WO2016105169A1 - 이차전지 모듈의 전극 리드 용접 방법 및 이를 이용한 컴팩트한 이차전지 모듈 - Google Patents

이차전지 모듈의 전극 리드 용접 방법 및 이를 이용한 컴팩트한 이차전지 모듈 Download PDF

Info

Publication number
WO2016105169A1
WO2016105169A1 PCT/KR2015/014282 KR2015014282W WO2016105169A1 WO 2016105169 A1 WO2016105169 A1 WO 2016105169A1 KR 2015014282 W KR2015014282 W KR 2015014282W WO 2016105169 A1 WO2016105169 A1 WO 2016105169A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
secondary battery
battery module
cartridge
welding
Prior art date
Application number
PCT/KR2015/014282
Other languages
English (en)
French (fr)
Inventor
이범현
채승희
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP15873696.7A priority Critical patent/EP3220449A4/en
Priority to US15/533,855 priority patent/US10629881B2/en
Priority to CN201580070618.8A priority patent/CN107112485B/zh
Priority to JP2017530003A priority patent/JP6440002B2/ja
Publication of WO2016105169A1 publication Critical patent/WO2016105169A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/516Methods for interconnecting adjacent batteries or cells by welding, soldering or brazing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • B23K26/323Bonding taking account of the properties of the material involved involving parts made of dissimilar metallic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/519Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising printed circuit boards [PCB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/522Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/566Terminals characterised by their manufacturing process by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/588Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries outside the batteries, e.g. incorrect connections of terminals or busbars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode lead welding method of a secondary battery module and a compact secondary battery module using the same, and more particularly, to a method of welding electrode leads and a bus bar of a lithium secondary battery module and a lithium secondary battery module using the same. .
  • a lithium secondary battery has a structure in which an electrode assembly of a cathode / separator / anode is embedded in a sealed container together with an electrolyte.
  • the lithium secondary battery is composed of a positive electrode, a negative electrode, a separator and an electrolyte interposed therebetween, and a lithium ion battery (LIB) and a lithium polymer battery depending on which positive electrode active material and negative electrode active material are used.
  • LIB lithium ion battery
  • the electrodes of these lithium secondary batteries are formed by applying a positive electrode or negative electrode active material to a current collector, such as an aluminum or copper sheet, a mesh, a film, a foil, and the like, followed by drying.
  • the secondary battery module uses a method of constructing a path using a welding, bolting, and riveting method between cell leads in a series or parallel configuration of cells stored in each cartridge.
  • three members such as an anode lead made of aluminum, a cathode lead made of copper, and a bus bar made of copper disposed for sensing when configuring each cell in series or in parallel in the secondary battery module, are described in detail. It must be electrically connected in the same way.
  • the secondary battery module used in the energy storage device or the power storage device is focused on technology development to configure the secondary battery module as compact as possible in order to increase energy efficiency or density.
  • the welding (especially laser welding) of the electrode leads Al (Cu) and the bus bar (Cu) of the cell is aluminum lead-copper lead- It was common to arrange a base material in order of a bus bar, and to irradiate and weld a laser from the cell lead side. However, when welding is performed in this order, the cell leads are first deformed by a laser.
  • the present invention has been conceived to solve the above-described problems of the prior art, and when the corresponding electrode leads of adjacent cells of the secondary battery module are contacted and overlapped, the bus bar is partially cut, and the bus bar is positioned in place. It is an object of the present invention to provide an electrode lead welding method of a secondary battery module having a structure improved to be welded to a bus bar and a lead of a material, and a compact secondary battery module using the same.
  • a plurality of lead overlapping portions in which the leads of neighboring cells overlap are positioned in a predetermined pattern on the sidewall of the cartridge, and accommodates each cell.
  • a cartridge assembly comprising a plurality of cartridges stacked together; And a sensing housing provided with a plurality of bus bars corresponding to each lead overlap and capable of being welded and disposed on the side of the cartridge assembly;
  • the first lead of the cell constituting each lead overlap is shorter than a predetermined width than a second lead of polarity opposite to the first lead, and with the sensing housing coupled to the cartridge assembly, the corresponding bus bar may be
  • the second lead and the bus bar are welded by contacting the second lead on a line substantially the same as the first lead.
  • the secondary battery module has a partition provided on the side of each cartridge to protect the cell during the welding operation.
  • the leads of each cell are bent at right angles at approximately 1 mm from the lead insulation in the state of being housed in the corresponding cartridge.
  • the welding is laser welding.
  • the direction of the laser is substantially perpendicular to the sensing housing.
  • the bus bar and the second lead are made of copper and the first lead is made of aluminum.
  • the sensing housing further comprises a BMS circuit board for managing the voltage and / or temperature data of each cell sensed by the bus bar.
  • the sensing housing is snapped or hooked to the cartridge assembly.
  • it further comprises a sensing cover coupled to the sensing housing.
  • the sensing cover is snapped or hooked to the sensing housing.
  • two neighboring cartridges of the cartridge assembly are hooked together.
  • the cartridge assembly further comprises an upper cover and a lower cover which are each hooked to the cartridges at both ends.
  • a method of welding an electrode lead of a secondary battery module wherein (a) leads of opposite polarities having a width smaller than a width of a second lead are opposite to each other. Preparing a plurality of cells bent in a direction; (b) forming a cartridge assembly by stacking a plurality of cartridges in which each cell is housed so that lead overlaps in which leads of opposite polarities of neighboring cells overlap are positioned in a predetermined pattern on the side of the cartridge; (c) placing a sensing housing on the side of the cartridge assembly provided with a plurality of bus bars corresponding to each lead overlap so that the corresponding bus bars contact the second leads on the same line as the first leads; And (d) welding the bus bars and the second lead of each lead overlap.
  • the step (b) uses a cartridge provided with a partition on each side on which the first lead and the second lead are placed.
  • each lead is bent at a right angle at about 1 mm from the lead insulation portion of the cell in a state of being housed in a corresponding cartridge.
  • step (d) uses a laser welder.
  • the laser scanning direction of the laser welder is substantially perpendicular to the sensing housing.
  • the bus bar and the second lead are made of copper and the first lead is made of aluminum.
  • the electrode terminal welding method of the compact secondary battery module and the secondary battery module using the same according to exemplary embodiments of the present invention have the following effects.
  • the bending length of the lead of the cell is minimized, and in the process of assembling the structure having the bus bar to the side of the cartridge assembly, the method of welding the lead of the cell of the same material as the bus bar, that is, the sensing structure by the same material welding Can improve the welding quality.
  • the damage of the lead can be prevented by applying the manner in which the bus bar is first scanned in the welding scan direction.
  • FIG. 1 is a combined perspective view of a rechargeable battery module according to an exemplary embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of a rechargeable battery module according to an exemplary embodiment of the present invention.
  • FIG. 3 is an excerpt perspective view of a sensing housing part that may be used in a secondary battery module according to an exemplary embodiment of the present invention.
  • FIG. 4 is an excerpt perspective view of a cartridge assembly portion that may be used in a secondary battery module according to an exemplary embodiment of the present invention.
  • FIG. 5 is an enlarged view of a portion A of FIG. 4.
  • FIG. 6 is a cross-sectional view showing a bent portion of a lead of a cell of a secondary battery module according to an exemplary embodiment of the present invention.
  • FIG. 7 is a schematic diagram illustrating a welding process between bus bars of a sensing housing and respective cell leads in a process of assembling a secondary battery module according to an exemplary embodiment of the present invention.
  • FIG. 8 is an exploded perspective view of a rechargeable battery module according to an exemplary embodiment of the present invention.
