WO2016106987A1 - 一种多视角像素指向型背光模组及裸眼3d显示装置 - Google Patents

一种多视角像素指向型背光模组及裸眼3d显示装置 Download PDF

Info

Publication number
WO2016106987A1
WO2016106987A1 PCT/CN2015/075376 CN2015075376W WO2016106987A1 WO 2016106987 A1 WO2016106987 A1 WO 2016106987A1 CN 2015075376 W CN2015075376 W CN 2015075376W WO 2016106987 A1 WO2016106987 A1 WO 2016106987A1
Authority
WO
WIPO (PCT)
Prior art keywords
light guide
guide plate
light
rectangular
pixel
Prior art date
Application number
PCT/CN2015/075376
Other languages
English (en)
French (fr)
Inventor
万文强
陈林森
楼益民
浦东林
朱铭
朱鹏飞
申溯
叶燕
Original Assignee
苏州大学
苏州苏大维格光电科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学, 苏州苏大维格光电科技股份有限公司 filed Critical 苏州大学
Priority to US15/540,223 priority Critical patent/US10429567B2/en
Priority to JP2017535696A priority patent/JP2018506735A/ja
Priority to KR1020177020345A priority patent/KR101998495B1/ko
Publication of WO2016106987A1 publication Critical patent/WO2016106987A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/33Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving directional light or back-light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0025Diffusing sheet or layer; Prismatic sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/003Lens or lenticular sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0076Stacked arrangements of multiple light guides of the same or different cross-sectional area
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/32Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using arrays of controllable light sources; using moving apertures or moving light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/324Colour aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/349Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1809Diffraction gratings with pitch less than or comparable to the wavelength

