WO2016106904A1 - 液晶显示面板及液晶显示装置 - Google Patents

液晶显示面板及液晶显示装置 Download PDF

Info

Publication number
WO2016106904A1
WO2016106904A1 PCT/CN2015/071244 CN2015071244W WO2016106904A1 WO 2016106904 A1 WO2016106904 A1 WO 2016106904A1 CN 2015071244 W CN2015071244 W CN 2015071244W WO 2016106904 A1 WO2016106904 A1 WO 2016106904A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
display area
pixel
liquid crystal
switching element
Prior art date
Application number
PCT/CN2015/071244
Other languages
English (en)
French (fr)
Inventor
陈伟
谭小平
邢振周
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/418,612 priority Critical patent/US10222668B2/en
Publication of WO2016106904A1 publication Critical patent/WO2016106904A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136213Storage capacitors associated with the pixel electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/13624Active matrix addressed cells having more than one switching element per pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/30Gray scale

Definitions

  • the present invention relates to the field of liquid crystal display technology, and in particular to a liquid crystal display panel and a corresponding liquid crystal display device.
  • a gamma curve is used to characterize the relationship between pixel voltage and pixel brightness.
  • the gamma curve is different between the straight viewing angle and the oblique viewing angle, and the color shift phenomenon occurs on the liquid crystal panel at the oblique viewing angle. The color cast will make the LCD screen appear white, affecting the display of the picture, so try to eliminate this effect as much as possible.
  • the existing method of eliminating color shift is to divide the sub-pixel 1 in the pixel into two equal parts: a 1A part and a 1B part, as shown in FIG.
  • the liquid crystal panel when the liquid crystal panel is driven, first, by turning on the TFT (Thin Film Transistor) switch on the first scanning line G1, the driving voltage charges the 1A portion and the 1B portion with the equal amount of electric charge via the data line D, thereby making 1A The portion and the portion 1B have the same voltage V1; then, the power of the portion 1B is partially discharged through the second scanning line G2, so that the 1A portion and the 1B portion have a voltage difference ⁇ V.
  • TFT Thin Film Transistor
  • the voltage in part 1A is higher, forming a high gray level; the voltage in part 1B is lower, forming a low gray level.
  • the high gray scale and the low gray scale are mixed to form a medium gray scale, so that the gamma curve of the oblique viewing angle approximates the gamma curve of the positive viewing angle, thereby reducing the color shift phenomenon.
  • This design adds a gate switch that can result in increased manufacturing costs for the display panel.
  • the discharge process of the 1B portion also increases the charge and discharge time of the pixel.
  • the present invention provides a liquid crystal display panel and a corresponding liquid crystal display device for reducing the manufacturing cost of the display panel and reducing the charging and discharging time of the pixel, thereby solving the color shift problem of the liquid crystal display panel.
  • a liquid crystal display panel comprising:
  • Each of the sub-pixel regions is provided with a sub-pixel, and each of the sub-pixels includes a plurality of display areas of different areas.
  • each display area is received and transmitted through the same data line.
  • the data signals are such that the respective display areas have different gray scale voltages.
  • the sub-pixel includes a first display area and a second display area, wherein an area ratio of the first display area to the second display area is greater than one.
  • the area ratio of the first display area to the second display area of all the sub-pixels on the panel remains unchanged.
  • the sub-pixel includes a switching element
  • the switching element includes a gate electrically connected to the scan line, a source electrically connected to the data line, and a drain, wherein the first a branch where the branch of the display area and the second display area are respectively electrically connected to the drain of the switching element, such that the gate of the switching element is turned on when the scan signal arrives, and the first display area and the second display area pass The switching element receives the data signal.
  • a first capacitance is connected in series between the branch of the second display region of the sub-pixel and the drain of the switching element.
  • the branch of the first display area of the sub-pixel is connected in parallel to the circuit composed of the branch of the second display area and the first capacitor.
  • the panel further includes a common line for providing the same common voltage to respective display areas of the sub-pixels.
  • the branch where the first display area of the sub-pixel and the branch of the second display area are respectively electrically connected to the common line for receiving the common voltage output by the common line.
  • a second capacitor is further disposed between the drain of the switching element and the common line, the second capacitor for storing a charge when the switching element is turned on.
  • liquid crystal display device using any of the above panels, comprising:
  • a scan signal driving unit for supplying a scan signal to the scan line
  • a data signal driving unit for providing a data signal to the data line
  • a liquid crystal display unit comprising a plurality of scan lines and a plurality of data lines, wherein the scan lines and the data lines cooperate to form a plurality of sub-pixel regions, wherein each of the sub-pixel regions is provided with a sub-pixel, each of the sub-pixels comprising a plurality of areas
  • the liquid crystal display panel and the corresponding liquid crystal display device of the invention can solve the color deviation of the liquid crystal display panel In addition, the manufacturing cost of the liquid crystal display panel and the corresponding liquid crystal display device can be reduced and the charging and discharging time of the pixel can be reduced.
