WO2016104424A1 - 改変シアノバクテリア - Google Patents
改変シアノバクテリア Download PDFInfo
- Publication number
- WO2016104424A1 WO2016104424A1 PCT/JP2015/085669 JP2015085669W WO2016104424A1 WO 2016104424 A1 WO2016104424 A1 WO 2016104424A1 JP 2015085669 W JP2015085669 W JP 2015085669W WO 2016104424 A1 WO2016104424 A1 WO 2016104424A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acyl
- gene encoding
- cyanobacteria
- gene
- acp
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/64—Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
- C12P7/6409—Fatty acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/102—Mutagenizing nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/18—Carboxylic ester hydrolases (3.1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/93—Ligases (6)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y301/00—Hydrolases acting on ester bonds (3.1)
- C12Y301/02—Thioester hydrolases (3.1.2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y301/00—Hydrolases acting on ester bonds (3.1)
- C12Y301/02—Thioester hydrolases (3.1.2)
- C12Y301/02014—Oleoyl-[acyl-carrier-protein] hydrolase (3.1.2.14), i.e. ACP-thioesterase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y602/00—Ligases forming carbon-sulfur bonds (6.2)
- C12Y602/01—Acid-Thiol Ligases (6.2.1)
- C12Y602/0102—Long-chain-fatty-acid--[acyl-carrier-protein] ligase (6.2.1.20)
Definitions
- the present invention relates to a modified cyanobacteria having improved fatty acid secretion productivity.
- next-generation energy production technology that does not rely on fossil fuels.
- biofuel production research using photosynthetic organisms such as cyanobacteria and algae attracts attention.
- the photosynthetic organisms can produce biofuels using carbon fixed by photosynthesis from CO 2 and water using light as an energy source.
- the photosynthetic organisms are expected as next-generation energy production systems because they do not compete with food raw materials and can produce carbon-neutral fuels.
- Cyanobacteria are a group of eubacteria called cyanobacteria and have the ability to produce oxygen by photosynthesis and immobilize CO 2 . Cyanobacteria have an outer membrane and peptidoglycan cell wall and fall within the category of gram-negative bacteria, but are systematically separated from typical gram-negative bacteria. Cyanobacteria are considered to be the origin of chloroplasts because they were symbiotic in cells (primary symbiosis) with eukaryotes billions of years ago. Widely used.
- Cyanobacteria are fast growing, have high photosynthetic ability, and also have transformation ability, and can be used for microbiological substance production by introducing foreign DNA into cells. It has attracted attention as a production host.
- Examples of biofuel production using cyanobacteria include hydrogen (Non-Patent Document 1), ethanol (Non-Patent Document 2), isobutanol (Non-Patent Document 3), and fatty acids (Non-Patent Document 4).
- Non-Patent Document 4 and Patent Document 1 describe a method for converting inorganic carbon to a fatty acid by culturing a recombinant cyanobacteria producing exogenous acyl-ACP thioesterase.
- Patent Document 1 Japanese Patent Publication No. 2011-505838 (Non-Patent Document 1) Yoshino F. et al. (2007) Mar. Biotechnol. 9: 101-112 (Non-Patent Document 2) Deng M. D. and Coleman J. R. (1999) Appl. Environ. Microbiol. 65: 523-528 (Non-Patent Document 3) Atsumi S. et al. (2009) Nat. Biotechnol. 27: 1177-1180 (Non-Patent Document 4) Liu X. et al. (2011) Proc. Natl. Acad. Sci. USA. 108: 6899-6904
- the present invention provides a method for producing a modified cyanobacteria comprising the loss of function of a LexA type transcription regulator in cyanobacteria and an acyl-ACP synthetase.
- the present invention provides a method for improving the fatty acid secretion productivity of cyanobacteria, which comprises causing loss of function of a LexA type transcription regulator in cyanobacteria and acyl-ACP synthetase.
- the present invention provides a modified cyanobacteria in which the functions of LexA transcription regulator and acyl-ACP synthetase are lost.
- the present invention provides a method for producing fatty acids, comprising culturing the modified cyanobacteria or the modified cyanobacteria produced by the method.
- nucleotide and amino acid sequence identity is calculated by the Lipman-Pearson method (Science, 1985, 227: 1435-1441). Specifically, it is calculated by performing an analysis with a unit size to compare (ktup) of 2, using a homology analysis (Search homology) program of genetic information processing software Genetyx-Win.
- loss of a function is a concept including partial loss of the function (that is, reduction, suppression or partial inhibition of the function) and complete loss of the function.
- the “loss of function of a LexA type transcriptional regulatory factor” may be a decrease in the transcriptional regulatory function of the factor.
- “loss of function of acyl-ACP synthetase” may be a decrease in acyl-ACP synthesis activity of the enzyme or a complete loss of acyl-ACP synthesis activity of the enzyme.
- “loss of function of LexA type transcriptional regulatory factor or acyl-ACP synthetase in cyanobacteria” means LexA type transcriptional regulatory function or acyl-ACP synthesis activity in cyanobacteria by reducing the expression level of the factor or the enzyme Or the gene encoding the factor or the enzyme may be deleted.
- Cyanobacteria also called cyanobacteria, is a group of prokaryotes that perform photosynthesis using chlorophyll. Cyanobacteria are rich in diversity. Even if only the shape of the cells is observed, unicellular ones such as Synechocystis sp. PCC 6803 and Anabena sp. sp.) As in PCC7120, there are filamentous ones in which many cells are connected in a string, or spiral or branched ones. The growth environment is also thermophilic, such as Thermosychococcus elongatas BP-1, isolated from Beppu Onsen, Synechococcus sp. CC9311, which is marine and lives in the coastal area.
- thermophilic such as Thermosychococcus elongatas BP-1, isolated from Beppu Onsen, Synechococcus sp. CC9311, which is marine and lives in the coastal area.
- Species adapted to various conditions such as Synechococcus sp. WH8102 inhabiting the open ocean can be seen.
- species with unique characteristics there are those that can produce toxins with gas vesicles, such as Microcystis aeruginosa, and phycobilisomes that do not have thylakoids and are collecting antennas.
- Gloeobacter violaceus PCC7421 bound to the plasma membrane, or marine red chlorophyll d as the main (> 95%) photosynthetic pigment instead of chlorophyll a as in common photosynthetic organisms Another example is Rio Chloris marina.
- cyanobacteria carbon dioxide fixed by photosynthesis is converted to acetyl-CoA through a number of enzymatic reaction processes.
- the first step in fatty acid synthesis is the synthesis of malonyl-CoA from acetyl-CoA and CO 2 by the action of acetyl-CoA carboxylase.
- malonyl-CoA is converted to malonyl-ACP by the action of malonyl CoA: ACP transacylase.
- fatty acid synthetase or acyl-ACP synthetase
- continuous addition of two carbon units occurs, and acyl-ACP with two carbon increments is synthesized, and as a synthetic intermediate for membrane fatty acids and the like Used.
- LexA transcription factor
- LexA transcription factor
- LexA transcription factor
- pfam01726 DNA binding domain having a helical turn helix structure on the N-terminal side and a C-terminal side. It is a protein characterized by having a Peptidase_S24-like sequence (pfam00717), and is known as a transcription factor that plays an important role in the control of gene expression.
- LexA type transcription factors are widely distributed in gram positive and gram negative bacteria. For example, in E.
- LexA recognizes and binds to the SOS-box sequence (TACTGTATATATATACAGTA; SEQ ID NO: 23), and suppresses transcription of genes related to DNA repair and cell division control belonging to the SOS regulon. That is, when the genomic DNA is damaged, LexA itself is degraded by self-protease activity, and its DNA binding ability is inactivated, so that the suppression of the gene group by LexA is released. As a result, the SOS regulon gene is It is reported that activation of DNA repair ability and induction of mutation occur (Friedberg, EC et al., DNA Repair and Mutagenesis, American Society of Microbiology Press, 2005, 463-508). .