Definitions

  • the invention belongs to the field of flat-panel naked-eye 3D display, and particularly relates to a multi-view pixel pointing type backlight module and a naked-eye 3D display device based on the backlight module.
  • the human eyes are separated by a distance. For the same object, the eyes will see two slightly different images, and the two images will be deeply perceived in the brain.
  • the principle of 3D display is to use the left and right eye parallax of human to project the parallax images into the left and right eyes respectively, to ensure that the left parallax image can only be seen by the left eye, and the right parallax image can only be seen by the right eye, so that people will feel stereoscopic The image of the effect.
  • the naked-eye 3D display technology is more and more loved by researchers because it does not need to wear any visual aids (such as eyes, helmets, etc.).
  • the more mature naked-eye 3D display technology has parallax barrier and cylindrical lens array. These technologies have some drawbacks that cannot be overcome, such as low image resolution and prolonged viewing fatigue.
  • the left and right directional backlight technology can achieve high-resolution image 3D display. For example, in 2005, Yu-Mioun Chu of Taiwan proposed using two tapered structure light guide plates, two sets of light sources and an absorbing layer to make a directional backlight, and combined Quickly change the LCD panel to realize 3D display; in 2009, John C. Schultz et al.
  • CN201320143064.8 proposes a directional backlight 3D imaging system, which adopts two projection lenses combined with a directional 3D optical structure to realize naked-eye 3D display; although the directional backlight technology obtains high image resolution, it is limited to a single viewing angle, In 2011, Chih-Hung Ting et al. proposed a multi-user 3D thin film structure for single-view directional backlight system, which can realize multi-view 3D display.
  • This 3D film is an inverted trapezoidal structure, which can emit light.
  • Chinese patent CN201410187534.X proposes a naked-eye 3D backlight module, which uses one or more sets of LED timing light sources combined with convex lenses, The multi-angle prism and parallax barrier can realize multi-view 3D display; however, the design of the backlight structure and the precision of precision machining are technically difficult to implement, and it is easy to generate crosstalk of light.
  • HP proposes to realize multi-view display by using integrated hybrid laser waveguide array directional backlight, adopting waveguide array to realize red, green and blue light guiding, and directional output of light through pixel type grating.
  • the hybrid laser is integrated into the waveguide array base, which requires high production process and high cost, which is not conducive to industrial mass production. ,.
  • the directional backlight structure mainly includes: a light guide plate, a collimated light source, a nano-diffraction grating pixel, etc., and the collimated polarized light is transmitted in a total reflection manner in the light guide plate, and is incident on the surface of the pixel-type nano-diffraction grating, and is designed to have different periods and different
  • the nano-diffraction grating pixels of the orientation angle can diffract light along different viewing angles.
  • the hexagonal light guide plate is used to realize the directional output of red, green and blue light.
  • this hexagonal light guide does not match the existing flat display mode, especially for image.
  • the nano-diffraction grating is prepared by electron beam exposure, which is low in efficiency, high in cost, and difficult to prepare large size.
  • an object of the present invention is to provide a pixel pointing type backlight module using a rectangular light guide plate, which makes the backlight module of this type more useful for industrial application.
  • a multi-view pixel-directed backlight module includes at least two rectangular light guide plates, each of which is closely overlapped with each other, and a plurality of pixel arrays are disposed on the light-emitting surface of the rectangular light guide plate.
  • the respective pixels are arranged in an orderly or disorderly manner with each other, and are evenly distributed on the light-emitting surface of the light guide plate, and the light emitted by the pixels in the same pixel array points to the same viewing angle.
  • Different pixel arrays have different viewing angles, and at least one side of each of the rectangular light guiding plates is provided with a light source group.
  • the light emitting surface of the light guiding plate is more Exposed light is formed on each pixel of the pixel array, and total reflection is performed in the rest of the light guide plate, wherein the single pixel is a nano-diffraction grating.
  • the number of the rectangular light guide plates is two, wherein the first rectangular light guide plate is respectively provided with a first light source group and a second light source group on one side or both sides of the two pairs of parallel opposite sides, and the second rectangular shape
  • the light guide plate is provided with a third light source group only on one side or both sides of a pair of parallel opposite sides, and the first light source group, the second light source group and the third light source group respectively emit monochromatic light of different colors.
  • the light-emitting surface of the second rectangular light guide plate is superposed on the non-light-emitting surface of the first rectangular light guide plate, or the light-emitting surface of the first rectangular light guide plate faces the non-light-emitting surface of the second rectangular light guide plate.
  • the illuminating surface is superposed.
  • a projection position of each of the second rectangular light guide plates on the first rectangular light guide plate is exactly offset from each pixel of the first rectangular light guide plate.
  • each pixel includes two sub-pixels of different colors, wherein light from the first light source group is emitted on the first sub-pixel, and light from the second light source group is in the second The sub-pixels are emitted, and the directions of the light emitted by the two sub-pixels of the same pixel are the same.
  • each of the pixels of the second rectangular light guide plate is emitted after passing through the first rectangular light guide plate, and an emission direction is emitted from a pixel adjacent to a projection position of the pixel on the first rectangular light guide plate.
  • the light has the same direction, or the light emitted by each of the first rectangular light guide plates is emitted after passing through the second rectangular light guide plate, and the emission direction is opposite to the projection position of the pixel on the second rectangular light guide plate.
  • One of the adjacent pixels emits the same light.
  • the number of the rectangular light guide plates is three, wherein the first rectangular light guide plate is provided with a first light source group only on one side or both sides of a pair of parallel opposite sides thereof, and the second rectangular light guide plate is only in the same a second light source group is disposed on one side or both sides of a pair of parallel opposite sides, and the third rectangular light guide plate is provided with a third light source group only on one side or both sides of a pair of parallel opposite sides thereof, the first light source The group, the second source group, and the third source group respectively emit monochromatic light of different colors.
  • the light exiting surface of the three rectangular light guide plate faces the non-light-emitting surface of the second rectangular light guide plate
  • the light-emitting surface of the second rectangular light guide plate faces the non-light-emitting surface of the first rectangular light guide plate
  • a projection position of a single pixel in the third rectangular light guide plate in the first rectangular light guide plate, a projection position of a single pixel in the second rectangular light guide plate in the first rectangular light guide plate, and the Each of the pixels in the first rectangular light guide plate is misaligned.
  • the light emitted by each of the pixels of the third rectangular light guide plate is emitted through the second rectangular light guide plate and the first rectangular light guide plate, and the light emitted by each of the second rectangular light guide plates passes through the first a rectangular light guide plate is ejected, and each of the first rectangular light guide plates, and the projection position corresponding to a third rectangular light guide plate, and a corresponding pixel on the second rectangular light guide plate Light, the three directions of the same.
  • the light source group comprises a monochromatic light source, a light source collimation system and a prism, the light emitted by the monochromatic light source is collimated by the light source collimation system, and then enters the light guide plate through the prism. And form a total reflection light.
  • the light source collimation system employs a planar Fresnel lens array.
  • the light source group includes a first light source group, a second light source group, and a third light source group, and the first light source group, the second light source group, and the third light source group respectively correspond to three kinds of light of R, G, and B.
  • the viewing angles of the plurality of pixel arrays are continuously distributed.
  • the plurality of pixel arrays have a viewing angle ranging between 0 and 50 degrees.
  • the present invention also provides a naked-eye 3D display device, comprising the multi-view pixel pointing type backlight module as described above, a liquid crystal panel located in front of the multi-view pixel pointing type backlight module, and a driving device for driving the liquid crystal panel .
  • the rectangular light guide plate adopts parallel side-to-side single-side light guide
  • the liquid crystal panel pixel is aligned with the rectangular light guide plate pixel
  • the light guide plate of the rectangular light guide plate at different viewing angles matches the image of the liquid crystal panel at the viewing angle.
  • the different color switching of the multi-layer rectangular light guide plate matches the desired color of the image formed by the liquid crystal panel, and the naked-eye 3D display is obtained.
  • the light guide plate adopts parallel side-to-side double-side light guide, and the liquid crystal panel pixel and the light guide plate pixel do not need to be aligned, and image control is implemented by the liquid crystal panel, and the same color light source is used in the light guide plate.
  • the active switching in the opposite direction realizes the image switching of different viewing angles, wherein the different directional light matches the liquid crystal panel viewing angle image, and the liquid crystal panel image refreshing and the two side light source switching are matched to obtain the naked eye 3D display.
  • the improvement of the present invention is that the use of a multi-layer light guide plate overcomes the problem that a plurality of light sources cannot be integrated on a rectangular light guide plate, so that the rectangular light guide plate is in a directional backlight mode.
  • the application in the group can be realized, and the Fresnel lens array is used to collimate the light source and is easy to integrate, which opens up a possibility for large-scale application of naked eye 3D.
  • Figure 1 is a structural view of a nano-diffraction grating in the XY plane.
  • FIG. 2 is a structural view of the nano-diffraction grating of FIG. 1 in the XZ plane.
  • FIG. 3 is a schematic structural view of a multi-view pixel pointing backlight module according to a first embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a single light source group.
  • FIG. 5 is a schematic view showing the arrangement of the pixels in the first embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a multi-view pixel pointing backlight module according to a second embodiment of the present invention.
  • Fig. 7 is a schematic view showing the arrangement of the pixel misalignment on the light guide plate of the second embodiment of the present invention.
  • FIG. 8 is a schematic structural view after a 3D display device is constructed by using the multi-view pixel pointing type backlight module of the present invention.
  • FIG. 9 is a schematic diagram of another 3D display device composed of a multi-view pixel pointing type backlight module of the present invention.
  • the pixel-oriented backlight module is favored by those skilled in the art because of the wide viewing angle, and is most likely to be applied to the naked eye in large quantities in the future.
  • One of the technologies in 3D is favored by those skilled in the art because of the wide viewing angle, and is most likely to be applied to the naked eye in large quantities in the future.
  • FIG. 1 and FIG. 2 are structural diagrams of a diffraction grating with a scale at the nanometer level in the XY plane and the XZ plane. According to the grating equation, the period and the orientation angle of the nano-diffraction grating pixel 101 satisfy the following relationship:
  • ⁇ 1 and ⁇ sequentially represent the incident angle of the light source 202 (incident).
  • n the refractive index of the light wave in the light guide plate.
  • a red light of 650 nm wavelength is incident at an angle of 60° (refractive index is 1.5), a diffraction angle of diffracted light is 10°, and a diffraction azimuth angle is 45°.
  • the corresponding nano-diffraction grating period is 550 nm, and the orientation angle is - 5.96°.
  • the two colors of light are simultaneously emitted at one pixel, thus forming "mixed light” instead of monochromatic light, so in order to obtain monochromatic light at each pixel point, the prior art
  • a hexagonal light guide plate is designed to allow the light source to enter the light guide plate from three different directions, thereby avoiding the occurrence of "mixed light".
  • such a hexagonal light guide plate cannot be well matched with any of the existing displays, and thus the multi-angle-pointing type backlight module cannot be well promoted in practicality.
  • the key to solving the above technical problems is how to avoid the occurrence of "different light” in the same direction or opposite directions in the rectangular light guide plate.
  • the applicant has deliberately designed a multi-layer light guide plate concept.
  • the two light sources can be matched at most, so that the light sources of the two colors in one light guide plate can be different.
  • the angle incidence solves the problem of "mixing light” in the same pixel in the rectangular light guide plate, and then uses different light guide plates to realize the matching of three colors of RGB.
  • FIG. 3 is a schematic structural diagram of a multi-view pixel pointing backlight module according to a first embodiment of the present invention.
  • the first rectangular light guide plate 301 and the second rectangular light guide plate 311 are included, and the two rectangular light guide plates are closely stacked together in actual use.
  • the light-emitting side of the rectangular light guide plate is defined by the light-emitting surface of the rectangular light guide plate, and the light-emitting surface of each rectangular light guide plate is filled with pixels, and each pixel represents a nano-diffraction grating.
  • a plurality of nano-diffraction gratings 303a-303i having diffraction directions 302a-302i are simply shown in FIG.
  • the pixels in the 10 pixel arrays are uniformly distributed on the light-emitting surface. If the 10 pixel arrays are numbered 1-10, the pixels in each pixel array can be arranged in the order of 1-10. Arbitrarily arranged in an unordered manner, as long as each pixel of the remaining nine pixel arrays is nested between each two adjacent pixels in the same pixel array. It should be pointed out that the light emitted by the pixels in each pixel array points to the same viewing angle, and does not mean that the pixel gratings in the same pixel array have the same diffraction angle, but the light diffracted by these gratings point to the same angle. Position, the human eye can see the light from all the pixels in the same pixel array at this position.
  • the number of pixel arrays is limited by the size of the rectangular light guide plate and the size of a single pixel in the current process.
  • a plurality of pixel arrays can be fabricated on a rectangular light guide plate, and the number of pixel arrays is increased. , which determines the increase in the number of viewing angles that can be viewed.
  • the viewing angles of the pixel arrays can be continuously distributed, thereby achieving an arbitrary value, for example, between 0 and 50 degrees. 3D images can be observed at the location.
  • the first rectangular light guide plate 301 is provided with two light source groups respectively disposed on two pairs of parallel opposite sides 304a-304b and 305a-305b of the first rectangular light guide plate 301
  • the second rectangular light guide plate 311 is provided with one Light source group.
  • the light source group on the opposite sides 304a-304b is the first light source group
  • the light source group on the opposite sides 305a-305b is the second light source group
  • the opposite side of the second rectangular light guide plate 311 is on the opposite side 314a-314b.
  • the three light source groups respectively emit light of three colors of red, green and blue, each set of light sources comprises one or two light sources (two light sources are shown), and the first light source group is red light and the second light source.
  • the group is green light
  • the third light source group is blue light as an example.
  • the colors of these light sources can be interchanged, and are not limited thereto. Even in some special occasions, the above three colors can be used.
  • the light is replaced with any other monochromatic light, such as yellow, cyan, magenta, etc., to ensure that the color of each light source is different.
  • the first light source group includes a red light source, a first light source collimating system, and a first prism (not shown)
  • the second light source group includes a green light source, a second light source collimating system, and a second prism (not shown) Shown
  • the third source group includes a blue light source, a second source collimation system, and a third prism (not shown).
  • the first light source group includes a red light source 401, a planar Fresnel lens array 402, and a prism 403.
  • the light 404 emitted by the red light source 401 is collimated by the first light source.
  • the system 402 is collimated into a plane wave 405, it is introduced into the first rectangular light guide plate 301 through the prism 403, and totally reflected light 406 is formed in the first rectangular light guide plate 301, and the total reflected light inside the first rectangular light guide plate 301 is formed.
  • the nano-diffraction grating in which the pixel is located is encountered, it is diffracted by the nano-diffraction grating to form an outgoing light 407 in different directions. Under the control of these designed nano-diffraction gratings, these outgoing lights 407 are guided to provide a light source for forming a plurality of directional images.
  • the light-emitting surface of the second rectangular light guide plate 311 is superposed on the non-light-emitting surface of the first rectangular light guide plate 301.
  • the light-emitting surface of the first rectangular light guide plate 301 may be facing.
  • the non-light-emitting surfaces of the two rectangular light guide plates 311 are superposed, and the two ways are interchangeable. Taking the illustrated way as an example, since each rectangular light guide plate is actually a relatively thin material having a certain transparency, the two rectangular light guide plates after the overlap, the light emitted from the lower second rectangular light guide plate 311 The light can be transmitted through the first rectangular light guide plate 301.
  • the light inside the light guide plate is generally transmitted by total reflection, but once transmitted through the nano-diffraction grating, the light-emitting angle is usually concentrated. Between 0-30 degrees on both sides of the normal line, the light emitted from the second rectangular light guide plate 103b does not form total reflection when passing through the first rectangular light guide plate 103a covering the upper portion, and most of the light is directly worn. Through the passage, only a small part of the light is reflected and absorbed.
  • the total transmittance depends on the material of the light guide plate. Under the premise that some high transmittance material is selected as the light guide plate, the light emitted by the second rectangular light guide plate 311 passes through the first rectangular light guide plate 301, and the transmittance can reach 85.
  • the intensity of the light source of the two front and rear light guide plates may be designed such that the light source intensity of the second rectangular light guide plate 311 is greater than the first rectangular light guide plate 301 located above.
  • the intensity of the light source its overall effect should be the second light guide
  • the light intensity emitted from the first rectangular light guide plate 301 from the first rectangular light guide plate 301 can be almost the same as the light intensity emitted from the first rectangular light guide plate 301. In this way, after the display device is fabricated, some of the pixels emit light that is particularly bright, while some pixels emit light that is relatively dark.
  • the projection position of each pixel located in the second rectangular light guide plate 311 on the first rectangular light guide plate 301 is exactly displaced from each pixel of the first rectangular light guide plate.
  • the pixels 501c, 502c, 503c on the second rectangular light guide plate 311 are misaligned with the pixels 501a-501b, 502a-502b, 503a-503b on the first rectangular light guide plate 301. That is, the light emitted by each pixel on the second rectangular light guide plate 311 does not enter any one of the pixels in the first rectangular light guide plate 103a to avoid mutual influence.
  • one pixel seen is actually composed of three sub-pixels of RGB, and in the present embodiment, three sub-pixels of RGB are actually located.
  • the two sub-pixels on the first rectangular light guide plate 301 are formed by adding one sub-pixel on the second rectangular light guide plate 311, that is, in the first rectangular light guide plate 301, each pixel includes two different colors. a sub-pixel in which light from the first source group exits on the first sub-pixel, and light from the second source group exits on the second sub-pixel, and the directions of the light emitted by the two sub-pixels of the same pixel are the same.
  • one pixel should be understood to include 3 sub-pixels, and 3 sub-pixels in the same pixel have the same exit direction. That is, the light emitted by each of the pixels in the second rectangular light guide plate 311 is emitted after passing through the first rectangular light guide plate 301, and the emission direction is emitted from a pixel adjacent to the projection position of the pixel on the first rectangular light guide plate 301.
  • the light has the same direction.
  • the pixels 501a and 501b in the first rectangular light guide plate 301 respectively correspond to the light emitted by the first light source and the second light source
  • the pixels 501c in the second rectangular light guide plate 311 correspond to the light.
  • the light emitted by the third light source is the same, and the directions of the outgoing light of the three pixels are the same, and the same applies to the same principles 502a-502c and 503a-503c.
  • FIG. 6 is a schematic structural diagram of a multi-view pixel pointing backlight module according to a second embodiment of the present invention.
  • a total of three rectangular light guide plates are arranged, and each of the rectangular light guide plates is provided with a plurality of differently directed pixels on the light-emitting surface, so that the first rectangular light guide plate 601 in the figure is
  • a plurality of nano-grating pixels 602a-602i are designed on the light-emitting surface to realize the viewing angle of the directions 603a-603i.
  • the arrangement rules of the respective pixels are the same as those in the first embodiment, and are not described herein again.
  • Each rectangular light guide plate is equipped with only one light source group.
  • the first rectangular light guide plate 601 is provided with a first light source group only on a pair of parallel opposite sides 604a-604b
  • the second rectangular light guide plate 611 is provided with a second light source group only on a pair of parallel opposite sides 614a-614b thereof.
  • the third rectangular light guide plate 621 is provided with a third light source group only on a pair of parallel opposite sides 624a-624b, and the first light source group, the second light source group and the third light source group respectively emit a single color of different colors. Light.
  • the three rectangular light guide plates are superposed on each other to form an entire backlight module.
  • the light-emitting surface of the third rectangular light guide plate 621 faces the non-light-emitting surface of the second rectangular light guide plate 611
  • the light-emitting surface of the second rectangular light guide plate 611 faces the non-light-emitting surface of the first rectangular light guide plate 601.
  • the order of the overlapping may also be other forms, which will not be repeated here.
  • the overall effect is the projection position of a single pixel in the third rectangular light guide plate 621 at the first rectangular light guide plate 601, the projection position of a single pixel in the second rectangular light guide plate 611 at the first rectangular light guide plate 601, and A corresponding single pixel in the first rectangular light guide plate 601 is misaligned.
  • 703b, the pixels 701c, 702c, and 703c on the third rectangular light guide plate 621 are misaligned.
  • the three light source groups each include a light source, a light source collimation system, and a prism, and function the same as in the first embodiment.
  • the light source provided in the first light source group is red
  • the light source provided in the second light source group is green
  • the light source provided in the third light source group is blue.
  • the light emitting surfaces of the three rectangular light guide plates respectively emit light of corresponding colors.
  • the light emitted by each of the pixels of the third rectangular light guide plate 621 passes through the second rectangular light guide plate 611 and the first rectangular light guide plate 601, and is emitted from the second rectangular light guide plate 611.
  • the light emitted by each pixel is emitted after passing through the first rectangular light guide plate 601, and each pixel of the first rectangular light guide plate 601, and a pixel adjacent to the projection position corresponding to the third rectangular light guide plate 621, and a corresponding second rectangle
  • the light emitted from the pixels on the light guide plate 611 has the same emission direction. For example, as shown in FIG.
  • the pixel 701c in 621 has the same direction of light emission.
  • the same is true for the same principles 702a-702c and 703a-703c. It can be seen from the effect that the human eye can see that the light emitted from the three light guide plates is finally unified on the first rectangular light guide plate 601, and the light of the three colors in the same direction is emitted when the light is emitted.
  • the position does not form an overlap, which is consistent with the effect that one pixel of a normal display has three sub-pixels.
  • the light source uses monochromatic light, such as a strip LED light source.
  • the light source collimation system uses a Fresnel lens array, and the Fresnel lens array can convert the divergent light source into parallel light, thereby reducing crosstalk incident at different angles of the directional light source.
  • a light source of the same color may be disposed on two opposite sides of a rectangular light guide plate, thereby improving the light-emitting intensity of the light guide plate and enhancing the display effect.
  • the multi-angle-pointing type backlight module combined with the refreshing of the liquid crystal panel image can realize naked-eye 3D display.
  • the multi-view directional backlight module and the liquid crystal panel have two combinations: the first type, the rectangular light guide plate adopts a parallel side-to-side single-side light guiding manner, and the sub-pixels on the liquid crystal panel are aligned with the rectangular light guide plate sub-pixels, and the rectangle
  • the light guide plate is matched with the pattern of the liquid crystal panel at the viewing angle at different viewing angles, and the different color switches of the multi-layer rectangular light guide plate are matched with the required color of the image formed by the liquid crystal panel, and the naked eye 3D is obtained by refreshing the image timing of the liquid crystal panel.
  • the second type of rectangular light guide plate adopts the parallel side-to-side double-side light guiding manner, and the sub-pixels on the liquid crystal panel and the rectangular light guide plate sub-pixels do not need to be aligned, and the image control is realized through the liquid crystal panel, and the same is adopted in the light guide plate.
  • the active switching of the color light sources in two opposite directions enables image switching of different viewing angles. Taking the red light source as an example, first lighting one side, then the red pixels are directed to one viewing angle (or multiple) under the control of the liquid crystal panel.
  • the first graphic is emitted, and when the other side is switched to be lit, all the red pixels are formed under the control of the liquid crystal panel and the first graphic
  • the second graphic with the normal angle of view is symmetrical, the first graphic is received by the left eye, the second graphic is accepted by the right eye, and the different directional light matches the liquid crystal panel image, and the liquid crystal panel image is refreshed and the two sides are switched. With the match, you can get a naked-eye 3D display.
  • FIG. 8 is a schematic structural diagram of a multi-view pixel pointing backlight module of the present invention after a 3D display device is constructed.
  • the 3D display device includes a multi-view pixel pointing type backlight module as described above, a liquid crystal panel 811 located in front of the multi-view pixel pointing type backlight module, and a driving A driving device (not shown) of the liquid crystal panel 811.
  • the multi-view pixel pointing type backlight module represents 801 for all the light source groups, and 802 represents the structure after the multi-layer rectangular light guide plates are overlapped.
  • the multi-view pixel-directed backlight module and the liquid crystal panel 811 adopt a first combination manner, and the rectangular light guide plate 802 adopts a parallel side-to-side single-side light guiding manner, and the liquid crystal panel 811 displays a viewing angle image pixel. Aligning with the corresponding viewing angle nano-diffraction grating pixels on the rectangular light guide plate 802, the separation of the multi-view images can be realized, and the pixels of different colors on the multi-layer rectangular light guide plate 802 are aligned with the color patterns on the liquid crystal panel, and the corresponding liquid crystals are aligned.
  • the color gradation combination is formed under the adjustment of the liquid crystal molecules in the pixels on the panel, and the image on the liquid crystal panel is continuously refreshed at a time, so that the multi-angle naked-eye 3D display can be realized.
  • the rectangular light guide plate 802 is engraved with nano-diffraction grating pixels 803a-803c, 804a-804c, 805a-805c, and 806a-806c corresponding to the viewing angle 1, the viewing angle 2, the viewing angle 3, and the viewing angle 4, respectively.
  • the eyelid distance is 60mm
  • the viewing angle is equal to the pupil distance
  • the optimal viewing distance is 300mm
  • the liquid crystal panel size is 250mm width
  • the nano-diffraction grating pixels are evenly distributed on the surface of the rectangular light guide plate
  • the viewing angle is evenly distributed in the middle of the observation plane.
  • the nano-diffraction The angle of view of the grating pixels 803a-803c (the angle between the diffracted ray and the positive direction of the z-axis, which is positive in the positive direction of the x-axis) is 6.7°, -10.6°, -26.1°, respectively, and the angle of view of the nano-diffraction gratings 804a-804c
  • the viewing angles of the nano-diffraction gratings 805a-805c are respectively 20.1°, 3.6°, and -13.5°
  • the viewing angles of the nano-diffraction gratings 806a-806c are 26.1° and 10.6°, respectively.
  • the pixels of different colors of the multi-layer rectangular light guide plate are matched with the color of the finally generated image under the control of the liquid crystal molecules, and any two consecutive viewing angles can be
  • the 3D image is viewed, for example, the stereoscopic effect of the image 820 is viewed. If a planar image having no parallax is displayed on the liquid crystal panel 811, a two-dimensional planar display can be realized, and thus such a combination mode simultaneously supports conversion between a stereoscopic image and a planar image.
  • FIG. 9 is a schematic diagram of another 3D display device using the multi-view pixel pointing backlight module of the present invention.
  • the present embodiment mainly considers obtaining a high-resolution image, and the multi-view pixel-directed backlight module and the liquid crystal panel 911 adopt a second combination manner.
  • the rectangular light guide plate 902 adopts a method of guiding light on both sides of the parallel side.
  • This embodiment mainly forms a 3D image at a plurality of viewing angles.
  • 901a-901b represents the superimposed three light source groups
  • 902 represents the laminated multi-layer rectangular light guide plate.
  • the nano-diffraction grating pixels on the multi-layer rectangular light guide plate 902 and the pixels on the liquid crystal panel 911 do not need to be aligned, and the two sets of light sources are alternately switched. Due to the symmetry of the diffraction angle of the nano-diffraction grating, two viewing angles can be realized in turn.
  • the switching of the image can be performed by combining the image switching on the liquid crystal panel. For example, the light source 901a is turned on and the 901b is turned off.
  • the angle 1 of the nano-diffraction grating 903 on the rectangular light guide plate 902 is +5° (diffraction light)
  • the angle with the positive direction of the z-axis is positive in the positive direction of the x-axis, and the +5° viewing angle image is displayed on the liquid crystal panel 911; when the light source 901b is opened and the 901a is turned off, the nano-diffraction grating 903 on the rectangular light guide plate 902
  • the viewing angle image of -5° is displayed on the liquid crystal panel 911, thus realizing the separation of the viewing angle image of ⁇ 5°, and the separated images respectively correspond to the left and right eyes of the person, and the liquid crystal panel 911
  • the image timing refresh is switched and matched with the light source 901a-901b, and the multi-layer light guide color switching is matched with the image color, so that a high-resolution 3D image can be observed, and the naked eye 3D is realized. Shows. If a planar image having no par
  • the above rectangular light guide plate of the present invention can be fabricated by ultraviolet continuous space-frequency lithography and nano-imprinting.
  • the ultraviolet continuous variable space lithography technology is described in the lithography apparatus described in Chinese Patent Application No. CN201310166341.1. And lithography methods.
  • the nano-gratings of different orientations may be etched on the surface of the rectangular light guide plate by photolithography, or the mask which can be used for imprinting may be first formed by the photolithography method.
  • the pattern of the above nano-gratings is then embossed on a rectangular light guide plate by nanotechnology in large quantities.
  • the present invention discloses a multi-view pixel pointing type backlight module and a naked eye 3D display device fabricated by using the multi-view pixel pointing type backlight module.
  • the use of the superposition of the plurality of light guide plates solves the problem that the three light sources cannot interfere with each other in one light guide plate, thereby realizing the pixel-directed rectangular light guide plate, for the multi-viewpoint pointing function.
  • the light guide plate provides a practical solution for industrial application in the naked eye 3D display technology, and solves the problem that the prior art cannot solve.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