  • FIG. 9 is a perspective view of the combination of FIG.
  • the first lead of each cell is shown in red
  • the second lead is shown in blue
  • each bus bar of the sensing housing is shown in yellow.
  • FIG. 1 is a perspective view of a secondary battery module in accordance with a preferred embodiment of the present invention
  • Figure 2 is an exploded perspective view of a secondary battery module according to a preferred embodiment of the present invention.
  • a compact secondary battery module 100 includes a cartridge assembly in which a plurality of cartridges 10 containing respective cells 2 are stacked. 20) and a sensing housing 30 coupled to the side of the cartridge assembly 20, for example in the form of a one-touch or snap-fit, hook.
  • the cartridge assembly 20 is a stack of a plurality of cartridges 10 formed by injection molding of plastic and having an accommodating part for accommodating the cells 2, each cartridge 10 being snap-fit or hooked with each other. It is preferable to combine.
  • the leads 12, 14 having the opposite polarity of neighboring cells 2 for example, have a first polarity and are made of aluminum, for example.
  • the cartridge assembly 20 also has an upper cover 11 and a lower cover 13, for example hooked to the cartridges 10 at both ends.
  • the upper cover 11 and the lower cover 13 are each injection molded to have substantially the same shape as the individual cartridge 10 of the cartridge assembly 20.
  • the upper cover 11 and the lower cover 13 have a function of protecting the cells 2 accommodated in the cartridges 10 at both ends, and have a function and structure of finishing the outer shape of the secondary battery module 100 and surrounding them. Will be understood by those skilled in the art.
  • FIG. 3 is a perspective view of an excerpt of a sensing housing portion that may be used in a secondary battery module according to an exemplary embodiment of the present invention
  • FIG. 4 is a cartridge assembly that may be used in a secondary battery module according to an exemplary embodiment of the present invention.
  • Excerpt perspective view of a part FIG. 5 is an enlarged view of part A of FIG.
  • the sensing housing 30 is provided with a plurality of bus bars 32 corresponding to the respective lead overlaps 16.
  • Each bus bar 32 is preferably made of copper, for example.
  • the sensing housing 30 may be injection molded by, for example, insulating plastic in a substantially rectangular shape, and a plurality of receiving holes 35 capable of accommodating each bus bar 32 may be formed in a predetermined pattern. It is formed through.
  • the voltage and / or temperature data of each cell 2 sensed by the corresponding bus bar 32 is collected and the corresponding cell 2 is balanced through the collected data.
  • a BMS circuit board 34 having a function of transferring data to another control unit (not shown) of the module.
  • the BMS circuit board 34 is electrically connected to one end of each bus bar 32.
  • the first lead and the second lead 14 extend and bend from the side of each cell 2 by a predetermined length and have a predetermined width, respectively.
  • the first lead 12 of each cell 2 is bent 90 degrees upwards in the figure, and the second lead 14 is bent 90 degrees downward in the figure.
  • the width W1 of the first lead 12 is shorter than the width W2 of the second lead 14, so that the width W1 of the first lead 12 and the following will be described later. It is preferable that the sum of the lengths Lb of the bus bars 32 is substantially the same as the width W2 of the second lead 14.
  • reference numeral 36 denotes a pair of data communication ports for transmitting and receiving data between respective BMS circuit boards 34 when a plurality of modules 100 are coupled
  • reference numeral 38 denotes a secondary battery module ( 100 is a temperature data port for receiving a signal of a temperature sensor (not shown) for measuring the internal temperature
  • Reference numeral 31 denotes a positive terminal terminal and a negative terminal terminal of the completed secondary battery module 100, respectively.
  • each corresponding bus bar 32 is connected to the second lead 14 substantially on the same line as the first lead 12.
  • the second lead 14 and bus bar 32 may be laser welded, for example.
  • the skilled person will appreciate that the first lead 12, the second lead 14, and the corresponding bus bar 32 may be joined to each other by ultrasonic welding.
  • FIG. 6 is a cross-sectional view showing a bent portion of the lead of the cell of the secondary battery module according to an exemplary embodiment of the present invention
  • Figure 7 is sensing during the assembly process of the secondary battery module according to an exemplary embodiment of the present invention
  • the cartridge assembly 20 in which the first lead 12 and the second lead 14 of the cells 2 adjacent to each lead overlap 16 are in contact with each other and overlapped.
  • the bus bar 32 may be formed in the direction toward the cartridge assembly from the outside of the module 100, that is, from the direction in which laser welding is performed.
  • the first lead 12 and the second lead 14 are sequentially positioned.
  • welding between the leads 12, 14 and between the bus bar 32 and the leads 12, 14 in the arrangement of these base materials in particular in a direction substantially perpendicular to the sensing housing 30.
  • each cartridge 10 has a partition 18 provided on its side to protect the cells 2 contained in each cartridge 10 of the cartridge assembly 20.
  • barrier 18 has a barrier function to prevent the laser (not shown) scanned by the laser device (not shown) from being directly scanned into the cell 2.
  • the leads 12 and 14 of each cell 2 are placed in a state where they are housed in a corresponding cartridge. It is preferred to bend at right angles from approximately 0.8 to 1.2 mm from the insulation 15.
  • FIG. 8 which is an exploded perspective view before final assembly of the rechargeable battery module according to an exemplary embodiment of the present invention
  • FIG. 9, which is a final combined perspective view, respectively, in a state in which the sensing housing 30 is coupled to the cartridge assembly 20.
  • 2 illustrates a state in which the sensing cover 40 is coupled to the sensing housing 30 to protect the BMS circuit board 34 and the bus bar 32.
  • Sensing cover 40 is preferably snap or hook coupled to the sensing housing (30).
  • the width W1 of the first lead 12 is formed to be shorter than the width W2 of the second lead 14 (eg, formed to be as short as the length Lb of each bus bar 32), Leads 12 and 14 of opposite polarities are prepared in a plurality of cells 2 that are bent in opposite directions.
  • the width W1 of the first lead 12 may be manufactured to be shorter than the width W2 of the second lead 14 from the beginning, and the first lead 12 and the second lead may be made.
  • the width W1 can be shortened so that the width W1 of the first lead 12 is cut by a predetermined length in each cell 2.
  • the leads 12 and 14 of the cells are bent at right angles at approximately 0.8 to 1.2 mm, preferably at a 1 mm point, from the lead insulator 15 with the cells 2 respectively housed in the corresponding cartridges 10. By doing so, energy efficiency can be maximized.
  • the cartridge assembly 20 is formed by stacking a plurality of cartridges 10 in which the cartridges are accommodated.
  • Each cartridge 10 for forming the cartridge assembly 20 is provided with an accommodating portion for accommodating the cells 2 and a hook so that neighboring pairs of cartridges 10 can be snap-fit or hooked with each other.
  • the upper cover 11 and the lower cover 13 which can receive and protect the cells 2, are for example snap-fitted or hooked.
  • the cartridge 10 in which the first lead 12 and the second lead 14 are placed uses a cartridge having partition walls 18 provided on each side thereof, so that the cell 2 is removed from the laser during the laser welding operation described later. To protect.
  • each of the bus bars 32 is previously disposed in the sensing housing 30 in a predetermined pattern.
  • the first lead 12 is made of aluminum
  • the second lead 14 and the bus bar 32 are made of copper.
  • each lead overlap 16 is welded.
  • This step may use a welding system having a plurality of welding points, or may perform several points welding using individual laser welders.
  • a separate laser welder or welding point is used between the first lead 12 and the second lead 14.
  • the laser welder preferably scans the laser in a direction substantially perpendicular to the sensing housing 30.
  • the secondary battery modules 100 are electrically connected in a series / parallel manner to each other and stored in a predetermined case, for example, a power storage device for a home photovoltaic (PV) solar energy panel. It can provide a compact secondary battery pack for.
  • a power storage device for a home photovoltaic (PV) solar energy panel for example, a power storage device for a home photovoltaic (PV) solar energy panel. It can provide a compact secondary battery pack for.
  • PV photovoltaic
  • the present invention relates to an electrode lead welding method of a secondary battery module and a compact secondary battery module using the same, in particular, it can be used in the industry related to electrode lead welding of a secondary battery module.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