- LexA is conserved in many species of cyanobacteria.
- Information on LexA-bearing Cyanobacteria species or LexA possessed by individual Cyanobacteria species is, for example, CyanoBase ([genome.microbedb.jp/cyanobase/]) or NCBI database ([www.ncbi.nlm.nih.gov]. / Genome /] or [www.ncbi.nlm.nih.gov/protein/]).
- CyanoBase [genome.microbedb.jp/cyanobase/]
- NCBI database [www.ncbi.nlm.nih.gov]. / Genome /] or [www.ncbi.nlm.nih.gov/protein/].
- Synechocystis sp. PCC6803 belonging to the genus Synecocystis described above has the slll26 gene as a gene encoding LexA.
- Prochlorococcus genes P9303-19141 and PMT0380 Acariochloris genes AM1_3948
- Cyanoseis genes cce_1899, cce_5074, and Alcena90 Both are genes encoding LexA.
- the cyanobacterial LexA may have a function different from that of LexA such as E. coli.
- LexA such as E. coli.
- the sll1626 gene encoding LexA of Synechocystis sp. PCC 6803 is known to be a growth essential gene, but the protein encoded by it is different from LexA such as E. coli, and the SOS regulon such as DNA repair. It has been reported that it is not involved in expression control (Mol Microbiol, 2004, 53 (1): 65-80).
- PCC6803 has been reported to promote the expression of a hox operon (hoxEFUYH) encoding a bidirectional hydrogenase involved in hydrogen generation under light irradiation conditions (Mol Microbiol, 2005, 58). (3): 810-823).
- hoxEFUYH hox operon
- PCC6803 a gene encoding LexA itself and redox-sensitive RNA helicase, crhR (Nucleic Acids Res, 2006, 34 (12): 3446-354) are reported.
- crhR Nucleic Acids Res, 2006, 34 (12): 3446-354
- PCC6803 for example, a sequence containing 12 bases of “CTA-N9-CTA” has been reported (FEBS Lett, 2008, 582 (16): 2424-30).
- LexA of Anavena sp. PCC7120 promotes the expression of bidirectional hydrogenase and recognizes the pseudopalindromic sequence RGTACNNNDGTWCB (SEQ ID NO: 24) as in the case of PCC6803 (Mol Genet). Genomics, 2004, 271 (1): 40-9).
- a 14-bp palindromic sequence represented by AGTACWNWTGTACT SEQ ID NO: 25
- AGTACWNWTGTACT SEQ ID NO: 25
- a polypeptide has a structure and function as a LexA type transcriptional regulator" means that the polypeptide has an N-terminal helix turn helix that functions as the DNA binding domain and a C-terminal side helix turn helix. It has a structure containing the Peptidase_S24-like sequence and has a function of controlling gene transcription.
- cyanobacterial genes and proteins are disclosed, for example, in the above-mentioned CyanoBase and NCBI databases.
- a person skilled in the art obtains the amino acid sequence of the target cyanobacterial protein (for example, LexA type transcription regulator or acyl-ACP synthetase) or the nucleotide sequence of the gene encoding them based on the information in these databases. Can do.
- the present inventor has found that a modified cyanobacteria obtained by dying the function of a LexA transcription factor and acyl-ACP synthetase in a cyanobacteria, or by further introducing a gene encoding an acyl-ACP thioesterase In addition, it was found that the amount of fatty acid secretion produced per culture medium or per cell of the cyanobacteria increased.
- a modified cyanobacteria with improved fatty acid secretion productivity can be produced. If the modified cyanobacteria of the present invention are cultured, efficient microbiological fatty acid production becomes possible.
- the present invention provides a modified cyanobacteria with improved fatty acid secretion productivity.
- the modified cyanobacteria of the present invention is a cyanobacteria modified to cause loss of function of its LexA transcription factor and acyl-ACP synthetase.
- cyanobacteria (hereinafter sometimes referred to as parent cyanobacteria) that are the parental microorganisms of the modified cyanobacteria of the present invention before the loss-of-function modification of the LexA type transcription regulator and acyl-ACP synthetase. , All kinds of things.
- examples of parental cyanobacteria include Synechocystis, Synechococcus, Prochlorococcus, Acaryochloris, Cyanothesa and Anabethes, And more preferably, cyanobacteria belonging to the genus Synechocystis, Synechococcus, and Anabaena, and more preferably, Synechocystis sp. PCC6803, Synecocystis SP PCC7509, Shineneko Stiss SPPCC 6714, Synecococcus sp. PCC7002, Synecococcus sp. WH8102, Prochlorococcus sp.
- PCC7120 can be mentioned, and even more preferably, Synecocystis sp. PCC 6803, Synecocystis sp. PCC6714, and Synecocystis sp. PCC 7509 can be mentioned, and Synecocystis sp.
- LexA transcription factor of the parent cyanobacteria The amino acid sequence of the LexA transcription factor of the parent cyanobacteria, the gene encoding it, the position of the gene on the genome or plasmid, and its nucleotide sequence can be confirmed by the above-mentioned CyanoBase and NCBI databases.
- preferable examples of LexA type transcriptional regulators whose functions are lost from the parent cyanobacteria in the present invention include the following genes: sll1626 of Synecocystis sp. PCC6803, SYNPCC7002_A1849 of Synecococcus sp.
- acyl-ACP synthetase that loses its function from the parent cyanobacteria in the present invention include Slr1609 of Synechocystis sp. PCC6803, SYNPCC7002_A0675 of Synecococcus sp.
- the acyl-ACP synthetase whose function is lost in the present invention includes any one of the amino acid sequences of the acyl-ACP synthetase proteins exemplified above, 40% or more, preferably 50% or more, more preferably 60% or more, More preferably 70% or more, still more preferably 80% or more, still more preferably 90% or more, still more preferably 95% or more of an amino acid sequence having a function of synthesizing acyl-ACP.
- Peptides can be mentioned.
- the means for loss of function of LexA transcription regulator or acyl-ACP synthetase in cyanobacteria is not particularly limited as long as it is a means commonly used for loss of protein function.
- it encodes LexA or acyl-ACP synthetase.
- Deleting or inactivating a gene introducing a mutation that reduces or inactivates the expressed protein into the gene, introducing a mutation that inhibits transcription of the gene, transcription of the gene Examples include inhibiting the translation of the product, or administering an inhibitor that specifically inhibits the expressed protein of interest.
- examples of a gene encoding a LexA transcription factor to be deleted or inactivated in order to cause loss of function of the LexA transcription factor include sll1626 of Synecocystis sp. PCC6803, Synecocystis sp. SYNPCC7002_A1849 of PCC7002, SYNW1582 of Synecococcus sp.WH8102, P9303-19141 of Prochlorococcus sp. PCC8801 PCC8801 2186, and the like alr4908 and all3272 of Anabaena sp. PCC7120.
- genes and their nucleotide sequences can be confirmed on the above-mentioned CyanoBase or NCBI database.
- a polynucleotide encoding Sll1626 of Synechocystis sp. PCC6803 is the sll1626 gene (NCBI Gene ID: 954404), and a polynucleotide encoding SYNEPCC sp. Can be identified.
- the nucleotide sequence of any of these genes is 40% or more, preferably 50% or more, more preferably 60% or more, still more preferably 70% or more, even more preferably 80% or more, still more preferably 90%.