一种多视角像素指向型背光模组以及裸眼3D显示装置。该多视角像素指向型背光模组包括至少两个矩形导光板,各个矩形导光板互相紧密叠合,每块矩形导光板的出光面上设有用纳米衍射光栅形成的多个不同指向的像素,每个矩形导光板的至少一条侧边上设有一光源组,该光源组发出的光进入对应的导光板内部后,在所述导光板出光面的多个像素阵列的各个像素上形成出射光。利用多层导光板的叠合,解决了在一块导光板中无法避免三光源互相干扰的问题,从而实现了像素指向型的矩形导光板,为这种具有多视角指向功能的导光板在裸眼3D显示技术中进行工业应用提供了切实可行的方案,解决了现有技术无法解决的问题。

Description

一种多视角像素指向型背光模组及裸眼3D显示装置
本申请要求于2014年12月31日提交中国专利局、申请号为201410852242.3、发明名称为“一种多视角像素指向型背光模组及裸眼3D显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于平板裸眼3D显示领域,特别涉及一种多视角像素指向型背光模组和基于该背光模组制作而成的裸眼3D显示装置。
背景技术
随着人们生活水平的提高,平面2D显示已经越来越难以满足人们的需求,人们开始追求具有深度感的3D显示,可以更加清楚的感受物体存在的真实性。从1838年Wheatstone首先提出利用立体镜实现3D显示以来,经过一个多世纪的发展,3D显示方面的研究进行的如火如荼,各种实现3D显示的方式依次被提出。
人的双眼相距一段距离,对于同一对象,双眼会分别看到两幅略有差异的图像,两幅图像在大脑中融合就产生了深度知觉。3D显示的原理就是利用人的左右眼视差,将视差图像分别投射到左右眼中,保证左视差图像只能被左眼看见,右视差图像只能被右眼看见,这样人就会感觉到具有立体效果的图像。
裸眼3D显示技术由于观看时不需要佩戴任何的助视工具(像眼睛、头盔等),越来越受到研究者们的热爱,目前较为成熟的裸眼3D显示技术有视差屏障和柱透镜阵列等,而这些技术有一些不能克服的缺陷,像图像分辨率低,观看久了容易产生视差疲劳等。左右交替的指向性背光技术可实现高分辨率的图像3D显示,如2005年台湾Yu-Mioun Chu提出利用两个契形结构导光板、两组光源和一个吸收层来制作指向性背光,并结合快速变换LCD平板实现3D显示;09年日本John c.Schultz等利用一个导光板、两个LED光源、3D薄膜配合120Hz LCD平板来实现全分辨率3D显示;同时中国专利 CN201320143064.8提出指向性背光3D成像系统,采用两个投影镜头结合指向性3D光学结构,实现裸眼3D显示;上述指向性背光技术虽然得到的图像分辨率高,但却只限于单个视角观看,为此2011年台湾Chih-Hung Ting等提出一种多用户3D薄膜结构应用在单对视角指向性背光系统中,可实现多视角3D显示,这种3D薄膜是一个倒梯形结构,可以将出射光分3个方向(或更多方向)投射,可供3个(或多个)用户同时观看;同时中国专利CN201410187534.X提出一种裸眼3D背光模,采用一组或多组LED时序光源结合凸透镜、多边棱镜、视差屏障,可实现多视角3D显示;然而背光源结构的设计和精密加工精度在技术上难以实现,且很容易产生光线的串扰。
惠普在国际专利WO2014051624 A1中提出利用集成混合激光波导阵列指向性背光来实现多视角显示,采用波导阵列来实现红、绿、蓝三色导光,通过像素型光栅实现光线的定向导出,这种方法虽然可以实现彩色多视角3D显示,但是由于采用的是混合激光集成到波导阵列基地中来实现,对制作工艺要求很高,成本大,不利于工业大规模生产。,。
2013年,惠普在“自然”杂志中提出一种多视角像素型光栅指向性背光源,结合LCD技术可实现多视角裸眼3D显示。指向性背光源结构主要包括:导光板、准直光源、纳米衍射光栅像素等,准直偏正光在导光板内以全反射方式传输,入射到像素型纳米衍射光栅表面,通过设计不同周期、不同取向角的纳米衍射光栅像素,可以使光沿不同视角衍射。为实现真彩色显示,文章中采用六边形结构导光板实现红、绿、蓝三色光的定向导出,然而这种六边形导光板与现有平板显示方式不匹配,尤其很难用于像智能手机这种长方形规格的显示中。同时,采用电子束曝光制备纳米衍射光栅,效率低、成本高、很难制备大尺寸。
因此,如果能将上述六边形导光板调整为矩形导光板,将对裸眼3D技术的进步带来革命性进步。
发明内容
有鉴于此,本发明的目的在于提供一种使用矩形导光板的像素指向型背光模组,使得这种类型的背光模组更具适用性和工业应用的价值。
根据本发明的目的提出的一种多视角像素指向型背光模组,包括至少两个矩形导光板,各个矩形导光板互相紧密叠合,所述矩形导光板的出光面上设有多个像素阵列,各个像素阵列之间以有序或无序的方式将各自的像素彼此互相嵌合,并均匀分布在所述导光板的出光面上,同一个像素阵列中的像素发出的光指向同一视角,不同的像素阵列具有不同的视角,所述每个矩形导光板的至少一条侧边上设有一光源组,该光源组发出的光进入对应的导光板内部后,在所述导光板出光面的多个像素阵列的各个像素上形成出射光,在所述导光板内部的其余地方进行全反射,其中,单个所述像素为纳米衍射光栅。
优选的,所述矩形导光板的数量为两个,其中第一矩形导光板在其两对平行对边的一侧或者双侧上分别设有第一光源组和第二光源组,第二矩形导光板仅在其一对平行对边的一侧或者双侧上设有第三光源组,该第一光源组、第二光源组、第三光源组分别发出一种颜色不同的单色光。
优选的,所述第二矩形导光板的出光面面向所述第一矩形导光板的非出光面进行叠合,或者所述第一矩形导光板的出光面面向所述第二矩形导光板的非出光面进行叠合。
优选的,所述第二矩形导光板中的每一个像素在所述第一矩形导光板上的投影位置,恰好与所述第一矩形导光板的每一个像素形成错位。
优选的,所述第一矩形导光板中,每一个像素包括两种不同颜色的子像素,其中来自第一光源组的光在第一子像素上出射,来自第二光源组的光在第二子像素上出射,并且同一个像素的两个子像素出射的光的方向相同。
优选的,所述第二矩形导光板中的每一个像素发出的光经过所述第一矩形导光板后射出,并且射出方向与该像素在第一矩形导光板上投影位置相邻的一个像素射出的光具有相同的方向,或者所述第一矩形导光板中的每一个像素发出的光经过所述第二矩形导光板后射出,并且射出方向与该像素在第二矩形导光板上投影位置相邻的其中一个像素射出的光相同。
优选的,所述矩形导光板的数量为三个,其中第一矩形导光板仅在其一对平行对边的一侧或者双侧上设有第一光源组,第二矩形导光板仅在其一对平行对边的一侧或者双侧上设有第二光源组,第三矩形导光板仅在其一对平行对边的一侧或者双侧上设有第三光源组,该第一光源组、第二光源组、第三光源组分别发出一种颜色不同的单色光。
优选的,所述三矩形导光板的出光面面向所述第二矩形导光板的非出光面、所述第二矩形导光板的出光面面向所述第一矩形导光板的非出光面,三者进行叠合。
优选的,所述第三矩形导光板中单个像素在所述第一矩形导光板的投影位置、所述第二矩形导光板中单个像素在所述第一矩形导光板的投影位置,以及所述第一矩形导光板中的每个像素,三者形成错位。
优选的,所述第三矩形导光板中每一个像素发出的光进过第二矩形导光板、第一矩形导光板后射出,所述第二矩形导光板中的每一个像素发出的光经过第一矩形导光板后射出,并且所述第一矩形导光板中每一个像素,和所述投影位置与其相邻的一个对应第三矩形导光板,以及一个对应第二矩形导光板上的像素发出的光,三者的出射方向相同。
优选的,所述光源组包括一个单色光源、一个光源准直系统和一个棱镜,所述单色光源发出的光被所述光源准直系统准直,然后通过棱镜进入所述导光板内部,并形成全反射光。
优选的,所述光源准直系统采用平面菲涅尔透镜阵列。
优选的,所述光源组包括第一光源组、第二光源组和第三光源组,该第一光源组、第二光源组和第三光源组分别对应R、G、B三种光。
优选的,所述多个像素阵列的视角成连续分布。
优选的,所述多个像素阵列的视角范围在0-50度之间。
同时本发明也提出了一种裸眼3D显示装置,包括如上所述的多视角像素指向型背光模组、位于该多视角像素指向型背光模组前面的液晶面板,以及驱动该液晶面板的驱动装置。
优选的,所述矩形导光板采用平行对边单侧导光,所述液晶面板像素与矩形导光板像素对准,矩形导光板在不同视角下的导光与液晶面板在该视角下的图像匹配,同时该多层矩形导光板不同颜色切换与液晶面板形成图像的所需颜色匹配,获得裸眼3D显示。
优选的,所述导光板采用平行对边双侧导光,液晶面板像素与导光板像素不需对准,通过所述液晶面板实现图像控制,通过在所述导光板对同一种颜色光源在两个相对方向上的主动切换,实现不同视角的图像切换,其中在不同指向性光线与液晶面板视角图像匹配,液晶面板图像刷新与两侧光源切换匹配下获得裸眼3D显示。与现有技术相比,本发明的进步之处在于,利用多层导光板的手段,克服了多种光源无法在一块矩形导光板上进行集成的问题,从而使得矩形导光板在指向型背光模组中的应用得以实现,同时采用菲涅尔透镜阵列对光源进行准直,易于集成,为裸眼3D的大规模应用开创了可能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是纳米衍射光栅在XY平面下的结构图。
图2是图1中的纳米衍射光栅在XZ平面下的结构图。
图3是本发明第一实施方式下多视角像素指向型背光模组的结构示意图。
图4是单个光源组的结构示意图。
图5是本发明在第一实施方式下的导光板上的像素错位排布示意图。
图6是本发明第二实施方式下的多视角像素指向型背光模组的结构示意图。
图7是本发明在第二实施方式下的导光板上的像素错位排布示意图。
图8是使用本发明的多视角像素指向型背光模组组成3D显示器件之后的结构示意图。
图9是使用本发明的多视角像素指向型背光模组组成的另一种3D显示器件示意图。
具体实施方式
正如背景技术中所述,在实现裸眼3D的多种手段中,像素指向型背光模组因为能够实现较宽的视角,得到了本领域技术人员的青睐,成为未来最有可能大规模应用在裸眼3D中的技术之一。
请先参见图1和图2,图1和图2是一个尺度在纳米级别的衍射光栅在XY平面和XZ平面下的结构图。根据光栅方程,纳米衍射光栅像素101的周期、取向角满足以下关系:
Figure PCTCN2015075376-appb-000001
Figure PCTCN2015075376-appb-000002
其中,光线沿x轴正方向传输,θ1
Figure PCTCN2015075376-appb-000003
依次表示衍射光201的衍射角(衍射光线与z轴正方向夹角)和衍射光201的方位角(衍射光线与x轴正方向夹角),θ和λ依次表示光源202的入射角(入射光线与z轴正方向夹角)和波长,和
Figure PCTCN2015075376-appb-000004
依次表示纳米衍射光栅101的周期和取向角(槽型方向与y轴正方向夹角),n表示光波在导光板中的折射率。换言之,在规定好入射光线波长、入射角以及衍射光线衍射角和衍射方位角之后,就可以通过上述两个公式计算出所需的纳米衍射光栅的周期和取向角了。例如,650nm波长红光以60°角入射(折射率为1.5),衍射光的衍射角为10°、衍射方位角为45°,通过计算,对应的纳米衍射光栅周期为550nm,取向角为-5.96°。
按照上述原理,在一块导光板表面制作出多个按需设定的不同取向角和周期的纳米衍射光栅之后,理论上就可以获得足够多的具有不同视角指向的光 线,将每一个纳米衍射光栅视为一个像素的话,配合颜色和灰度的控制,就能实现多视角下的裸眼3D显示。
然而,具有上述纳米衍射光栅的导光板在应用到背光模组之后,却存在如下的问题:对于一个纳米衍射光栅来说,无论从X正方向还是X负方向,入射的光都会形成衍射出射,当这样的纳米衍射光栅作为像素点应用在矩形导光板上时,由于矩形导光板只有2对非平行的对边,而实现色彩的表达必须依赖RGB三种颜色(或者其他三色)的搭配,这就意味着在一块矩形导光板中使用3颜色光源的话,必定有一对平行对边上出现两种不同颜色的光源,这种情况下,这两种光源的光会以正反两个方向入射到同一个纳米衍射光栅上,导致一个像素点上同时出射两种颜色的光,因而形成“混光”,而非单色光,因此为了获得每个像素点上的单色光,现有技术中设计了一个6边形的导光板,让光源从三个不同方向入射到导光板中,从而避免了“混光”的出现。但是这种6边形的导光板,与现有的任何一种显示器,都无法很好的匹配,因而无法在实用性上,将多视角指向型背光模组很好的进行推广。
解决上述技术问题的关键在于,如何在矩形导光板中避免出现两束方向相同或相反的“异色光”。
为了解决上述问题,申请人开创性的设计了一种多层导光板的概念,在一块矩形导光板最多搭配两种颜色的光源,保证一块导光板内的两种颜色的光源都能以不同的角度入射,解决了在矩形导光板中同一个像素出现“混光”的问题,然后利用不同的导光板,实现RGB三种颜色的搭配。
下面,将对本发明的具体技术方案做详细介绍。
请参见图3,图3是本发明第一实施方式下多视角像素指向型背光模组的结构示意图。包括第一矩形导光板301、第二矩形导光板311,这两块矩形导光板在实际使用时,紧密叠合在一起。定义发光的一面为该矩形导光板的出光面,每块矩形导光板的出光面上布满了像素点,每一个像素点代表一个纳米衍射光栅。以第一矩形导光板301为例,在图3中简易示出了衍射方向为302a-302i的多个纳米衍射光栅303a-303i,这些纳米衍射光栅实际是尺寸在微 纳米级别的小点。这些许许多多的像素点形成了一个个像素阵列,各个像素阵列之间以有序或无序的方式将各自的像素彼此互相嵌合,并且每个像素阵列中的像素都是均匀分布在矩形导光板的出光面上。其中,同一个像素阵列中的像素发出的光指向同一视角,不同像素阵列则具有不同的视角。举例来说,假设该矩形导光板中总共存在10个像素阵列,则在10个视角中分别可以看到每一个像素阵列单独形成的图像,任何连续的两个视角对应到人的双眼中,都可以观看到3D影像。这10个像素阵列中的像素都是均匀分布在出光面上的,如果以1-10给这10个像素阵列编号的话,每一个像素阵列中的像素可以按照1-10的顺序间隔排列,也可以按照无序的方式任意排列,只要保证同一个像素阵列中的每两个相邻像素之间,嵌套有其余9个像素阵列中的各自对应的一个像素即可。需要指出的是,每一个像素阵列中的像素发出的光指向同一个视角,并非指的是同一个像素阵列中的像素光栅具有相同的衍射角,而是指这些光栅衍射出来的光指向同一个位置,人眼在这个位置可以看到同一个像素阵列中所有像素发出的光线。像素阵列的数量受限于当前工艺下矩形导光板的尺寸和单个像素的大小,在牺牲一定分辨率的情况下,可以在一块矩形导光板上制作出多个像素阵列,而像素阵列数量的增加,决定了可以观看视角数目的增加,在理想状态下,即在像素阵列足够多的情况下,可以让这些像素阵列的视角呈现连续分布的效果,从而达到比如在0-50度之间的任意位置处都可以观察到3D影像。