  • 1 is a schematic diagram of division of a conventional sub-pixel
  • FIG. 2 is a schematic diagram of a circuit structure of a conventional sub-pixel based on FIG. 1;
  • FIG. 3 is a schematic diagram showing the circuit structure of a sub-pixel according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of division of sub-pixels according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing division of sub-pixels according to another embodiment of the present invention.
  • FIG. 6 is a schematic structural view of a liquid crystal display device according to an embodiment of the present invention.
  • the input voltage between the TFT-LCD and the output luminance is a nonlinear gamma response.
  • the relationship between the input voltage and the output luminance caused by this nonlinearity is called a gamma curve.
  • the gamma response causes a fixed distortion of the liquid crystal display panel: the larger the gamma value, the lower the luminance of the low gray scale.
  • a typical gamma value is between 2.2 and 2.5, and a commonly used gamma value is 2.2.
  • the gamma value of a commercially available TFT-LCD is generally 2.2.
  • liquid crystal molecules have optical anisotropy, when the observer views the liquid crystal display panel at an oblique viewing angle and a straight viewing angle, the angles of the two angles of view are different from those of the liquid crystal molecules. At the same time, liquid crystal molecules may leak light when obliquely viewing angles, and color shift phenomenon occurs when the display panel is viewed obliquely. When the display panel is viewed from an oblique angle, the Gamma curve will drift upward and the display panel will be whitened.
  • the inverse gamma correction curve of the TFT-LCD at the right angle of view and the oblique angle of view will be different.
  • the gamma value of the TFT-LCD after product production is generally 2.2, which generally remains unchanged, and the corresponding inverse gamma correction curve does not change.
  • the display brightness of the liquid crystal panel can be adjusted by adjusting the driving voltage.
  • the driving voltage value cannot be changed due to the color shift caused by the viewing angle problem. Therefore, the color shift phenomenon can be improved by correcting the Gamma curve.
  • a Gamma curve with a lower amplitude can be introduced to interact with this already shifted Gamma curve to solve the color shift problem.
  • An embodiment of this method divides the sub-pixel into two parts: the display effect of one part is the same as the original; the other part of the Gamma value is low, and the display effect is dark.
  • FIG. 3 is a schematic diagram showing the circuit structure of a sub-pixel in a liquid crystal display panel according to an embodiment of the present invention.
  • the liquid crystal display panel of the present invention will be described in detail below by taking FIG. 3 as an example.
  • the liquid crystal display panel includes a plurality of scan lines and a plurality of data lines, and the scan lines and the data lines cooperate to form a plurality of sub-pixel regions.
  • One sub-pixel is provided in one sub-pixel area.
  • Each of the sub-pixels includes a plurality of display areas having unequal areas. The area of each display area of the sub-pixels is unequal, resulting in unequal pixel electrode areas of the respective display areas. As shown in FIG. 3, the area surrounded by the data lines D1, D2 and the scanning lines G1, G2 is one sub-pixel area.
  • each sub-pixel is disposed as two display areas having different areas: a first display area having a larger area and a second display area having a smaller area, that is, a first display area and a second display
  • the area ratio of the area is greater than 1, as shown in Figures 4 and 5.
  • the display area of the sub-pixel 2 is divided into two display areas 2A and 2B having unequal areas.
  • the area of the display area 2A is larger than the area of 2B.
  • the display areas 2A and 2B are of equal-width and unequal length design.
  • the formation of the structure requires only one division of the pixel area, and the operation is simple and easy to implement.
  • the display area of the sub-pixel 3 is also divided into two areas 3A and 3B having unequal areas.
  • the area of the display area 3A is larger than the area of the display area 3B.
  • the area 3A and the area 3B are of unequal width design.
  • the two display areas in which the area of each sub-pixel is not equal are not limited to the specific shapes shown in FIG. 4 and FIG. 5 above, and the two display areas may be designed according to the specific shape of the sub-pixel.
  • the size of the area of the display area determines the size of the pixel electrode area thereon, the size of the pixel electrode area can affect the pixel voltage, thereby affecting the rotation of the liquid crystal molecules.
  • the two pixel electrodes respectively control the rotation of the liquid crystal molecules.
  • the ratio of the shape and the area size of the two pixel electrodes may affect the rotation of the liquid crystal molecules, thereby affecting the gray scale voltage. Since different segments affect the aperture ratio of the sub-pixels, the shape and area ratio of the two display regions of each sub-pixel need to be designed according to specific needs.
  • the pixel electrode can store a charge, it can be equivalent to a capacitor.
  • the pixel electrodes on the display areas of two unequal areas can be represented as capacitance A and capacitance B in the figure.
  • the capacitor A corresponds to a pixel electrode on a first display area having a larger area
  • the capacitor B corresponds to a pixel electrode on a second display area having a smaller area.
  • the power stored by the pixel electrode of the first display area is greater than the power stored by the pixel electrode of the second display area
  • the capacity of the capacitor A is greater than the capacity of the capacitor B.