- nucleotide sequence encodes a polypeptide having a structure and function as a LexA type transcription control factor
- Polynucleotides can also be mentioned as examples of genes encoding LexA transcriptional regulators to be deleted or inactivated in the present invention.
- preferable examples of the gene encoding the LexA transcription factor to be deleted or inactivated include sll1626 gene and the nucleotide sequence of sll1626 gene and 80% or more, preferably 90% or more, more preferably 95 %, More preferably 98% or more, more preferably 99% or more, and a polynucleotide encoding a polypeptide having a structure and function as a LexA type transcriptional regulator.
- genes encoding acyl-ACP synthetase to be deleted or inactivated for loss of function in the present invention include the following proteins: S1r1609 of Synecocystis sp. PCC6803, SYNPCC 7002_A0675 of Synecococcus sp. Synecoccus sp. WH8102 SYNW0669, Prochlorococcus sp. Or Alr3602 of Anabaena sp PCC7120, polynucleotides and the like encoding. These genes and their nucleotide sequences can be confirmed on the above-mentioned CyanoBase or NCBI database.
- a polynucleotide encoding Slr1609 of Synechocystis sp. PCC6803 is the slr1609 gene (NCBI Gene ID: 953643), and a polynucleotide encoding SYNEPCC7002_A0675 gene of Synecocus sp.
- a polynucleotide encoding SYNW0669 of Synecococcus sp. WH8102 can be identified as SYNW0669 gene (NCBI-Gene ID: 1730682), and a polynucleotide encoding Alr3602 of Anavena sp. PCC7120 can be identified as alr3602.
- nucleotide sequence of any of these genes is 40% or more, preferably 50% or more, more preferably 60% or more, still more preferably 70% or more, even more preferably 80% or more, still more preferably 90%. More preferably, a polynucleotide encoding a polypeptide comprising a nucleotide sequence having an identity of 95% or more, preferably 98% or more, more preferably 99% or more, and having a function of synthesizing acyl-ACP. Further, examples of the gene encoding acyl-ACP synthetase to be deleted or inactivated in the present invention can be mentioned.
- Preferred examples of the gene encoding the acyl-ACP synthetase to be deleted or inactivated in the present invention include a nucleotide sequence of the slr1609 gene, SYNPCC7002_A0675 gene, and slr1609 gene or SYNPCC7002_A0675 gene of 80% or more, preferably 90% or more. More preferably 95% or more, further preferably 98% or more, more preferably 99% or more, and a polynucleotide encoding a polypeptide having a function of synthesizing acyl-ACP. A more preferred example is the slr1609 gene.
- Means for deleting or inactivating the gene include mutagenesis for one or more nucleotides on the nucleotide sequence of the gene, substitution or insertion of another nucleotide sequence for the nucleotide sequence, or sequence of the gene Deletion of a part or all of.
- the mutation may be introduced into the gene so that the mutation occurs at a site involved in the activity of the protein encoded by the gene.
- means for introducing a mutation that inhibits transcription of the gene include mutagenesis in the promoter region of the gene, and inactivation of the promoter by substitution or insertion with another nucleotide sequence.
- mutagenesis and nucleotide sequence substitution or insertion include ultraviolet irradiation, site-directed mutagenesis, homologous recombination method, SOE (splicing by overlap extension) -PCR method (Gene, 1989). , 77: 61-68).
- SOE splicing by overlap extension
- RNA interference by microRNA examples include RNA interference by microRNA.
- Specific inhibitors of proteins include antibodies specific for the protein and its receptor or ligand.
- the modified cyanobacteria of the present invention may be further introduced with a heterologous gene encoding acyl-ACP thioesterase in addition to the above-described modification.
- the modified cyanobacteria in a preferred embodiment of the present invention is a cyanobacteria in which the function of LexA transcriptional regulator and acyl-ACP synthetase is lost, and further possesses a heterologous gene encoding acyl-ACP thioesterase.
- Acyl-ACP thioesterase is an enzyme that liberates fatty acid chains from acyl-ACP in the fatty acid synthesis pathway.
- Non-patent Document 4 It has been reported that by introducing acyl-ACP thioesterase into cyanobacteria, fatty acids are cut out from acyl-ACP produced by fatty acid synthesis to produce free fatty acids.
- Non-patent Document 4 In order to efficiently secrete free fatty acids produced by the action of acyl-ACP thioesterase in cyanobacteria, it has been reported that it is effective to lose the function of the endogenous acyl-ACP synthetase gene. (Plant Physiol, 2010, 152: 1598-1610).
- the production of fatty acids in the cells is promoted, and the secretion of fatty acids of the modified cyanobacteria is increased. This can be further improved.
- Examples of the gene encoding the acyl-ACP thioesterase to be introduced into the modified cyanobacteria of the present invention include those isolated from plants containing a large amount of medium chain fatty acids in seed oil or fatty acid-producing algae. it can.
- the following plants or algae Arabidopsis thaliana; Bradyrhizobium japonicum; Brassica napus; Cuphea hookeliana; Cuphea lanceolata; Qufea pulse Tris; Coriander sativum L .; Safflower (Carthamus tinctor lye) Guinea oil palm (Elaeis guineensis); cotton (Gossypium hirsutum); mangosteen (Garcinia mangistana); (Triticum aestivum); American elm (Ulmus Americana); Cinnamon (Cinnamum camphorum); Cocos (Cocos nucifera); or Umbrellaia californica (Umbulararia californica) Genes encoding sill -ACP thioesterase the like.
- a gene encoding an acyl-ACP thioesterase of Escherichia coli can be introduced into the modified cyanobacteria of the present invention.
- the heterologous gene encoding the acyl-ACP thioesterase of the present invention is preferably a gene encoding acyl-ACP thioesterase (NCBI database GI: 595955) derived from Umberlararia californica, cinnamon acyl-ACP thioesterase ( GI: AAC49151.1) gene, coco acyl-ACP thioesterase (GI: AEM72521.1) gene, or E. coli acyl-ACP thioesterase (GI: AAC 73596.1) gene is there.
- a gene encoding an acyl-ACP thioesterase derived from the plant, algae, or E. coli can be identified on the NCBI database.
- an acyl-ACP thioesterase (UcTE) gene derived from Umberlararia californica is registered as GenBank ID: U17097 in the NCBI database.
- genes encoding cinnamon and coco acyl-ACP thioesterase are registered as GenBank ID: U31813 and GenBank ID: JF338905, respectively.
- E.I The gene encoding the acyl-ACP thioesterase of E. coli K-12 strain is registered as NCBI Gene ID: 945127.
- acyl-ACP thioesterase gene to be introduced into cyanobacteria include a gene encoding an acyl-ACP thioesterase UcTE derived from Umbrella californica comprising the amino acid sequence represented by SEQ ID NO: 1, and SEQ ID NO:
- the amino acid sequence of UcTE represented by 1 is 80% or more, preferably 90% or more, more preferably 95% or more, still more preferably 98% or more, still more preferably 99% or more, and Examples thereof include a gene encoding a polypeptide having a function of releasing a fatty acid chain from acyl-ACP.
- Acyl-ACP thioesterase has specificity for the fatty acid chain length and the degree of unsaturation of acyl-ACP as a substrate (US Pat. No. 5,298,421, Planta, 1993, 189: 425-432). Therefore, by changing the type of acyl ACP thioesterase to be introduced, it is possible to cause cyanobacteria to produce free fatty acids having a desired chain length and degree of unsaturation.
- the above-mentioned acyl-ACP thioesterase (UcTE) derived from umbellaria californica has substrate specificity for the C12 chain length acyl group, and the free fatty acid produced is mainly C12 such as lauric acid (C12: 0).