본 발명은 컴팩트한 이차전지 모듈에 관한 것으로서, 이웃하는 셀의 리드들이 겹쳐지는 다수의 리드 중첩부들이 카트리지 측벽에 미리 결정된 패턴으로 위치되고, 각각의 셀을 수납하면서 적층된 다수의 카트리지들을 포함하는 카트리지 조립체; 및 각각의 리드 중첩부에 상응하게 위치되어 용접될 수 있는 다수의 버스 바들이 마련되고 카트리지 조립체의 측면에 배치될 수 있는 센싱 하우징을 구비하고; 각각의 리드 중첩부를 구성하는 셀의 제1 리드는 제1 리드와 반대되는 극성의 제2 리드보다 미리 결정된 폭 보다 짧게 구성되고, 카트리지 조립체에 센싱 하우징이 결합된 상태에서, 대응되는 버스 바는 제1 리드와 실질적으로 동일한 선상에서 제2 리드에 접촉되어 제2 리드와 버스 바가 용접된다.

Description

이차전지 모듈의 전극 리드 용접 방법 및 이를 이용한 컴팩트한 이차전지 모듈
본 발명은 이차전지 모듈의 전극 리드 용접 방법 및 이를 이용한 컴팩트한 이차전지 모듈에 관한 것으로서, 보다 상세하게는 리튬 이차전지 모듈의 전극 리드와 버스 바의 용접 방법 및 이를 이용한 리튬 이차전지 모듈에 관한 것이다.
본 출원은 2014년 12월 24일자로 출원된 한국 특허출원 번호 제10-2014-0188079호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지 수요가 급격히 증가하고 있으며, 종래 이차전지로서 니켈카드뮴 전지 또는 수소이온 전지가 사용되었으나, 최근에는 에너지 밀도가 높은 리튬 이온 전지 및 리튬 폴리머 전지가 많이 사용되고 있다.
이러한 이차전지는 양극 활물질로서 리튬 전이금속 산화물, 리튬 복합 산화물 등을 사용하는 중량 대비 높은 출력과 용량의 리튬 이차전지가 크게 각광받고 있다. 일반적으로, 리튬 이차전지는 양극/세퍼레이터/음극의 전극조립체가 전해질과 함께 밀폐된 용기에 내장되어 있는 구조로 이루어져 있다.
한편, 리튬 이차전지는 양극, 음극 및 이들 사이에 개재되는 세퍼레이터 및 전해질로 이루어지며, 양극 활물질과 음극 활물질을 어떤 것을 사용하느냐에 따라 리튬 이온 전지(Lithium Ion Battery, LIB), 리튬 폴리머 전지(Polymer Lithium Ion Battery, PLIB) 등으로 나누어진다. 통상, 이들 리튬 이차전지의 전극은 알루미늄 또는 구리 시트(sheet), 메시(mesh), 필름(film), 호일(foil) 등의 집전체에 양극 또는 음극 활물질을 도포한 후 건조시킴으로써 형성된다.
이차전지 모듈은 각각의 카트리지에 수납된 셀들의 직렬 또는 병렬 구성 방법은 각각의 셀 리드 사이를 용접, 볼팅, 리벳팅 방법을 이용하여 패스를 구성하는 방법을 이용하고 있다. 또한, 이차전지 모듈에서 각각의 셀을 직렬 또는 병렬로 구성할 때 알루미늄 재질을 가진 양극 리드와 구리 재질을 가진 음극 리드, 및 센싱을 위해 배치되는 구리 재질의 버스바와 같은 3개의 부재들은 전술한 바와 같은 방식으로 전기적으로 접속되어야 한다.
종래기술에 따르면, 이차전지 모듈들이 다양하게 존재하고, 모듈을 구성하는 카트리지 및 센싱을 위한 버스바의 구조 및 위치가 서로 다르기 때문에 효율적인 접속 작업이 어려울 뿐만 아니라 센싱 구조물의 용접 품질이 저하되고 이차전지 모듈의 불필요한 공간을 용접 등의 작업을 위해 마련해야 하므로, 최종적으로 이차전지 모듈의 에너지 밀도가 저하되는 문제점이 있었다.
또한, 에너지 저장 장치 또는 전력 저장 장치에 사용되는 이차전지 모듈은 에너지 효율 또는 밀도를 높이기 위해 이차전지 모듈을 최대한 컴팩트하게 구성하는데 기술개발의 초점이 맞춰져 있다.
한편, 일반적인 이차전지 모듈의 구성에 있어서, 셀의 전극 리드들(Al)(Cu)와 버스 바(Cu)의 용접(특히, 레이저 용접)은 소재별 용융점의 차이로 인하여 알루미늄 리드-구리 리드-버스 바의 순서로 모재를 배치한 후 셀 리드 쪽으로부터 레이저를 조사하여 용접하는 것이 일반적이었다. 그러나, 이러한 순서로 용접을 하게 되면, 셀 리드들이 먼저 레이저에 의해 변형되는 등의 문제점이 발생하게 된다.
본 발명은 전술한 종래기술의 문제점을 해결하고자 착상된 것으로서, 이차전지 모듈의 인접하는 셀들의 상응하는 전극 리드들이 접촉되어 중첩되는 경우 버스 바와 재질이 다른 리드를 일부 잘라내고 그 자리에 버스 바를 위치시켜 버스 바와 재질의 리드에 용접시킬 수 있도록 구조가 개선된 이차전지 모듈의 전극 리드 용접 방법 및 이를 이용한 컴팩트한 이차전지 모듈을 제공하는데 그 목적이 있다.
상기 과제를 해결하기 위하여, 본 발명의 일 측면에 따른 컴팩트한 이차전지 모듈은, 이웃하는 셀의 리드들이 겹쳐지는 다수의 리드 중첩부들이 카트리지 측벽에 미리 결정된 패턴으로 위치되고, 각각의 셀을 수납하면서 적층된 다수의 카트리지들을 포함하는 카트리지 조립체; 및 각각의 리드 중첩부에 상응하게 위치되어 용접될 수 있는 다수의 버스 바들이 마련되고 카트리지 조립체의 측면에 배치될 수 있는 센싱 하우징을 구비하고; 각각의 리드 중첩부를 구성하는 셀의 제1 리드는 제1 리드와 반대되는 극성의 제2 리드보다 미리 결정된 폭 보다 짧게 구성되고, 카트리지 조립체에 센싱 하우징이 결합된 상태에서, 대응되는 버스 바는 제1 리드와 실질적으로 동일한 선상에서 제2 리드에 접촉되어 제2 리드와 버스 바가 용접된다.
바람직하게, 이차전지 모듈은 용접 작업시 셀을 보호하기 위해 각각의 카트리지의 측면에 마련된 격벽을 구비한다.
바람직하게, 각각의 셀의 리드는 상응하는 카트리지에 수납된 상태에서 리드 절연부로부터 대략 1mm 지점에서 직각으로 굴곡된다.
바람직하게, 상기 용접은 레이저 용접이다.
바람직하게, 상기 레이저의 방향은 센싱 하우징에 실질적으로 수직이다.
바람직하게, 버스 바와 제2 리드는 구리로 제작되고, 제1 리드는 알루미늄으로 제작된다.
바람직하게, 센싱 하우징은 버스 바에 의해 감지되는 각각의 셀의 전압 및/또는 온도 데이터를 관리하기 위한 BMS 회로 기판을 더 구비한다.
바람직하게, 센싱 하우징은 카트리지 조립체에 스냅 또는 후크 결합된다.
바람직하게, 센싱 하우징에 결합되는 센싱 커버를 더 구비한다.
바람직하게, 센싱 커버는 센싱 하우징에 스냅 또는 후크 결합된다.
바람직하게, 카트리지 조립체의 이웃하는 2개의 카트리지들은 서로 후크 결합된다.
바람직하게, 카트리지 조립체는 양단의 카트리지들에 각각 후크 결합되는 상부 커버와 하부 커버를 더 구비한다.
상기 목적을 달성하기 위한 본 발명의 다른 측면에 따른 이차전지 모듈의 전극 리드의 용접 방법은, (a) 제1 리드의 폭이 제2 리드의 폭 보다 더 짧게 형성된 서로 반대되는 극성의 리드들이 반대 방향으로 굴곡된 다수의 셀들을 준비하는 단계; (b) 이웃하는 셀의 반대되는 극성의 리드들이 겹쳐지는 리드 중첩부들이 카트리지 측면에 미리 결정된 패턴으로 위치되도록 각각의 셀이 수납된 다수의 카트리지들을 적층시켜 카트리지 조립체를 형성하는 단계; (c) 대응되는 버스 바가 제1 리드와 실질적으로 동일한 선상에서 제2 리드에 접촉되도록, 각각의 리드 중첩부에 상응하는 다수의 버스 바들이 설치된 센싱 하우징을 카트리지 조립체의 측면에 배치시키는 단계; 및 (d) 각각의 리드 중첩부의 제2 리드와 버스 바를 용접시키는 단계를 포함한다.