  • the area ratios of the first display area and the second display area of the sub-pixels disposed at different positions on the liquid crystal display panel are the same, which can improve the color shift and ensure the front view angle of the display panel.
  • the effect of the display is the same, and the area ratios of the first display area and the second display area in the oblique viewing angle range become larger in turn.
  • a switching element gate (typically a thin film transistor TFT) is provided in each sub-pixel, the switching element comprising a gate, a source and a drain.
  • the gate of the switching element is electrically connected to the scan line, and the source is electrically connected to the data line.
  • the branch of the first display area (corresponding to the branch where the capacitor A is located) and the branch of the second display area (corresponding to the branch of the capacitor B) are electrically connected to the drain of the switching element, respectively, as shown in FIG.
  • the connection may be such that the gate of the switching element is turned on when the scan signal arrives, and the first display area and the second display area receive the same data signal on the same data line through the source of the switching element.
  • a first capacitor C is connected in series between the branch of the second display region of the sub-pixel and the drain of the switching element, as shown in FIG.
  • the first capacitor C is connected in series with the capacitor B for dividing the voltage when the branch voltage is too high, thereby protecting the capacitor B (the pixel electrode of the second display region).
  • the branch of the first display area of the sub-pixel is connected in parallel with the circuit composed of the branch of the second display area and the first capacitor C (ie, the capacitor A is connected in parallel with the branch composed of the capacitor B and the capacitor C).
  • the first capacitor C also prevents the charge stored on the capacitor A from flowing to the capacitor B when the gate of the switching element is turned off.
  • the liquid crystal display panel is further provided with a common line.
  • the common line is used to provide the same common voltage to different display areas of each sub-pixel.
  • the common line cooperates with the pixel electrode to provide a driving voltage for driving the rotation of the liquid crystal molecules, and the triangle in FIG. 3 indicates that the respective portions are respectively connected to the common line.
  • Gray scale voltage This causes the voltage difference between the pixel electrode and the common line on the first display area to be greater than the voltage difference between the pixel electrode and the common line on the second display area, thereby causing the first display area and the second display area to be different.
  • Gray scale voltage The first display area has a high gray scale voltage
  • the second display area has a low gray scale voltage
  • the high gray scale and the low gray scale "mixed color" are medium gray scales.
  • the 2A region of the high gray scale and the 2B region of the low gray scale are mixed as the sub-pixel 2 of the medium gray scale.
  • the 3A region of the high gray scale and the 3B color mixture of the low gray scale are the sub-pixels 3 of the medium gray scale.
  • the high grayscale voltage and the low grayscale voltage produce two different gamma curves, and the two gamma curves interact to eliminate the effect of color shift.
  • a second capacitance C s t is also provided between the drain of the switching element and the common line, the second capacitance storing charge when the switching element is open.
  • the switching element is turned off, when the charge stored in the capacitor A and the capacitor B leaks, the capacitor A and the capacitor B can be charged by the second capacitor Cst, thereby ensuring that the amount of power stored by the capacitor A and the capacitor B remains unchanged.
  • the power stored in capacitor A and capacitor B remains unchanged to ensure that the voltage between capacitor A and capacitor B and the common line are constant, thereby ensuring that the gray scale voltage that controls the rotation of the liquid crystal molecules is unchanged. This ensures that the display of the sub-pixel remains unchanged until the next scan pulse arrives.
  • the present invention only one switching element is used to charge the pixel electrodes of different display regions of the sub-pixels, and no additional switching element is required to discharge the excess charge stored in the pixel electrodes.
  • the manufacturing cost of the liquid crystal display panel is lowered.
  • the pixel electrode does not need to be discharged, and the charging and discharging time of the pixel electrode can also be reduced.
  • a liquid crystal display device is also provided. As shown in FIG. 6, the liquid crystal display device includes a scan signal driving unit 300, a data signal driving unit 200, and a liquid crystal display unit 100.
  • the scan signal driving unit 300 is configured to provide a scan signal to the scan line GLM.
  • the data signal driving unit 200 is for supplying a data signal to the data line DLN, DL1, DL2, DL3, DL4 representing data lines, and GL1, GL2, GL3 representing scanning lines.
  • the liquid crystal display unit 100 includes a plurality of scan lines GLM and a plurality of data lines DLN, and the scan lines and the data lines cooperate to form a plurality of sub-pixel regions 110.
  • the sub-pixels are located in the sub-pixel region 110.
  • Each of the sub-pixels includes a plurality of display areas of different areas. When the scan signals transmitted via the scan lines arrive, the respective display areas receive the same data signal transmitted through the same data line such that the respective display areas have different gray scale voltages.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种液晶显示面板及液晶显示装置,包括:多条扫描线(G1、G2);多条数据线(D1、D2),与扫描线(G1、G2)配合形成多个子像素区,其中,每个子像素区设有一子像素(2),每个子像素(2)包括多个面积不等的显示区域(2A/3A、2B/3B),在经扫描线(G1、G2)传输的扫描信号到来时,各个显示区域(2A/3A、2B/3B)接收经同一数据线(D1、D2)传输的数据信号以使各个显示区域(2A/3A、2B/3B)具有不同的灰阶电压。