- the above-mentioned cinnamon and coco acyl-ACP thioesterases have substrate specificity for C14 chain length acyl groups, and the free fatty acids produced are mainly C14 chain lengths such as myristic acid (C14: 0). It is a free fatty acid.
- coli K-12 strain acyl-ACP thioesterase has substrate specificity for C16 or C18 chain length acyl groups, and the free fatty acids produced are mainly palmitic acid (C16: 0) and palmitoleic acid (C16: 1 ), Stearic acid (C18: 0), oleic acid (C18: 1), linoleic acid (C18: 2), linolenic acid (C18: 3) and other free fatty acids having a C16 or C18 chain length.
- the codon is preferably optimized in accordance with the codon usage in the cyanobacteria.
- Information on codons used by various organisms can be obtained from Codon Usage Database ([www.kazusa.or.jp/codon/]).
- Examples of an acyl-ACP thioesterase gene that is codon-optimized for cyanobacteria include a polynucleotide encoding UcTE (SEQ ID NO: 1) consisting of the nucleotide sequence shown in SEQ ID NO: 2, or shown in SEQ ID NO: 2 A nucleotide sequence having 80% or more, preferably 90% or more, more preferably 95% or more, more preferably 98% or more, still more preferably 99% or more identity with the nucleotide sequence, and acyl-ACP to fatty acid chain And a polynucleotide encoding a polypeptide having a function of releasing.
- SEQ ID NO: 1 consisting of the nucleotide sequence shown in SEQ ID NO: 2, or shown in SEQ ID NO: 2
- a vector such as a plasmid vector
- the vector is preferably an expression vector.
- an expression vector containing a DNA fragment of a heterologous acyl-ACP thioesterase gene and a promoter for expressing it is constructed.
- a promoter As a promoter, a lac, tac or trc promoter, a promoter related to a derivative inducible by addition of isopropyl ⁇ -D-1-thiogalactopyranoside (IPTG), or a Rubisco operon (rbc), encoding a PSI reaction center protein A promoter isolated from cyanobacteria involved in the expression of the gene (psaAB) or the gene encoding the PSII reaction center D1 protein (psbA) can be used, but is not limited thereto and functions in cyanobacteria A variety of promoters can be used.
- the expression vector further incorporates a marker gene (for example, a resistance gene for a drug such as kanamycin, chloramphenicol, spectinomycin, erythromycin) for selecting a host into which the vector has been appropriately introduced. May be.
- a marker gene for example, a resistance gene for a drug such as kanamycin, chloramphenicol, spectinomycin, erythromycin
- the expression vector is introduced into the parent cyanobacteria or the modified cyanobacteria of the present invention by a known means and transformed.
- a method for introducing a vector into cyanobacteria general methods such as natural transformation, electroporation, and conjugation can be used. If the transformed cyanobacteria are cultured in a selective medium, for example, an antibiotic-containing medium, a transformant having a desired trait can be selected.
- the heterologous acyl-ACP thioesterase gene is introduced into a region of the endogenous acyl-ACP synthetase gene on the cyanobacterial genome, causing loss of function of the acyl-ACP synthetase in the cyanobacteria and heterologous acyl- It confers the ability to express ACP thioesterase.
- a DNA fragment of a heterologous acyl-ACP thioesterase gene having a DNA fragment of the acyl-ACP synthetase gene region added to both ends is constructed.
- a modified cyanobacteria into which a gene has been introduced can be obtained.
- the heterologous acyl-ACP thioesterase gene may be introduced into a region (neutral site) on the genome of cyanobacteria that does not harm cyanobacteria even if gene transfer is performed.
- the modified cyanobacteria of the present invention can be produced by the above procedure.
- the modified cyanobacteria of the present invention has improved fatty acid secretion productivity. Therefore, if the modified cyanobacteria of the present invention are cultured under appropriate conditions and then the secreted fatty acid is recovered, efficient microbiological fatty acid production can be carried out.
- Examples of fatty acids secreted and produced by cyanobacteria by the fatty acid production method of the present invention include various free fatty acids, and may be free fatty acids containing abundant lauric acid (C12: 0).
- Cyanobacteria culture can be generally performed based on liquid culture using BG-11 medium (J Gen Microbiol, 1979, 111: 1-61) or a modification thereof.
- the culture period for fatty acid production may be carried out so that the fatty acid accumulates at a high concentration under the condition that the cells are sufficiently grown, for example, 7 to 45 days, preferably 10 to 30 days, more preferably 14 It is preferable to culture by aeration or shaking for 21 days.
- cyanobacteria produce fatty acids and secrete the fatty acids into the culture.
- solids such as cells are removed from the culture by filtration, centrifugation, etc., and the remaining liquid components are recovered, followed by chloroform / methanol extraction, hexane extraction, ethanol extraction, etc.
- the fatty acid may be recovered or purified by the above.
- oil is recovered from the culture after removing the cells by compression or extraction, and then subjected to general purification such as degumming, deoxidation, decolorization, dewaxing, deodorization, etc. Can be obtained.
- the method for producing fatty acid according to the present invention since the fatty acid is secreted outside the cells of cyanobacteria, it is not necessary to destroy the cells for collecting the fatty acid. Cells remaining after fatty acid recovery can be used repeatedly for fatty acid production.
- Fatty acids obtained by the fatty acid production method using the modified cyanobacteria of the present invention can be used for food, emulsifiers incorporated into cosmetics, detergents such as soaps and detergents, fiber treatment agents, hair rinse agents, or It can be used as a raw material for fungicides and preservatives.
- ⁇ 1> A method for producing a modified cyanobacteria comprising dying functions of a LexA type transcription regulator and an acyl-ACP synthetase in cyanobacteria.
- ⁇ 2> A method for improving the fatty acid secretion productivity of cyanobacteria, which comprises losing the function of a LexA transcription factor and acyl-ACP synthetase in cyanobacteria.
- ⁇ 3> A modified cyanobacteria in which the functions of LexA transcription regulator and acyl-ACP synthetase are lost.
- ⁇ 4> The method according to ⁇ 1>, preferably comprising deleting or inactivating a gene encoding a LexA transcription factor in cyanobacteria and a gene encoding acyl-ACP synthetase.
- ⁇ 5> The method according to ⁇ 2>, preferably comprising deleting or inactivating a gene encoding a LexA transcription factor in cyanobacteria and a gene encoding acyl-ACP synthetase.
- the modified cyanobacteria according to ⁇ 3> wherein a gene encoding a LexA transcription factor and a gene encoding acyl-ACP synthetase are deleted or inactivated.
- ⁇ 7> Preferably, the method according to ⁇ 1> or ⁇ 4>, further comprising introducing a heterologous gene encoding acyl-ACP thioesterase.
- ⁇ 8> The method according to ⁇ 2> or ⁇ 5>, preferably further comprising introducing a heterologous gene encoding acyl-ACP thioesterase.
- the modified cyanobacteria according to ⁇ 3> or ⁇ 6> comprising a heterologous gene encoding acyl-ACP thioesterase.
- the gene encoding the LexA transcription factor is selected from the following: (1) a gene selected from the group consisting of sll1626, SYNPCC7002_A1849, SYNW1582, P9303-19141, PMT0380, AM1_3948, cce_1899, cce_5074, PCC8801_2186, allr4908, and all3272; and (2) any of the genes shown in (1) above Nucleotide sequence and 40% or more, preferably 50% or more, more preferably 60% or more, more preferably 70% or more, even more preferably 80% or more, still more preferably 90% or more, still more preferably 95% or more, Preferably, a polypeptide comprising a nucleotide sequence having an identity of 98% or more, more preferably 99% or more, and having a structure and a function as a LexA type transcriptional regulator is copied.
