrate of the display panel, thereby simplifying the structure of the display panel.
  • the present invention provides the following technical solutions:
  • a circular polarizing plate comprising: a substrate, and a linear grating structure layer and a quarter wave plate on one side of the substrate.
  • the quarter wave plate is a quarter wave plate formed by a photopolymerizable liquid crystal material.
  • the above circularly polarizing plate can obtain circularly polarized light by a combination of a linear grating structure layer and a quarter wave plate. Since the linear grating structure layer and the quarter wave plate of the circularly polarizing plate are formed on the substrate, when the substrate of the circularly polarizing plate is the upper substrate or/and the lower substrate of the display panel, the circular polarizing plate The linear grating structure layer and the quarter wave plate may be formed directly on the upper substrate or/and the lower substrate of the display panel. At this time, the above circularly polarizing plate is integrated on the display panel, so that the structure of the display panel can be simplified.
  • the linear grating structure layer has a grating pitch of less than 200 nm.
  • the linear grating structure layer has a grating pitch of 60 to 100 nm.
  • the quarter-wave plate is a wave plate that makes the optical path difference between the o-light and the e-light a quarter-wavelength, or the quarter-wave plate is an o-light and an e-light A wave plate having an optical path difference of three-quarters of a wavelength, or the quarter-wave plate is an optical path for making o and e light A wave plate having a difference of a quarter wavelength and a wave plate formed by arranging wave plates of an optical path difference of o light and e light at a wavelength of three quarters.
  • the linear grating structure layer is located between the substrate and the quarter wave plate.
  • the quarter wave plate is located between the substrate and the linear grating structure layer.
  • the present invention also provides a display panel, the display panel including an upper substrate and a lower substrate, wherein the upper substrate is the circular polarizing plate described in any one of the above aspects, and/or the lower substrate is the above A circularly polarizing plate as described in any one of the aspects.
  • the invention also provides a preparation method of a circular polarizing plate, comprising:
  • a linear grating structure layer and a quarter wave plate are formed on the substrate.
  • the quarter wave plate is a quarter wave plate formed by a photopolymerizable liquid crystal material.
  • the forming a linear grating structure layer and a quarter wave plate on the substrate comprises:
  • a quarter wave plate is formed on the leveling resin material.
  • leveling refers to the treatment of the leveling resin to have a flat surface to facilitate the formation of additional layers thereon.
  • the forming a linear grating structure layer on the substrate comprises: forming a metal layer on the substrate, coating, exposing, and developing the metal layer to form a linear grating structure;
  • the forming a quarter wave plate on the leveling resin material comprises: forming a photopolymerizable liquid crystal material on the leveling resin material, and irradiating the photopolymerizable liquid crystal material by ultraviolet polarized light to form a quarter wave plate.
  • the exposure is exposure by an interference exposure method using a laser.
  • Forming the linear grating structure layer on the substrate comprises: forming a metal layer on the substrate, applying an embossable liquid material on the metal layer, and using the embossed nano-imprinting mold to align the liquid
  • the bulk material is embossed, and photocured and demolded to form a cured material having a grating pattern; the metal layer is etched and developed by using the cured material as a mask to form a linear grating structure;
  • the forming a quarter wave plate on the leveling resin material comprises: forming a photopolymerizable liquid crystal material on the leveling resin material, and irradiating the photopolymerizable liquid crystal material by ultraviolet polarized light to form a quarter wave plate.
  • the forming a metal layer on the substrate comprises: sputtering or vapor-depositing a metal layer on the substrate.
  • the forming a linear grating structure layer and a quarter wave plate on the substrate comprises:
  • a linear grating structure layer is formed on the protective layer.
  • Forming the linear grating structure layer on the protective layer comprises: forming a metal layer on the protective layer, coating, exposing, and developing the metal layer to form a linear grating structure;
  • the forming a quarter wave plate on the substrate comprises: forming a photopolymerizable liquid crystal material on the substrate, and irradiating the photopolymerizable liquid crystal material with ultraviolet polarized light to form a quarter wave plate.
  • the exposure is exposure by an interference exposure method using a laser.
  • Forming the linear grating structure layer on the protective layer comprises: forming a metal layer on the protective layer, applying an embossable liquid material on the metal layer, and imprinting the liquid material by using the concave-convex nanoimprinting mold, and Performing photocuring and demolding to form a cured material having a grating pattern; etching and developing the metal layer using the cured material as a mask to form a linear grating structure;