Description

液晶显示面板及液晶显示装置
相关技术的交叉引用
本申请要求享有2014年12月31日提交的名称为:“液晶显示面板及液晶显示装置”的中国专利申请CN201410856585.7的优先权,其全部内容通过引用并入本文中。
技术领域
本发明涉及液晶显示技术领域,具体地说,涉及一种液晶显示面板及对应的液晶显示装置。
背景技术
在TFT-LCD(薄膜晶体管液晶显示器)中,伽马曲线用于表征像素电压和像素亮度之间的关系。在液晶显示面板中,直视角和斜视角时的伽马曲线不同,斜视角时液晶面板上会出现色偏现象。色偏会使液晶屏幕看起来泛白,影响画面的显示效果,所以要尽可能消除这一影响。
现有的消除色偏的做法是把像素中的子像素1分为相等的两部分:1A部分和1B部分,如图1所示。如图2所示,驱动该液晶面板时,首先,通过打开第一扫描线G1上的TFT(薄膜晶体管)开关,驱动电压经数据线D给1A部分和1B部分充等量电荷,从而使1A部分和1B部分具有相同的电压V1;然后,通过第二扫描线G2把1B部分的电量放掉一部分,这样,1A部分和1B部分就会有一个电压差ΔV。1A部分的电压较高,形成一个高灰阶;1B部分的电压较低,形成一个低灰阶。高灰阶和低灰阶混色后就形成中灰阶,使得斜视角的伽马曲线逼近正视角的伽马曲线,从而降低色偏现象。这种设计增加了一个栅极门开关,会导致显示面板的制作成本增加。同时,1B部分的放电过程也会增大像素的充放电时间。
发明内容
为解决上述问题,本发明提供了一种降低显示面板制作成本及减少像素充放电时间的液晶显示面板及对应的液晶显示装置,用以解决液晶显示面板的色偏问题。
根据本发明的一个方面,提供了一种液晶显示面板,包括:
多条扫描线;
多条数据线,与所述扫描线配合形成多个子像素区,
其中,每个所述子像素区设有一子像素,每个所述子像素包括多个面积不等的显示区域,在经扫描线传输的扫描信号到来时,各个显示区域接收经同一数据线传输的数据信号以使各个显示区域具有不同的灰阶电压。
根据本发明的一个实施例,所述子像素包括第一显示区域和第二显示区域,其中,第一显示区域与第二显示区域的面积比大于1。
根据本发明的一个实施例,所述面板上的所有子像素的第一显示区域与第二显示区域的面积比保持不变。
根据本发明的一个实施例,所述子像素包括一开关元件,所述开关元件包括一与扫描线电连接的栅极、一与数据线电连接的源极及一漏极,其中,第一显示区域所在支路和第二显示区域所在支路分别与所述开关元件的漏极电连接,使得所述开关元件的栅极在扫描信号到来时打开,第一显示区域和第二显示区域通过所述开关元件接收所述数据信号。
根据本发明的一个实施例,所述子像素的第二显示区域所在支路与所述开关元件的漏极之间串联第一电容。
根据本发明的一个实施例,所述子像素的第一显示区域所在支路并联连接第二显示区域所在支路与所述第一电容组成的电路。
根据本发明的一个实施例,所述面板还包括公共线,所述公共线用以向所述子像素的各个显示区域提供相同的公共电压。
根据本发明的一个实施例,所述子像素的第一显示区域所在支路和第二显示区域所在支路分别与所述公共线电连接,用以接收所述公共线输出的公共电压。
根据本发明的一个实施例,在所述开关元件的漏极和所述公共线之间还设置第二电容,所述第二电容用于在所述开关元件打开时存储电荷。
根据本发明的另一个方面,还提供了一种采用以上任一面板的液晶显示装置,包括:
扫描信号驱动单元,其用于向扫描线提供扫描信号;
数据信号驱动单元,其用于向数据线提供数据信号;
液晶显示单元,包括多条扫描线和多条数据线,扫描线与数据线配合形成多个子像素区其中,每个所述子像素区设有一子像素,每个所述子像素包括多个面积不等的显示区域,在经扫描线传输的扫描信号到来时,各个显示区域接收经同一数据线传输的数据信号以使各个显示区域具有不同的灰阶电压。
本发明所述的液晶显示面板及对应的液晶显示装置可以解决液晶显示面板的色偏问 题,还可以降低液晶显示面板及对应的液晶显示装置的制作成本及减少像素的充放电时间。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例共同用于解释本发明,并不构成对本发明的限制。在附图中:
图1是现有的一种子像素的分割示意图;
图2是现有的一种基于图1的子像素的电路结构示意图;
图3是根据本发明的一个实施例的子像素的电路结构示意图;
图4是根据本发明的一个实施例的子像素的分割示意图;