바람직하게, 상기 (b) 단계는 제1 리드와 제2 리드가 놓여지는 각각의 측면에 격벽이 마련된 카트리지를 이용한다.
바람직하게, 상기 (a) 단계는 상응하는 카트리지에 수납된 상태에서 셀의 리드 절연부로부터 각각의 리드가 대략 1mm 지점에서 직각으로 굴곡된다.
바람직하게, 상기 (d) 단계는 레이저 용접기를 이용한다.
바람직하게, 레이저 용접기의 레이저 주사 방향은 센싱 하우징에 실질적으로 수직이다.
바람직하게, 버스 바와 제2 리드는 구리로 제작되고, 제1 리드는 알루미늄으로 제작된다.
본 발명의 다른 측면에 따르면, 전술한 방법에 의해 제조된 컴팩트한 이차전지 모듈을 제공한다.
본 발명의 또 다른 측면에 따르면, 전술한 컴팩트한 이차전지 모듈들이 결합된 이차전지 팩을 제공한다.
본 발명의 바람직한 예시적 실시예들에 따른 컴팩트한 이차전지 모듈의 전극 단자 용접 방법 및 이를 이용한 이차전지 모듈은 다음과 같은 효과를 가진다.
첫째, 셀의 리드의 벤딩 길이를 최소로 구성하고, 버스 바가 부착된 구조물을 카트리지 조립체의 측면에 조립시키는 과정에서 버스 바와 동일한 재질의 셀의 리드를 용접시키는 방식 즉, 동종재 용접에 의해 센싱 구조물의 용접 품질을 향상시킬 수 있다.
둘째, 모듈 구성에서 있어서 불필요한 공간을 최소화시켜 모듈을 컴팩트하게 구성하여 에너지 효율을 향상시킬 수 있다.
셋째, 버스 바와 동일한 재질의 알루미늄 리드를 절단할 수 있기 때문에 리드의 재료비를 절감할 수 있다.
넷째, 셀 리드들과 버스 바 사이의 용접 모재의 순서에 있어서, 용접 주사 방향에 대해 버스 바가 먼저 주사되는 방식을 적용하여 리드의 손상을 방지할 수 있다.
본 명세서에 첨부되는 다음의 도면은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 바람직한 예시적 실시예에 따른 이차전지 모듈의 결합 사시도이다.
도 2는 본 발명의 바람직한 예시적 실시예에 따른 이차전지 모듈의 분리 사시도이다.
도 3은 본 발명의 바람직한 예시적 실시예에 따른 이차전지 모듈에 사용될 수 있는 센싱 하우징 부위의 발췌 사시도이다.
도 4는 본 발명의 바람직한 예시적 실시예에 따른 이차전지 모듈에 사용될 수 있는 카트리지 조립체 부위의 발췌 사시도이다.
도 5는 도 4의 A 부위의 확대도이다.
도 6은 본 발명의 바람직한 예시적 실시예에 따른 이차전지 모듈의 셀의 리드의 굴곡 부위를 도시한 단면도이다.
도 7은 본 발명의 바람직한 예시적 실시예에 따른 이차전지 모듈의 조립 과정에서 센싱 하우징의 버스 바와 각각의 셀 리드 사이의 용접 공정을 개략적으로 도시한 구성도이다.
도 8은 본 발명의 바람직한 예시적 실시예에 따른 이차전지 모듈의 분리 사시도이다.
도 9는 도 8의 결합 사시도이다.
이하, 본 발명을 도면을 참조하여 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 기재된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 1 내지 도 5의 이차전지 모듈에서 각각의 셀의 제1 리드는 적색으로 도시되고, 제2 리드는 청색으로 도시되고, 센싱 하우징의 각각의 버스 바는 황색으로 도시되었다.
도 1은 본 발명의 바람직한 예시적 실시예에 따른 이차전지 모듈의 결합 사시도이고, 도 2는 본 발명의 바람직한 예시적 실시예에 따른 이차전지 모듈의 분리 사시도이다.
도 1 및 도 2를 참조하면, 본 발명의 바람직한 예시적 실시예에 따른 컴팩트한 이차전지 모듈(100)은 각각의 셀(2)을 수납하는 다수의 카트리지들(10)이 적층된 카트리지 조립체(20), 및 카트리지 조립체(20)의 측면에 예들 들어, 원터치 형태 또는 스냅핏(snap-fit), 후크 형태로 결합되는 센싱 하우징(30)을 구비한다.
카트리지 조립체(20)는 플라스틱으로 사출 성형되고 셀(2)을 수납할 수 있는 수납부가 형성된 다수의 카트리지들(10)이 적층된 것으로서, 각각의 카트리지(10)는 서로 스냅-핏 또는 후크에 의해 결합되는 것이 바람직하다. 도 6에 도시된 바와 같이, 카트리지 조립체(20)에 있어서, 이웃하는 셀들(2)의 반대 극성을 가진 리드들(12)(14) 예를 들어, 제1 극성을 가지며 예를 들어, 알루미늄으로 제조되는 제1 리드(12)와 제1 극성에 반대되는 제2 극성을 가지며 예를 들어, 구리로 제조되는 제2 리드(14)가 겹쳐지는 다수의 리드 중첩부들(16)이 각각의 카트리지(10)의 측벽에 미리 결정된 패턴으로 위치된다.
또한, 카트리지 조립체(20)는 양단의 카트리지들(10)에 예를 들어, 후크 결합되는 상부 커버(11)와 하부 커버(13)를 구비한다. 상부 커버(11)와 하부 커버(13)는 각각 카트리지 조립체(20)의 개별 카트리지(10)와 실질적으로 동일한 형상을 가지도록 사출 성형된다. 상부 커버(11)와 하부 커버(13)는 양단의 카트리지(10)에 수납된 셀(2)을 보호하는 기능을 가지며, 이차전지 모듈(100)의 외형을 마무리하여 둘러싸는 기능과 구조를 가지는 것은 당업자가 충분히 이해할 것이다.
도 3은 본 발명의 바람직한 예시적 실시예에 따른 이차전지 모듈에 사용될 수 있는 센싱 하우징 부위의 발췌 사시도이고, 도 4는 본 발명의 바람직한 예시적 실시예에 따른 이차전지 모듈에 사용될 수 있는 카트리지 조립체 부위의 발췌 사시도이고, 도 5는 도 4의 A 부위의 확대도이다.
도 1 내지 도 5를 참조하면, 센싱 하우징(30)은 각각의 리드 중첩부(16)에 상응하는 다수의 버스 바들(32)이 마련된다. 각각의 버스 바(32)는 예를 들어, 구리로 제작되는 것이 바람직하다. 또한, 센싱 하우징(30)은 대략 직사각 형태로 예를 들어, 절연성 플라스틱에 의해 사출 성형될 수 있고, 각각의 버스 바(32)를 수납할 수 있는 다수의 수납 구멍들(35)이 소정 패턴으로 관통 형성되어 있다. 센싱 하우징(30)의 대략 중앙부에는 상응하는 버스 바(32)에 의해 감지되는 각각의 셀(2)의 전압 및/또는 온도 데이터를 수집하고, 수집된 데이터를 통해서 해당하는 셀(2)을 밸런싱하고 모듈의 다른 제어부(미도시)로 데이터를 전달하는 기능을 가진 BMS 회로 기판(34)이 설치된다. BMS 회로 기판(34)은 각각의 버스 바(32)의 일단과 전기적으로 연결된다.
제1 리드와 제2 리드(14)는 각각의 셀(2)의 사이드로부터 소정 길이만큼 연장 및 굴곡되고 소정의 폭을 각각 가진다. 각각의 셀(2)의 제1 리드(12)는 도면의 상방으로 90도 각도 굴곡되고, 제2 리드(14)는 도면의 하방으로 90도 굴곡된다. 도 5에 도시된 바와 같이, 제1 리드(12)의 폭(W1)은 제2 리드(14)의 폭(W2)보다 짧으며, 따라서, 제1 리드(12)의 폭(W1)과 후술하는 버스 바(32)의 길이(Lb)의 합은 제2 리드(14)의 폭(W2)과 실질적으로 동일하게 구성되는 것이 바람직하다.