进一步地,第一矩形导光板301配有2个光源组,分别设置在该第一矩形导光板301的两对平行对边304a-304b和305a-305b,第二矩形导光板311配有1个光源组。其中位于对边304a-304b上的光源组为第一光源组,位于对边305a-305b上的光源组为第二光源组,位于第二矩形导光板311的对边314a-314b上的为第三光源组。这三个光源组分别发出红、绿、蓝三种颜色的光,每组光源包括一或者两个光源(图示出两个光源),下面将以第一光源组为红光、第二光源组为绿光、第三光源组为蓝光为例进行说明,当然这些光源的颜色可以互换,并不以此为限,甚至在一些特殊场合下,可以将上述三种颜色 的光替换成其它任意单色光,比如黄色、青色、品红色等等,保证每个光源组发出的光颜色不同即可。第一光源组包括红光光源、第一光源准直系统和第一棱镜(图中未示出),第二光源组包括绿光光源、第二光源准直系统和第二棱镜(图中未示出),第三光源组包括蓝光光源、第二光源准直系统和第三棱镜(图中未示出)。下面以第一光源组为例,请参照图4,第一光源组包括红光光源401、平面菲涅尔透镜阵列402、棱镜403,其中红光光源401发出的光线404经过第一光源准直系统402后,被准直成平面波405,通过棱镜403导入第一矩形导光板301中,并且在第一矩形导光板301中形成全反射光406,当第一矩形导光板301内部的全反射光遭遇到像素所在的纳米衍射光栅时,则被该纳米衍射光栅衍射出去,形成一个个不同方向的出射光407。在这些被设计好的纳米衍射光栅的调控下,这些出射光407被定向导光,从而为形成多个具有指向型画面提供光源。
在图示的方式中,第二矩形导光板311的出光面面向第一矩形导光板301的非出光面进行叠合,在其它方式中,也可以是第一矩形导光板301的出光面面向第二矩形导光板311的非出光面进行叠合,这两种方式可以互换。以图示的方式为例,由于每块矩形导光板实际是一张比较薄的具有一定透明度的材料,因此叠合之后的两块矩形导光板,相对在下的第二矩形导光板311发出的光能够透过第一矩形导光板301进行发射,这里需要注意的是,在导光板内部的光线,总体来说是进行全反射传播的,但是一旦经过纳米衍射光栅透射出去之后,其发光角度通常集中在法线两侧0-30度之间,因此从第二矩形导光板103b发出的光线在经过覆盖在上方的第一矩形导光板103a时,不会形成全反射,绝大多数光会直接穿透过去,只有少部分光被反射和吸收。其总的透射率取决于导光板的材质,在选取一些高透射率的材料作为导光板的前提下,第二矩形导光板311发出的光线经过第一矩形导光板301之后,透射率可以达到85%以上。尽管如此,考虑到被吸收和反射的那部分光线,前后两块导光板的光源强度在设计的时候,可以设计成位于第二矩形导光板311的光源强度大于位于上面的第一矩形导光板301的光源强度,其总的效果,应该是第二导光板 311发出的光线经过上方的第一矩形导光板301射出后,能够与本身就位于第一矩形导光板301的光源从该第一矩形导光板301射出后的光强几乎相同。这样一来,在制作成显示器件之后,不至于有些像素发出的光线特别亮,而有些像素发出的光又相对较暗。
进一步地,当两块矩形导光板重叠后之后,位于第二矩形导光板311中的每一个像素在第一矩形导光板301上的投影位置,恰好与第一矩形导光板的每一个像素形成错位,例如,如图5,第二矩形导光板311上的像素501c、502c、503c与第一矩形导光板301上的像素501a-501b、502a-502b、503a-503b形成错位。即第二矩形导光板311上的每一个像素发出的光线,不会进入第一矩形导光板103a中的任何一个像素内,以免相互之间影响。
进一步地,与现有的显示器件上差不多的概念,对于人眼来说,看到的一个像素实际是由RGB三个子像素构成,而在本实施方式中,RGB三个子像素,实际是由位于第一矩形导光板301上的两个子像素加上位于第二矩形导光板311上的一个子像素构成的,也就是说,在第一矩形导光板301中,每一个像素包括两种不同颜色的子像素,其中来自第一光源组的光在第一子像素上出射,而来自第二光源组的光在第二子像素上出射,并且同一个像素的两个子像素出射的光的方向相同。当然结合第二矩形导光板之后,应当将一个像素理解为包含3个子像素,且同一个像素中的3个子像素具有相同的出射方向。也就是说,第二矩形导光板311中的每一个像素发出的光经过第一矩形导光板301后射出,并且射出方向与该像素在第一矩形导光板301上投影位置相邻的一个像素射出的光具有相同的方向,例如,如图5,第一矩形导光板301中的像素501a、501b分别对应着第一光源、第二光源发出的光,第二矩形导光板311中的像素501c对应着第三光源发出的光,并且三个像素的出射光方向相同,同理502a-502c和503a-503c也是一样。
请参见图6,图6是本发明第二实施方式下的多视角像素指向型背光模组的结构示意图。在该实施方式中,总共包括三块矩形导光板,每块矩形导光板的出光面上都设有多个不同指向的像素,以图示中的第一矩形导光板601为 例,其出光面上设计了多个纳米光栅像素602a-602i,实现方向603a-603i的视角导光。各个像素的排布规则与第一实施方式中的相同,在此不再赘述。每个矩形导光板都只配备了一个光源组。其中第一矩形导光板601仅在其一对平行对边604a-604b上设有第一光源组,第二矩形导光板611仅在其一对平行对边614a-614b上设有第二光源组,第三矩形导光板621仅在其一对平行对边624a-624b上设有第三光源组,该第一光源组、第二光源组、第三光源组分别发出一种颜色不同的单色光。与第一实施方式相同,将这三块矩形导光板彼此叠合在一起形成整的背光模组。如图中示意的,第三矩形导光板621的出光面面向第二矩形导光板611的非出光面、第二矩形导光板611的出光面面向第一矩形导光板601的非出光面,三者进行叠合。当然叠合的顺序也可以是其它形式,在此不再一一赘述。叠合之后,其总的效果是第三矩形导光板621中单个像素在第一矩形导光板601的投影位置、第二矩形导光板611中单个像素在第一矩形导光板601的投影位置,以及第一矩形导光板601中的对应单个像素,三者形成错位,例如,如图7,第一矩形导光板601上的像素701a、702a、703a与第二矩形导光板611上的像素701b、702b、703b,第三矩形导光板621上的像素701c、702c、703c,形成错位。
三个光源组各自包括光源、光源准直系统和棱镜,作用与第一实施方式中的相同。以第一光源组配备的光源为红色、第二光源组配备的光源为绿色、第三光源组配备的光源为蓝色为例,三块矩形导光板的出光面各自发出对应颜色的光。
按照三块矩形导光板的位置关系,第三矩形导光板621中每一个像素发出的光进过第二矩形导光板611、第一矩形导光板601后射出,而第二矩形导光板611中的每一个像素发出的光经过第一矩形导光板601后射出,并且第一矩形导光板601中每一个像素,和投影位置与其相邻的一个对应第三矩形导光板621,以及一个对应第二矩形导光板611上的像素发出的光,三者的出射方向相同,例如,如图7,第一矩形导光板601中的像素701a与第二矩形导光板611中的像素701b,第三矩形导光板621中的像素701c光出射的方向相同, 同理702a-702c和703a-703c也是一样。以人眼所能看到的效果来说明,即上述三块导光板中发出的光最后统一在第一矩形导光板601上形成出射,且出射时,同一个方向上的三种颜色的光所在的位置不形成重叠,与普通显示器一个像素具有三个子像素的效果一致。
在上述两个实施方式中,光源采用单色光,比如条状LED光源。光源准直系统采用菲涅尔透镜阵列,菲涅尔透镜阵列可以让发散光源变为平行光,从而减少指向性光源不同角度入射的串扰。
进一步地,作为上述两个实施方式的扩展形式,可以在一块矩形导光板的两条相对的侧边上设置同一种颜色的光源,这样可以提高导光板的发光强度,增强显示效果。
上述多视角指向型背光模组结合液晶面板图像的刷新,可实现裸眼3D显示。多视角指向性背光模组与液晶面板有两种组合方式:第一种,矩形导光板采用平行对边单侧导光的方式,液晶面板上的子像素与矩形导光板子像素对准,矩形导光板在以不同视角下的导光与液晶面板在该视角下的图形匹配,多层矩形导光板不同颜色切换与液晶面板形成图像的所需颜色匹配,通过液晶面板图像时序刷新,获得裸眼3D显示;第二种,矩形导光板采用平行对边双侧导光的方式,液晶面板上的子像素与矩形导光板子像素不需对准,通过液晶面板实现图像控制,通过在导光板对同一种颜色光源在两个相对方向上的主动切换,实现不同视角的图像切换,以红色光源为例,先使其一侧点亮,则红色像素在液晶面板的控制下向一个视角(或多个视角)发出第一图形,当切换成相对的另一侧点亮时,则所有红色像素在液晶面板的控制下形成与第一图形所在视角成法线对称的第二图形,令第一图形被左眼所接收,第二图形被右眼所接受,在不同指向性光线与液晶面板图像匹配,液晶面板图像刷新与两侧光源切换匹配下,即可获得裸眼3D显示。
请参见图8,图8是使用本发明的多视角像素指向型背光模组组成3D显示器件之后的结构示意图。该3D显示器件包括如上所述的多视角像素指向型背光模组和位于该多视角像素指向型背光模组前面的液晶面板811,以及驱动 该液晶面板811的驱动装置(图中未示出)。图中,多视角像素指向型背光模组以801代表所有的光源组,802代表多层矩形导光板叠合之后的结构。考虑到视角分离和聚焦效果,多视角像素指向型背光模组与液晶面板811采用第一种组合方式,矩形导光板802采用平行对边单侧导光的方式,液晶面板811显示的视角图像像素与矩形导光板802上对应的视角纳米衍射光栅像素对准,可实现多视角图像的分离,,多层的矩形导光板802上不同颜色的像素与液晶面板上颜色图形对准,并且在对应液晶面板上像素内的液晶分子的调节下形成色阶组合,同时液晶面板上的图像不断时序刷新,便可以实现多视角的裸眼3D显示。以图示为例,矩形导光板802上刻有纳米衍射光栅像素803a-803c、804a-804c、805a-805c以及806a-806c,分别对应着视角1、视角2、视角3、视角4,假设人眼瞳距为60mm,视角间距等于瞳距,最适观察距离为300mm,液晶面板尺寸为250mm宽度,纳米衍射光栅像素均匀分布于矩形导光板表面,视角均匀分布观察平面中间,经过计算,纳米衍射光栅像素803a-803c的视角(衍射光线与z轴正方向的夹角,取偏向x轴正方向为正)分别为°6.7°、-10.6°、-26.1°,纳米衍射光栅804a-804c的视角分别为13.5°、-3.6°、-20.1°,纳米衍射光栅805a-805c的视角分别为20.1°、3.6°、-13.5°,纳米衍射光栅806a-806c的视角分别为26.1°、10.6°、-6.7°,同时液晶面板811上的视角像素813a-813c、814a-814c、815a-815c、816a-816c分别与矩形导光板802上的像素803a-803c、804a-804c、805a-805c、806a-806c对准,这样可以实现四个视角图像的分离,同时液晶面板上的图像不断刷新,同时如实施例2、3中,多层矩形导光板不同颜色的像素在液晶分子的调控下与最终生成的图像颜色匹配,则任意两个连续视角都可以观看到3D图像,例如,观看到图像820的立体效果。如果液晶面板811上显示的是无视差的平面图像,则可以实现2维的平面显示,因此这样的组合方式同时支持立体图像与平面图像之间的转换。
请参见图9,图9是使用本发明的多视角像素指向型背光模组组成的另一种3D显示器件示意图。与上一实施方式相比,本实施例主要考虑得到高分辨率的图像,多视角像素指向型背光模组与液晶面板911采用第二种组合方式, 矩形导光板902采用平行对边双侧导光的方式。本实施例主要在多个视角下形成3D图像。如图所示,901a-901b代表叠加后的3个光源组,902则代表叠合后的多层矩形导光板。该多层矩形导光板902上的纳米衍射光栅像素与液晶面板911上的像素不需对准,两组光源轮流切换,由于纳米衍射光栅的衍射角的对称性,这样就可以轮流实现两个视角的切换,同时结合液晶面板上的图像切换匹配,就可以实现视角图像的分离,例如,光源901a打开,901b关闭,矩形导光板902上纳米衍射光栅903对应的视角1为+5°(衍射光线与z轴正方向的夹角,取偏向x轴正方向为正),同时液晶面板911上显示+5°视角图像;当光源901b打开,901a关闭,则矩形导光板902上的纳米衍射光栅903就对应着-5°的视角2,同时液晶面板911上显示-5°的视角图像,这样就实现了±5°视角图像的分离,分离的图像分别对应人的左右眼,同时液晶面板911上的图像时序刷新与光源901a-901b切换匹配,多层导光板颜色切换与图像颜色匹配,这样就可以观察到高分辨率的3D图像,实现裸眼3D显示。如果液晶面板911上显示的是无视差的平面图像,则可以实现2维的平面显示,因此这样的组合方式也同时支持立体图像与平面图像之间的转换。
本发明上述的矩形导光板,可以采用紫外连续变空频光刻技术以及纳米压印进行制作,该紫外连续变空频光刻技术参照申请号为CN201310166341.1的中国专利申请记载的光刻设备和光刻方法。需要指出的是,在本发明中,既可以采用光刻方法在矩形导光板表面刻蚀制作出各个不同指向的纳米光栅,也可以通过该光刻方法先制作出能够用于压印的掩模,然后通过纳米技术大批量的在矩形导光板上压印出上上述纳米光栅的图案。
综上所述,本发明公开了一种多视角像素指向型背光模组以及采用该多视角像素指向型背光模组制作的裸眼3D显示装置。在本发明中,利用多层导光板的叠合,解决了在一块导光板中无法避免三光源互相干扰的问题,从而实现了像素指向型的矩形导光板,为这种具有多视角指向功能的导光板在裸眼3D显示技术中进行工业应用提供了切实可行的方案,解决了现有技术无法解决的问题。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (18)