图5是根据本发明的另一个实施例的子像素的分割示意图;以及
图6是根据本发明的一个实施例的液晶显示装置的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,以下结合附图对本发明作进一步地详细说明。
由于液晶分子的光电效应,TFT-LCD的输入电压与输出亮度之间是一种非线性的伽马响应,这种非线性导致的输入电压和输出亮度之间的关系曲线称为伽马曲线(Gamma曲线)。该伽马曲线可表示为Y=Xγ,其中,X表示驱动电压(即灰阶电压),Y表示该驱动电压下的亮度值,γ为伽马值。伽马响应使得液晶显示面板存在一种固定的失真:伽马值越大,低灰阶的亮度越低。通常,通过对视频信号进行反伽马校正(
Figure PCTCN2015071244-appb-000001
)可补偿TFT-LCD的显示亮度与驱动电压之间的非线性伽马响应。典型的伽马值在2.2-2.5,常用的伽马值为2.2。实现产品化的TFT-LCD的伽马值一般取2.2。
由于液晶分子具有光学各向异性,当观察者分别以斜视角、直视角观看液晶显示面板时,两角度的视线与液晶分子的夹角不同。同时,在斜视角时液晶分子会有漏光现象,以斜视角看显示面板时会产生色偏现象。以斜视角看显示面板时,Gamma曲线会向上漂移,显示面板产生泛白现象。如要求观察者以直视角和斜视角看TFT-LCD时均能感受到相同的显示亮度,则TFT-LCD在直视角和斜视角时的反伽马校正曲线会不同。
但是,TFT-LCD实现产品化生产后的伽马值一般取2.2,该值一般保持不变,其对应的反伽马校正曲线也不变。虽然,可以通过调整驱动电压来调整液晶面板的显示亮度。但是,不同的驱动电压值与整个液晶显示面板的不同的显示亮度之间具有一一对应的关系,不能因为视角问题引起的色偏来改变驱动电压值。因此,可以通过修正Gamma曲线来改善色偏现象。由于斜视角时的Gamma曲线较正视角时的Gamma曲线向上漂移,所以可以引入一条具有幅值偏低的Gamma曲线与这条已经上移的Gamma曲线相互影响来解决色偏问题。这种方法的一种实施例就是把子像素分为两部分:一部分的显示效果与原来相同;另一部分Gamma值偏低,显示效果表现为偏暗。
如图3所示为根据本发明的一个实施例的液晶显示面板中的一个子像素的电路结构示意图。以下以图3为例来对本发明所述的液晶显示面板进行详细说明。
该液晶显示面板包括多条扫描线和多条数据线,这些扫描线和数据线相互配合形成多个子像素区。一个子像素区中设有一个子像素。其中,每个子像素包括多个面积不等的显示区域。子像素的各个显示区域面积不等导致各个显示区域的像素电极面积也不等。如图3所示,数据线D1、D2和扫描线G1、G2包围的区域即为一个子像素区。
在本发明的一个实施例中,每个子像素设置为面积不等的两个显示区域:面积较大的第一显示区域和面积较小的第二显示区域,即第一显示区域与第二显示区域的面积比大于1,如图4和图5所示。如图4所示,子像素2的显示区域被分割为面积不等的两个显示区域2A和2B。其中,显示区域2A的面积大于2B的面积。显示区域2A和2B为等宽不等长设计,形成该结构只需对像素区域进行一次分割,操作简单,易于实现。
如图5所示,子像素3的显示区域也被分割为面积不等的两个区域3A和3B。其中,显示区域3A的面积大于显示区域3B的面积。区域3A和区域3B为不等宽不等长设计。其中,每个子像素的面积不等的两个显示区域不限于以上图4和图5所示的具体形状,两个显示区域可根据子像素的具体形状设计。同时,由于显示区域的面积大小决定其上的像素电极面积的大小,而像素电极面积的大小又能影响到像素电压,进而影响液晶分子的旋转。一个子像素具有分割的两个像素电极时,两个像素电极会分别控制液晶分子的旋转。此时,两个像素电极的形状及面积大小的比例都会对液晶分子的旋转产生影响,进而对灰阶电压产生影响。由于不同的分割会影响子像素的开口率,所以,每个子像素的两个显示区域的形状和面积比需根据具体的需要设计。
由于像素电极能够存储电荷,所以可将其等效为电容。再次如图3所示,两个面积不等的显示区域上的像素电极可表示为图中的电容A和电容B。其中,电容A对应面积较大的第一显示区域上的像素电极,电容B对应面积较小的第二显示区域上的像素电极。 对应的,第一显示区域的像素电极存储的电量大于第二显示区域的像素电极存储的电量,则电容A的容量大于电容B的容量。