도 3의 참조부호 36은 다수의 모듈들(100)이 결합되는 경우, 각각의 BMS 회로 기판(34) 사이에서 데이터를 주고 받기 위한 한 쌍의 데이타 통신 포트들이고, 참조부호 38은 이차전지 모듈(100) 내부의 온도를 측정하기 위한 온도 센서(미도시)의 신호를 수신하기 위한 온도 데이터 포트이다. 참조부호 31은 완성된 이차전지 모듈(100)의 양극 터미널 단자와 음극 터미널 단자를 각각 나타낸다.
전술한 바와 같이, 각각의 리드 중첩부(16)를 구성하는 셀(2)의 제1 리드(12)는 제1 리드(12)와 반대되는 극성의 제2 리드(14)보다 미리 결정된 폭 보다 짧게 구성되고, 카트리지 조립체(20)에 센싱 하우징(30)이 결합된 상태에서, 대응되는 각각의 버스 바(32)는 제1 리드(12)와 실질적으로 동일한 선상에서 제2 리드(14)에 접촉된 상태에서 제2 리드(14)와 버스 바(32)는 예를 들어, 레이저 용접될 수 있다. 변형된 실시예에 따르면, 제1 리드(12), 제2 리드(14), 및 상응하는 버스 바(32)는 초음파 용접에 의해 서로 결합될 수도 있음을 당업자는 이해할 것이다.
도 6은 본 발명의 바람직한 예시적 실시예에 따른 이차전지 모듈의 셀의 리드의 굴곡 부위를 도시한 단면도이고, 도 7은 본 발명의 바람직한 예시적 실시예에 따른 이차전지 모듈의 조립 과정에서 센싱 하우징의 버스 바와 각각의 셀 리드 사이의 용접 공정을 개략적으로 도시한 구성도이다.
도 6 및 도 7을 참조하면, 각각의 리드 중첩부(16)에 이웃하는 셀들(2)의 제1 리드(12)와 제2 리드(14)가 접촉되어 중첩된 상태의 카트리지 조립체(20)의 측면에 센싱 하우징(30)이 결합되어 이차전지 모듈(100)을 구성하게 되면, 모듈(100)의 외측 즉, 레이저 용접이 수행되는 방향으로부터 카트리지 조립체를 향하는 방향으로 버스 바(32), 제1 리드(12) 및 제2 리드(14)가 순차적으로 위치된다. 이러한 모재들의 배치 상태에서 리드들(12)(14) 사이, 및 버스 바(32)와 리드들(12)(14) 사이를 용접할 때 특히, 센싱 하우징(30)에 실질적으로 수직인 방향으로 레이저를 주사할 때, 카트리지 조립체(20)의 각각의 카트리지(10)에 수납된 셀(2)을 보호하기 위해 각각의 카트리지(10)는 측면에 마련된 격벽(18)을 구비한다. 이러한 격벽(18)은 레이저 장치(미도시)에 의해 주사되는 레이저(미도시)가 셀(2)에 직접적으로 주사되는 것을 막기 위한 차단벽 기능을 가지는 것을 당업자가 충분히 이해할 것이다.
본 발명의 바람직한 예시적 실시예에 따르면, 이차전지 모듈을 컴팩트하게 구성하여 에너지 효율을 최대한 높이기 위해, 각각의 셀(2)의 리드(12)(14)는 상응하는 카트리지에 수납된 상태에서 리드 절연부(15)로부터 대략 0.8 내지 1.2 mm 지점에서 직각으로 굴곡되는 것이 바람직하다.
본 발명의 바람직한 예시적 실시예에 따른 이차전지 모듈의 최종 조립전 분리 사시도인 도 8과 최종 결합 사시도인 도 9를 각각 참조하면, 센싱 하우징(30)이 카트리지 조립체(20)에 결합된 상태에서, BMS 회로 기판(34)과 버스 바(32) 부위를 보호하기 위해 센싱 하우징(30)에 센싱 커버(40)가 결합된 상태를 도시한다. 센싱 커버(40)는 센싱 하우징(30)에 스냅 또는 후크 결합되는 것이 바람직하다.
본 발명의 다른 바람직한 예시적 실시예에 따른 이차전지 모듈의 전극 리드의 용접 방법을 설명한다.
먼저, 제1 리드(12)의 폭(W1)이 제2 리드(14)의 폭(W2) 보다 더 짧게 형성(예, 각각의 버스 바(32)의 길이(Lb)만큼 짧게 형성)되고, 서로 반대되는 극성의 리드들(12)(14)이 반대 방향으로 굴곡된 다수의 셀들(2)을 준비한다. 여기서, 제1 리드(12)의 폭(W1)은 처음부터 제2 리드(14)의 폭(W2) 보다 더 짧게 셀(2)을 제조할 수도 있고, 제1 리드(12)와 제2 리드(14)의 폭이 동일하도록 셀(2)을 제조한 후 각각의 셀(2)에서 제1 리드(12)의 폭(W1)을 일정한 길이만큼 절단하게 그 폭(W1)을 짧게 구성할 수 있음을 당업자는 충분히 이해할 것이다. 또한, 셀(2)이 각각 상응하는 카트리지(10)에 수납된 상태에서 셀의 리드(12)(14)는 리드 절연부(15)로부터 대략 0.8 내지 1.2mm 바람직하게, 1mm 지점에서 직각으로 굴곡시킴으로써, 에너지 효율을 최대화 시킬 수 있다.
이어서, 이웃하는 셀들(2)의 반대되 극성의 리드들(12)(14)이 서로 겹쳐져서 리드 중첩부들(16)이 카트리지(10)의 측벽에 미리 결정된 패턴으로 위치되도록 각각의 셀(2)이 수납된 다수의 카트리지들(10)을 적층시켜 카트리지 조립체(20)를 형성한다. 카트리지 조립체(20)를 형성하기 위한 각각의 카트리지(10)는 셀(2)을 수납할 수 있는 수납부가 마련되고 이웃하는 한 쌍의 카트리지(10)는 서로 스냅-핏 또는 후크 결합될 수 있도록 후크와 슬롯이 형성될 수 있음을 당업자는 이해할 것이다. 또한, 카트리지 조립체(20)의 양면에서는 각각 셀(2)을 수납 및 보호할 수 있는 상부 커버(11)와 하부 커버(13)가 예를 들어, 스냅-핏 또는 후크 결합된다. 또한, 제1 리드(12)와 제2 리드(14)가 놓여지는 카트리지(10)는 각각의 측면에 격벽(18)이 마련된 카트리지를 이용함으로써, 후술하는 레이저 용접 작업시 레이저로부터 셀(2)을 보호한다.
다음, 대응되는 버스 바(32)가 제1 리드(12)와 실질적으로 동일한 선상에서 제2 리드(14)에 접촉되도록, 각각의 리드 중첩부(16)에 상응하는 다수의 버스 바들(32)이 설치된 센싱 하우징(30)을 카트리지 조립체(20)의 측면에 후크 또는 스냅-핏 형태로 결합시킨다. 이 경우, 전술한 바와 같이, 각각의 버스 바들(32)은 센싱 하우징(30)에 소정 패턴으로 미리 배치되어 있다. 여기서, 제1 리드(12)는 알루미늄으로 제작되고, 제2 리드(14)와 버스 바(32)는 구리로 제작된다.
마지막으로, 각각의 리드 중첩부(16)의 제2 리드(14)와 버스 바(32)를 용접시킨다. 이 단계는 다수의 용접 포인트를 가진 용접 시스템을 사용할 수도 있고, 개별 레이저 용접기를 이용하여 포인트 용접을 수회 수행할 수도 있다. 또한, 제1 리드(12)와 제2 리드(14) 사이는 별도의 레이저 용접기 또는 용접 포인트를 이용하는 것은 당업자가 충분히 이해할 것이다. 또한, 레이저 용접기는 센싱 하우징(30)에 실질적으로 수직인 방향으로 레이저를 주사시키는 것이 바람직하다.
전술한 실시예들에 따른 이차전지 모듈들(100)은 서로 직/병렬 방식으로 전기적으로 연결되어 소정의 케이스에 수납되어 예를 들어, 가정용 광기전(PV) 태양 에너지 패널을 위한 전력저장장치를 위한 컴팩트한 이차전지 팩을 제공할 수 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
본 발명은 이차전지 모듈의 전극 리드 용접 방법 및 이를 이용한 컴팩트한 이차전지 모듈에 관한 것으로서, 특히, 이차전지 모듈의 전극 리드 용접과 관련된 산업에 이용 가능하다.