  1. 一种多视角像素指向型背光模组,其特征在于:包括至少两个矩形导光板,各个矩形导光板互相紧密叠合,所述矩形导光板的出光面上设有多个像素阵列,各个像素阵列之间以有序或无序的方式将各自的像素彼此互相嵌合,并均匀分布在所述导光板的出光面上,同一个像素阵列中的像素发出的光指向同一视角,不同的像素阵列具有不同的视角,所述每个矩形导光板的至少一条侧边上设有一光源组,该光源组发出的光进入对应的导光板内部后,在所述导光板出光面的多个像素阵列的各个像素上形成出射光,在所述导光板内部的其余地方进行全反射,其中,单个所述像素为纳米衍射光栅。
  2. 如权利要求1所述的多视角像素指向型背光模组,其特征在于:所述矩形导光板的数量为两个,其中第一矩形导光板在两对平行对边的一侧或者双侧上分别设有第一光源组和第二光源组,第二矩形导光板在其一对平行对边的一侧或者双侧上设有第三光源组,该第一光源组、第二光源组、第三光源组分别发出一种颜色不同的单色光。
  3. 如权利要求2所述的多视角像素指向型背光模组,其特征在于:所述第二矩形导光板的出光面面向所述第一矩形导光板的非出光面进行叠合,或者所述第一矩形导光板的出光面面向所述第二矩形导光板的非出光面进行叠合。
  4. 如权利要求3所述的多视角像素指向型背光模组,其特征在于:所述第二矩形导光板中的每一个像素在所述第一矩形导光板上的投影位置,与所述第一矩形导光板的每一个像素形成错位。
  5. 如权利要求4所述的多视角像素指向型背光模组,其特征在于:所述第一矩形导光板中,每一个像素包括两种不同颜色的子像素,其中来自第一光源组的光在第一子像素上出射,来自第二光源组的光在第二子像素上出射,并且同一个像素的两个子像素出射的光的方向相同。
  6. 如权利要求4所述的多视角像素指向型背光模组,其特征在于:所述第二矩形导光板中的每一个像素发出的光经过所述第一矩形导光板后射出,并且射出方向与该像素在第一矩形导光板上投影位置相邻的一个像素射出的光 具有相同的方向,或者所述第一矩形导光板中的每一个像素发出的光经过所述第二矩形导光板后射出,并且射出方向与该像素在第二矩形导光板上投影位置相邻的其中一个像素射出的光相同。
  7. 如权利要求1所述的多视角像素指向型背光模组,其特征在于:所述矩形导光板的数量为三个,其中第一矩形导光板仅在其一对平行对边的一侧或者双侧上设有第一光源组,第二矩形导光板仅在其一对平行对边的一侧或者双侧上设有第二光源组,第三矩形导光板仅在其一对平行对边的一侧或者双侧上设有第三光源组,该第一光源组、第二光源组、第三光源组分别发出一种颜色不同的单色光。
  8. 如权利要求7所述的多视角像素指向型背光模组,其特征在于:所述三矩形导光板的出光面面向所述第二矩形导光板的非出光面、所述第二矩形导光板的出光面面向所述第一矩形导光板的非出光面,三者进行叠合。
  9. 如权利要求8所述的多视角像素指向型背光模组,其特征在于:所述第三矩形导光板中单个像素在所述第一矩形导光板的投影位置、所述第二矩形导光板中单个像素在所述第一矩形导光板的投影位置,以及所述第一矩形导光板中的每个像素,三者形成错位。
  10. 如权利要求9所述的多视角像素指向型背光模组,其特征在于:所述第三矩形导光板中每一个像素发出的光进过第二矩形导光板、第一矩形导光板后射出,所述第二矩形导光板中的每一个像素发出的光经过第一矩形导光板后射出,并且所述第一矩形导光板中每一个像素,和所述投影位置与其相邻的一个对应第三矩形导光板,以及一个对应第二矩形导光板上的像素发出的光,三者的出射方向相同。
  11. 如权利要求1-10任一所述的多视角像素指向型背光模组,其特征在于:所述光源组包括一个单色光源、一个光源准直系统和一个棱镜,所述单色光源发出的光被所述光源准直系统准直,然后通过棱镜进入所述导光板内部,并形成全反射光。
  12. 如权利要求11所述的多视角像素指向型背光模组,其特征在于:所 述光源准直系统采用平面菲涅尔透镜阵列。
  13. 如权利要求1-10任一所述的多视角像素指向型背光模组,其特征在于:所述光源组包括第一光源组、第二光源组和第三光源组,该第一光源组、第二光源组和第三光源组分别对应R、G、B三种光。
  14. 如权利要求1-10任一所述的多视角像素指向型背光模组,其特征在于:所述多个像素阵列的视角成连续分布。
  15. 如权利要求14所述的多视角像素指向型背光模组,其特征在于:所述多个像素阵列的视角范围在0-50度之间。
  16. 一种裸眼3D显示装置,其特征在于:包括如权利要求1-15任一所述的多视角像素指向型背光模组、位于该多视角像素指向型背光模组前面的液晶面板,以及驱动该液晶面板的驱动装置。
  17. 如权利要求16所述的裸眼3D显示装置,其特征在于:所述矩形导光板采用平行对边单侧导光,所述液晶面板像素与矩形导光板像素对准,矩形导光板在不同视角下的导光与液晶面板在该视角下的图像匹配,同时该多层矩形导光板不同颜色切换与液晶面板形成图像的所需颜色匹配,获得裸眼3D显示。
  18. 如权利要求16所述的裸眼3D显示装置,其特征在于:所述导光板采用平行对边双侧导光,液晶面板像素与导光板像素不需对准,通过所述液晶面板实现图像控制,通过在所述导光板对同一种颜色光源在两个相对方向上的主动切换,实现不同视角的图像切换,其中在不同指向性光线与液晶面板视角图像匹配,液晶面板图像刷新与两侧光源切换匹配下获得裸眼3D显示。
PCT/CN2015/075376 2014-12-31 2015-03-30 一种多视角像素指向型背光模组及裸眼3d显示装置 WO2016106987A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/540,223 US10429567B2 (en) 2014-12-31 2015-03-30 Multi-view pixel directional backlight module and naked-eye 3D display device
JP2017535696A JP2018506735A (ja) 2014-12-31 2015-03-30 マルチビューピクセル指向性バックライトモジュール及び裸眼3d表示装置
KR1020177020345A KR101998495B1 (ko) 2014-12-31 2015-03-30 멀티-뷰 픽셀 지향성 백라이트 모듈 및 나안 3d 디스플레이 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410852242.3 2014-12-31
CN201410852242.3A CN104460115B (zh) 2014-12-31 2014-12-31 一种多视角像素指向型背光模组及裸眼3d显示装置