  • the forming a quarter wave plate on the substrate comprises: forming a photopolymerizable liquid crystal material on the substrate, and irradiating the photopolymerizable liquid crystal material with ultraviolet polarized light to form a quarter wave plate.
  • the forming a metal layer on the substrate comprises: sputtering or vapor-depositing a metal layer on the substrate.
  • FIG. 1a to 1d are schematic views showing a preparation process of a circular polarizing plate according to an embodiment of the present invention
  • FIGS. 2a to 2f are schematic views showing a process of preparing another circular polarizing plate according to an embodiment of the present invention.
  • 3a-3d are schematic views showing a preparation process of another circular polarizing plate according to an embodiment of the present invention.
  • FIGS. 4a to 4f are schematic views showing a process of preparing another circular polarizing plate according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a method for preparing a circular polarizing plate according to an embodiment of the present invention
  • Figure 6 is a flow chart of the preparation process shown in Figures 1a to 1d;
  • FIG. 7 is a flow chart of the preparation process shown in Figures 2a to 2f;
  • Figure 8 is a flow chart of the preparation process shown in Figures 3a to 3d;
  • Figure 9 is a flow chart of the preparation process shown in Figures 4a to 4f.
  • FIGS. 1a to 1d, 2a to 2f, 3a to 3d, and 4a to 4f are schematic views showing a preparation process of a circularly polarizing plate according to an embodiment of the present invention
  • FIGS. 2a to 2f are schematic views showing a process of preparing another circularly polarizing plate according to an embodiment of the present invention
  • 3d is a schematic view showing a process of preparing another circular polarizing plate according to an embodiment of the present invention
  • FIGS. 4a to 4f are schematic views showing a process of preparing another circular polarizing plate according to an embodiment of the present invention.
  • a circular polarizing plate includes: a substrate 1, and a linear grating structure layer 3 on the side of the substrate 1 and a quarter.
  • a wave of tablets 5 is a quarter wave plate 5 formed by a photopolymerizable liquid crystal material.
  • the above circularly polarizing plate can obtain circularly polarized light by a combination of the linear grating structure layer 3 and the quarter wave plate 5. Since the linear grating structure layer 3 and the quarter wave plate 5 of the circularly polarizing plate are formed on the substrate 1, when the substrate 1 of the circularly polarizing plate is the upper substrate or/and the lower substrate of the display panel, The linear grating structure layer 3 and the quarter wave plate 5 of the circularly polarizing plate may be directly formed on the upper substrate or/and the lower substrate of the display panel. At this time, the above circularly polarizing plate is integrated on the display panel, so that the structure of the display panel can be simplified.
  • the grating pitch of the linear grating structure layer 3 is less than 200 nm.
  • the grating pitch of the linear grating structure layer 3 needs to be less than one-half of the wavelength of the incident light. Therefore, when the incident light is in the visible light band, the grating pitch of the linear grating structure layer 3 needs to be less than 200 nm.
  • the grating pitch of the linear grating structure layer 3 may be 60 to 100 nm.
  • the quarter wave plate 5 can be in various ways:
  • the quarter wave plate 5 is a wave plate in which the optical path difference between the o light and the e light is a quarter wavelength
  • the quarter wave plate 5 is a wave plate in which the optical path difference between the o light and the e light is three quarters of a wavelength
  • the quarter wave plate 5 is a wave plate in which the optical path difference between the o light and the e light is a quarter wavelength, and a wave plate in which the optical path difference between the o light and the e light is three quarter wavelength.
  • the wave plates formed are arranged at intervals.
  • the positional relationship between the substrate 1, the linear grating structure layer 3 and the quarter wave plate 5 may be as shown in FIG. 1d and FIG. 2f.
  • the grating structure layer 3 is located between the substrate 1 and the quarter wave plate 5; or, as shown in Figs. 3d and 4f, the quarter wave plate 5 is located between the substrate 1 and the linear grating structure layer 3.
  • the embodiment of the present invention further provides a display panel, which includes an upper substrate and a lower substrate, wherein the upper substrate is a circular polarizing plate provided by any of the above embodiments, and/or the lower substrate is provided by any of the above embodiments.
  • Circular polarizer Therefore, a circularly polarizing plate is integrated in the above display panel, whereby circularly polarized light can be obtained, and the structure of the display panel is simple.
  • an embodiment of the present invention further provides a method for preparing a circular polarizing plate, which includes the following steps:
  • Step S501 cleaning the substrate 1;
  • step S502 a linear grating structure layer 3 and a quarter wave plate 5 are formed on the substrate 1.
  • the quarter wave plate 5 is a quarter wave plate 5 formed by a photopolymerizable liquid crystal material.