Claims (20)

  1. 이웃하는 셀의 리드들이 겹쳐지는 다수의 리드 중첩부들이 카트리지 측벽에 미리 결정된 패턴으로 위치되고, 각각의 셀을 수납하면서 적층된 다수의 카트리지들을 포함하는 카트리지 조립체; 및
    각각의 리드 중첩부에 상응하게 위치되어 용접될 수 있는 다수의 버스 바들이 마련되고 카트리지 조립체의 측면에 배치될 수 있는 센싱 하우징을 구비하고;
    각각의 리드 중첩부를 구성하는 셀의 제1 리드는 제1 리드와 반대되는 극성의 제2 리드보다 미리 결정된 폭 보다 짧게 구성되고, 카트리지 조립체에 센싱 하우징이 결합된 상태에서, 대응되는 버스 바는 제1 리드와 실질적으로 동일한 선상에서 제2 리드에 접촉되어 제2 리드와 버스 바가 용접되는 것을 특징으로 하는 컴팩트한 이차전지 모듈.
  2. 청구항 1에 있어서,
    용접 작업시 셀을 보호하기 위해 각각의 카트리지의 측면에 마련된 격벽을 구비하는 것을 특징으로 하는 컴팩트한 이차전지 모듈.
  3. 청구항 1에 있어서,
    각각의 셀의 리드는 상응하는 카트리지에 수납된 상태에서 리드 절연부로부터 대략 1mm 지점에서 직각으로 굴곡되는 것을 특징으로 하는 컴팩트한 이차전지 모듈.
  4. 청구항 1에 있어서,
    상기 용접은 레이저 용접인 것을 특징으로 하는 컴팩트한 이차전지 모듈.
  5. 청구항 4에 있어서,
    상기 레이저의 방향은 센싱 하우징에 실질적으로 수직인 것을 특징으로 하는 컴팩트한 이차전지 모듈.
  6. 청구항 1에 있어서,
    버스 바와 제2 리드는 구리로 제작되고, 제1 리드는 알루미늄으로 제작되는 것을 특징으로 하는 컴팩트한 이차전지 모듈.
  7. 청구항 1에 있어서,
    센싱 하우징은 버스 바에 의해 감지되는 각각의 셀의 전압 및/또는 온도 데이터를 관리하기 위한 BMS 회로 기판을 더 구비하는 것을 특징으로 하는 컴팩트한 이차전지 모듈.
  8. 청구항 7에 있어서,
    센싱 하우징은 카트리지 조립체에 스냅 또는 후크 결합되는 것을 특징으로 하는 컴팩트한 이차전지 모듈.
  9. 청구항 7에 있어서,
    센싱 하우징에 결합되는 센싱 커버를 더 구비하는 것을 특징으로 하는 컴팩트한 이차전지 모듈.
  10. 청구항 9에 있어서,
    센싱 커버는 센싱 하우징에 스냅 또는 후크 결합되는 것을 특징으로 하는 컴팩트한 이차전지 모듈.
  11. 청구항 1에 있어서,
    카트리지 조립체의 이웃하는 2개의 카트리지들은 서로 후크 결합되는 것을 특징으로 하는 컴팩트한 이차전지 모듈.
  12. 청구항 1에 있어서,
    카트리지 조립체는 양단의 카트리지에 각각 후크 결합되는 상부 커버와 하부 커버를 더 구비하는 것을 특징으로 하는 컴팩트한 이차전지 모듈.
  13. (a) 제1 리드의 폭이 제2 리드의 폭 보다 더 짧게 형성된 서로 반대되는 극성의 리드들이 반대 방향으로 굴곡된 다수의 셀들을 준비하는 단계;
    (b) 이웃하는 셀의 반대되는 극성의 리드들이 겹쳐지는 리드 중첩부들이 카트리지 측벽에 미리 결정된 패턴으로 위치되도록 각각의 셀이 수납된 다수의 카트리지들을 적층시켜 카트리지 조립체를 형성하는 단계;
    (c) 대응되는 버스 바가 제1 리드와 실질적으로 동일한 선상에서 제2 리드에 접촉되도록, 각각의 리드 중첩부에 상응하는 다수의 버스 바들이 설치된 센싱 하우징을 카트리지 조립체의 측면에 배치시키는 단계; 및
    (d) 각각의 리드 중첩부의 제2 리드와 버스 바를 용접시키는 단계를 포함하는 것을 특징으로 하는 컴팩트한 이차전지 모듈의 전극 리드 용접 방법.
  14. 청구항 13에 있어서,
    상기 (b) 단계는 제1 리드와 제2 리드가 놓여지는 각각의 측면에 격벽이 마련된 카트리지를 이용하는 것을 특징으로 하는 컴팩트한 이차전지 모듈의 전극 리드 용접 방법.
  15. 청구항 13에 있어서,
    상기 (a) 단계는 상응하는 카트리지에 수납된 상태에서 셀의 리드 절연부로부터 각각의 리드가 대략 1mm 지점에서 직각으로 굴곡되는 것을 특징으로 하는 컴팩트한 이차전지 모듈의 전극 리드 용접 방법.
  16. 청구항 13에 있어서,
    상기 (d) 단계는 레이저 용접기를 이용하는 것을 특징으로 하는 컴팩트한 이차전지 모듈의 전극 리드 용접 방법.
  17. 청구항 16에 있어서,
    레이저 용접기의 레이저 주사 방향은 센싱 하우징에 실질적으로 수직인 것을 특징으로 하는 컴팩트한 이차전지 모듈의 전극 리드 용접 방법.
  18. 청구항 13에 있어서,
    버스 바와 제2 리드는 구리로 제작되고, 제1 리드는 알루미늄으로 제작되는 것을 특징으로 하는 컴팩트한 이차전지 모듈의 전극 리드 용접 방법.
  19. 청구항 13 내지 청구항 18 중 어느 한 항의 방법에 의해 제조된 컴팩트한 이차전지 모듈.
  20. 청구항 19의 컴팩트한 이차전지 모듈을 포함하는 이차전지 팩.
PCT/KR2015/014282 2014-12-24 2015-12-24 이차전지 모듈의 전극 리드 용접 방법 및 이를 이용한 컴팩트한 이차전지 모듈 WO2016105169A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15873696.7A EP3220449A4 (en) 2014-12-24 2015-12-24 Method for welding electrode leads of secondary battery module, and compact secondary battery module for which the method has been used
US15/533,855 US10629881B2 (en) 2014-12-24 2015-12-24 Method for welding electrode leads of secondary battery module and compact secondary battery module using the same
CN201580070618.8A CN107112485B (zh) 2014-12-24 2015-12-24 焊接二次电池模块的电极引线的方法和使用该方法的紧凑二次电池模块
JP2017530003A JP6440002B2 (ja) 2014-12-24 2015-12-24 二次電池モジュールの電極リード溶接方法及びそれを用いたコンパクトな二次電池モジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140188079A KR101817237B1 (ko) 2014-12-24 2014-12-24 이차전지 모듈의 전극 리드 용접 방법 및 이를 이용한 컴팩트한 이차전지 모듈
KR10-2014-0188079 2014-12-24