Publications (1)

Publication Number Publication Date
WO2016106987A1 true WO2016106987A1 (zh) 2016-07-07

Family

ID=52906411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/075376 WO2016106987A1 (zh) 2014-12-31 2015-03-30 一种多视角像素指向型背光模组及裸眼3d显示装置

Country Status (5)

Country Link
US (1) US10429567B2 (zh)
JP (1) JP2018506735A (zh)
KR (1) KR101998495B1 (zh)
CN (1) CN104460115B (zh)
WO (1) WO2016106987A1 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3060140A1 (fr) * 2016-12-13 2018-06-15 Valeo Comfort And Driving Assistance Afficheur tete haute
WO2018128657A1 (en) 2017-01-06 2018-07-12 Leia Inc. Static multiview display and method
WO2019099041A1 (en) 2017-11-18 2019-05-23 Leia Inc. Bar collimator, backlight system and method
CN110161600A (zh) * 2019-07-09 2019-08-23 京东方科技集团股份有限公司 一种阵列基板及其制备方法和液晶显示装置
KR20190104446A (ko) * 2017-03-25 2019-09-09 레이아 인코포레이티드 모드-전환가능 백라이트, 개인 정보 표시 및 방법
KR20190104523A (ko) * 2017-01-30 2019-09-10 레이아 인코포레이티드 플라즈몬 멀티빔 요소를 채용한 멀티뷰 백라이팅
KR20190114959A (ko) * 2017-02-28 2019-10-10 레이아 인코포레이티드 색-맞춤 방출 패턴을 갖는 멀티뷰 백라이팅
JP2020514791A (ja) * 2016-12-28 2020-05-21 レイア、インコーポレイテッドLeia Inc. 反射支持構造を有するマルチビューディスプレイ
JP2020516036A (ja) * 2017-04-02 2020-05-28 レイア、インコーポレイテッドLeia Inc. デュアルビューゾーンのバックライト、デュアルモードのディスプレイ、および方法
JP2020516928A (ja) * 2017-04-04 2020-06-11 レイア、インコーポレイテッドLeia Inc. 多層マルチビューディスプレイおよび方法
JP2020517989A (ja) * 2017-04-28 2020-06-18 深▲セン▼前▲海▼▲達▼▲闥▼▲雲▼端智能科技有限公司Cloudminds (Shenzhen) Robotics Systems Co., Ltd. 指向性光導波路、指向性バックライトモジュール及び表示装置
US10718891B2 (en) 2017-01-20 2020-07-21 Samsung Electronics Co., Ltd. Input coupler, backlight unit, and three-dimensional image display apparatus including the input coupler
EP3638946A4 (en) * 2017-06-16 2020-12-23 LEIA Inc. MULTI-VIEW BACKLIGHTING, MULTI-VIEW DISPLAY AND AND METHOD OF USING MULTIPLE BEAMS
CN113900273A (zh) * 2021-10-09 2022-01-07 广东未来科技有限公司 裸眼3d显示方法及相关设备
CN115210634A (zh) * 2020-03-02 2022-10-18 镭亚股份有限公司 静态图像增强隐私显示器、模式可切换的隐私显示系统及方法