- Polynucleotideotide sequence having an identity of 98% or more, more preferably 99% or more, and
- the gene encoding the acyl-ACP synthetase is selected from the following: (1) a polynucleotide encoding a protein selected from the group consisting of Slr1609, SYNPCC7002_A0675, SYNW0669, P9303-21391, PMT0215, AM1_5562, AM1_2147, CCE_1133, PCC8801-0332, and Alr3602; and (2) the polynucleotide represented by (1) above 40% or more, preferably 50% or more, more preferably 60% or more, still more preferably 70% or more, even more preferably 80% or more, still more preferably 90% or more, still more preferably Polynucleotide having a nucleotide sequence having an identity of 95% or more, preferably 98% or more, more preferably 99% or more and having a function of synthesizing acyl-ACP Polynu
- the heterologous gene encoding the acyl-ACP thioesterase is selected from the following: (1) a gene encoding a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 1, and (2) 80% or more, preferably 90% or more, more preferably 95% or more, with the amino acid sequence represented by SEQ ID NO: 1.
- the heterologous gene encoding the acyl-ACP thioesterase is an cinnamon (Cinnamum camphorum) or coconut (Cocos nucifera) acyl-ACP thioesterase. Is a gene encoding
- the heterologous gene encoding the acyl-ACP thioesterase encodes an acyl-ACP thioesterase of Escherichia coli K-12 It is a gene.
- the heterologous gene encoding the acyl-ACP thioesterase encodes the acyl-ACP synthetase in the genome sequence of the cyanobacteria It is introduced into the region of the gene or introduced into the neutral site.
- the cyanobacteria are:
- the genus is Synechocystis, Synechococcus, Prochlorococcus, Acaryochloris, Cyanothece, or Anabaena. More preferably, Synecocystis sp. PCC6803, Synecocystis sp. PCC 7509, Synecocystis sp. PCC 6714, Synecococcus sp. Cyanoseis sp. ATCC 51142, Cyanoseis sp. PCC8801 or Anavena sp. PCC7120.
- ⁇ 17> The modified cyanobacteria produced by the method according to any one of ⁇ 1>, ⁇ 4>, ⁇ 7>, ⁇ 10> to ⁇ 16>, or ⁇ 3>, ⁇ 6>, ⁇ 9 >, ⁇ 10> to ⁇ 16>
- a method for producing a fatty acid comprising culturing the modified cyanobacteria according to any one of ⁇ 10> to ⁇ 16>.
- acyl-ACP thioesterase derived from Umbrellaria californica is introduced into the modified cyanobacteria, and free fatty acids having a C12 chain length are mainly produced ⁇ 17> the method of.
- a gene encoding an acyl-ACP thioesterase of cinnamon (Cinnamum camphorum) or coconut (Cocos nucifera) is introduced into the modified cyanobacteria, and a free fatty acid having a C14 chain length is mainly produced.
- cinnamon Cinnamum camphorum
- coconut Cocos nucifera
- a gene encoding acyl-ACP thioesterase of Escherichia coli K-12 is introduced into the modified cyanobacteria, and free fatty acids having a C16 or C18 chain length are mainly produced.
- Example 1 Construction of a LexA-type Transcription Regulator / Acyl-ACP Synthetase Double-deficient Cyanobacteria Modified Strain
- the gene sll1626 of type transcription regulator was deleted.
- the sll1626up fragment (SEQ ID NO: 19) and sll1626down fragment (SEQ ID NO: 20) were amplified using the genomic DNA of Synecocystis sp.
- Fusion PCR was performed using a DNA solution obtained by mixing these PCR products and 3 fragments of kanamycin resistance marker gene (extracted from pRL161 plasmid by HincII treatment) as a template to obtain a lexA disruption construct ⁇ sll1626 :: Km fragment.
- Synechocystis sp. PCC6803 strain was transformed with this ⁇ sll1626 :: Km fragment, and a LexA transcriptional regulatory factor disruption strain ( ⁇ sll1626 strain) was obtained by kanamycin resistance selection.
- the microbial cells were crushed by adding zirconia beads to the suspension, and a protein solution derived from the microbial cells was obtained. For each sample, a protein solution corresponding to 1.0 ⁇ 10 7 cells was collected, subjected to SDS-PAGE, and LexA protein was detected by Western blot analysis.
- the LexA band was confirmed in the wild strain, but in the lexA-deficient strain ( ⁇ sll1626 strain), the band derived from LexA was hardly confirmed, and the amount of LexA protein was significantly reduced. It was shown that From this result, it was confirmed that the function of the LexA transcription factor was reduced in the lexA-deficient ⁇ sll1626 strain.
- an acyl-ACP is inactivated by inserting a spectinomycin resistance gene between the coding region of slr1609, which is a gene encoding acyl-ACP synthetase on the genome of ⁇ sll1626 strain, to inactivate the slr1609 gene.
- a modified strain in which the function of synthetase was lost and the fatty acid productivity was improved was produced.
- an acyl-ACP thioesterase (UcTE) gene derived from Umbellularia californica whose codons are optimized according to Synechocystis sp. PCC6803 into the slr1609 coding region, fatty acid productivity is further improved.
- a modified strain was prepared. The production procedure of the modified strain is described in detail below.
- a partial fragment (2049 bp) of the slr1609 gene was amplified from the genomic DNA of the wild strain of Synechocystis sp. PCC6803 strain using the primers slr1609f-F and slr1609r-R described in Table 2, and HincII of pUC118 plasmid (Takara Bio Inc.) Cloning between sites gave the pUC118-slr1609 plasmid.
- slr1609 / sp-F and slr1609 / sp-R described in Table 2 A marker gene fragment (sp fragment: SEQ ID NO: 21) was obtained.
- a linear DNA fragment in which the 242 bp region between the slr1609 gene coding region was deleted was obtained by PCR using the primers slr1609f-R and slr1609r-F described in Table 2,
- the pUC118-slr1609 :: sp plasmid containing the DNA sequence of the slr1609 gene coding region with the sp fragment inserted between the fragment and the sp fragment were ligated using the In-Fusion (registered trademark) PCR cloning method (Clontech). Obtained.
- the plasmid was linearized by PCR using the primers slr1609f-R and Sp-F shown in Table 2.
- the primers slr1609 / psbA2-F and psbA2 / UcTE-R described in Table 2 the promoter region fragment (SEQ ID NO: 22) of Synechocystis sp. PCC6803-derived psbA2 gene was PCR amplified.
- acyl-ACP thioesterase (UcTE) gene fragment (UcTE fragment: SEQ ID NO: 2) derived from Umbrellaria californica was artificially constructed with a codon optimized sequence according to Synechocystis sp. PCC6803 described in Non-Patent Document 4. It was prepared by synthesis and prepared by PCR amplification using the primers UcTE-F and UcTE / sp-R listed in Table 2.
- the psbA2 promoter region fragment and the UcTE fragment were added to the linearized plasmid and cloned by the In-Fusion (registered trademark) PCR cloning method (Clontech), and the psbA2 promoter region fragment between the slr1609 gene coding regions.
- the pUC118-slr1609 :: psbA2-UcTE-sp plasmid inserted in the order of the UcTE fragment and the sp fragment was obtained.
- the pUC118-slr1609 is transformed with another Synechocystis sp. PCC6803 wild type strain and selected by resistance to spectinomycin, whereby the acyl-ACP synthetase slr1609 gene coding region on the genome Introducing an acyl-ACP thioesterase (UcTE) gene with a codon optimized therebetween inactivates the acyl-ACP synthetase gene slr1609 and imparted the ability to express acyl-ACP thioesterase ⁇ slr1609 :: UcTE strain Acquired.
- UcTE acyl-ACP thioesterase
- the LexA gene slll1626 on the genome is inactive.