在本发明的一个实施例中,设置于液晶显示面板上不同位置的子像素的第一显示区域和第二显示区域的面积比相同,这种做法既能改善色偏又能保证显示面板正视角时的显示效果。当然,在保证显示面板正视角时的显示效果的同时,更好的降低显示面板的大视角色偏,可以设置显示面板的正视角范围内的子像素的第一显示区域和第二显示区域的面积比相同,而斜视角范围内的第一显示区域和第二显示区域的面积比依次变大。
在本发明的一个实施例中,在每个子像素中设置一个开关元件gate(通常为薄膜晶体管TFT),该开关元件包括一栅极、一源极和一漏极。其中,该开关元件的栅极与扫描线电连接,源极与数据线电连接。第一显示区域所在支路(对应电容A所在支路)和第二显示区域所在支路(对应电容B所在支路)分别与该开关元件的漏极电连接,如图3所示。该连接方式可以使得开关元件的栅极在扫描信号到来时打开,第一显示区域和第二显示区域通过开关元件的源极接收同一数据线上的同一数据信号。
在本发明的一个实施例中,子像素的第二显示区域所在支路与开关元件的漏极之间串联第一电容C,如图3所示。该第一电容C与电容B串联,用于在该支路电压过高时分压,进而对电容B(第二显示区域的像素电极)进行保护。同时,子像素的第一显示区域所在支路并联连接第二显示区域所在支路与第一电容C组成的电路(即电容A与电容B和电容C组成的支路并联)。第一电容C还可以防止在开关元件的栅极关闭时,电容A上存储的电荷流向电容B。
在本发明的一个实施例中,该液晶显示面板还设有公共线。该公共线用于向各个子像素的不同显示区域提供相同的公共电压。公共线与像素电极配合来提供用于驱动液晶分子旋转的驱动电压,图3中的三角形表示各部分分别与公共线连接。当子像素中的开关元件打开时,数据信号通过数据线和开关元件向电容A和电容B充电。由于电容A的容量大于电容B的容量,充电结束后,电容A存储的电量大于电容B存储的电量。这就导致第一显示区域上的像素电极与公共线之间的电压差大于第二显示区域上的像素电极与公共线之间的电压差,从而导致第一显示区域和第二显示区域具有不同的灰阶电压。第一显示区域具有高灰阶电压,第二显示区域具有低灰阶电压,高灰阶和低灰阶“混色”为中灰阶。如图4所示,高灰阶的2A区域和低灰阶的2B区域混色为中灰阶的子像素2。如图5所示,高灰阶的3A区域和低灰阶的3B混色为中灰阶的子像素3。高灰阶电压和低灰阶电压产生两条不同的Gamma曲线,两条Gamma曲线相互作用来消除色偏的影响。
在本发明的一个实施例中,在开关元件的漏极和公共线之间还设置第二电容Cst,该 第二电容在开关元件打开时存储电荷。在开关元件关闭时,当电容A和电容B存储的电荷泄露时,可通过第二电容Cst向电容A和电容B补充电荷,从而保证电容A和电容B存储的电量保持不变。电容A和电容B存储的电量保持不变,才能保证电容A和电容B与公共线之间的电压不变,进而保证控制液晶分子旋转的灰阶电压不变。这才能保证该子像素在下一个扫描脉冲到来前的显示画面保持不变。
在本发明中,只采用了一个开关元件向子像素不同显示区域的像素电极充电,不需另设一开关元件对像素电极存储的多余电荷进行放电。这样,就降低了液晶显示面板的制作成本。同时,像素电极不需进行放电,还可以降低像素电极的充放电时间。
在本发明的一个实施例中,还提供了一种液晶显示装置。如图6所示,该液晶显示装置包括扫描信号驱动单元300、数据信号驱动单元200和液晶显示单元100。
其中,扫描信号驱动单元300用于向扫描线GLM提供扫描信号。数据信号驱动单元200用于向数据线DLN提供数据信号,DL1、DL2、DL3、DL4表示数据线,GL1、GL2、GL3表示扫描线。液晶显示单元100包括多条扫描线GLM和多条数据线DLN,扫描线与数据线配合形成多个子像素区110。其中,子像素位于子像素区110中。每个子像素包括多个面积不等的显示区域,在经扫描线传输的扫描信号到来时,各个显示区域接收经同一数据线传输的同一数据信号以使各个显示区域具有不同的灰阶电压。
虽然本发明所公开的实施方式如上,但所述的内容只是为了便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属技术领域内的技术人员,在不脱离本发明所揭露的精神和范围的前提下,可以在实施的形式上及细节上作任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (18)