Families Citing this family (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104460115B (zh) * 2014-12-31 2017-09-01 苏州大学 一种多视角像素指向型背光模组及裸眼3d显示装置
WO2016160048A1 (en) 2015-03-30 2016-10-06 Leia Inc. 2d/3d mode-switchable electronic display with dual layer backlight
JP6961491B2 (ja) * 2015-04-23 2021-11-05 レイア、インコーポレイテッドLeia Inc. 二重ライトガイド式格子ベースのバックライトおよび同バックライトを用いる電子ディスプレイ
CN104834047B (zh) * 2015-05-05 2018-03-27 武汉华星光电技术有限公司 导光板组件及背光单元
EP3295242B1 (en) * 2015-05-09 2020-05-06 LEIA Inc. Colour-scanning grating-based backlight and electronic display using the same
CN104898321A (zh) * 2015-06-25 2015-09-09 京东方科技集团股份有限公司 显示面板及显示设备
JP5979291B1 (ja) 2015-07-29 2016-08-24 オムロン株式会社 光デバイス
KR102364848B1 (ko) * 2015-08-20 2022-02-18 삼성전자주식회사 곡면형 백라이트 유닛 및 이를 포함하는 곡면형 디스플레이 장치
CN105357508B (zh) * 2015-08-28 2017-06-13 中国人民解放军海军总医院 多视点裸眼立体视窗检查方法与系统
US10798371B2 (en) * 2015-09-05 2020-10-06 Leia Inc. Multiview display with head tracking
PT3345036T (pt) * 2015-09-05 2022-03-22 Leia Inc Ecrã baseado em rede de difração de feixes múltiplos com acompanhamento do movimento da cabeça
WO2017041079A1 (en) * 2015-09-05 2017-03-09 Leia Inc. Angular subpixel rendering multiview display using shifted multibeam diffraction gratings
KR102447099B1 (ko) 2015-09-23 2022-09-26 삼성전자주식회사 광원 디바이스, 이를 포함하는 디스플레이 장치, 디스플레이 방법
CN105223641A (zh) * 2015-09-25 2016-01-06 苏州苏大维格光电科技股份有限公司 一种量子点激光器指向型背光模组及裸眼3d显示装置
US20170131456A1 (en) * 2015-11-05 2017-05-11 Samsung Electronics Co., Ltd Light guide plate and backlighting device including the same
CN105487239B (zh) 2015-11-13 2018-03-02 苏州苏大维格光电科技股份有限公司 指向性彩色滤光片和裸眼3d显示装置
CN106896512A (zh) * 2015-12-21 2017-06-27 苏州工业园区洛加大先进技术研究院 一种裸眼3d显示装置
CN105372824B (zh) * 2015-12-22 2017-12-29 苏州苏大维格光电科技股份有限公司 一种裸眼3d激光显示装置
WO2017118469A1 (en) * 2016-01-04 2017-07-13 Ultra-D Coöperatief U.A. 3d display apparatus
CN106959520B (zh) * 2016-01-08 2019-10-29 京东方科技集团股份有限公司 背光模组、显示装置及其驱动方法
CN106959544B (zh) 2016-01-08 2020-12-04 京东方科技集团股份有限公司 一种背光模组、液晶显示器及其制备工艺
CN106960661B (zh) * 2016-01-08 2019-06-21 京东方科技集团股份有限公司 一种3d显示装置及其驱动方法
CN106959525A (zh) * 2016-01-08 2017-07-18 京东方科技集团股份有限公司 一种双视裸眼3d显示器件及其制作方法、液晶显示装置
CN106959486A (zh) * 2016-01-08 2017-07-18 京东方科技集团股份有限公司 一种导光板、背光模组及液晶显示装置
CN108463764B (zh) * 2016-01-16 2022-10-28 镭亚股份有限公司 基于多束衍射光栅的平视显示器
CN105425409B (zh) * 2016-01-19 2017-09-19 苏州苏大维格光电科技股份有限公司 一种投影式裸眼3d显示装置及其彩色化显示装置
KR102526751B1 (ko) * 2016-01-25 2023-04-27 삼성전자주식회사 지향성 백라이트 유닛, 3차원 영상 디스플레이 장치, 및 3차원 영상 디스플레이 방법
JP6776359B2 (ja) * 2016-01-30 2020-10-28 レイア、インコーポレイテッドLeia Inc. 収束ビューを有するマルチビーム要素型バックライティング
EP3408705A4 (en) * 2016-01-30 2019-09-11 LEIA Inc. MULTI-LAYERED ELEMENT BASED BACKLIGHTING AND DISPLAY THEREOF
CN105607172B (zh) 2016-03-31 2020-03-27 京东方科技集团股份有限公司 光栅组件、光源设备及其驱动方法
CN105676473B (zh) * 2016-04-18 2019-05-03 苏州苏大维格光电科技股份有限公司 一种裸眼3d显示装置
CN105676474B (zh) * 2016-04-19 2019-10-18 京东方科技集团股份有限公司 导光板、背光模组和显示装置
CN105700226A (zh) * 2016-04-25 2016-06-22 京东方科技集团股份有限公司 视角控制机构、导光板、背光模组、阵列基板及显示面板
WO2017189230A2 (en) * 2016-04-29 2017-11-02 Duan-Jun Chen Glass-free 3d display system using dual image projection and tri-colors grating multiplexing panels
US10928677B2 (en) * 2016-05-23 2021-02-23 Leia Inc. Diffractive multibeam element-based backlighting
CN106019649A (zh) * 2016-06-03 2016-10-12 京东方科技集团股份有限公司 一种显示面板、显示装置及显示方法
CN105842925A (zh) * 2016-06-13 2016-08-10 京东方科技集团股份有限公司 一种显示面板及显示方法、显示装置
CN105974647A (zh) * 2016-07-18 2016-09-28 京东方科技集团股份有限公司 一种显示面板及其制作方法、显示装置
CN106125189B (zh) * 2016-08-30 2019-11-22 京东方科技集团股份有限公司 一种背光模组及其控制方法、显示装置
KR102646789B1 (ko) * 2016-09-22 2024-03-13 삼성전자주식회사 지향성 백라이트 유닛 및 이를 포함하는 입체 영상 표시 장치
EP3523574A4 (en) 2016-10-05 2020-06-10 LEIA Inc. BACKLIGHT WITH SELECTABLE MODE, METHOD AND DISPLAY WITH DIRECTIONAL SPREADING FUNCTIONS
CN109844406B (zh) * 2016-10-05 2022-12-30 镭亚股份有限公司 透明显示器和方法
CN106291958B (zh) * 2016-10-21 2021-04-23 京东方科技集团股份有限公司 一种显示装置及图像显示方法
CN106324847B (zh) 2016-10-21 2018-01-23 京东方科技集团股份有限公司 一种三维显示装置
CN106291959B (zh) 2016-10-31 2018-02-27 京东方科技集团股份有限公司 一种虚拟显示面板及显示装置
CN106443867A (zh) * 2016-11-09 2017-02-22 苏州苏大维格光电科技股份有限公司 一种波导器件及三维显示装置
CN109964075B (zh) * 2016-11-17 2022-02-11 大日本印刷株式会社 照明装置及其制造方法
CN110192146B (zh) 2016-11-18 2022-09-23 奇跃公司 空间可变液晶衍射光栅
US11067860B2 (en) * 2016-11-18 2021-07-20 Magic Leap, Inc. Liquid crystal diffractive devices with nano-scale pattern and methods of manufacturing the same
KR102348580B1 (ko) 2016-12-28 2022-01-07 레이아 인코포레이티드 형광 멀티빔 요소를 채용한 멀티뷰 백라이팅
CN106772777B (zh) * 2017-02-20 2019-07-26 京东方科技集团股份有限公司 一种显示装置和显示装置的制备方法
US10244230B2 (en) 2017-03-01 2019-03-26 Avalon Holographics Inc. Directional pixel for multiple view display
CN110462287B (zh) * 2017-04-04 2022-07-08 镭亚股份有限公司 单侧背光体、多视图显示以及采用倾斜衍射光栅的方法
CN106873244B (zh) 2017-04-20 2019-10-25 京东方科技集团股份有限公司 一种显示装置及显示方法
CN108873324A (zh) * 2017-05-09 2018-11-23 京东方科技集团股份有限公司 显示器件及其制作方法以及显示装置
CN110709758B (zh) 2017-05-11 2022-02-08 镭亚股份有限公司 微结构化多光束元件背光
CN107329199B (zh) * 2017-08-21 2023-03-31 中南民族大学 一种无序子结构长周期光栅及设计方法
KR102097597B1 (ko) * 2017-09-12 2020-04-06 주식회사 엘지화학 회절 도광판 및 회절 도광판의 제조 방법
CN107436494A (zh) * 2017-09-19 2017-12-05 苏州苏大维格光电科技股份有限公司 3d显示装置
JP7008807B2 (ja) 2017-09-27 2022-01-25 レイア、インコーポレイテッド マルチカラー静的マルチビューディスプレイ及び方法
CN111164348A (zh) 2017-09-28 2020-05-15 镭亚股份有限公司 采用光学集中的光栅耦合光导、显示系统以及方法
KR102309395B1 (ko) 2017-10-02 2021-10-06 레이아 인코포레이티드 공유 카메라를 구비하는 카메라 서브-어레이들을 갖는 멀티뷰 카메라 어레이, 멀티뷰 시스템, 및 방법
CN107678167A (zh) * 2017-10-17 2018-02-09 京东方科技集团股份有限公司 三维显示面板和显示装置
CN111279123B (zh) 2017-10-27 2022-07-15 镭亚股份有限公司 背光式透明显示器、透明显示系统和方法
KR102435182B1 (ko) * 2017-11-29 2022-08-23 에스엘 주식회사 차량용 램프
WO2019125394A1 (en) * 2017-12-18 2019-06-27 Leia Inc. Multibeam element-based near-eye display, system, and method
CA3084793C (en) 2017-12-18 2022-08-30 Leia Inc. Mode-switchable backlight, display, and method
EP3729169A4 (en) 2017-12-18 2021-10-13 LEIA Inc. MULTI-BEAM HEAD-UP DISPLAY, SYSTEM AND PROCEDURE
KR102422982B1 (ko) 2017-12-21 2022-07-21 레이아 인코포레이티드 모드-선택가능 백라이트, 프라이버시 디스플레이, 및 방법
CN109991775B (zh) * 2018-01-03 2020-06-30 京东方科技集团股份有限公司 背光源和显示装置
TWI632540B (zh) * 2018-01-15 2018-08-11 友達光電股份有限公司 顯示裝置及其切換顯示視角的方法
JP7047132B2 (ja) 2018-01-27 2022-04-04 レイア、インコーポレイテッド サブ波長格子を用いた偏光リサイクルバックライト、方法、およびマルチビューディスプレイ
KR102479674B1 (ko) * 2018-03-01 2022-12-21 레이아 인코포레이티드 시준된 안내 광을 이용한 정적 멀티뷰 디스플레이 및 방법
CA3090480C (en) * 2018-03-15 2023-10-31 Leia Inc. Horizontal parallax multiview display and method having slanted multibeam columns
CN108572482B (zh) * 2018-04-20 2021-12-21 京东方科技集团股份有限公司 一种背光模组、显示装置及其驱动方法
CN108845460B (zh) * 2018-08-15 2021-01-29 京东方科技集团股份有限公司 一种背光模组及显示装置
CA3109757C (en) 2018-10-01 2024-05-28 Leia Inc. Holographic reality system, multiview display, and method
CA3109903C (en) 2018-10-01 2022-08-30 Leia Inc. Multiview display and method with offset rows of multibeam emitters and multiview pixels
WO2020131087A1 (en) 2018-12-20 2020-06-25 Leia Inc. Multiview display, system, and method having shiftable convergence plane
KR20210088007A (ko) 2018-12-20 2021-07-13 레이아 인코포레이티드 멀티뷰 영역들을 갖는 정적 멀티뷰 디스플레이 및 방법
EP3903147A4 (en) 2018-12-27 2022-08-24 LEIA Inc. MULTI-VIEW DISPLAY, SYSTEM AND METHOD HAVING DYNAMIC COLOR SUB-PIXEL REMAPPING
WO2020154318A1 (en) 2019-01-25 2020-07-30 Leia Inc. Multi-directional backlight, multi-user multiview display, and method
KR102586389B1 (ko) 2019-03-14 2023-10-10 레이아 인코포레이티드 방출기 어레이들을 이용하는 모드 전환 가능한 백라이트, 사생활 보호 디스플레이 및 방법
CN113614446A (zh) 2019-03-17 2021-11-05 镭亚股份有限公司 双视区背光、双模式显示器以及采用定向发射器的方法
KR102586392B1 (ko) 2019-04-02 2023-10-10 레이아 인코포레이티드 멀티뷰 디스플레이 정렬 방법 및 시스템
EP3956719A4 (en) * 2019-04-15 2022-11-30 LEIA Inc. STATIC AND PROCEDURE MULTI-VIEW DISPLAY WITH DIAGONAL PARALLAX
WO2020219399A1 (en) * 2019-04-22 2020-10-29 Leia Inc. Multi-zone backlight, multiview display, and method
EP3959469A4 (en) * 2019-04-22 2022-12-28 LEIA Inc. TIME MULTIPLEXING BACKLIGHT, MULTI-VIEW DISPLAY DEVICE, AND METHOD
CN112119342B (zh) * 2019-04-22 2023-08-11 京东方科技集团股份有限公司 显示装置
EP3963382A4 (en) 2019-04-29 2022-12-14 LEIA Inc. MULTI-VIEW DISPLAY AND METHOD INCLUDING SHIFT COLOR SUB-PIXELS
CA3146277C (en) * 2019-07-11 2023-12-12 Leia Inc. Multiview backlight, display, and method having a multibeam element within a light guide
CN111108510B (zh) 2019-07-12 2021-04-16 深圳市汇顶科技股份有限公司 指纹检测装置和电子设备
EP4007869A4 (en) 2019-08-01 2023-11-08 LEIA Inc. COLLIMATED BACKLIGHT, ELECTRONIC DISPLAY DEVICE AND METHOD USING AN ABSORPTION COLLIMATOR
EP3979123B1 (en) 2019-08-02 2023-11-29 Shenzhen Goodix Technology Co., Ltd. Fingerprint detection apparatus and electronic device
EP4018123A4 (en) * 2019-08-25 2023-04-26 LEIA Inc. BACKLIGHT DIFFUSION ELEMENT, MULTIPLE VIEW DISPLAY DEVICE AND METHOD HAVING A HIGH INDEX LIGHT GUIDE LAYER
CN114341550A (zh) 2019-08-27 2022-04-12 镭亚股份有限公司 采用光学扩散器的多视图背光体,显示器和方法
KR20220054662A (ko) 2019-10-15 2022-05-03 레이아 인코포레이티드 사생활 보호 모드 백라이트, 사생활 보호 디스플레이 및 방법
CN114600181A (zh) * 2019-10-22 2022-06-07 镭亚股份有限公司 具有微缝多束元件的多视图背光、多视图显示器和方法
KR20220066380A (ko) 2019-10-31 2022-05-24 레이아 인코포레이티드 형상화된-에지 멀티빔 소자들을 갖는 멀티빔 백라이트, 멀티뷰 디스플레이 및 방법
FR3106669B1 (fr) * 2020-01-24 2022-08-05 Commissariat Energie Atomique Dispositif de projection distribuée de lumière
KR20220131944A (ko) 2020-02-02 2022-09-29 루머스 리미티드 도광 광학 요소의 제조 방법
CN111308773A (zh) * 2020-03-10 2020-06-19 Tcl华星光电技术有限公司 一种显示模组及显示装置
CN112415765B (zh) * 2020-11-17 2022-12-23 京东方科技集团股份有限公司 一种裸眼立体显示装置和显示方法
CN114609797A (zh) * 2020-12-04 2022-06-10 宁波舜宇车载光学技术有限公司 2d/3d可切换显示系统
CA3205142A1 (en) * 2020-12-31 2022-07-07 Leia Inc. Backlight, multiview backlight, and method having global mode mixer
DE102021204507B3 (de) 2021-05-05 2022-09-29 Continental Automotive Technologies GmbH Baugruppe für eine Hintergrundbeleuchtung eines Displays und Display mit einer Hintergrundbeleuchtung mit einer solchen Baugruppe
DE102021114740B3 (de) 2021-06-08 2022-05-12 Tim Niklas Reimer Omnidirektionales 3D-Pixel für echte dreidimensionale Bilder mit bloßem Auge, 3D-Bildschirm und digitales Fenster
WO2023195996A1 (en) * 2022-04-09 2023-10-12 Leia Inc. Static multiview display and method using micro-slit scattering elements