- the acyl-ACP synthetase gene slr1609 is inactivated and the acyl-ACP thioesterase is inactivated by introducing an acyl-ACP thioesterase (UcTE) gene whose codon is optimized between the acyl-ACP synthetase slr1609 gene coding region.
- UcTE acyl-ACP thioesterase
- the ⁇ slr1609 :: sp strain, the ⁇ sll1626 ⁇ sr1609 :: sp strain, the ⁇ slr1609 :: UcTE strain, and the ⁇ sll1626 ⁇ slr1609 :: UcTE strain were cultured for 2 weeks.
- the amount of methyl ester of each fatty acid was quantified from the peak area of the waveform data obtained by gas chromatography analysis. In addition, the correction between samples was performed by comparing each measured peak area with the peak area of 7-pentadecanone which is an internal standard. The amount and total amount of each fatty acid contained per liter of culture solution were calculated.
- FIGS. 2, 3 and Table 3 are average values of the results of three independent cultures and chromatographic analyses.
- the ⁇ sll1626 ⁇ sll1609 :: sp strain in which the LexA gene slll1626 and the acyl ACP synthetase gene slr1609 were disrupted produced each free fatty acid in comparison with the ⁇ slr1609 :: sp strain in which the LexA gene was not disrupted.
- the amount increased and the total free fatty acid amount also increased significantly. Further, as is apparent from FIG.
- the ⁇ sll1626 ⁇ sll1609 :: sp strain exhibited 2.92 times the total fatty acid production compared to the ⁇ slr1609 :: sp strain, and the ⁇ sll1626 ⁇ sll1609 :: UcTE strain, The total fatty acid production amount was 1.41 times that of the ⁇ slr1609 :: UcTE strain.
- the fatty acid production increased by 1.84 times compared to the ⁇ sll1626 ⁇ sll1609 :: sp strain into which the acyl-ACP thioesterase gene was not introduced.
- the production amount of C12 fatty acid was greatly increased compared to the UcTE gene non-introduced strain.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Crystallography & Structural Chemistry (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
(特許文献1)特表2011-505838号公報
(非特許文献1)Yoshino F. et al. (2007) Mar. Biotechnol. 9:101-112
(非特許文献2)Deng M. D. and Coleman J. R. (1999) Appl. Environ. Microbiol. 65:523-528
(非特許文献3)Atsumi S. et al. (2009) Nat. Biotechnol. 27:1177-1180
(非特許文献4)Liu X. et al. (2011) Proc. Natl. Acad. Sci. USA. 108:6899-6904
本明細書において、ヌクレオチド配列及びアミノ酸配列の同一性は、Lipman-Pearson法(Science,1985,227:1435-1441)によって計算される。具体的には、遺伝情報処理ソフトウェアGenetyx-Winのホモロジー解析(Search homology)プログラムを用いて、Unit size to compare(ktup)を2として解析を行うことにより算出される。
シアノバクテリアの光合成に依存した、大気CO2の炭素を原料にした様々なバイオ燃料生産技術が開発されているが、その生産性はまだ低いレベルであり、より生産効率の高い技術の開発が望まれている。本発明は、脂肪酸生産性が向上したシアノバクテリアを提供することに関する。
以上の手順で、本発明の改変シアノバクテリアを製造することができる。本発明の改変シアノバクテリアは、脂肪酸分泌生産性が向上している。したがって、本発明の改変シアノバクテリアを適切な条件で培養し、次いで分泌された脂肪酸を回収すれば、効率のよい微生物学的脂肪酸生産を実施することができる。本発明の脂肪酸生産方法でシアノバクテリアにより分泌生産される脂肪酸としては、各種遊離脂肪酸が挙げられ、好ましくはラウリン酸(C12:0)を豊富に含有する遊離脂肪酸であり得る。
上述した本発明の別の例示的実施形態として、さらに以下の組成物、製造方法、用途あるいは方法を本明細書に開示する。ただし、本発明はこれらの実施形態に限定されない。
(1)sll1626、SYNPCC7002_A1849、SYNW1582、P9303_19141、PMT0380、AM1_3948、cce_1899、cce_5074、PCC8801_2186、alr4908、及びall3272からなる群より選択される遺伝子;ならびに
(2)上記(1)に示される遺伝子のいずれかのヌクレオチド配列と、40%以上、好ましくは50%以上、より好ましくは60%以上、さらに好ましくは70%以上、さらにより好ましくは80%以上、なお好ましくは90%以上、なお好ましくは95%以上、なお好ましくは98%以上、なお好ましくは99%以上の同一性を有するヌクレオチド配列からなり、かつLexA型転写制御因子としての構造及び機能を有するポリペプチドをコードするポリヌクレオチド。
(1)Slr1609、SYNPCC7002_A0675、SYNW0669、P9303_21391、PMT0215、AM1_5562、AM1_2147、CCE_1133、PCC8801_0332、及びAlr3602からなる群より選択されるタンパク質をコードするポリヌクレオチド;ならびに
(2)上記(1)に示されるポリヌクレオチドのいずれかのヌクレオチド配列と、40%以上、好ましくは50%以上、より好ましくは60%以上、さらに好ましくは70%以上、さらにより好ましくは80%以上、なお好ましくは90%以上、なお好ましくは95%以上、なお好ましくは98%以上、なお好ましくは99%以上の同一性を有するヌクレオチド配列からなり、かつアシル-ACPを合成する機能を有するポリペプチドをコードするポリヌクレオチド。
(1)配列番号1で示されるアミノ酸配列からなるポリペプチドをコードする遺伝子;ならびに
(2)配列番号1で示されるアミノ酸配列と80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上、なお好ましくは99%以上の同一性を有するアミノ酸配列からなり、かつアシル-ACPから脂肪酸鎖を遊離させる機能を有するポリペプチドをコードする遺伝子;
(3)配列番号2で示されるヌクレオチド配列からなるポリヌクレオチド;及び
(4)配列番号2で示されるヌクレオチド配列と80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上、なお好ましくは99%以上の同一性を有するヌクレオチド配列からなり、かつアシル-ACPから脂肪酸鎖を遊離させる機能を有するポリペプチドをコードするポリヌクレオチド。
好ましくは、シネコシスティス属(Synechocystis)、シネココッカス属(Synechococcus)、プロクロロコッカス属(Prochlorococcus)、アカリオクロリス属(Acaryochloris)、シアノセイス属(Cyanothece)、又はアナベナ属(Anabaena)のシアノバクテリアであり、
より好ましくは、シネコシスティス・エスピーPCC6803、シネコシスティス・エスピーPCC7509、シネコシスティス・エスピーPCC6714、シネココッカス・エスピーPCC7002、シネココッカス・エスピーWH8102、プロクロロコッカス・エスピーMIT9303、プロクロロコッカス・マリナスMIT9313、アカリオクロリス・マリアナMBIC11017、シアノセイス・エスピーATCC51142、シアノセイス・エスピーPCC8801、又はアナベナ・エスピーPCC7120である。
(1)LexA転写制御因子破壊株の構築