  • the linear grating structure layer 3 and the quarter wave plate 5 of the above circularly polarizing plate may be directly formed on the upper substrate or/and the lower substrate of the display panel. . That is, the above circular polarizing plate can be integrated in the display panel, thereby simplifying the structure of the display panel.
  • step S502 forming the linear grating structure layer 3 and the quarter wave plate 5 on the substrate 1 may specifically include:
  • the on-line grating structure layer 3 is coated with an Over Coating material 4 and flattened;
  • a quarter wave plate 5 is formed on the leveling resin material 4.
  • the above embodiments may include the following embodiments:
  • Step S101 as shown in FIG. 1a and FIG. 1b, forming a metal layer 2 on the substrate 1, and coating, exposing, and developing the metal layer 2 to form a linear grating structure;
  • Step S102 as shown in FIG. 1c, an on-line grating structure layer 3 is coated with an overcoat material 4 and flattened;
  • Step S103 as shown in FIG. 1d, a photopolymerizable liquid crystal material is formed on the leveling resin material 4, and the photopolymerizable liquid crystal material is irradiated by ultraviolet polarized light to form a quarter wave plate 5.
  • the orientation and solidification are performed by different polarization directions of the ultraviolet light to form the quarter-wave plate 5, so that a mask is not required.
  • the exposure process described above may be performed by an interference exposure method using a laser, that is, exposure is performed by using interference fringes formed by irradiation of laser light of a specific wavelength from two directions of the angle ⁇ .
  • a linear grating structure of various pitches within the wavelength range of the laser used can be obtained.
  • Step S201 as shown in Figure 2a, forming a metal layer 2 on the substrate 1;
  • Step S202 as shown in FIG. 2b and FIG. 2c, applying an embossable liquid material 6 on the metal layer 2, embossing the liquid material 6 by using the embossed nanoimprinting mold 7, and performing photocuring and demolding to Forming a cured material 8 having a grating pattern;
  • Step S203 as shown in FIG. 2d, etching and developing the metal layer 2 by using the cured material 8 as a mask to form a linear grating structure;
  • Step S204 as shown in FIG. 2e, the on-line grating structure layer 3 is coated with an overcoat material 4 and leveled;
  • Step S205 as shown in Fig. 2f, a photopolymerizable liquid crystal material is formed on the leveling resin material 4, and the photopolymerizable liquid crystal material is irradiated by ultraviolet polarized light to form a quarter wave plate 5.
  • the orientation and solidification are performed by different polarization directions of the ultraviolet light to form the quarter-wave plate 5, so that a mask is not required.
  • the metal layer 2 is formed on the substrate 1 by sputtering or evaporation.
  • step S502 forming the linear grating structure layer 3 and the quarter wave plate 5 on the substrate 1 may specifically include:
  • a linear grating structure layer 3 is formed on the protective layer 9.
  • the above embodiments may include the following embodiments:
  • Embodiment 1 is as shown in FIG. 3a to FIG. 3d and FIG.
  • Step S301 as shown in FIG. 3a, a photopolymerizable liquid crystal material is formed on the substrate 1, and the photopolymerizable liquid crystal material is irradiated by ultraviolet polarized light to form a quarter wave plate 5. Orienting and solidifying by different polarization directions of ultraviolet light to form a quarter-wave plate 5, thereby realizing that a mask is not required;
  • Step S302 as shown in FIG. 3b, forming a protective layer 9 on the quarter wave plate 5;
  • Step S303 as shown in FIG. 3c and FIG. 3d, a metal layer 2 is formed on the protective layer 9, and the metal layer 2 is coated, exposed, and developed to form a linear grating structure.
  • the exposure is exposure by an interference exposure method using a laser, that is, exposure is performed by using interference fringes formed by irradiation of laser light of a specific wavelength from two directions of the angle ⁇ .
  • a linear grating structure of various pitches within the wavelength range of the laser used can be obtained.
  • Step S401 as shown in FIG. 4a, a photopolymerizable liquid crystal material is formed on the substrate 1, and the photopolymerizable liquid crystal material is irradiated by ultraviolet polarized light to form a quarter wave plate 5. Orienting and solidifying by different polarization directions of ultraviolet light to form a quarter wave plate 5, thereby eliminating the need for masking
  • the template can be implemented;
  • Step S402 as shown in Figure 4b, forming a protective layer 9 on the quarter wave plate 5;
  • Step S403 as shown in Figure 4c, forming a metal layer 2 on the protective layer 9;
  • Step S404 as shown in FIG. 4d and FIG. 4e, the embossable liquid material 6 is coated on the metal layer 2, and the liquid material 6 is embossed by the embossed nanoimprinting mold 7, and photocured and demolded. Forming a cured material 8 having a grating pattern;
  • step S405 as shown in FIG. 4f, the metal layer 2 is etched and developed using the cured material 8 as a mask to form a linear grating structure.
  • the metal layer 2 is formed on the substrate 1 by sputtering or evaporation.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ophthalmology & Optometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Polarising Elements (AREA)