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101930207A (zh) * 2010-07-28 2010-12-29 苏州苏大维格光电科技股份有限公司 一种微光栅亚像素三维光学图像及其制作方法
US20120032997A1 (en) * 2010-08-04 2012-02-09 Samsung Electronics Co., Ltd. Backlight unit and 2d and 3d image display system
KR20130017886A (ko) * 2011-08-12 2013-02-20 엘지디스플레이 주식회사 광학적 회절을 이용한 무안경 방식의 입체 영상 표시장치
CN104238185A (zh) * 2013-06-19 2014-12-24 扬升照明股份有限公司 光源模块、显示装置及驱动光源模块的方法
CN104460115A (zh) * 2014-12-31 2015-03-25 苏州大学 一种多视角像素指向型背光模组及裸眼3d显示装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06138459A (ja) * 1992-10-26 1994-05-20 Rohm Co Ltd 平面ディスプレイパネル用光源
JP2010014691A (ja) * 2008-06-20 2010-01-21 Igaku Seibutsugaku Kenkyusho:Kk 腹水中のメソテリン及び/又は巨核球増強因子を検出するための方法、キット、試薬及び装置
KR101560617B1 (ko) * 2008-09-10 2015-10-16 삼성전자주식회사 광 발생 장치 및 그 제어 방법
US20120127751A1 (en) * 2008-11-10 2012-05-24 Nokia Corporation Diffractive backlight structure
JP5143770B2 (ja) * 2009-03-02 2013-02-13 株式会社ジャパンディスプレイイースト 液晶表示装置
JP2011075979A (ja) * 2009-10-01 2011-04-14 Toshiba Mobile Display Co Ltd 立体映像表示装置
KR101767452B1 (ko) 2010-07-05 2017-08-14 삼성디스플레이 주식회사 액정 표시 장치의 백라이트 유닛
JP5604206B2 (ja) 2010-07-26 2014-10-08 パナソニック株式会社 窓枠及びこれを用いた窓枠納め構造
EP2655738A1 (en) * 2010-12-22 2013-10-30 Basf Se Recycled or brown paper board and methods of making same
JP2012226199A (ja) * 2011-04-21 2012-11-15 Sony Corp 光源デバイスおよび表示装置
US20140043377A1 (en) * 2011-04-22 2014-02-13 Sharp Kabushiki Kaisha Backlight unit and display device
CN102707368B (zh) 2012-05-23 2014-02-19 天津大学 一种嵌有衍射元件的导光板
PT2856244T (pt) * 2012-05-31 2021-04-22 Leia Inc Retroiluminação direcional
US9459461B2 (en) 2012-05-31 2016-10-04 Leia Inc. Directional backlight
WO2014051624A1 (en) 2012-09-28 2014-04-03 Hewlett-Packard Development Company, L. P. Directional waveguide-based backlight with integrated hybrid lasers for use in a multivew display screen
CN103780893B (zh) * 2012-10-19 2015-09-02 瀚宇彩晶股份有限公司 立体显示模块及可显示立体图像的电子装置
WO2014120160A1 (en) * 2013-01-30 2014-08-07 Hewlett-Packard Development Company, L.P. Directional grating-based backlighting
CN203337990U (zh) 2013-03-26 2013-12-11 上海科斗电子科技有限公司 指向光源3d成像屏幕及裸眼3d投影系统
CN103246195B (zh) 2013-05-08 2015-12-02 苏州苏大维格光电科技股份有限公司 三维激光打印方法与系统
CN203286399U (zh) * 2013-06-04 2013-11-13 北京京东方光电科技有限公司 一种背光模组及显示装置
CN103982818B (zh) 2014-05-05 2016-03-30 京东方科技集团股份有限公司 一种裸眼3d背光模组、显示装置和显示方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101930207A (zh) * 2010-07-28 2010-12-29 苏州苏大维格光电科技股份有限公司 一种微光栅亚像素三维光学图像及其制作方法
US20120032997A1 (en) * 2010-08-04 2012-02-09 Samsung Electronics Co., Ltd. Backlight unit and 2d and 3d image display system
KR20130017886A (ko) * 2011-08-12 2013-02-20 엘지디스플레이 주식회사 광학적 회절을 이용한 무안경 방식의 입체 영상 표시장치
CN104238185A (zh) * 2013-06-19 2014-12-24 扬升照明股份有限公司 光源模块、显示装置及驱动光源模块的方法
CN104460115A (zh) * 2014-12-31 2015-03-25 苏州大学 一种多视角像素指向型背光模组及裸眼3d显示装置

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3060140A1 (fr) * 2016-12-13 2018-06-15 Valeo Comfort And Driving Assistance Afficheur tete haute
JP2020514791A (ja) * 2016-12-28 2020-05-21 レイア、インコーポレイテッドLeia Inc. 反射支持構造を有するマルチビューディスプレイ
WO2018128657A1 (en) 2017-01-06 2018-07-12 Leia Inc. Static multiview display and method
JP7121013B2 (ja) 2017-01-06 2022-08-17 レイア、インコーポレイテッド 静的マルチビューディスプレイ及び方法
EP3566003A4 (en) * 2017-01-06 2020-08-19 LEIA Inc. STATIC AND PROCESS MULTIVUE DISPLAY
US10718891B2 (en) 2017-01-20 2020-07-21 Samsung Electronics Co., Ltd. Input coupler, backlight unit, and three-dimensional image display apparatus including the input coupler
KR102456973B1 (ko) * 2017-01-30 2022-10-21 레이아 인코포레이티드 플라즈몬 멀티빔 요소를 채용한 멀티뷰 백라이팅
KR20190104523A (ko) * 2017-01-30 2019-09-10 레이아 인코포레이티드 플라즈몬 멀티빔 요소를 채용한 멀티뷰 백라이팅
KR102456978B1 (ko) * 2017-02-28 2022-10-21 레이아 인코포레이티드 색-맞춤 방출 패턴을 갖는 멀티뷰 백라이팅
KR20190114959A (ko) * 2017-02-28 2019-10-10 레이아 인코포레이티드 색-맞춤 방출 패턴을 갖는 멀티뷰 백라이팅
JP2020506507A (ja) * 2017-02-28 2020-02-27 レイア、インコーポレイテッドLeia Inc. カラー調整された発光パターンを有するマルチビューバックライト
KR20190104446A (ko) * 2017-03-25 2019-09-09 레이아 인코포레이티드 모드-전환가능 백라이트, 개인 정보 표시 및 방법
JP2020512665A (ja) * 2017-03-25 2020-04-23 レイア、インコーポレイテッドLeia Inc. モード切替可能なバックライト、プライバシーディスプレイ、および方法
KR102239157B1 (ko) * 2017-03-25 2021-04-12 레이아 인코포레이티드 모드-전환가능 백라이트, 개인 정보 표시 및 방법
JP2020516036A (ja) * 2017-04-02 2020-05-28 レイア、インコーポレイテッドLeia Inc. デュアルビューゾーンのバックライト、デュアルモードのディスプレイ、および方法
JP2020516928A (ja) * 2017-04-04 2020-06-11 レイア、インコーポレイテッドLeia Inc. 多層マルチビューディスプレイおよび方法
EP3607244A4 (en) * 2017-04-04 2020-12-16 LEIA Inc. MULTI-LAYERED MULTI-VIEW DISPLAY AND PROCEDURES
JP7153666B2 (ja) 2017-04-04 2022-10-14 レイア、インコーポレイテッド 多層マルチビューディスプレイおよび方法
JP2020517989A (ja) * 2017-04-28 2020-06-18 深▲セン▼前▲海▼▲達▼▲闥▼▲雲▼端智能科技有限公司Cloudminds (Shenzhen) Robotics Systems Co., Ltd. 指向性光導波路、指向性バックライトモジュール及び表示装置
EP3638946A4 (en) * 2017-06-16 2020-12-23 LEIA Inc. MULTI-VIEW BACKLIGHTING, MULTI-VIEW DISPLAY AND AND METHOD OF USING MULTIPLE BEAMS
EP3710746A4 (en) * 2017-11-18 2021-06-09 LEIA Inc. BAR COLLIMATOR, BACKLIGHT SYSTEM AND METHOD
WO2019099041A1 (en) 2017-11-18 2019-05-23 Leia Inc. Bar collimator, backlight system and method
CN110161600A (zh) * 2019-07-09 2019-08-23 京东方科技集团股份有限公司 一种阵列基板及其制备方法和液晶显示装置
CN115210634A (zh) * 2020-03-02 2022-10-18 镭亚股份有限公司 静态图像增强隐私显示器、模式可切换的隐私显示系统及方法
CN115210634B (zh) * 2020-03-02 2024-06-11 镭亚股份有限公司 隐私显示器、隐私显示系统及方法
CN113900273A (zh) * 2021-10-09 2022-01-07 广东未来科技有限公司 裸眼3d显示方法及相关设备
CN113900273B (zh) * 2021-10-09 2023-12-26 广东未来科技有限公司 裸眼3d显示方法及相关设备

Also Published As

Publication number Publication date
CN104460115A (zh) 2015-03-25
US10429567B2 (en) 2019-10-01
US20170363794A1 (en) 2017-12-21
KR101998495B1 (ko) 2019-07-09
JP2018506735A (ja) 2018-03-08
KR20170097184A (ko) 2017-08-25
CN104460115B (zh) 2017-09-01

Similar Documents

Publication Publication Date Title
WO2016106987A1 (zh) 一种多视角像素指向型背光模组及裸眼3d显示装置
WO2017181917A1 (zh) 一种裸眼3d显示装置及实现裸眼3d显示的方法
WO2017080089A1 (zh) 指向性彩色滤光片和裸眼3d显示装置
US10725317B2 (en) Naked eye 3D laser display device
JP4400172B2 (ja) 画像表示装置、携帯端末装置、表示パネル及び画像表示方法
EP2856244B1 (en) Directional backlight
CN106997101B (zh) 定向背光单元、三维(3d)图像显示装置和3d图像显示方法
EP3136159A1 (en) Backlight unit and 3d image display apparatus
WO2019179136A1 (zh) 显示装置及显示方法
CN105223641A (zh) 一种量子点激光器指向型背光模组及裸眼3d显示装置
CN202282836U (zh) 立体图像显示设备
US10514552B2 (en) Auto stereoscopic three-dimensional panel display systems and methods supporting improved fidelity display to multiple simultaneous viewers
US20210240004A1 (en) 3d display apparatus
KR20170073218A (ko) 지향성 백라이트 유닛, 이를 포함한 입체 영상 표시 장치 및 지향성 백라이트 유닛의 제조 방법
KR20140028780A (ko) 표시 장치 및 이를 이용한 입체 영상 표시 방법
US10728530B2 (en) Three-dimensional display device with sub-light source and corresponding blazed grating and display method thereof
CN210982932U (zh) 三维显示装置
KR102642700B1 (ko) 디스플레이 장치 및 디스플레이 제어 방법
CN112835205A (zh) 三维显示装置
JP2009265309A (ja) 三次元画像表示装置
CN217879903U (zh) 一种背光板及包含该背光板的3d显示装置
TW201804214A (zh) 背光模組及其立體顯示裝置
EP2995987B1 (en) Backlight and image display device using the same
TW201229562A (en) 3D multi-view directional light source module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15874680

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15540223

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017535696

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177020345

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15874680

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 15874680

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/01/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15874680

Country of ref document: EP

Kind code of ref document: A1