単細胞光ヘテロ栄養性シアノバクテリウムであるシネコシスティス・エスピーPCC6803において、LexA型転写制御因子の遺伝子sll1626を削除した。シネコシスティス・エスピーPCC6803野生株のゲノムDNAを鋳型として、表1記載のプライマーセットを用いて、sll1626up断片(配列番号19)及びsll1626down断片(配列番号20)を増幅した。これらのPCR産物とカナマイシン耐性マーカー遺伝子(pRL161プラスミドからHincII処理により切り出したもの)の3断片を混合したDNA溶液を鋳型として、fusion PCRを実施し、lexA破壊コンストラクトΔsll1626::Km断片を取得した。このΔsll1626::Km断片でシネコシスティス・エスピーPCC6803株を形質転換し、カナマイシン耐性選抜でLexA転写制御因子破壊株(Δsll1626株)を取得した。
上記(1)で構築したΔsll1626株におけるLexA発現量を調べた。シアノバクテリアの培養は、50mL大型試験管に加えた50mLのBG-11培地中で、一定の照明下(50μE・m-2・sec-1)、30℃で無菌空気を吹き込みながら行った。野生株及びΔsll1626株を培養後、遠心分離によって培養液上清を除き得られた菌体を破砕バッファー(50mM Tris-HCl(pH7.5)、50mM NaCl)で懸濁した。懸濁液にジルコニアビーズを加えて菌体を破砕し、菌体由来のタンパク質溶液を取得した。各サンプルにつき、1.0x107細胞分に相当するタンパク質溶液を分取し、SDS-PAGEに供し、LexAタンパク質をウエスタンブロット解析により検出した。
シネコシスティス・エスピーPCC6803での脂肪酸の培養液中への分泌生産は、内生のアシル-ACPシンテターゼ(Slr1609)の機能喪失によって達成できる(Plant Physiol,2010,152:1598-1610)。また、PCC6803株にアシル-ACPチオエステラーゼ酵素をコードする遺伝子を導入することで、脂肪酸生産量が促進されることが報告されている(非特許文献4)。本実施例では、Δsll1626株のゲノム上のアシル-ACPシンテターゼをコードする遺伝子であるslr1609のコード領域間に、スペクチノマイシン耐性遺伝子を挿入してslr1609遺伝子を不活性化させることで、アシル-ACPシンテターゼが機能喪失し、脂肪酸生産性が向上した改変株を作製した。さらに、該slr1609コード領域にシネコシスティス・エスピーPCC6803にあわせてコドンを最適化したウンベリラリア・カリフォルニカ(Umbellularia californica)由来のアシル-ACPチオエステラーゼ(UcTE)遺伝子を挿入することで、脂肪酸生産性がさらに向上した改変株を作製した。以下に改変株の作製手順を詳細に説明する。
(1)改変株の培養
実施例1で製造したシアノバクテリア改変株を培養し、脂肪酸分泌生産性を調べた。シアノバクテリアの培養は、OD730=0.2を初発菌体濃度として、50mL三角フラスコに加えた25mLのBG-11培地中で、一定の照明下(60μE・m-2・sec-1)、30℃で、ロータリーシェーカー(120rpm)を用いて行った。この条件で、Δslr1609::sp株、Δsll1626Δslr1609::sp株、Δslr1609::UcTE株、及びΔsll1626Δslr1609::UcTE株をそれぞれ2週間培養した。
培養終了後、培養液50mLに1g NaHPO4、及び内部標準としてメタノールに溶解した7-ペンタデカノン(1mg/mL)を50μL添加した。この液に対してヘキサン10mLを添加し、十分に攪拌した後に10分間静置した。室温、2500rpmで10分間遠心分離を行った後、上層部分をナス型フラスコに採取し、減圧濃縮を行った。遠心分離した下層にさらにヘキサン5mLを添加して攪拌し、遠心分離する操作を2回繰り返し、乾燥サンプルを得た。乾燥したサンプルに5%塩酸メタノール溶液を3mL添加し、80℃で3時間恒温処理することにより、脂肪酸のメチルエステル化処理を行った。その後、ヘキサン3mLを添加し、十分に攪拌した後に5分間静置した。上層部分を採取し、適宜濃縮を実施し、ガスクロマトグラフィー解析に供した。測定条件を以下に示す。[キャピラリーカラム:DB-1 MS 30m×200μm×0.25μm(J&W Scientific)、移動相:高純度ヘリウム、カラム内流量:1.0mL/分、昇温プログラム:100℃(1分間)→10℃/分→300℃(5分間)、平衡化時間:1分間、注入口:スプリット注入(スプリット比:100:1),圧力14.49psi,104mL/分、注入量1μL、洗浄バイアル:メタノール・クロロホルム、検出器温度:300℃]
Claims (25)
- シアノバクテリアにおけるLexA型転写制御因子と、アシル-ACPシンテターゼとを機能喪失させることを含む、改変シアノバクテリアの製造方法。
- シアノバクテリアにおけるLexA型転写制御因子をコードする遺伝子と、アシル-ACPシンテターゼをコードする遺伝子とを欠失又は不活性化することを含む、請求項1記載の方法。
- 前記LexA型転写制御因子をコードする遺伝子がsll1626、SYNPCC7002_A1849、SYNW1582、alr4908及びall3272からなる群より選択される遺伝子である、請求項2記載の方法。
- 前記アシル-ACPシンテターゼをコードする遺伝子がslr1609、SYNPCC7002_A0675、SYNW0669及びalr3602からなる群より選択される遺伝子である、請求項2又は3記載の方法。
- さらにアシル-ACPチオエステラーゼをコードする異種遺伝子を導入することを含む、請求項1~4のいずれか1項記載の方法。
- 前記アシル-ACPチオエステラーゼをコードする遺伝子が、配列番号1で示されるアミノ酸配列又はこれと90%以上の同一性を有するアミノ酸配列からなるポリペプチドをコードする遺伝子である、請求項5記載の方法。
- 前記アシル-ACPチオエステラーゼをコードする遺伝子が、前記アシル-ACPシンテターゼをコードする遺伝子の領域に導入される、請求項5又は6記載の方法。
- 前記シアノバクテリアが、シネコシスティス属、シネココッカス属、又はアナベナ属に属する、請求項1~7のいずれか1項記載の方法。
- シアノバクテリアにおけるLexA型転写制御因子と、アシル-ACPシンテターゼとを機能喪失させることを含む、シアノバクテリアの脂肪酸分泌生産性の向上方法。
- シアノバクテリアにおけるLexA型転写制御因子をコードする遺伝子と、アシル-ACPシンテターゼをコードする遺伝子とを欠失又は不活性化することを含む、請求項9記載の方法。
- 前記LexA型転写制御因子をコードする遺伝子がsll1626、SYNPCC7002_A1849、SYNW1582、alr4908及びall3272からなる群より選択される遺伝子である、請求項10記載の方法。
- 前記アシル-ACPシンテターゼをコードする遺伝子がslr1609、SYNPCC7002_A0675、SYNW0669及びalr3602からなる群より選択される遺伝子である、請求項10又は11記載の方法。
- さらにアシル-ACPチオエステラーゼをコードする異種遺伝子を導入することを含む、請求項9~12のいずれか1項記載の方法。
- 前記アシル-ACPチオエステラーゼをコードする遺伝子が、配列番号1で示されるアミノ酸配列又はこれと90%以上の同一性を有するアミノ酸配列からなるポリペプチドをコードする遺伝子である、請求項13記載の方法。
- 前記アシル-ACPチオエステラーゼをコードする遺伝子が、前記アシル-ACPシンテターゼをコードする遺伝子の領域に導入される、請求項13又は14記載の方法。
- 前記シアノバクテリアが、シネコシスティス属、シネココッカス属、又はアナベナ属に属する、請求項9~15のいずれか1項記載の方法。
- LexA型転写制御因子と、アシル-ACPシンテターゼとが機能喪失した改変シアノバクテリア。
- LexA型転写制御因子をコードする遺伝子と、アシル-ACPシンテターゼをコードする遺伝子とが欠失又は不活性化されている、請求項17記載の改変シアノバクテリア。
- 前記LexA型転写制御因子をコードする遺伝子がsll1626、SYNPCC7002_A1849、SYNW1582、alr4908及びall3272からなる群より選択される遺伝子である、請求項18記載の改変シアノバクテリア。
- 前記アシル-ACPシンテターゼをコードする遺伝子がslr1609、SYNPCC7002_A0675、SYNW0669及びalr3602からなる群より選択される遺伝子である、請求項18又は19記載の改変シアノバクテリア。
- さらにアシル-ACPチオエステラーゼをコードする異種遺伝子を含む、請求項17~20のいずれか1項記載の改変シアノバクテリア。
- 前記アシル-ACPチオエステラーゼをコードする遺伝子が、配列番号1で示されるアミノ酸配列又はこれと90%以上の同一性を有するアミノ酸配列からなるポリペプチドをコードする遺伝子である、請求項21記載の改変シアノバクテリア。
- 前記アシル-ACPチオエステラーゼをコードする遺伝子が、前記アシル-ACPシンテターゼをコードする遺伝子の領域に導入されている、請求項21又は22記載の改変シアノバクテリア。
- シネコシスティス属、シネココッカス属、又はアナベナ属に属する、請求項17~23のいずれか1項記載の改変シアノバクテリア。
- 請求項1~8のいずれか1項記載の方法で製造された改変シアノバクテリア、又は請求項17~24のいずれか1項記載の改変シアノバクテリアを培養することを含む、脂肪酸生産方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016566346A JP6663856B2 (ja) | 2014-12-22 | 2015-12-21 | 改変シアノバクテリア |
AU2015368667A AU2015368667A1 (en) | 2014-12-22 | 2015-12-21 | Modified cyanobacteria |
US15/536,423 US10287612B2 (en) | 2014-12-22 | 2015-12-21 | Modified cyanobacteria |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-258493 | 2014-12-22 | ||
JP2014258493 | 2014-12-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016104424A1 true WO2016104424A1 (ja) | 2016-06-30 |
Family
ID=56150443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/085669 WO2016104424A1 (ja) | 2014-12-22 | 2015-12-21 | 改変シアノバクテリア |