  1. 一种液晶显示面板,包括:
    多条扫描线;
    多条数据线,与所述扫描线配合形成多个子像素区,
    其中,每个所述子像素区设有一子像素,每个所述子像素包括多个面积不等的显示区域,在经扫描线传输的扫描信号到来时,各个显示区域接收经同一数据线传输的数据信号以使各个显示区域具有不同的灰阶电压。
  2. 如权利要求1所述的面板,其中,所述子像素包括第一显示区域和第二显示区域,其中,第一显示区域与第二显示区域的面积比大于1。
  3. 如权利要求2所述的面板,其中,所述面板上的所有子像素的第一显示区域与第二显示区域的面积比保持不变。
  4. 如权利要求3所述的面板,其中,所述子像素包括一开关元件,所述开关元件包括一与扫描线电连接的栅极、一与数据线电连接的源极及一漏极,其中,第一显示区域所在支路和第二显示区域所在支路分别与所述开关元件的漏极电连接,使得所述开关元件的栅极在扫描信号到来时打开,第一显示区域和第二显示区域通过所述开关元件接收所述数据信号。
  5. 如权利要求4所述的面板,其中,所述子像素的第二显示区域所在支路与所述开关元件的漏极之间串联第一电容。
  6. 如权利要求5所述的面板,其中,所述子像素的第一显示区域所在支路并联连接第二显示区域所在支路与所述第一电容组成的电路。
  7. 如权利要求6所述的面板,其中,所述面板还包括公共线,所述公共线用以向所述子像素的各个显示区域提供相同的公共电压。
  8. 如权利要求7所述的面板,其中,所述子像素的第一显示区域所在支路和第二显示区域所在支路分别与所述公共线电连接,用以接收所述公共线输出的公共电压。
  9. 如权利要求8所述的面板,其中,在所述开关元件的漏极和所述公共线之间还设置第二电容,所述第二电容用于在所述开关元件打开时存储电荷。
  10. 一种液晶显示装置,包括:
    扫描信号驱动单元,其用于向扫描线提供扫描信号;
    数据信号驱动单元,其用于向数据线提供数据信号;
    液晶显示单元,其包括液晶显示面板,所述液晶显示面板包括多条扫描线和多条数据线,扫描线与数据线配合形成多个子像素区,其中,每个所述子像素区设有一子像素,每 个所述子像素包括多个面积不等的显示区域,在经扫描线传输的扫描信号到来时,各个显示区域接收经同一数据线传输的数据信号以使各个显示区域具有不同的灰阶电压。
  11. 如权利要求10所述的液晶显示装置,其中,所述子像素包括第一显示区域和第二显示区域,其中,第一显示区域与第二显示区域的面积比大于1。
  12. 如权利要求11所述的液晶显示装置,其中,所述面板上的所有子像素的第一显示区域与第二显示区域的面积比保持不变。
  13. 如权利要求12所述的液晶显示装置,其中,所述子像素包括一开关元件,所述开关元件包括一与扫描线电连接的栅极、一与数据线电连接的源极及一漏极,其中,第一显示区域所在支路和第二显示区域所在支路分别与所述开关元件的漏极电连接,使得所述开关元件的栅极在扫描信号到来时打开,第一显示区域和第二显示区域通过所述开关元件接收所述数据信号。
  14. 如权利要求13所述的液晶显示装置,其中,所述子像素的第二显示区域所在支路与所述开关元件的漏极之间串联第一电容。
  15. 如权利要求14所述的液晶显示装置,其中,所述子像素的第一显示区域所在支路并联连接第二显示区域所在支路与所述第一电容组成的电路。
  16. 如权利要求15所述的液晶显示装置,其中,所述面板还包括公共线,所述公共线用以向所述子像素的各个显示区域提供相同的公共电压。
  17. 如权利要求16所述的液晶显示装置,其中,所述子像素的第一显示区域所在支路和第二显示区域所在支路分别与所述公共线电连接,用以接收所述公共线输出的公共电压。
  18. 如权利要求17所述的液晶显示装置,其中,在所述开关元件的漏极和所述公共线之间还设置第二电容,所述第二电容用于在所述开关元件打开时存储电荷。
PCT/CN2015/071244 2014-12-31 2015-01-21 液晶显示面板及液晶显示装置 WO2016106904A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/418,612 US10222668B2 (en) 2014-12-31 2015-01-21 Liquid crystal display panel and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410856585.7A CN104536225B (zh) 2014-12-31 2014-12-31 液晶显示面板及液晶显示装置
CN201410856585.7 2014-12-31