Abstract

一种圆偏振片及其制备方法、以及一种显示面板。该圆偏振片包括:基板(1)、以及位于基板(1)一侧上的线型光栅结构层(3)和四分之一波片(5)。其中,所述四分之一波片(5)为通过光聚合液晶材料形成的四分之一波片(5)。上述圆偏振片可以直接集成于显示面板的上基板或/和下基板上,因此可以简化显示面板的结构。

Description

一种圆偏振片及其制备方法、以及一种显示面板 技术领域
本发明涉及偏振片技术领域,特别涉及一种圆偏振片及其制备方法、以及一种显示面板。
背景技术
在现有技术中,当显示面板中需要获得圆偏振光时,一般是将圆偏振片贴附于显示面板的上基板和/或下基板上,这使得显示面板的结构比较复杂。
发明内容
本发明提供一种圆偏振片及其制备方法、以及一种显示面板。所述圆偏振片可以直接集成于显示面板的上基板或/和下基板上,从而简化显示面板的结构。
为了达到上述目的,本发明提供以下技术方案:
一种圆偏振片,包括:基板、以及位于基板一侧上的线型光栅结构层和四分之一波片。其中,所述四分之一波片为通过光聚合液晶材料形成的四分之一波片。
光束通过线型光栅结构后可以变为线偏振光,线偏振光通过四分之一波片后可以变为圆偏振光。因此,上述圆偏振片通过线型光栅结构层和四分之一波片的组合可以获得圆偏振光。由于上述圆偏振片的线型光栅结构层和四分之一波片形成于基板上,因此,当上述圆偏振片的基板为显示面板的上基板或/和下基板时,上述圆偏振片的线型光栅结构层和四分之一波片可以直接形成于显示面板的上基板或/和下基板上。此时,上述圆偏振片集成于显示面板上,因此可以简化显示面板的结构。
优选地,所述线型光栅结构层的光栅间距小于200nm。
优选地,所述线型光栅结构层的光栅间距为60~100nm。
优选地,所述四分之一波片为使o光和e光的光程差为四分之一波长的波片,或者,所述四分之一波片为使o光和e光的光程差为四分之三波长的波片,或者,所述四分之一波片为使o光和e光的光程 差为四分之一波长的波片以及使o光和e光的光程差为四分之三波长的波片间隔排列所形成的波片。
优选地,所述线型光栅结构层位于所述基板和所述四分之一波片之间。
优选地,所述四分之一波片位于所述基板和所述线型光栅结构层之间。
本发明还提供一种显示面板,所述显示面板包括上基板和下基板,其中,所述上基板为上述任意一个技术方案中所述的圆偏振片,和/或,所述下基板为上述任意一个技术方案中所述的圆偏振片。
本发明还提供一种圆偏振片的制备方法,包括:
清洗基板;以及
在基板上形成线型光栅结构层和四分之一波片。
其中,所述四分之一波片为通过光聚合液晶材料形成的四分之一波片。
优选地,所述在基板上形成线型光栅结构层和四分之一波片,具体包括:
在基板上形成线型光栅结构层;
在线型光栅结构层上涂覆找平树脂(Over Coating)材料并找平(flatten);以及
在找平树脂材料上形成四分之一波片。
如以上所述,找平是指对找平树脂进行处理,以使其具有平坦表面,从而促进另外的层在其上的形成。
优选地,所述在基板上形成线型光栅结构层,具体包括:在基板上形成金属层,对金属层进行涂胶、曝光、显影,以形成线型光栅结构;
所述在找平树脂材料上形成四分之一波片,具体包括:在找平树脂材料上形成光聚合液晶材料,通过紫外偏振光照射光聚合液晶材料,以形成四分之一波片。
优选地,所述曝光为采用激光的干涉曝光法进行的曝光。
优选地,
所述在基板上形成线型光栅结构层,具体包括:在基板上形成金属层,在金属层上涂覆可压印液体材料,利用凹凸纳米压印模具对液 体材料进行压印,并进行光固化、脱模,以形成具有光栅图形的固化材料;利用所述固化材料作为掩模板对金属层进行刻蚀、显影,以形成线型光栅结构;
所述在找平树脂材料上形成四分之一波片,具体包括:在找平树脂材料上形成光聚合液晶材料,通过紫外偏振光照射光聚合液晶材料,以形成四分之一波片。
优选地,所述在基板上形成金属层,具体包括:在基板上溅射或蒸镀金属层。
优选地,所述在基板上形成线型光栅结构层和四分之一波片,具体包括:
在基板上形成四分之一波片;
在四分之一波片上形成保护层;以及
在保护层上形成线型光栅结构层。
优选地,
所述在保护层上形成线型光栅结构层,具体包括:在保护层上形成金属层,对金属层进行涂胶、曝光、显影,以形成线型光栅结构;
所述在基板上形成四分之一波片,具体包括:在基板上形成光聚合液晶材料,通过紫外偏振光照射光聚合液晶材料,以形成四分之一波片。
优选地,所述曝光为采用激光的干涉曝光法进行的曝光。
优选地,
所述在保护层上形成线型光栅结构层,具体包括:在保护层上形成金属层,在金属层上涂覆可压印液体材料,利用凹凸纳米压印模具对液体材料进行压印,并进行光固化、脱模,以形成具有光栅图形的固化材料;利用所述固化材料作为掩模板对金属层进行刻蚀、显影,以形成线型光栅结构;
所述在基板上形成四分之一波片,具体包括:在基板上形成光聚合液晶材料,通过紫外偏振光照射光聚合液晶材料,以形成四分之一波片。
优选地,所述在基板上形成金属层,具体包括:在基板上溅射或蒸镀金属层。
附图说明
图1a~图1d为本发明实施例提供的一种圆偏振片的制备过程的示意图;
图2a~图2f为本发明实施例提供的另一种圆偏振片的制备过程的示意图;
图3a~图3d为本发明实施例提供的另一种圆偏振片的制备过程的示意图;
图4a~图4f为本发明实施例提供的另一种圆偏振片的制备过程的示意图;
图5为本发明实施例提供的一种圆偏振片的制备方法的流程图;
图6为图1a~图1d所示的制备过程的流程图;
图7为图2a~图2f所示的制备过程的流程图;
图8为图3a~图3d所示的制备过程的流程图;
图9为图4a~图4f所示的制备过程的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明所保护的范围。
请参考图1a~图1d、图2a~图2f、图3a~图3d、图4a~图4f。图1a~图1d为本发明实施例提供的一种圆偏振片的制备过程的示意图;图2a~图2f为本发明实施例提供的另一种圆偏振片的制备过程的示意图;图3a~图3d为本发明实施例提供的另一种圆偏振片的制备过程的示意图;图4a~图4f为本发明实施例提供的另一种圆偏振片的制备过程的示意图。
如图1d、图2f、图3d、图4f所示,本发明实施例提供的一种圆偏振片,包括:基板1、以及位于基板1一侧上的线型光栅结构层3和四分之一波片5。其中,四分之一波片5为通过光聚合液晶材料形成的四分之一波片5。