Country Status (4)
Country | Link |
---|---|
US (1) | US10287612B2 (ja) |
JP (1) | JP6663856B2 (ja) |
AU (1) | AU2015368667A1 (ja) |
WO (1) | WO2016104424A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7551990B2 (ja) | 2020-08-28 | 2024-09-18 | 大成建設株式会社 | 遊離脂肪酸の分離方法と回収方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4063483A4 (en) * | 2019-11-21 | 2023-12-20 | Panasonic Intellectual Property Management Co., Ltd. | MODIFIED CYANOBACTERIA, METHOD FOR PRODUCING MODIFIED CYANOBACTERIA AND METHOD FOR PRODUCING PROTEINS |
CN117229988B (zh) * | 2023-09-20 | 2024-03-29 | 中国科学院西北生态环境资源研究院 | 一种无抗生素、高效稳定性表达的工程菌株及其构建方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011505838A (ja) * | 2007-12-11 | 2011-03-03 | シンセティック ジェノミクス インコーポレーテッド | 光合成微生物による脂肪酸の分泌 |
JP2011229482A (ja) * | 2010-04-28 | 2011-11-17 | Saitama Univ | 遺伝子改変シアノバクテリア |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011059745A1 (en) * | 2009-10-28 | 2011-05-19 | The Arizona Board Of Regents For And On Behalf Of Arizona State University | Bacterium for production of fatty acids |
JP5798729B2 (ja) * | 2009-12-25 | 2015-10-21 | 花王株式会社 | チオエステラーゼ改変体を用いた脂肪酸含有脂質の製造方法 |
WO2011127069A1 (en) * | 2010-04-06 | 2011-10-13 | Targeted Growth, Inc. | Modified photosynthetic microorganisms for producing lipids |
US9523096B2 (en) * | 2010-12-20 | 2016-12-20 | Matrix Genetics, Llc | Modified photosynthetic microorganisms for producing lipids |
JP6341676B2 (ja) | 2014-01-31 | 2018-06-13 | 花王株式会社 | 改変シアノバクテリア |
-
2015
- 2015-12-21 US US15/536,423 patent/US10287612B2/en active Active
- 2015-12-21 AU AU2015368667A patent/AU2015368667A1/en not_active Abandoned
- 2015-12-21 WO PCT/JP2015/085669 patent/WO2016104424A1/ja active Application Filing
- 2015-12-21 JP JP2016566346A patent/JP6663856B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011505838A (ja) * | 2007-12-11 | 2011-03-03 | シンセティック ジェノミクス インコーポレーテッド | 光合成微生物による脂肪酸の分泌 |
JP2011229482A (ja) * | 2010-04-28 | 2011-11-17 | Saitama Univ | 遺伝子改変シアノバクテリア |
Non-Patent Citations (1)
Title |
---|
KAMEI A. ET AL.: "Functional analysis of LexA-like gene sll1626 in Synechocystis sp. PCC 6803 using DNA microarray", PLANT AND CELL PHYSIOLOGY, vol. 42, 2001, pages s95 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7551990B2 (ja) | 2020-08-28 | 2024-09-18 | 大成建設株式会社 | 遊離脂肪酸の分離方法と回収方法 |
Also Published As
Publication number | Publication date |
---|---|
US20180163237A1 (en) | 2018-06-14 |
JP6663856B2 (ja) | 2020-03-13 |
JPWO2016104424A1 (ja) | 2017-09-28 |
AU2015368667A1 (en) | 2017-07-13 |
US10287612B2 (en) | 2019-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8709766B2 (en) | Use of endogenous promoters in genetic engineering of Nannochloropsis gaditana | |
US9982272B2 (en) | Algal mutants having a locked-in high light acclimated phenotype | |
CA2778150C (en) | Modified neutral lipid encapsulating proteins and uses thereof | |
AU2016349822B2 (en) | Algal mutants with increased lipid productivity | |
CN107709562A (zh) | 指导rna/cas内切核酸酶系统 | |
JP6592434B2 (ja) | 脂質の製造方法 | |
CA2889985C (en) | Improved acyltransferase polynucleotides, polypeptides, and methods of use | |
WO2016104424A1 (ja) | 改変シアノバクテリア | |
JP2016518112A (ja) | 改質油を製造するためのチオエステラーゼおよび細胞 | |
AU2012294956A1 (en) | Methods for increasing CO2 assimilation and oil production in photosynthetic organisms | |
US8987551B2 (en) | Modified oil encapsulating proteins and uses thereof | |
JP6568718B2 (ja) | 脂質の製造方法 | |
CA2889980A1 (en) | Novel acyltransferase polynucleotides, poypeptides, and methods of use | |
JP6341676B2 (ja) | 改変シアノバクテリア | |
US11124798B2 (en) | Algal lipid productivity via genetic modification of a TPR domain containing protein | |
WO2019069969A1 (ja) | 脂質の製造方法 | |
JP6501105B2 (ja) | 茎が肥大化した植物の生産方法 | |
KR102302827B1 (ko) | 크리스퍼 간섭을 이용한 유전자 발현 억제용 조성물 | |
Venkatasalam | Plastoglobules: a new destination for recombinant proteins produced in transplastomic plants and characterization of plastidial At-SOUL heme binding protein | |
CN118414430A (zh) | 修饰的酰基转移酶多核苷酸、多肽和使用方法 | |
US20160046968A1 (en) | Novel strain secreting fatty acids by phospholipase and method for producing fatty acids using it | |
JP2016127810A (ja) | 転写制御因子の機能阻害によりキシラン及び/又はリグニンを効率よく産生する植物を生産する方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15872992 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016566346 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15536423 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2015368667 Country of ref document: AU Date of ref document: 20151221 Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15872992 Country of ref document: EP Kind code of ref document: A1 |