Publications (1)

Publication Number Publication Date
WO2016105169A1 true WO2016105169A1 (ko) 2016-06-30

Family

ID=56151084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/014282 WO2016105169A1 (ko) 2014-12-24 2015-12-24 이차전지 모듈의 전극 리드 용접 방법 및 이를 이용한 컴팩트한 이차전지 모듈

Country Status (6)

Country Link
US (1) US10629881B2 (ko)
EP (1) EP3220449A4 (ko)
JP (1) JP6440002B2 (ko)
KR (1) KR101817237B1 (ko)
CN (1) CN107112485B (ko)
WO (1) WO2016105169A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180138485A1 (en) * 2015-06-24 2018-05-17 Autonetworks Technologies, Ltd. Wiring module and power storage module
CN109175679A (zh) * 2018-10-29 2019-01-11 武汉逸飞激光智能装备有限公司 焊接系统
KR20190073551A (ko) * 2016-11-07 2019-06-26 가부시키가이샤 인비젼 에이이에스씨 재팬 스페이서, 조전지 및 조전지의 제조 방법
CN110828598A (zh) * 2019-10-30 2020-02-21 江苏朗道新能源有限公司 一种半片叠瓦组件及其制作方法
US11322805B2 (en) * 2017-10-03 2022-05-03 Marelli Corporation Method of manufacturing battery pack and battery pack