Publications (1)

Publication Number Publication Date
WO2016106904A1 true WO2016106904A1 (zh) 2016-07-07

Family

ID=52851775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/071244 WO2016106904A1 (zh) 2014-12-31 2015-01-21 液晶显示面板及液晶显示装置

Country Status (3)

Country Link
US (1) US10222668B2 (zh)
CN (1) CN104536225B (zh)
WO (1) WO2016106904A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102239581B1 (ko) * 2015-01-26 2021-04-14 삼성디스플레이 주식회사 표시 장치
CN105702176B (zh) * 2016-04-12 2018-06-15 深圳市华星光电技术有限公司 具有指纹识别的显示面板及显示装置
CN107728352B (zh) * 2017-11-22 2020-05-05 深圳市华星光电半导体显示技术有限公司 一种像素驱动电路及液晶显示面板
CN109212816A (zh) * 2018-09-07 2019-01-15 惠科股份有限公司 画素结构及其应用于显示面板的制造方法
CN115995215A (zh) * 2021-10-18 2023-04-21 华为技术有限公司 一种显示器件及其驱动方法和电子纸
CN114596827B (zh) * 2022-03-23 2022-10-28 惠科股份有限公司 显示面板的数据电压补偿方法、显示面板及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030146893A1 (en) * 2002-01-30 2003-08-07 Daiichi Sawabe Liquid crystal display device
CN1734331A (zh) * 2004-08-04 2006-02-15 三星电子株式会社 薄膜晶体管阵列面板及液晶显示器
CN1828395A (zh) * 2005-02-11 2006-09-06 三星电子株式会社 宽视角液晶显示装置
CN1936682A (zh) * 2005-09-23 2007-03-28 三星电子株式会社 液晶显示面板及其驱动方法及使用该面板的液晶显示设备
CN101036080A (zh) * 2004-10-06 2007-09-12 夏普株式会社 液晶显示器
TW200937087A (en) * 2008-02-19 2009-09-01 Au Optronics Corp Multi domain vertical alignment substrate and display device thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5610739A (en) * 1994-05-31 1997-03-11 Matsushita Electric Industrial Co., Ltd. Liquid crystal display unit with a plurality of subpixels
GB2372620A (en) * 2001-02-27 2002-08-28 Sharp Kk Active Matrix Device
CN101308270B (zh) * 2002-06-06 2010-12-08 夏普株式会社 液晶显示装置
JP4248306B2 (ja) * 2002-06-17 2009-04-02 シャープ株式会社 液晶表示装置
WO2006035887A1 (ja) * 2004-09-30 2006-04-06 Sharp Kabushiki Kaisha 液晶表示装置
CN100343733C (zh) * 2005-01-31 2007-10-17 广辉电子股份有限公司 液晶显示装置
KR101160831B1 (ko) * 2005-06-01 2012-06-28 삼성전자주식회사 액정 표시 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030146893A1 (en) * 2002-01-30 2003-08-07 Daiichi Sawabe Liquid crystal display device
CN1734331A (zh) * 2004-08-04 2006-02-15 三星电子株式会社 薄膜晶体管阵列面板及液晶显示器
CN101036080A (zh) * 2004-10-06 2007-09-12 夏普株式会社 液晶显示器
CN1828395A (zh) * 2005-02-11 2006-09-06 三星电子株式会社 宽视角液晶显示装置
CN1936682A (zh) * 2005-09-23 2007-03-28 三星电子株式会社 液晶显示面板及其驱动方法及使用该面板的液晶显示设备
TW200937087A (en) * 2008-02-19 2009-09-01 Au Optronics Corp Multi domain vertical alignment substrate and display device thereof

Also Published As

Publication number Publication date
CN104536225B (zh) 2018-09-18
CN104536225A (zh) 2015-04-22
US20160246147A1 (en) 2016-08-25
US10222668B2 (en) 2019-03-05

Similar Documents

Publication Publication Date Title
US9618814B2 (en) Liquid crystal display panel for curved screen
JP6360892B2 (ja) アレイ基板及び液晶表示装置
KR101182771B1 (ko) 액정 표시 패널과 그의 구동 방법 및 그를 이용한 액정표시 장치
WO2016106904A1 (zh) 液晶显示面板及液晶显示装置
US7898536B2 (en) Display apparatus and method of driving the same
KR101152123B1 (ko) 액정 표시 장치 및 그 구동 방법
US20130088527A1 (en) Color Liquid Crystal Display Device And Gamma Correction Method For The Same
KR101764553B1 (ko) 어레이 기판 및 액정 디스플레이 패널
US20070126941A1 (en) Liquid crystal display with different capacitances for different colored sub-pixel units thereof
US9772534B2 (en) Liquid crystal display
WO2016041228A1 (zh) 一种显示面板及其像素结构和驱动方法
US20170103723A1 (en) Display device and driving method thereof
KR20110017296A (ko) 액정 표시 장치
KR20020052137A (ko) 액정표시장치
US20210408060A1 (en) Array substrate, display apparatus and drive method therefor
KR20090095249A (ko) 액정 표시장치의 구동장치와 그 구동방법
WO2016041226A1 (zh) 一种显示面板及其像素结构和驱动方法
JP2010191384A (ja) アクティブマトリックス液晶表示装置及びその駆動方法
JP6490811B2 (ja) 液晶表示装置及び液晶表示装置の駆動方法
KR101461035B1 (ko) 액정 표시장치의 구동장치와 그 구동방법
US8766888B2 (en) In plane switching mode liquid crystal display device
JP6577223B2 (ja) 液晶表示装置
CN111381408B (zh) 一种像素阵列及其液晶面板
KR100885018B1 (ko) 액정 표시 장치 및 그 구동 방법
KR101461021B1 (ko) 액정 표시장치의 구동장치와 그 구동방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14418612

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15874597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15874597

Country of ref document: EP

Kind code of ref document: A1