光束通过线型光栅结构后可以变为线偏振光,线偏振光通过四分 之一波片后可以变为圆偏振光。因此,上述圆偏振片通过线型光栅结构层3和四分之一波片5的组合可以获得圆偏振光。由于上述圆偏振片的线型光栅结构层3和四分之一波片5形成于基板1上,因此,当上述圆偏振片的基板1为显示面板的上基板或/和下基板时,上述圆偏振片的线型光栅结构层3和四分之一波片5可以直接形成于显示面板的上基板或/和下基板上。此时,上述圆偏振片集成于显示面板上,因此可以简化显示面板的结构。
如图1d、图2f、图3d、图4f所示,在具体实施例中,线型光栅结构层3的光栅间距小于200nm。该线型光栅结构层3的光栅间距需小于入射光波长的二分之一。因此,当入射光为可见光波段时,线型光栅结构层3的光栅间距需小于200nm。优选地,线型光栅结构层3的光栅间距可以为60~100nm。
如图1d、图2f、图3d、图4f所示,在具体实施例中,四分之一波片5可以有多种方式:
方式一,四分之一波片5为使o光和e光的光程差为四分之一波长的波片;
方式二,四分之一波片5为使o光和e光的光程差为四分之三波长的波片;
方式三,四分之一波片5为使o光和e光的光程差为四分之一波长的波片以及使o光和e光的光程差为四分之三波长的波片间隔排列所形成的波片。
在上述各实施例的基础上,在具体实施例中,基板1、线型光栅结构层3和四分之一波片5之间的位置关系可以为:如图1d、图2f所示,线型光栅结构层3位于基板1和四分之一波片5之间;或者,如图3d、图4f所示,四分之一波片5位于基板1和线型光栅结构层3之间。
本发明实施例还提供一种显示面板,该显示面板包括上基板和下基板,其中,上基板为上述任意实施例提供的圆偏振片,和/或,下基板为上述任一实施例提供的圆偏振片。因此,上述显示面板中集成有圆偏振片,由此可以获得圆偏振光,并且显示面板的结构简单。
如图5所示,本发明实施例还提供一种圆偏振片的制备方法,包括以下步骤:
步骤S501,清洗基板1;以及
步骤S502,在基板1上形成线型光栅结构层3和四分之一波片5。
其中,四分之一波片5为通过光聚合液晶材料形成的四分之一波片5。
当基板1为显示面板的上基板或/和下基板时,上述圆偏振片的线型光栅结构层3和四分之一波片5可以直接形成于显示面板的上基板或/和下基板上。即上述圆偏振片可以集成于显示面板中,从而简化显示面板的结构。
在一种实施方式中,步骤S502,在基板1上形成线型光栅结构层3和四分之一波片5,具体可以包括:
在基板1上形成线型光栅结构层3;
在线型光栅结构层3上涂覆找平树脂(Over Coating)材料4并找平(flatten);以及
在找平树脂材料4上形成四分之一波片5。
具体地,上述实施方式可以包括以下实施例:
具体实施例一,如图1a~图1d和图6所示,
步骤S101,如图1a和图1b所示,在基板1上形成金属层2,对金属层2进行涂胶、曝光、显影,以形成线型光栅结构;
步骤S102,如图1c所示,在线型光栅结构层3上涂覆找平树脂(Over Coating)材料4并找平(flatten);以及
步骤S103,如图1d所示,在找平树脂材料4上形成光聚合液晶材料,通过紫外偏振光照射光聚合液晶材料,以形成四分之一波片5。通过紫外光的不同偏光方向进行取向和固化以形成四分之一波片5,从而不需要掩模板即可实现。
优选地,上述曝光过程可以采用激光的干涉曝光法进行,即利用由特定波长的激光从夹角θ的两个方向照射所形成的干涉条纹进行曝光。通过改变θ的大小,可以得到在使用的激光波长范围内的各种间距的线型光栅结构。
具体实施例二,如图2a~图2f和图7所示,
步骤S201,如图2a所示,在基板1上形成金属层2;
步骤S202,如图2b和图2c所示,在金属层2上涂覆可压印液体材料6,利用凹凸纳米压印模具7对液体材料6进行压印,并进行光固化、脱模,以形成具有光栅图形的固化材料8;
步骤S203,如图2d所示,利用固化材料8作为掩模板对金属层2进行刻蚀、显影,以形成线型光栅结构;
步骤S204,如图2e所示,在线型光栅结构层3上涂覆找平树脂(Over Coating)材料4并找平;以及
步骤S205,如图2f所示,在找平树脂材料4上形成光聚合液晶材料,通过紫外偏振光照射光聚合液晶材料,以形成四分之一波片5。通过紫外光的不同偏光方向进行取向和固化以形成四分之一波片5,从而不需要掩模板即可实现。
优选地,具体可以采用溅射或蒸镀方法在基板1上形成金属层2。
另一种实施方式中,步骤S502,在基板1上形成线型光栅结构层3和四分之一波片5,具体可以包括:
在基板1上形成四分之一波片5;
在四分之一波片5上形成保护层9;以及
在保护层9上形成线型光栅结构层3。
具体地,上述实施方式可以包括以下实施例:
具体实施例一,如图3a~图3d和图8所示,
步骤S301,如图3a所示,在基板1上形成光聚合液晶材料,通过紫外偏振光照射光聚合液晶材料,以形成四分之一波片5。通过紫外光的不同偏光方向进行取向和固化以形成四分之一波片5,从而不需要掩模板即可实现;
步骤S302,如图3b所示,在四分之一波片5上形成保护层9;以及
步骤S303,如图3c和图3d所示,在保护层9上形成金属层2,对金属层2进行涂胶、曝光、显影,以形成线型光栅结构。
优选地,曝光为采用激光的干涉曝光法进行的曝光,即利用由特定波长的激光从夹角θ的两个方向照射所形成的干涉条纹进行曝光。通过改变θ的大小,可以得到在使用的激光波长范围内的各种间距的线型光栅结构。
具体实施例二,如图4a~图4f和图9所示,
步骤S401,如图4a所示,在基板1上形成光聚合液晶材料,通过紫外偏振光照射光聚合液晶材料,以形成四分之一波片5。通过紫外光的不同偏光方向进行取向和固化以形成四分之一波片5,从而不需要掩 模板即可实现;
步骤S402,如图4b所示,在四分之一波片5上形成保护层9;
步骤S403,如图4c所示,在保护层9上形成金属层2;
步骤S404,如图4d和图4e所示,在金属层2上涂覆可压印液体材料6,利用凹凸纳米压印模具7对液体材料6进行压印,并进行光固化、脱模,以形成具有光栅图形的固化材料8;以及
步骤S405,如图4f所示,利用固化材料8作为掩模板对金属层2进行刻蚀、显影,以形成线型光栅结构。
优选地,具体可以采用溅射或蒸镀的方法在基板1上形成金属层2。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (20)

  1. 一种圆偏振片,包括:
    基板;以及
    位于基板一侧上的线型光栅结构层和四分之一波片。
  2. 根据权利要求1所述的圆偏振片,其中,所述四分之一波片为通过光聚合液晶材料形成的四分之一波片。
  3. 根据权利要求1所述的圆偏振片,其中,所述线型光栅结构层的光栅间距小于200nm。
  4. 根据权利要求3所述的圆偏振片,其中,所述线型光栅结构层的光栅间距为60~100nm。
  5. 根据权利要求1所述的圆偏振片,其中,所述四分之一波片为使o光和e光的光程差为四分之一波长的波片,或者,所述四分之一波片为使o光和e光的光程差为四分之三波长的波片,或者,所述四分之一波片为使o光和e光的光程差为四分之一波长的波片以及使o光和e光的光程差为四分之三波长的波片间隔排列所形成的波片。
  6. 根据权利要求1~5中任一项所述的圆偏振片,其中,所述线型光栅结构层位于所述基板和所述四分之一波片之间。
  7. 根据权利要求1~5中任一项所述的圆偏振片,其中,所述四分之一波片位于所述基板和所述线型光栅结构层之间。
  8. 一种显示面板,包括上基板和下基板,其中,所述上基板为如权利要求1~7中任一项所述的圆偏振片,和/或,所述下基板为如权利要求1~7中任一项所述的圆偏振片。
  9. 一种圆偏振片的制备方法,包括:
    清洗基板;以及
    在基板上形成线型光栅结构层和四分之一波片。
  10. 根据权利要求9所述的制备方法,其中,所述四分之一波片为通过光聚合液晶材料形成的四分之一波片。
  11. 根据权利要求9所述的制备方法,其中,所述在基板上形成线型光栅结构层和四分之一波片,包括:
    在基板上形成线型光栅结构层;
    在线型光栅结构层上涂覆找平树脂材料并找平;以及
    在找平树脂材料上形成四分之一波片。
  12. 根据权利要求11所述的制备方法,其中,
    所述在基板上形成线型光栅结构层,包括:在基板上形成金属层,对金属层进行涂胶、曝光、显影,以形成线型光栅结构;
    所述在找平树脂材料上形成四分之一波片,包括:在找平树脂材料上形成光聚合液晶材料,通过紫外偏振光照射光聚合液晶材料,以形成四分之一波片。
  13. 根据权利要求12所述的制备方法,其中,所述曝光为采用激光的干涉曝光法进行的曝光。
  14. 根据权利要求11所述的制备方法,其中,
    所述在基板上形成线型光栅结构层,包括:在基板上形成金属层,在金属层上涂覆可压印液体材料,利用凹凸纳米压印模具对液体材料进行压印,并进行光固化、脱模,以形成具有光栅图形的固化材料;利用所述固化材料作为掩模板对金属层进行刻蚀、显影,以形成线型光栅结构;
    所述在找平树脂材料上形成四分之一波片,包括:在找平树脂材料上形成光聚合液晶材料,通过紫外偏振光照射光聚合液晶材料,以形成四分之一波片。
  15. 根据权利要求12~14中任一项所述的制备方法,其中,所述在基板上形成金属层,包括:在基板上溅射或蒸镀金属层。
  16. 根据权利要求9所述的制备方法,其中,所述在基板上形成线型光栅结构层和四分之一波片,包括:
    在基板上形成四分之一波片;
    在四分之一波片上形成保护层;以及
    在保护层上形成线型光栅结构层。
  17. 根据权利要求16所述的制备方法,其中,
    所述在保护层上形成线型光栅结构层,包括:在保护层上形成金属层,对金属层进行涂胶、曝光、显影,以形成线型光栅结构;
    所述在基板上形成四分之一波片,包括:在基板上形成光聚合液晶材料,通过紫外偏振光照射光聚合液晶材料,以形成四分之一波片。
  18. 根据权利要求17所述的制备方法,其中,所述曝光为采用激光的干涉曝光法进行的曝光。
  19. 根据权利要求16所述的制备方法,其中,
    所述在保护层上形成线型光栅结构层,包括:在保护层上形成金属层,在金属层上涂覆可压印液体材料,利用凹凸纳米压印模具对液体材料进行压印,并进行光固化、脱模,以形成具有光栅图形的固化材料;利用所述固化材料作为掩模板对金属层进行刻蚀、显影,以形成线型光栅结构;
    所述在基板上形成四分之一波片,包括:在基板上形成光聚合液晶材料,通过紫外偏振光照射光聚合液晶材料,以形成四分之一波片。
  20. 根据权利要求17~19中任一项所述的制备方法,其中,所述在基板上形成金属层,包括:在基板上溅射或蒸镀金属层。
PCT/CN2015/081028 2014-12-30 2015-06-09 一种圆偏振片及其制备方法、以及一种显示面板 WO2016107081A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/892,639 US20160356934A1 (en) 2014-12-30 2015-06-09 Circular polarizer and fabricating method thereof, as well as display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410844297.X 2014-12-30
CN201410844297.XA CN104459866A (zh) 2014-12-30 2014-12-30 一种圆偏振片及其制备方法、显示面板

Publications (1)

Publication Number Publication Date
WO2016107081A1 true WO2016107081A1 (zh) 2016-07-07

Family

ID=52906203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/081028 WO2016107081A1 (zh) 2014-12-30 2015-06-09 一种圆偏振片及其制备方法、以及一种显示面板

Country Status (3)

Country Link
US (1) US20160356934A1 (zh)
CN (1) CN104459866A (zh)
WO (1) WO2016107081A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104459866A (zh) * 2014-12-30 2015-03-25 京东方科技集团股份有限公司 一种圆偏振片及其制备方法、显示面板
CN105549146B (zh) * 2016-01-12 2020-06-05 昆山龙腾光电股份有限公司 导光板、导光板制作方法以及背光模组
CN105866874B (zh) * 2016-06-01 2019-03-15 武汉华星光电技术有限公司 偏光片及具有该偏光片的显示设备
CN106547044B (zh) * 2017-01-24 2019-03-01 深圳市华星光电技术有限公司 一种偏光片的加工设备及制造方法
CN108878681A (zh) * 2018-06-27 2018-11-23 上海天马微电子有限公司 一种有机发光显示面板及显示装置
CN109283732B (zh) * 2018-09-12 2023-12-22 重庆惠科金渝光电科技有限公司 一种显示面板和显示装置
CN109556930B (zh) * 2018-10-31 2021-10-19 中国人民解放军第五七一九工厂 一种金相覆膜方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050045799A1 (en) * 2003-12-19 2005-03-03 Nanoopto Corporation Optical retarders and related devices and systems
US20090231702A1 (en) * 2008-03-17 2009-09-17 Qihong Wu Optical films and methods of making the same
CN101551482A (zh) * 2009-01-24 2009-10-07 苏州大学 一种亚波长光栅结构彩色滤光片及其制作方法
CN102162873A (zh) * 2010-02-23 2011-08-24 山本光学株式会社 圆偏振光板、圆偏振光透镜及圆偏振光眼镜
CN102540314A (zh) * 2010-12-31 2012-07-04 京东方科技集团股份有限公司 偏光片及其制备方法、具有该偏光片的3d显示装置
CN104459866A (zh) * 2014-12-30 2015-03-25 京东方科技集团股份有限公司 一种圆偏振片及其制备方法、显示面板

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5113285A (en) * 1990-09-28 1992-05-12 Honeywell Inc. Full color three-dimensional flat panel display
US20060127830A1 (en) * 2004-12-15 2006-06-15 Xuegong Deng Structures for polarization and beam control
KR100855107B1 (ko) * 2006-02-27 2008-08-29 주식회사 엘지화학 초박형 반투과 반사용 아크로매틱 1/4 파장 위상차 필름적층체 및 그 제조방법
JP4694541B2 (ja) * 2006-08-10 2011-06-08 三星モバイルディスプレイ株式會社 偏光子及びそれを備える平板表示装置
JP4380714B2 (ja) * 2007-03-07 2009-12-09 セイコーエプソン株式会社 偏光素子の製造方法
US9091816B2 (en) * 2010-12-07 2015-07-28 Lg Display Co., Ltd. Method of fabricating patterned retarder
US9348077B2 (en) * 2010-12-23 2016-05-24 Lg Display Co., Ltd. Method of manufacturing retarder
US20130043956A1 (en) * 2011-08-15 2013-02-21 Honeywell International Inc. Systems and methods for a nanofabricated optical circular polarizer
JP5796522B2 (ja) * 2012-03-23 2015-10-21 セイコーエプソン株式会社 偏光素子、および偏光素子の製造方法
CN102866540B (zh) * 2012-09-13 2015-06-17 京东方科技集团股份有限公司 一种相位差板的制作方法、相位差板及3d显示器件
WO2015077724A1 (en) * 2013-11-25 2015-05-28 3M Innovative Properties Company Optical film stack including retardation layer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050045799A1 (en) * 2003-12-19 2005-03-03 Nanoopto Corporation Optical retarders and related devices and systems
US20090231702A1 (en) * 2008-03-17 2009-09-17 Qihong Wu Optical films and methods of making the same
CN101551482A (zh) * 2009-01-24 2009-10-07 苏州大学 一种亚波长光栅结构彩色滤光片及其制作方法
CN102162873A (zh) * 2010-02-23 2011-08-24 山本光学株式会社 圆偏振光板、圆偏振光透镜及圆偏振光眼镜
CN102540314A (zh) * 2010-12-31 2012-07-04 京东方科技集团股份有限公司 偏光片及其制备方法、具有该偏光片的3d显示装置
CN104459866A (zh) * 2014-12-30 2015-03-25 京东方科技集团股份有限公司 一种圆偏振片及其制备方法、显示面板

Also Published As

Publication number Publication date
US20160356934A1 (en) 2016-12-08
CN104459866A (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
WO2016107081A1 (zh) 一种圆偏振片及其制备方法、以及一种显示面板
US20100020400A1 (en) Diffractive optical element, method for manufacturing diffractive optical element, and laser beam machining method
JP2007523468A (ja) 3次元ナノスケール構造を形成するための方法及び装置
JP7250846B2 (ja) ワイヤグリッド偏光板製造方法
KR20090042136A (ko) 미세 패턴의 제조 방법 및 광학 소자
JP2010169722A5 (zh)
WO2017193445A1 (zh) 金属光栅偏光片及其制作方法
WO2016107041A1 (zh) 一种线栅偏振片及其制作方法、显示装置
WO2016058314A1 (zh) 线栅偏振片及其制作方法、显示装置
JP2013211450A (ja) 基板の製造方法、および、ナノインプリントリソグラフィ用テンプレートの製造方法
KR20180009825A (ko) 롤 타입 임프린트 마스터 몰드, 이의 제조 방법 및 이를 이용한 임프린트 방법
JP2009531734A (ja) ナノパターン形成方法およびこれによって形成されたパターンを有する基板
JP2010102008A (ja) フォトマスク及び鋸歯型パターン製造方法
JP2008203812A (ja) モスアイ構造体およびモスアイ構造体製造方法
JP2019087678A (ja) 機能性基板及びその製造方法、並びにインプリントモールド
JP2007310250A (ja) ワイヤグリッド偏光子の製造方法及びワイヤグリッド偏光子
TW201913231A (zh) 壓印模具以及壓印模具製造方法
JP7139751B2 (ja) インプリントモールドの製造方法
JP2014213495A (ja) インプリントモールド及びインプリントモールドの製造方法
JP6076946B2 (ja) ローラーインプリント用モールドとインプリント方法およびワイヤーグリッド偏光子とその製造方法
US9536819B2 (en) Transparent substrate having nano pattern and method of manufacturing the same
JP2011155080A (ja) 露光装置及び露光方法
Quan et al. Dielectric metalens by multilayer nanoimprint lithography and solution phase epitaxy
KR20200003295A (ko) 주파수 배가 간섭 리소그래피를 이용하는 와이어 그리드 편광자 제조 방법들
KR102300258B1 (ko) 표면 플라즈몬 식각 공정을 이용한 패턴 형성방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14892639

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15874772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15874772

Country of ref document: EP

Kind code of ref document: A1