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102657330B1 (ko) * 2016-12-14 2024-04-15 현대자동차주식회사 배터리 모듈
US11088410B2 (en) * 2016-12-23 2021-08-10 Sk Innovation Co., Ltd. Battery module
KR102209769B1 (ko) 2017-06-07 2021-01-28 주식회사 엘지화학 배터리 모듈
KR102187067B1 (ko) 2017-08-10 2020-12-04 주식회사 엘지화학 배터리 모듈 및 배터리 모듈의 제조 방법
KR102155888B1 (ko) 2017-09-11 2020-09-14 주식회사 엘지화학 레이저 용접 지그 및 이를 포함하는 레이저 용접 장치
JP6472858B1 (ja) * 2017-10-03 2019-02-20 カルソニックカンセイ株式会社 組電池
KR102198848B1 (ko) 2017-11-16 2021-01-05 주식회사 엘지화학 센싱 어셈블리 및 버스바 어셈블리를 포함하는 배터리 모듈
CN108461802A (zh) * 2018-04-09 2018-08-28 江西恒动新能源有限公司 一种储能模块电芯的摆置结构及摆置方法
KR102313030B1 (ko) * 2018-06-29 2021-10-13 주식회사 엘지에너지솔루션 전극 리드를 버스바에 밀착시키는 자동 가압 지그 장치
KR102258177B1 (ko) * 2018-09-20 2021-05-28 주식회사 엘지에너지솔루션 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
KR102366138B1 (ko) 2018-12-06 2022-02-22 주식회사 엘지에너지솔루션 전지 모듈
CN210129547U (zh) * 2019-06-17 2020-03-06 东莞新能源科技有限公司 电池组件及电化学装置
CN117578035A (zh) * 2019-06-17 2024-02-20 东莞新能安科技有限公司 电池组件及电化学装置
KR20210132397A (ko) * 2020-04-27 2021-11-04 주식회사 엘지에너지솔루션 전지 모듈 및 이를 포함하는 전지팩
KR20220012033A (ko) * 2020-07-22 2022-02-03 주식회사 엘지에너지솔루션 전극 리드와 전압 센싱부재 간의 연결을 단순화한 배터리 모듈 및 이를 포함하는 배터리 팩
CN116368671A (zh) * 2021-02-23 2023-06-30 株式会社 Lg新能源 电池模块及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090093222A (ko) * 2008-02-29 2009-09-02 주식회사 엘지화학 전지모듈의 제조방법 및 중대형 전지팩
KR20100109857A (ko) * 2009-04-01 2010-10-11 주식회사 엘지화학 전압 검출부재 및 이를 포함하는 전지모듈
KR20130076499A (ko) * 2011-12-28 2013-07-08 에이치엘그린파워 주식회사 배터리모듈의 하우징 구조
KR20130108691A (ko) * 2012-03-26 2013-10-07 주식회사 엘지화학 신규한 구조의 전지모듈 어셈블리
JP2014238938A (ja) * 2013-06-06 2014-12-18 株式会社オートネットワーク技術研究所 蓄電モジュール

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100876458B1 (ko) * 2004-12-24 2008-12-29 주식회사 엘지화학 신규한 구조의 전지 카트리지와 그것을 포함하고 있는개방형 전지 모듈
KR101924193B1 (ko) * 2012-06-20 2018-12-03 에스케이이노베이션 주식회사 배터리 모듈 용접 방법 및 용접구조
KR20140056836A (ko) 2012-11-01 2014-05-12 주식회사 엘지화학 전지모듈 및 이를 포함하는 전지팩

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090093222A (ko) * 2008-02-29 2009-09-02 주식회사 엘지화학 전지모듈의 제조방법 및 중대형 전지팩
KR20100109857A (ko) * 2009-04-01 2010-10-11 주식회사 엘지화학 전압 검출부재 및 이를 포함하는 전지모듈
KR20130076499A (ko) * 2011-12-28 2013-07-08 에이치엘그린파워 주식회사 배터리모듈의 하우징 구조
KR20130108691A (ko) * 2012-03-26 2013-10-07 주식회사 엘지화학 신규한 구조의 전지모듈 어셈블리
JP2014238938A (ja) * 2013-06-06 2014-12-18 株式会社オートネットワーク技術研究所 蓄電モジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3220449A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180138485A1 (en) * 2015-06-24 2018-05-17 Autonetworks Technologies, Ltd. Wiring module and power storage module
KR20190073551A (ko) * 2016-11-07 2019-06-26 가부시키가이샤 인비젼 에이이에스씨 재팬 스페이서, 조전지 및 조전지의 제조 방법
CN110192293A (zh) * 2016-11-07 2019-08-30 远景Aesc日本有限公司 间隔件、组电池以及组电池的制造方法
EP3537509A4 (en) * 2016-11-07 2019-10-23 Envision AESC Japan Ltd. SPACER, COMPOSITE BATTERY AND METHOD FOR PRODUCING THE COMPOSED BATTERY
KR102124735B1 (ko) * 2016-11-07 2020-06-18 가부시키가이샤 인비젼 에이이에스씨 재팬 스페이서, 조전지 및 조전지의 제조 방법
US11128006B2 (en) 2016-11-07 2021-09-21 Envision Aesc Japan Ltd. Spacer, battery pack, and method for manufacturing battery pack
US11322805B2 (en) * 2017-10-03 2022-05-03 Marelli Corporation Method of manufacturing battery pack and battery pack
CN109175679A (zh) * 2018-10-29 2019-01-11 武汉逸飞激光智能装备有限公司 焊接系统
CN110828598A (zh) * 2019-10-30 2020-02-21 江苏朗道新能源有限公司 一种半片叠瓦组件及其制作方法
CN110828598B (zh) * 2019-10-30 2024-03-08 江苏朗道新能源有限公司 一种半片叠瓦组件及其制作方法

Also Published As

Publication number Publication date
KR20160077765A (ko) 2016-07-04
US20170331097A1 (en) 2017-11-16
KR101817237B1 (ko) 2018-01-11
CN107112485B (zh) 2020-04-28
JP2017539061A (ja) 2017-12-28
US10629881B2 (en) 2020-04-21
JP6440002B2 (ja) 2018-12-19
CN107112485A (zh) 2017-08-29
EP3220449A4 (en) 2018-08-01
EP3220449A1 (en) 2017-09-20

Similar Documents

Publication Publication Date Title
WO2016105169A1 (ko) 이차전지 모듈의 전극 리드 용접 방법 및 이를 이용한 컴팩트한 이차전지 모듈
WO2016105168A1 (ko) 이차전지 모듈의 전극 리드 용접 방법 및 이를 이용한 컴팩트한 이차전지 모듈
WO2013168948A1 (ko) 비정형 구조의 전지셀 및 이를 포함하는 전지모듈
WO2016105013A1 (ko) Bms 통합형 컴팩트 이차전지 모듈
WO2017073908A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2014137112A1 (ko) 단차 구조를 포함하는 전지셀
WO2014123329A1 (ko) 단차 구조를 포함하는 전지셀
WO2014073808A1 (ko) 버스 바 어셈블리를 포함하는 전지모듈 및 이를 포함하는 전지팩
WO2014126358A1 (ko) 엇갈린 배열 구조의 전극조립체를 포함하는 전지셀
WO2020204407A1 (ko) 이차 전지용 전지 케이스 및 파우치 형 이차 전지
WO2012033313A2 (ko) 고출력 대용량의 전지팩
WO2013168980A1 (ko) 비정형 구조의 전지팩
WO2015141920A1 (ko) 비대칭 구조 및 만입 구조를 포함하는 전지셀
WO2018216873A1 (ko) 배터리 모듈, 이를 포함하는 배터리 팩 및 배터리 모듈 생산 방법
WO2019031702A1 (ko) 배터리 셀 프레임 및 이를 포함하는 배터리 모듈
WO2016126144A1 (ko) 컴팩트 이차전지 모듈 및 이를 이용한 이차전지 팩
WO2021038545A1 (ko) 파우치 형 전지 케이스 및 파우치 형 이차 전지
WO2021071120A1 (ko) 쇼트 방지 및 충격 보호 구조가 강화된 배터리 팩
WO2014003443A1 (ko) 배터리 모듈
WO2015037813A2 (ko) 파우치형 케이스, 전지셀 및 전지셀의 제조방법
KR20200056715A (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2018038448A1 (ko) 전극 조립체 및 이를 포함하는 이차 전지
WO2020166803A1 (ko) 이차 전지 및 전지 모듈
WO2021075690A1 (ko) 전지 모듈
WO2020242034A1 (ko) 이차 전지용 전지 케이스 및 파우치 형 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873696

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017530003

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15533855

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015873696

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE