WO2016104424A1 - 改変シアノバクテリア - Google Patents

改変シアノバクテリア Download PDF

Info

Publication number
WO2016104424A1
WO2016104424A1 PCT/JP2015/085669 JP2015085669W WO2016104424A1 WO 2016104424 A1 WO2016104424 A1 WO 2016104424A1 JP 2015085669 W JP2015085669 W JP 2015085669W WO 2016104424 A1 WO2016104424 A1 WO 2016104424A1
Authority
WO
WIPO (PCT)
Prior art keywords
acyl
gene encoding
cyanobacteria
gene
acp
Prior art date
Application number
PCT/JP2015/085669
Other languages
English (en)
French (fr)
Inventor
彰人 川原
由香子 園池
あゆみ 鬼沢
Original Assignee
花王株式会社
国立大学法人埼玉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社, 国立大学法人埼玉大学 filed Critical 花王株式会社
Priority to JP2016566346A priority Critical patent/JP6663856B2/ja
Priority to AU2015368667A priority patent/AU2015368667A1/en
Priority to US15/536,423 priority patent/US10287612B2/en
Publication of WO2016104424A1 publication Critical patent/WO2016104424A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/02Thioester hydrolases (3.1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/02Thioester hydrolases (3.1.2)
    • C12Y301/02014Oleoyl-[acyl-carrier-protein] hydrolase (3.1.2.14), i.e. ACP-thioesterase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y602/00Ligases forming carbon-sulfur bonds (6.2)
    • C12Y602/01Acid-Thiol Ligases (6.2.1)
    • C12Y602/0102Long-chain-fatty-acid--[acyl-carrier-protein] ligase (6.2.1.20)

Definitions

  • the present invention relates to a modified cyanobacteria having improved fatty acid secretion productivity.
  • next-generation energy production technology that does not rely on fossil fuels.
  • biofuel production research using photosynthetic organisms such as cyanobacteria and algae attracts attention.
  • the photosynthetic organisms can produce biofuels using carbon fixed by photosynthesis from CO 2 and water using light as an energy source.
  • the photosynthetic organisms are expected as next-generation energy production systems because they do not compete with food raw materials and can produce carbon-neutral fuels.
  • Cyanobacteria are a group of eubacteria called cyanobacteria and have the ability to produce oxygen by photosynthesis and immobilize CO 2 . Cyanobacteria have an outer membrane and peptidoglycan cell wall and fall within the category of gram-negative bacteria, but are systematically separated from typical gram-negative bacteria. Cyanobacteria are considered to be the origin of chloroplasts because they were symbiotic in cells (primary symbiosis) with eukaryotes billions of years ago. Widely used.
  • Cyanobacteria are fast growing, have high photosynthetic ability, and also have transformation ability, and can be used for microbiological substance production by introducing foreign DNA into cells. It has attracted attention as a production host.
  • Examples of biofuel production using cyanobacteria include hydrogen (Non-Patent Document 1), ethanol (Non-Patent Document 2), isobutanol (Non-Patent Document 3), and fatty acids (Non-Patent Document 4).
  • Non-Patent Document 4 and Patent Document 1 describe a method for converting inorganic carbon to a fatty acid by culturing a recombinant cyanobacteria producing exogenous acyl-ACP thioesterase.
  • Patent Document 1 Japanese Patent Publication No. 2011-505838 (Non-Patent Document 1) Yoshino F. et al. (2007) Mar. Biotechnol. 9: 101-112 (Non-Patent Document 2) Deng M. D. and Coleman J. R. (1999) Appl. Environ. Microbiol. 65: 523-528 (Non-Patent Document 3) Atsumi S. et al. (2009) Nat. Biotechnol. 27: 1177-1180 (Non-Patent Document 4) Liu X. et al. (2011) Proc. Natl. Acad. Sci. USA. 108: 6899-6904
  • the present invention provides a method for producing a modified cyanobacteria comprising the loss of function of a LexA type transcription regulator in cyanobacteria and an acyl-ACP synthetase.
  • the present invention provides a method for improving the fatty acid secretion productivity of cyanobacteria, which comprises causing loss of function of a LexA type transcription regulator in cyanobacteria and acyl-ACP synthetase.
  • the present invention provides a modified cyanobacteria in which the functions of LexA transcription regulator and acyl-ACP synthetase are lost.
  • the present invention provides a method for producing fatty acids, comprising culturing the modified cyanobacteria or the modified cyanobacteria produced by the method.
  • nucleotide and amino acid sequence identity is calculated by the Lipman-Pearson method (Science, 1985, 227: 1435-1441). Specifically, it is calculated by performing an analysis with a unit size to compare (ktup) of 2, using a homology analysis (Search homology) program of genetic information processing software Genetyx-Win.
  • loss of a function is a concept including partial loss of the function (that is, reduction, suppression or partial inhibition of the function) and complete loss of the function.
  • the “loss of function of a LexA type transcriptional regulatory factor” may be a decrease in the transcriptional regulatory function of the factor.
  • “loss of function of acyl-ACP synthetase” may be a decrease in acyl-ACP synthesis activity of the enzyme or a complete loss of acyl-ACP synthesis activity of the enzyme.
  • “loss of function of LexA type transcriptional regulatory factor or acyl-ACP synthetase in cyanobacteria” means LexA type transcriptional regulatory function or acyl-ACP synthesis activity in cyanobacteria by reducing the expression level of the factor or the enzyme Or the gene encoding the factor or the enzyme may be deleted.
  • Cyanobacteria also called cyanobacteria, is a group of prokaryotes that perform photosynthesis using chlorophyll. Cyanobacteria are rich in diversity. Even if only the shape of the cells is observed, unicellular ones such as Synechocystis sp. PCC 6803 and Anabena sp. sp.) As in PCC7120, there are filamentous ones in which many cells are connected in a string, or spiral or branched ones. The growth environment is also thermophilic, such as Thermosychococcus elongatas BP-1, isolated from Beppu Onsen, Synechococcus sp. CC9311, which is marine and lives in the coastal area.
  • thermophilic such as Thermosychococcus elongatas BP-1, isolated from Beppu Onsen, Synechococcus sp. CC9311, which is marine and lives in the coastal area.
  • Species adapted to various conditions such as Synechococcus sp. WH8102 inhabiting the open ocean can be seen.
  • species with unique characteristics there are those that can produce toxins with gas vesicles, such as Microcystis aeruginosa, and phycobilisomes that do not have thylakoids and are collecting antennas.
  • Gloeobacter violaceus PCC7421 bound to the plasma membrane, or marine red chlorophyll d as the main (> 95%) photosynthetic pigment instead of chlorophyll a as in common photosynthetic organisms Another example is Rio Chloris marina.
  • cyanobacteria carbon dioxide fixed by photosynthesis is converted to acetyl-CoA through a number of enzymatic reaction processes.
  • the first step in fatty acid synthesis is the synthesis of malonyl-CoA from acetyl-CoA and CO 2 by the action of acetyl-CoA carboxylase.
  • malonyl-CoA is converted to malonyl-ACP by the action of malonyl CoA: ACP transacylase.
  • fatty acid synthetase or acyl-ACP synthetase
  • continuous addition of two carbon units occurs, and acyl-ACP with two carbon increments is synthesized, and as a synthetic intermediate for membrane fatty acids and the like Used.
  • LexA transcription factor
  • LexA transcription factor
  • LexA transcription factor
  • pfam01726 DNA binding domain having a helical turn helix structure on the N-terminal side and a C-terminal side. It is a protein characterized by having a Peptidase_S24-like sequence (pfam00717), and is known as a transcription factor that plays an important role in the control of gene expression.
  • LexA type transcription factors are widely distributed in gram positive and gram negative bacteria. For example, in E.
  • LexA recognizes and binds to the SOS-box sequence (TACTGTATATATATACAGTA; SEQ ID NO: 23), and suppresses transcription of genes related to DNA repair and cell division control belonging to the SOS regulon. That is, when the genomic DNA is damaged, LexA itself is degraded by self-protease activity, and its DNA binding ability is inactivated, so that the suppression of the gene group by LexA is released. As a result, the SOS regulon gene is It is reported that activation of DNA repair ability and induction of mutation occur (Friedberg, EC et al., DNA Repair and Mutagenesis, American Society of Microbiology Press, 2005, 463-508). .
  • LexA is conserved in many species of cyanobacteria.
  • Information on LexA-bearing Cyanobacteria species or LexA possessed by individual Cyanobacteria species is, for example, CyanoBase ([genome.microbedb.jp/cyanobase/]) or NCBI database ([www.ncbi.nlm.nih.gov]. / Genome /] or [www.ncbi.nlm.nih.gov/protein/]).
  • CyanoBase [genome.microbedb.jp/cyanobase/]
  • NCBI database [www.ncbi.nlm.nih.gov]. / Genome /] or [www.ncbi.nlm.nih.gov/protein/].
  • Synechocystis sp. PCC6803 belonging to the genus Synecocystis described above has the slll26 gene as a gene encoding LexA.
  • Prochlorococcus genes P9303-19141 and PMT0380 Acariochloris genes AM1_3948
  • Cyanoseis genes cce_1899, cce_5074, and Alcena90 Both are genes encoding LexA.
  • the cyanobacterial LexA may have a function different from that of LexA such as E. coli.
  • LexA such as E. coli.
  • the sll1626 gene encoding LexA of Synechocystis sp. PCC 6803 is known to be a growth essential gene, but the protein encoded by it is different from LexA such as E. coli, and the SOS regulon such as DNA repair. It has been reported that it is not involved in expression control (Mol Microbiol, 2004, 53 (1): 65-80).
  • PCC6803 has been reported to promote the expression of a hox operon (hoxEFUYH) encoding a bidirectional hydrogenase involved in hydrogen generation under light irradiation conditions (Mol Microbiol, 2005, 58). (3): 810-823).
  • hoxEFUYH hox operon
  • PCC6803 a gene encoding LexA itself and redox-sensitive RNA helicase, crhR (Nucleic Acids Res, 2006, 34 (12): 3446-354) are reported.
  • crhR Nucleic Acids Res, 2006, 34 (12): 3446-354
  • PCC6803 for example, a sequence containing 12 bases of “CTA-N9-CTA” has been reported (FEBS Lett, 2008, 582 (16): 2424-30).
  • LexA of Anavena sp. PCC7120 promotes the expression of bidirectional hydrogenase and recognizes the pseudopalindromic sequence RGTACNNNDGTWCB (SEQ ID NO: 24) as in the case of PCC6803 (Mol Genet). Genomics, 2004, 271 (1): 40-9).
  • a 14-bp palindromic sequence represented by AGTACWNWTGTACT SEQ ID NO: 25
  • AGTACWNWTGTACT SEQ ID NO: 25
  • a polypeptide has a structure and function as a LexA type transcriptional regulator" means that the polypeptide has an N-terminal helix turn helix that functions as the DNA binding domain and a C-terminal side helix turn helix. It has a structure containing the Peptidase_S24-like sequence and has a function of controlling gene transcription.
  • cyanobacterial genes and proteins are disclosed, for example, in the above-mentioned CyanoBase and NCBI databases.
  • a person skilled in the art obtains the amino acid sequence of the target cyanobacterial protein (for example, LexA type transcription regulator or acyl-ACP synthetase) or the nucleotide sequence of the gene encoding them based on the information in these databases. Can do.
  • the present inventor has found that a modified cyanobacteria obtained by dying the function of a LexA transcription factor and acyl-ACP synthetase in a cyanobacteria, or by further introducing a gene encoding an acyl-ACP thioesterase In addition, it was found that the amount of fatty acid secretion produced per culture medium or per cell of the cyanobacteria increased.
  • a modified cyanobacteria with improved fatty acid secretion productivity can be produced. If the modified cyanobacteria of the present invention are cultured, efficient microbiological fatty acid production becomes possible.
  • the present invention provides a modified cyanobacteria with improved fatty acid secretion productivity.
  • the modified cyanobacteria of the present invention is a cyanobacteria modified to cause loss of function of its LexA transcription factor and acyl-ACP synthetase.
  • cyanobacteria (hereinafter sometimes referred to as parent cyanobacteria) that are the parental microorganisms of the modified cyanobacteria of the present invention before the loss-of-function modification of the LexA type transcription regulator and acyl-ACP synthetase. , All kinds of things.
  • examples of parental cyanobacteria include Synechocystis, Synechococcus, Prochlorococcus, Acaryochloris, Cyanothesa and Anabethes, And more preferably, cyanobacteria belonging to the genus Synechocystis, Synechococcus, and Anabaena, and more preferably, Synechocystis sp. PCC6803, Synecocystis SP PCC7509, Shineneko Stiss SPPCC 6714, Synecococcus sp. PCC7002, Synecococcus sp. WH8102, Prochlorococcus sp.
  • PCC7120 can be mentioned, and even more preferably, Synecocystis sp. PCC 6803, Synecocystis sp. PCC6714, and Synecocystis sp. PCC 7509 can be mentioned, and Synecocystis sp.
  • LexA transcription factor of the parent cyanobacteria The amino acid sequence of the LexA transcription factor of the parent cyanobacteria, the gene encoding it, the position of the gene on the genome or plasmid, and its nucleotide sequence can be confirmed by the above-mentioned CyanoBase and NCBI databases.
  • preferable examples of LexA type transcriptional regulators whose functions are lost from the parent cyanobacteria in the present invention include the following genes: sll1626 of Synecocystis sp. PCC6803, SYNPCC7002_A1849 of Synecococcus sp.
  • acyl-ACP synthetase that loses its function from the parent cyanobacteria in the present invention include Slr1609 of Synechocystis sp. PCC6803, SYNPCC7002_A0675 of Synecococcus sp.
  • the acyl-ACP synthetase whose function is lost in the present invention includes any one of the amino acid sequences of the acyl-ACP synthetase proteins exemplified above, 40% or more, preferably 50% or more, more preferably 60% or more, More preferably 70% or more, still more preferably 80% or more, still more preferably 90% or more, still more preferably 95% or more of an amino acid sequence having a function of synthesizing acyl-ACP.
  • Peptides can be mentioned.
  • the means for loss of function of LexA transcription regulator or acyl-ACP synthetase in cyanobacteria is not particularly limited as long as it is a means commonly used for loss of protein function.
  • it encodes LexA or acyl-ACP synthetase.
  • Deleting or inactivating a gene introducing a mutation that reduces or inactivates the expressed protein into the gene, introducing a mutation that inhibits transcription of the gene, transcription of the gene Examples include inhibiting the translation of the product, or administering an inhibitor that specifically inhibits the expressed protein of interest.
  • examples of a gene encoding a LexA transcription factor to be deleted or inactivated in order to cause loss of function of the LexA transcription factor include sll1626 of Synecocystis sp. PCC6803, Synecocystis sp. SYNPCC7002_A1849 of PCC7002, SYNW1582 of Synecococcus sp.WH8102, P9303-19141 of Prochlorococcus sp. PCC8801 PCC8801 2186, and the like alr4908 and all3272 of Anabaena sp. PCC7120.
  • genes and their nucleotide sequences can be confirmed on the above-mentioned CyanoBase or NCBI database.
  • a polynucleotide encoding Sll1626 of Synechocystis sp. PCC6803 is the sll1626 gene (NCBI Gene ID: 954404), and a polynucleotide encoding SYNEPCC sp. Can be identified.
  • the nucleotide sequence of any of these genes is 40% or more, preferably 50% or more, more preferably 60% or more, still more preferably 70% or more, even more preferably 80% or more, still more preferably 90%.
  • nucleotide sequence encodes a polypeptide having a structure and function as a LexA type transcription control factor
  • Polynucleotides can also be mentioned as examples of genes encoding LexA transcriptional regulators to be deleted or inactivated in the present invention.
  • preferable examples of the gene encoding the LexA transcription factor to be deleted or inactivated include sll1626 gene and the nucleotide sequence of sll1626 gene and 80% or more, preferably 90% or more, more preferably 95 %, More preferably 98% or more, more preferably 99% or more, and a polynucleotide encoding a polypeptide having a structure and function as a LexA type transcriptional regulator.
  • genes encoding acyl-ACP synthetase to be deleted or inactivated for loss of function in the present invention include the following proteins: S1r1609 of Synecocystis sp. PCC6803, SYNPCC 7002_A0675 of Synecococcus sp. Synecoccus sp. WH8102 SYNW0669, Prochlorococcus sp. Or Alr3602 of Anabaena sp PCC7120, polynucleotides and the like encoding. These genes and their nucleotide sequences can be confirmed on the above-mentioned CyanoBase or NCBI database.
  • a polynucleotide encoding Slr1609 of Synechocystis sp. PCC6803 is the slr1609 gene (NCBI Gene ID: 953643), and a polynucleotide encoding SYNEPCC7002_A0675 gene of Synecocus sp.
  • a polynucleotide encoding SYNW0669 of Synecococcus sp. WH8102 can be identified as SYNW0669 gene (NCBI-Gene ID: 1730682), and a polynucleotide encoding Alr3602 of Anavena sp. PCC7120 can be identified as alr3602.
  • nucleotide sequence of any of these genes is 40% or more, preferably 50% or more, more preferably 60% or more, still more preferably 70% or more, even more preferably 80% or more, still more preferably 90%. More preferably, a polynucleotide encoding a polypeptide comprising a nucleotide sequence having an identity of 95% or more, preferably 98% or more, more preferably 99% or more, and having a function of synthesizing acyl-ACP. Further, examples of the gene encoding acyl-ACP synthetase to be deleted or inactivated in the present invention can be mentioned.
  • Preferred examples of the gene encoding the acyl-ACP synthetase to be deleted or inactivated in the present invention include a nucleotide sequence of the slr1609 gene, SYNPCC7002_A0675 gene, and slr1609 gene or SYNPCC7002_A0675 gene of 80% or more, preferably 90% or more. More preferably 95% or more, further preferably 98% or more, more preferably 99% or more, and a polynucleotide encoding a polypeptide having a function of synthesizing acyl-ACP. A more preferred example is the slr1609 gene.
  • Means for deleting or inactivating the gene include mutagenesis for one or more nucleotides on the nucleotide sequence of the gene, substitution or insertion of another nucleotide sequence for the nucleotide sequence, or sequence of the gene Deletion of a part or all of.
  • the mutation may be introduced into the gene so that the mutation occurs at a site involved in the activity of the protein encoded by the gene.
  • means for introducing a mutation that inhibits transcription of the gene include mutagenesis in the promoter region of the gene, and inactivation of the promoter by substitution or insertion with another nucleotide sequence.
  • mutagenesis and nucleotide sequence substitution or insertion include ultraviolet irradiation, site-directed mutagenesis, homologous recombination method, SOE (splicing by overlap extension) -PCR method (Gene, 1989). , 77: 61-68).
  • SOE splicing by overlap extension
  • RNA interference by microRNA examples include RNA interference by microRNA.
  • Specific inhibitors of proteins include antibodies specific for the protein and its receptor or ligand.
  • the modified cyanobacteria of the present invention may be further introduced with a heterologous gene encoding acyl-ACP thioesterase in addition to the above-described modification.
  • the modified cyanobacteria in a preferred embodiment of the present invention is a cyanobacteria in which the function of LexA transcriptional regulator and acyl-ACP synthetase is lost, and further possesses a heterologous gene encoding acyl-ACP thioesterase.
  • Acyl-ACP thioesterase is an enzyme that liberates fatty acid chains from acyl-ACP in the fatty acid synthesis pathway.
  • Non-patent Document 4 It has been reported that by introducing acyl-ACP thioesterase into cyanobacteria, fatty acids are cut out from acyl-ACP produced by fatty acid synthesis to produce free fatty acids.
  • Non-patent Document 4 In order to efficiently secrete free fatty acids produced by the action of acyl-ACP thioesterase in cyanobacteria, it has been reported that it is effective to lose the function of the endogenous acyl-ACP synthetase gene. (Plant Physiol, 2010, 152: 1598-1610).
  • the production of fatty acids in the cells is promoted, and the secretion of fatty acids of the modified cyanobacteria is increased. This can be further improved.
  • Examples of the gene encoding the acyl-ACP thioesterase to be introduced into the modified cyanobacteria of the present invention include those isolated from plants containing a large amount of medium chain fatty acids in seed oil or fatty acid-producing algae. it can.
  • the following plants or algae Arabidopsis thaliana; Bradyrhizobium japonicum; Brassica napus; Cuphea hookeliana; Cuphea lanceolata; Qufea pulse Tris; Coriander sativum L .; Safflower (Carthamus tinctor lye) Guinea oil palm (Elaeis guineensis); cotton (Gossypium hirsutum); mangosteen (Garcinia mangistana); (Triticum aestivum); American elm (Ulmus Americana); Cinnamon (Cinnamum camphorum); Cocos (Cocos nucifera); or Umbrellaia californica (Umbulararia californica) Genes encoding sill -ACP thioesterase the like.
  • a gene encoding an acyl-ACP thioesterase of Escherichia coli can be introduced into the modified cyanobacteria of the present invention.
  • the heterologous gene encoding the acyl-ACP thioesterase of the present invention is preferably a gene encoding acyl-ACP thioesterase (NCBI database GI: 595955) derived from Umberlararia californica, cinnamon acyl-ACP thioesterase ( GI: AAC49151.1) gene, coco acyl-ACP thioesterase (GI: AEM72521.1) gene, or E. coli acyl-ACP thioesterase (GI: AAC 73596.1) gene is there.
  • a gene encoding an acyl-ACP thioesterase derived from the plant, algae, or E. coli can be identified on the NCBI database.
  • an acyl-ACP thioesterase (UcTE) gene derived from Umberlararia californica is registered as GenBank ID: U17097 in the NCBI database.
  • genes encoding cinnamon and coco acyl-ACP thioesterase are registered as GenBank ID: U31813 and GenBank ID: JF338905, respectively.
  • E.I The gene encoding the acyl-ACP thioesterase of E. coli K-12 strain is registered as NCBI Gene ID: 945127.
  • acyl-ACP thioesterase gene to be introduced into cyanobacteria include a gene encoding an acyl-ACP thioesterase UcTE derived from Umbrella californica comprising the amino acid sequence represented by SEQ ID NO: 1, and SEQ ID NO:
  • the amino acid sequence of UcTE represented by 1 is 80% or more, preferably 90% or more, more preferably 95% or more, still more preferably 98% or more, still more preferably 99% or more, and Examples thereof include a gene encoding a polypeptide having a function of releasing a fatty acid chain from acyl-ACP.
  • Acyl-ACP thioesterase has specificity for the fatty acid chain length and the degree of unsaturation of acyl-ACP as a substrate (US Pat. No. 5,298,421, Planta, 1993, 189: 425-432). Therefore, by changing the type of acyl ACP thioesterase to be introduced, it is possible to cause cyanobacteria to produce free fatty acids having a desired chain length and degree of unsaturation.
  • the above-mentioned acyl-ACP thioesterase (UcTE) derived from umbellaria californica has substrate specificity for the C12 chain length acyl group, and the free fatty acid produced is mainly C12 such as lauric acid (C12: 0).
  • the above-mentioned cinnamon and coco acyl-ACP thioesterases have substrate specificity for C14 chain length acyl groups, and the free fatty acids produced are mainly C14 chain lengths such as myristic acid (C14: 0). It is a free fatty acid.
  • coli K-12 strain acyl-ACP thioesterase has substrate specificity for C16 or C18 chain length acyl groups, and the free fatty acids produced are mainly palmitic acid (C16: 0) and palmitoleic acid (C16: 1 ), Stearic acid (C18: 0), oleic acid (C18: 1), linoleic acid (C18: 2), linolenic acid (C18: 3) and other free fatty acids having a C16 or C18 chain length.
  • the codon is preferably optimized in accordance with the codon usage in the cyanobacteria.
  • Information on codons used by various organisms can be obtained from Codon Usage Database ([www.kazusa.or.jp/codon/]).
  • Examples of an acyl-ACP thioesterase gene that is codon-optimized for cyanobacteria include a polynucleotide encoding UcTE (SEQ ID NO: 1) consisting of the nucleotide sequence shown in SEQ ID NO: 2, or shown in SEQ ID NO: 2 A nucleotide sequence having 80% or more, preferably 90% or more, more preferably 95% or more, more preferably 98% or more, still more preferably 99% or more identity with the nucleotide sequence, and acyl-ACP to fatty acid chain And a polynucleotide encoding a polypeptide having a function of releasing.
  • SEQ ID NO: 1 consisting of the nucleotide sequence shown in SEQ ID NO: 2, or shown in SEQ ID NO: 2
  • a vector such as a plasmid vector
  • the vector is preferably an expression vector.
  • an expression vector containing a DNA fragment of a heterologous acyl-ACP thioesterase gene and a promoter for expressing it is constructed.
  • a promoter As a promoter, a lac, tac or trc promoter, a promoter related to a derivative inducible by addition of isopropyl ⁇ -D-1-thiogalactopyranoside (IPTG), or a Rubisco operon (rbc), encoding a PSI reaction center protein A promoter isolated from cyanobacteria involved in the expression of the gene (psaAB) or the gene encoding the PSII reaction center D1 protein (psbA) can be used, but is not limited thereto and functions in cyanobacteria A variety of promoters can be used.
  • the expression vector further incorporates a marker gene (for example, a resistance gene for a drug such as kanamycin, chloramphenicol, spectinomycin, erythromycin) for selecting a host into which the vector has been appropriately introduced. May be.
  • a marker gene for example, a resistance gene for a drug such as kanamycin, chloramphenicol, spectinomycin, erythromycin
  • the expression vector is introduced into the parent cyanobacteria or the modified cyanobacteria of the present invention by a known means and transformed.
  • a method for introducing a vector into cyanobacteria general methods such as natural transformation, electroporation, and conjugation can be used. If the transformed cyanobacteria are cultured in a selective medium, for example, an antibiotic-containing medium, a transformant having a desired trait can be selected.
  • the heterologous acyl-ACP thioesterase gene is introduced into a region of the endogenous acyl-ACP synthetase gene on the cyanobacterial genome, causing loss of function of the acyl-ACP synthetase in the cyanobacteria and heterologous acyl- It confers the ability to express ACP thioesterase.
  • a DNA fragment of a heterologous acyl-ACP thioesterase gene having a DNA fragment of the acyl-ACP synthetase gene region added to both ends is constructed.
  • a modified cyanobacteria into which a gene has been introduced can be obtained.
  • the heterologous acyl-ACP thioesterase gene may be introduced into a region (neutral site) on the genome of cyanobacteria that does not harm cyanobacteria even if gene transfer is performed.
  • the modified cyanobacteria of the present invention can be produced by the above procedure.
  • the modified cyanobacteria of the present invention has improved fatty acid secretion productivity. Therefore, if the modified cyanobacteria of the present invention are cultured under appropriate conditions and then the secreted fatty acid is recovered, efficient microbiological fatty acid production can be carried out.
  • Examples of fatty acids secreted and produced by cyanobacteria by the fatty acid production method of the present invention include various free fatty acids, and may be free fatty acids containing abundant lauric acid (C12: 0).
  • Cyanobacteria culture can be generally performed based on liquid culture using BG-11 medium (J Gen Microbiol, 1979, 111: 1-61) or a modification thereof.
  • the culture period for fatty acid production may be carried out so that the fatty acid accumulates at a high concentration under the condition that the cells are sufficiently grown, for example, 7 to 45 days, preferably 10 to 30 days, more preferably 14 It is preferable to culture by aeration or shaking for 21 days.
  • cyanobacteria produce fatty acids and secrete the fatty acids into the culture.
  • solids such as cells are removed from the culture by filtration, centrifugation, etc., and the remaining liquid components are recovered, followed by chloroform / methanol extraction, hexane extraction, ethanol extraction, etc.
  • the fatty acid may be recovered or purified by the above.
  • oil is recovered from the culture after removing the cells by compression or extraction, and then subjected to general purification such as degumming, deoxidation, decolorization, dewaxing, deodorization, etc. Can be obtained.
  • the method for producing fatty acid according to the present invention since the fatty acid is secreted outside the cells of cyanobacteria, it is not necessary to destroy the cells for collecting the fatty acid. Cells remaining after fatty acid recovery can be used repeatedly for fatty acid production.
  • Fatty acids obtained by the fatty acid production method using the modified cyanobacteria of the present invention can be used for food, emulsifiers incorporated into cosmetics, detergents such as soaps and detergents, fiber treatment agents, hair rinse agents, or It can be used as a raw material for fungicides and preservatives.
  • ⁇ 1> A method for producing a modified cyanobacteria comprising dying functions of a LexA type transcription regulator and an acyl-ACP synthetase in cyanobacteria.
  • ⁇ 2> A method for improving the fatty acid secretion productivity of cyanobacteria, which comprises losing the function of a LexA transcription factor and acyl-ACP synthetase in cyanobacteria.
  • ⁇ 3> A modified cyanobacteria in which the functions of LexA transcription regulator and acyl-ACP synthetase are lost.
  • ⁇ 4> The method according to ⁇ 1>, preferably comprising deleting or inactivating a gene encoding a LexA transcription factor in cyanobacteria and a gene encoding acyl-ACP synthetase.
  • ⁇ 5> The method according to ⁇ 2>, preferably comprising deleting or inactivating a gene encoding a LexA transcription factor in cyanobacteria and a gene encoding acyl-ACP synthetase.
  • the modified cyanobacteria according to ⁇ 3> wherein a gene encoding a LexA transcription factor and a gene encoding acyl-ACP synthetase are deleted or inactivated.
  • ⁇ 7> Preferably, the method according to ⁇ 1> or ⁇ 4>, further comprising introducing a heterologous gene encoding acyl-ACP thioesterase.
  • ⁇ 8> The method according to ⁇ 2> or ⁇ 5>, preferably further comprising introducing a heterologous gene encoding acyl-ACP thioesterase.
  • the modified cyanobacteria according to ⁇ 3> or ⁇ 6> comprising a heterologous gene encoding acyl-ACP thioesterase.
  • the gene encoding the LexA transcription factor is selected from the following: (1) a gene selected from the group consisting of sll1626, SYNPCC7002_A1849, SYNW1582, P9303-19141, PMT0380, AM1_3948, cce_1899, cce_5074, PCC8801_2186, allr4908, and all3272; and (2) any of the genes shown in (1) above Nucleotide sequence and 40% or more, preferably 50% or more, more preferably 60% or more, more preferably 70% or more, even more preferably 80% or more, still more preferably 90% or more, still more preferably 95% or more, Preferably, a polypeptide comprising a nucleotide sequence having an identity of 98% or more, more preferably 99% or more, and having a structure and a function as a LexA type transcriptional regulator is copied.
  • Polynucleotideotide sequence having an identity of 98% or more, more preferably 99% or more, and
  • the gene encoding the acyl-ACP synthetase is selected from the following: (1) a polynucleotide encoding a protein selected from the group consisting of Slr1609, SYNPCC7002_A0675, SYNW0669, P9303-21391, PMT0215, AM1_5562, AM1_2147, CCE_1133, PCC8801-0332, and Alr3602; and (2) the polynucleotide represented by (1) above 40% or more, preferably 50% or more, more preferably 60% or more, still more preferably 70% or more, even more preferably 80% or more, still more preferably 90% or more, still more preferably Polynucleotide having a nucleotide sequence having an identity of 95% or more, preferably 98% or more, more preferably 99% or more and having a function of synthesizing acyl-ACP Polynu
  • the heterologous gene encoding the acyl-ACP thioesterase is selected from the following: (1) a gene encoding a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 1, and (2) 80% or more, preferably 90% or more, more preferably 95% or more, with the amino acid sequence represented by SEQ ID NO: 1.
  • the heterologous gene encoding the acyl-ACP thioesterase is an cinnamon (Cinnamum camphorum) or coconut (Cocos nucifera) acyl-ACP thioesterase. Is a gene encoding
  • the heterologous gene encoding the acyl-ACP thioesterase encodes an acyl-ACP thioesterase of Escherichia coli K-12 It is a gene.
  • the heterologous gene encoding the acyl-ACP thioesterase encodes the acyl-ACP synthetase in the genome sequence of the cyanobacteria It is introduced into the region of the gene or introduced into the neutral site.
  • the cyanobacteria are:
  • the genus is Synechocystis, Synechococcus, Prochlorococcus, Acaryochloris, Cyanothece, or Anabaena. More preferably, Synecocystis sp. PCC6803, Synecocystis sp. PCC 7509, Synecocystis sp. PCC 6714, Synecococcus sp. Cyanoseis sp. ATCC 51142, Cyanoseis sp. PCC8801 or Anavena sp. PCC7120.
  • ⁇ 17> The modified cyanobacteria produced by the method according to any one of ⁇ 1>, ⁇ 4>, ⁇ 7>, ⁇ 10> to ⁇ 16>, or ⁇ 3>, ⁇ 6>, ⁇ 9 >, ⁇ 10> to ⁇ 16>
  • a method for producing a fatty acid comprising culturing the modified cyanobacteria according to any one of ⁇ 10> to ⁇ 16>.
  • acyl-ACP thioesterase derived from Umbrellaria californica is introduced into the modified cyanobacteria, and free fatty acids having a C12 chain length are mainly produced ⁇ 17> the method of.
  • a gene encoding an acyl-ACP thioesterase of cinnamon (Cinnamum camphorum) or coconut (Cocos nucifera) is introduced into the modified cyanobacteria, and a free fatty acid having a C14 chain length is mainly produced.
  • cinnamon Cinnamum camphorum
  • coconut Cocos nucifera
  • a gene encoding acyl-ACP thioesterase of Escherichia coli K-12 is introduced into the modified cyanobacteria, and free fatty acids having a C16 or C18 chain length are mainly produced.
  • Example 1 Construction of a LexA-type Transcription Regulator / Acyl-ACP Synthetase Double-deficient Cyanobacteria Modified Strain
  • the gene sll1626 of type transcription regulator was deleted.
  • the sll1626up fragment (SEQ ID NO: 19) and sll1626down fragment (SEQ ID NO: 20) were amplified using the genomic DNA of Synecocystis sp.
  • Fusion PCR was performed using a DNA solution obtained by mixing these PCR products and 3 fragments of kanamycin resistance marker gene (extracted from pRL161 plasmid by HincII treatment) as a template to obtain a lexA disruption construct ⁇ sll1626 :: Km fragment.
  • Synechocystis sp. PCC6803 strain was transformed with this ⁇ sll1626 :: Km fragment, and a LexA transcriptional regulatory factor disruption strain ( ⁇ sll1626 strain) was obtained by kanamycin resistance selection.
  • the microbial cells were crushed by adding zirconia beads to the suspension, and a protein solution derived from the microbial cells was obtained. For each sample, a protein solution corresponding to 1.0 ⁇ 10 7 cells was collected, subjected to SDS-PAGE, and LexA protein was detected by Western blot analysis.
  • the LexA band was confirmed in the wild strain, but in the lexA-deficient strain ( ⁇ sll1626 strain), the band derived from LexA was hardly confirmed, and the amount of LexA protein was significantly reduced. It was shown that From this result, it was confirmed that the function of the LexA transcription factor was reduced in the lexA-deficient ⁇ sll1626 strain.
  • an acyl-ACP is inactivated by inserting a spectinomycin resistance gene between the coding region of slr1609, which is a gene encoding acyl-ACP synthetase on the genome of ⁇ sll1626 strain, to inactivate the slr1609 gene.
  • a modified strain in which the function of synthetase was lost and the fatty acid productivity was improved was produced.
  • an acyl-ACP thioesterase (UcTE) gene derived from Umbellularia californica whose codons are optimized according to Synechocystis sp. PCC6803 into the slr1609 coding region, fatty acid productivity is further improved.
  • a modified strain was prepared. The production procedure of the modified strain is described in detail below.
  • a partial fragment (2049 bp) of the slr1609 gene was amplified from the genomic DNA of the wild strain of Synechocystis sp. PCC6803 strain using the primers slr1609f-F and slr1609r-R described in Table 2, and HincII of pUC118 plasmid (Takara Bio Inc.) Cloning between sites gave the pUC118-slr1609 plasmid.
  • slr1609 / sp-F and slr1609 / sp-R described in Table 2 A marker gene fragment (sp fragment: SEQ ID NO: 21) was obtained.
  • a linear DNA fragment in which the 242 bp region between the slr1609 gene coding region was deleted was obtained by PCR using the primers slr1609f-R and slr1609r-F described in Table 2,
  • the pUC118-slr1609 :: sp plasmid containing the DNA sequence of the slr1609 gene coding region with the sp fragment inserted between the fragment and the sp fragment were ligated using the In-Fusion (registered trademark) PCR cloning method (Clontech). Obtained.
  • the plasmid was linearized by PCR using the primers slr1609f-R and Sp-F shown in Table 2.
  • the primers slr1609 / psbA2-F and psbA2 / UcTE-R described in Table 2 the promoter region fragment (SEQ ID NO: 22) of Synechocystis sp. PCC6803-derived psbA2 gene was PCR amplified.
  • acyl-ACP thioesterase (UcTE) gene fragment (UcTE fragment: SEQ ID NO: 2) derived from Umbrellaria californica was artificially constructed with a codon optimized sequence according to Synechocystis sp. PCC6803 described in Non-Patent Document 4. It was prepared by synthesis and prepared by PCR amplification using the primers UcTE-F and UcTE / sp-R listed in Table 2.
  • the psbA2 promoter region fragment and the UcTE fragment were added to the linearized plasmid and cloned by the In-Fusion (registered trademark) PCR cloning method (Clontech), and the psbA2 promoter region fragment between the slr1609 gene coding regions.
  • the pUC118-slr1609 :: psbA2-UcTE-sp plasmid inserted in the order of the UcTE fragment and the sp fragment was obtained.
  • the pUC118-slr1609 is transformed with another Synechocystis sp. PCC6803 wild type strain and selected by resistance to spectinomycin, whereby the acyl-ACP synthetase slr1609 gene coding region on the genome Introducing an acyl-ACP thioesterase (UcTE) gene with a codon optimized therebetween inactivates the acyl-ACP synthetase gene slr1609 and imparted the ability to express acyl-ACP thioesterase ⁇ slr1609 :: UcTE strain Acquired.
  • UcTE acyl-ACP thioesterase
  • the LexA gene slll1626 on the genome is inactive.
  • the acyl-ACP synthetase gene slr1609 is inactivated and the acyl-ACP thioesterase is inactivated by introducing an acyl-ACP thioesterase (UcTE) gene whose codon is optimized between the acyl-ACP synthetase slr1609 gene coding region.
  • UcTE acyl-ACP thioesterase
  • the ⁇ slr1609 :: sp strain, the ⁇ sll1626 ⁇ sr1609 :: sp strain, the ⁇ slr1609 :: UcTE strain, and the ⁇ sll1626 ⁇ slr1609 :: UcTE strain were cultured for 2 weeks.
  • the amount of methyl ester of each fatty acid was quantified from the peak area of the waveform data obtained by gas chromatography analysis. In addition, the correction between samples was performed by comparing each measured peak area with the peak area of 7-pentadecanone which is an internal standard. The amount and total amount of each fatty acid contained per liter of culture solution were calculated.
  • FIGS. 2, 3 and Table 3 are average values of the results of three independent cultures and chromatographic analyses.
  • the ⁇ sll1626 ⁇ sll1609 :: sp strain in which the LexA gene slll1626 and the acyl ACP synthetase gene slr1609 were disrupted produced each free fatty acid in comparison with the ⁇ slr1609 :: sp strain in which the LexA gene was not disrupted.
  • the amount increased and the total free fatty acid amount also increased significantly. Further, as is apparent from FIG.
  • the ⁇ sll1626 ⁇ sll1609 :: sp strain exhibited 2.92 times the total fatty acid production compared to the ⁇ slr1609 :: sp strain, and the ⁇ sll1626 ⁇ sll1609 :: UcTE strain, The total fatty acid production amount was 1.41 times that of the ⁇ slr1609 :: UcTE strain.
  • the fatty acid production increased by 1.84 times compared to the ⁇ sll1626 ⁇ sll1609 :: sp strain into which the acyl-ACP thioesterase gene was not introduced.
  • the production amount of C12 fatty acid was greatly increased compared to the UcTE gene non-introduced strain.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 脂肪酸生産性が向上したシアノバクテリアを提供すること。シアノバクテリアにおけるLexA型転写制御因子と、アシル-ACPシンテターゼとを機能喪失させることを含む、改変シアノバクテリアの製造方法。

Description

改変シアノバクテリア
 本発明は、脂肪酸分泌生産性が向上した改変シアノバクテリアに関する。
 近年、化石燃料の将来的な枯渇が予測されており、エネルギー問題の解決のため、化石燃料に頼らない次世代エネルギー生産技術の確立が急務とされている。その一端として、シアノバクテリアや藻類などの光合成生物を利用したバイオ燃料生産研究が注目されている。上記光合成生物は、光をエネルギー源としてCO2と水から光合成で固定した炭素を原料に、バイオ燃料を生産することが可能である。さらに、上記光合成生物は、食糧原料と競合しないこと、カーボンニュートラルな燃料生産が可能なことから、次世代エネルギー生産系として期待が持たれている。
 シアノバクテリア(藍色細菌)は、藍藻とも呼ばれる真正細菌の一群であり、光合成によって酸素を産生し、CO2を固定化する能力を有する。シアノバクテリアは、外膜とペプチドグリカンの細胞壁をもち、グラム陰性菌の範疇に入るが、典型的なグラム陰性菌とは系統的に離れている。シアノバクテリアは、それらが10数億年前に真核生物に細胞内共生(1次共生)したことが葉緑体の起源であると考えられているため、葉緑体の祖先生物として光合成研究に広く利用されている。
 またシアノバクテリアは、生育が速く、高い光合成能力を有すること、さらに形質転換能を有するため、外来DNAを細胞内に導入することで微生物学的な物質生産に利用可能であることから、バイオ燃料生産用宿主として注目されている。シアノバクテリアを用いたバイオ燃料生産の例としては、水素(非特許文献1)、エタノール(非特許文献2)、イソブタノール(非特許文献3)、及び脂肪酸(非特許文献4)が報告されている。非特許文献4及び特許文献1には、外因性アシル-ACPチオエステラーゼを産生する組換えシアノバクテリアを培養することで無機炭素を脂肪酸に変換させる方法が記載されている。
  (特許文献1)特表2011-505838号公報
  (非特許文献1)Yoshino F. et al. (2007) Mar. Biotechnol. 9:101-112
  (非特許文献2)Deng M. D. and Coleman J. R. (1999) Appl. Environ. Microbiol. 65:523-528
  (非特許文献3)Atsumi S. et al. (2009) Nat. Biotechnol. 27:1177-1180
  (非特許文献4)Liu X. et al. (2011) Proc. Natl. Acad. Sci. USA. 108:6899-6904
 一態様において本発明は、シアノバクテリアにおけるLexA型転写制御因子と、アシル-ACPシンテターゼとを機能喪失させることを含む、改変シアノバクテリアの製造方法を提供する。
 別の一態様において、本発明は、シアノバクテリアにおけるLexA型転写制御因子と、アシル-ACPシンテターゼとを機能喪失させることを含む、シアノバクテリアの脂肪酸分泌生産性の向上方法を提供する。
 さらに別の一態様において、本発明は、LexA型転写制御因子と、アシル-ACPシンテターゼとが機能喪失した改変シアノバクテリアを提供する。
 さらなる態様において、本発明は、上記改変シアノバクテリア、又は上記方法で製造された改変シアノバクテリアを培養することを含む、脂肪酸生産方法を提供する。
野生株(WT)とLexA転写制御因子破壊株(Δsll1626)におけるLexAタンパク質のウエスタンブロッティング結果。 Δslr1609::sp株とΔsll1626Δslr1609::sp株の培養液中の遊離脂肪酸量。n=3、エラーバー=SD。 Δslr1609::UcTE株とΔsll1626Δslr1609::UcTE株の培養液中の遊離脂肪酸量。n=3、エラーバー=SD。
(1.定義)
 本明細書において、ヌクレオチド配列及びアミノ酸配列の同一性は、Lipman-Pearson法(Science,1985,227:1435-1441)によって計算される。具体的には、遺伝情報処理ソフトウェアGenetyx-Winのホモロジー解析(Search homology)プログラムを用いて、Unit size to compare(ktup)を2として解析を行うことにより算出される。
 本明細書において、機能の「喪失」とは、該機能の一部喪失(すなわち、機能の低減、抑制又は一部阻害)及び該機能の完全な喪失を包含する概念である。例えば、本明細書において、「LexA型転写制御因子の機能喪失」とは、該因子の転写制御機能が低減することであり得る。また本明細書において、「アシル-ACPシンテターゼの機能喪失」とは、該酵素のアシル-ACP合成活性が低減すること、又は該酵素のアシル-ACP合成活性が完全に失われることであり得る。例えば、「シアノバクテリアにおけるLexA型転写制御因子又はアシル-ACPシンテターゼの機能喪失」とは、該因子又は該酵素の発現量を低下させることでシアノバクテリアにおけるLexA型転写制御機能又はアシル-ACP合成活性を低減させること、あるいは、該因子又は該酵素をコードする遺伝子を欠失させることであり得る。
 シアノバクテリアは、藍藻とも呼ばれ、クロロフィルを用いた光合成を行う原核生物の一群である。シアノバクテリアは多様性に富んでおり、細胞の形状のみを見ても、シネコシスティス・エスピー(Synechocystis sp.)PCC6803のような単細胞性のものや、ヘテロシストを形成し窒素固定を行うアナベナ・エスピー(Anabaena sp.)PCC7120のように多細胞がヒモ状に繋がっている糸状性のもの、又はらせん状や分岐状のもの等がある。生育環境についても、別府温泉から単離されたサーモシネココッカス・エロンガタス(Thermosynechococcus elongatus)BP-1のような好熱性のもの、海洋性で沿岸部に生息するシネココッカス・エスピー(Synechococcus sp.)CC9311、又は外洋に生息するシネココッカス・エスピーWH8102など、様々な条件に適応した種が見られる。また、種独自の特徴を持つものとして、ミクロシスティス・エルギノーサ(Microcystis aeruginosa)のように、ガス小胞を持ち毒素を産生することのできるものや、チラコイドを持たず集光アンテナであるフィコビリソームが原形質膜に結合しているグロイオバクター・ビオラセウス(Gloeobacter violaceus)PCC7421、又は一般的な光合成生物のようにクロロフィルaでなくクロロフィルdを主要な(>95%)光合成色素として持つ海洋性のアカリオクロリス・マリナ(Acaryochloris marina)なども挙げられる。
 シアノバクテリアでは、光合成により固定された二酸化炭素は多数の酵素反応プロセスを経てアセチル-CoAへと変換される。脂肪酸合成の最初の段階は、アセチル-CoAカルボキシラーゼの作用による、アセチル-CoAとCO2からのマロニル-CoAの合成である。次に、マロニル-CoAがマロニルCoA:ACPトランスアシラーゼの作用によってマロニル-ACPへと変換される。その後、脂肪酸シンテターゼ(又はアシル-ACPシンテターゼ)の進行的作用時に、炭素単位2個の連続的付加が起こり、炭素が2個ずつ増加したアシル-ACPが合成され、膜脂肪酸等の合成中間体として利用される。
 LexA型転写制御因子(transcription factor LexA;以下の本明細書中において、単にLexAと称する場合がある)は、N末端側のヘリックスターンヘリックス構造を有するDNA結合ドメイン(pfam01726)と、C末端側のPeptidase_S24-like配列(pfam00717)とを有することを特徴とするタンパク質であり、遺伝子発現の制御に重要な役割を果たす転写因子として知られている。LexA型転写制御因子は、グラム陽性細菌及びグラム陰性細菌に広く分布している。例えば、大腸菌においては、LexAはSOS-box配列(TACTGTATATATATACAGTA;配列番号23)を認識して結合し、SOSレギュロンに属するDNA修復や細胞分裂の制御に関する遺伝子群の転写を抑制している。すなわち、ゲノムDNAが損傷を受けた際にLexA自身が自己プロテアーゼ活性によって分解し、そのDNA結合能が不活化することで、LexAによる遺伝子群の抑制が解除され、その結果、SOSレギュロンの遺伝子が発現し、DNA修復能の活性化や突然変異の誘発が起こることが報告されている(Friedberg,E.C.et al.,DNA Repair and Mutagenesis,American Society of Microbiology Press,2005,463-508)。
 シアノバクテリアの多くの種でも、LexAが保存されている。LexAを有するシアノバクテリア種、又は個々のシアノバクテリア種が有するLexAに関する情報は、例えば、CyanoBase([genome.microbedb.jp/cyanobase/])、又はNCBIデータベース([www.ncbi.nlm.nih.gov/genome/]又は[www.ncbi.nlm.nih.gov/protein/])から取得することができる。例えば、上述したシネコシスティス属のシネコシスティス・エスピーPCC6803は、LexAをコードする遺伝子として、sll1626遺伝子を保有している。また例えば、シネココッカス属の遺伝子SYNPCC7002_A1849及びSYNW1582、プロクロロコッカス属の遺伝子P9303_19141及びPMT0380、アカリオクロリス属の遺伝子AM1_3948、シアノセイス属の遺伝子cce_1899、cce_5074、及びPCC8801_2186、ならびにアナベナ属の遺伝子alr4908及びall3272は、いずれもLexAをコードする遺伝子である。
 一方、シアノバクテリアのLexAは、大腸菌等のLexAとは異なる機能を有する場合もあることが示されている。例えば、シネコシスティス・エスピーPCC6803のLexAをコードするsll1626遺伝子は、生育必須遺伝子であることが知られているが、それがコードするタンパク質は、大腸菌等のLexAとは異なり、DNA修復等のSOSレギュロンの発現制御には関与していないことが報告されている(Mol Microbiol,2004,53(1):65-80)。また、シネコシスティス・エスピーPCC6803のLexAは、光照射条件下で水素発生に関与する双方向性ヒドロゲナーゼをコードするhoxオペロン(hoxEFUYH)の発現を促進することが報告されている(Mol Microbiol,2005,58(3):810-823)。その他、シネコシスティス・エスピーPCC6803のLexAにより発現抑制される遺伝子としては、LexA自身をコードする遺伝子、及びredox-sensitive RNA helicase,crhR(Nucleic Acids Res,2006,34(12):3446-354)が報告されている。シネコシスティス・エスピーPCC6803のLexAの認識配列としては、例えば、“CTA-N9-CTA”の12塩基を含む配列が報告されている(FEBS Lett,2008,582(16):2424-30)。一方、アナベナ・エスピーPCC7120のLexAについては、上記PCC6803株と同様に双方向性ヒドロゲナーゼの発現を促進すること、シュードパリンドローム配列RGTACNNNDGTWCB(配列番号24)を認識することが報告されている(Mol Genet Genomics,2004,271(1):40-9)。さらに、シアノバクテリアのLexAの推定認識配列として、おおよそAGTACWNWTGTACT(配列番号25)で示される14bpのパリンドローム配列が報告されている(BMC Genomics,2010,11:527)。
 したがって、本明細書において、シアノバクテリアにおける「LexA型転写制御因子」とは、広義には、N末端側にはヘリックスターンヘリックス構造を有するDNA結合ドメイン(pfam01726)として同定されるアミノ酸配列を、C末端側にはPeptidase_S24-like配列(pfam00717)として同定されるアミノ酸配列を有し、かつ遺伝子の転写を制御する機能を有するタンパク質をいう。より実際的には、LexA型転写制御因子は、BLAST(blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastHome)を用いた既知のLexA遺伝子とのホモロジー検索により、同定することができる。本明細書において、ポリペプチドが「LexA型転写制御因子としての構造及び機能を有する」とは、該ポリペプチドが、上記のDNA結合ドメインとして働くN末端側のヘリックスターンヘリックスと、C末端側のPeptidase_S24-like配列とを含む構造を有し、かつ遺伝子の転写を制御する機能を有することをいう。
 シアノバクテリアの遺伝子やタンパク質に関する情報は、例えば上述のCyanoBaseやNCBIデータベースにおいて公開されている。当業者は、これらのデータベースの情報に基づいて、目的のシアノバクテリアのタンパク質(例えば、LexA型転写制御因子若しくはアシル-ACPシンテターゼ)のアミノ酸配列、又はそれらをコードする遺伝子のヌクレオチド配列を取得することができる。
(2.改変シアノバクテリア)
 シアノバクテリアの光合成に依存した、大気CO2の炭素を原料にした様々なバイオ燃料生産技術が開発されているが、その生産性はまだ低いレベルであり、より生産効率の高い技術の開発が望まれている。本発明は、脂肪酸生産性が向上したシアノバクテリアを提供することに関する。
 本発明者は、シアノバクテリアにおいて、LexA型転写制御因子と、アシル-ACPシンテターゼとを機能喪失させることによって、又はさらにアシル-ACPチオエステラーゼをコードする遺伝子を導入することによって得られた改変シアノバクテリアにおいて、該シアノバクテリアの培養液あたり又は細胞あたりの脂肪酸分泌生産量が増大することを見出した。
 本発明によれば、脂肪酸分泌生産性の向上した改変シアノバクテリアを製造することができる。本発明の改変シアノバクテリアを培養すれば、効率のよい微生物学的脂肪酸生産が可能になる。
 本発明は、脂肪酸の分泌生産性が向上した改変シアノバクテリアを提供する。本発明の改変シアノバクテリアは、そのLexA型転写制御因子と、アシル-ACPシンテターゼとを機能喪失させるように改変されたシアノバクテリアである。
 本発明の改変シアノバクテリアの親微生物となる、LexA型転写制御因子とアシル-ACPシンテターゼの機能喪失改変前のシアノバクテリア(以下、親シアノバクテリアということがある)の種類には、特に制限はなく、あらゆる種類のものが挙げられる。好ましくは、親シアノバクテリアの例としては、シネコシスティス属(Synechocystis)、シネココッカス属(Synechococcus)、プロクロロコッカス属(Prochlorococcus)、アカリオクロリス属(Acaryochloris)、シアノセイス属(Cyanothece)、及びアナベナ属(Anabaena)に属するシアノバクテリアを挙げることができ、より好ましくは、シネコシスティス属(Synechocystis)、シネココッカス属(Synechococcus)、及びアナベナ属(Anabaena)に属するシアノバクテリアを挙げることができ、さらに好ましくは、シネコシスティス・エスピーPCC6803、シネコシスティス・エスピーPCC7509、シネコシスティス・エスピーPCC6714、シネココッカス・エスピーPCC7002、シネココッカス・エスピーWH8102、プロクロロコッカス・エスピーMIT9303、プロクロロコッカス・マリナスMIT9313、アカリオクロリス・マリアナMBIC11017、シアノセイス・エスピーATCC51142、シアノセイス・エスピーPCC8801、及びアナベナ・エスピーPCC7120を挙げることができ、さらにより好ましくは、シネコシスティス・エスピーPCC6803、シネコシスティス・エスピーPCC6714、及びシネコシスティス・エスピーPCC7509を挙げることができ、なお好ましくはシネコシスティス・エスピーPCC6803である。
 上記親シアノバクテリアのLexA型転写制御因子のアミノ酸配列、それをコードする遺伝子、及び当該遺伝子のゲノム又はプラスミド上での位置やそのヌクレオチド配列は、上述のCyanoBaseやNCBIデータベースで確認することができる。例えば、本発明において親シアノバクテリアから機能喪失されるLexA型転写制御因子の好ましい例としては、以下の遺伝子:シネコシスティス・エスピーPCC6803のsll1626、シネココッカス・エスピーPCC7002のSYNPCC7002_A1849、シネココッカス・エスピーWH8102のSYNW1582、プロクロロコッカス・エスピーMIT9303のP9303_19141、プロクロロコッカス・マリナスMIT9313のPMT0380、アカリオクロリス・マリアナMBIC11017のAM1_3948、シアノセイス・エスピーATCC51142のcce_1899若しくはcce_5074、シアノセイス・エスピーPCC8801のPCC8801_2186、又はアナベナ・エスピーPCC7120のalr4908若しくはall3272、にコードされるLexAが挙げられる。あるいは、本発明において機能喪失されるLexAとしては、上記に例示したLexAのいずれかのアミノ酸配列と、40%以上、好ましくは50%以上、より好ましくは60%以上、さらに好ましくは70%以上、さらにより好ましくは80%以上、なお好ましくは90%以上、なお好ましくは95%以上、なお好ましくは98%以上、なお好ましくは99%以上の同一性を有するアミノ酸配列からなり、かつLexA型転写制御因子としての構造及び機能を有するポリペプチドを挙げることができる。
 シアノバクテリアのアシル-ACPシンテターゼのアミノ酸配列、それをコードする遺伝子、及び該遺伝子の位置やそのヌクレオチド配列は、上述のCyanoBaseやNCBIデータベースで確認することができる。本発明において親シアノバクテリアから機能喪失されるアシル-ACPシンテターゼの好ましい例としては、シネコシスティス・エスピーPCC6803のSlr1609、シネココッカス・エスピーPCC7002のSYNPCC7002_A0675、シネココッカス・エスピーWH8102のSYNW0669、プロクロロコッカス・エスピーMIT9303のP9303_21391、プロクロロコッカス・マリナスMIT9313のPMT0215、アカリオクロリス・マリアナMBIC11017のAM1_5562及びAM1_2147、シアノセイス・エスピーATCC51142のCCE_1133、シアノセイス・エスピーPCC8801のPCC8801_0332、アナベナ・エスピーPCC7120のAlr3602などを挙げることができる。あるいは、本発明において機能喪失されるアシル-ACPシンテターゼとしては、上記に例示したアシル-ACPシンテターゼタンパク質のいずれかのアミノ酸配列と、40%以上、好ましくは50%以上、より好ましくは60%以上、さらに好ましくは70%以上、さらにより好ましくは80%以上、なお好ましくは90%以上、なおより好ましくは95%以上の同一性を有するアミノ酸配列からなり、かつアシル-ACPを合成する機能を有するポリペプチドを挙げることができる。
 シアノバクテリアにおけるLexA型転写制御因子又はアシル-ACPシンテターゼを機能喪失させる手段としては、タンパク質の機能喪失に通常使用される手段であれば特に限定されないが、例えば、LexA又はアシル-ACPシンテターゼをコードする遺伝子を欠失又は不活性化させること、該遺伝子に対し、発現したタンパク質が活性低減又は不活性化する変異を導入すること、該遺伝子の転写を阻害する変異を導入すること、該遺伝子の転写産物の翻訳を阻害すること、又は発現した目的のタンパク質を特異的に阻害する阻害剤を投与することなどが挙げられる。このうち、シアノバクテリアにおけるLexA型転写制御因子をコードする遺伝子と、アシル-ACPシンテターゼをコードする遺伝子とを欠失又は不活性化させることが好ましい。
 本発明において、LexA型転写制御因子を機能喪失させるために欠失又は不活性化させるべき、LexA型転写制御因子をコードする遺伝子の例としては、上述したシネコシスティス・エスピーPCC6803のsll1626、シネコシスティス・エスピーPCC7002のSYNPCC7002_A1849、シネココッカス・エスピーWH8102のSYNW1582、プロクロロコッカス・エスピーMIT9303のP9303_19141、プロクロロコッカス・マリナスMIT9313のPMT0380、アカリオクロリス・マリアナMBIC11017のAM1_3948、シアノセイス・エスピーATCC51142のcce_1899及びcce_5074、シアノセイス・エスピーPCC8801のPCC8801_2186、アナベナ・エスピーPCC7120のalr4908及びall3272などが挙げられる。これらの遺伝子及びそのヌクレオチド配列は、上述したCyanoBase又はNCBIデータベース上で確認することができる。例えば、シネコシスティス・エスピーPCC6803のSll1626をコードするポリヌクレオチドは、sll1626遺伝子(NCBI Gene ID:954404)として、またシネコシスティス・エスピーPCC7002のSYNPCC7002_A1849をコードするポリヌクレオチドは、SYNPCC7002_A1849遺伝子(NCBI Gene ID:6057790)として同定することができる。さらに、これらの遺伝子のいずれかのヌクレオチド配列と、40%以上、好ましくは50%以上、より好ましくは60%以上、さらに好ましくは70%以上、さらにより好ましくは80%以上、なお好ましくは90%以上、なお好ましくは95%以上、なお好ましくは98%以上、なお好ましくは99%以上の同一性を有するヌクレオチド配列からなり、かつLexA型転写制御因子としての構造及び機能を有するポリペプチドをコードするポリヌクレオチドもまた、本発明で欠失又は不活性化させるべきLexA転写制御因子をコードする遺伝子の例として挙げることができる。
 本発明において欠失又は不活性化させるべきLexA型転写制御因子をコードする遺伝子の好ましい例としては、sll1626遺伝子、及びsll1626遺伝子のヌクレオチド配列と80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上、なお好ましくは99%以上の同一性を有するヌクレオチド配列からなり、かつLexA型転写制御因子としての構造及び機能を有するポリペプチドをコードするポリヌクレオチドが挙げられる。
 また、本発明で機能喪失させるために、欠失又は不活性化させるべきアシル-ACPシンテターゼをコードする遺伝子の例としては、以下のタンパク質:シネコシスティス・エスピーPCC6803のSlr1609、シネココッカス・エスピーPCC7002のSYNPCC7002_A0675、シネココッカス・エスピーWH8102のSYNW0669、プロクロロコッカス・エスピーMIT9303のP9303_21391、プロクロロコッカス・マリナスMIT9313のPMT0215、アカリオクロリス・マリアナMBIC11017のAM1_5562若しくはAM1_2147、シアノセイス・エスピーATCC51142のCCE_1133、シアノセイス・エスピーPCC8801のPCC8801_0332、又はアナベナ・エスピーPCC7120のAlr3602、をコードするポリヌクレオチドが挙げられる。これらの遺伝子及びそのヌクレオチド配列は、上述したCyanoBase又はNCBIデータベース上で確認することができる。例えば、シネコシスティス・エスピーPCC6803のSlr1609をコードするポリヌクレオチドは、slr1609遺伝子(NCBI Gene ID:953643)として、シネココッカス・エスピーPCC7002のSYNPCC7002_A0675をコードするポリヌクレオチドは、SYNPCC7002_A0675遺伝子(NCBI Gene ID:6057029)として、シネココッカス・エスピーWH8102のSYNW0669をコードするポリヌクレオチドは、SYNW0669遺伝子(NCBI-Gene ID:1730682)として、及びアナベナ・エスピーPCC7120のAlr3602をコードするポリヌクレオチドはalr3602遺伝子として、同定することができる。さらに、これらの遺伝子のいずれかのヌクレオチド配列と、40%以上、好ましくは50%以上、より好ましくは60%以上、さらに好ましくは70%以上、さらにより好ましくは80%以上、なお好ましくは90%以上、なお好ましくは95%以上、なお好ましくは98%以上、なお好ましくは99%以上の同一性を有するヌクレオチド配列からなり、かつアシル-ACPを合成する機能を有するポリペプチドをコードするポリヌクレオチドもまた、本発明で欠失又は不活性化させるべきアシル-ACPシンテターゼをコードする遺伝子の例として挙げることができる。
 本発明で欠失又は不活性化させるべきアシル-ACPシンテターゼをコードする遺伝子の好ましい例としては、slr1609遺伝子、SYNPCC7002_A0675遺伝子、及びslr1609遺伝子又はSYNPCC7002_A0675遺伝子のヌクレオチド配列と80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上、なお好ましくは99%以上の同一性を有するヌクレオチド配列からなり、かつアシル-ACPを合成する機能を有するポリペプチドをコードするポリヌクレオチドが挙げられ、より好ましい例は、slr1609遺伝子である。
 上記遺伝子を欠失又は不活性化させる手段としては、該遺伝子のヌクレオチド配列上の1つ以上のヌクレオチドに対する突然変異導入、又は該ヌクレオチド配列に対する別のヌクレオチド配列の置換若しくは挿入、あるいは該遺伝子の配列の一部若しくは全部の削除などが挙げられる。発現したタンパク質が活性低減又は不活性化する変異を遺伝子に導入する手段としては、該遺伝子がコードするタンパク質の活性に関与する部位に変異が生じるように、該遺伝子に突然変異を導入することが挙げられる。上記遺伝子の転写を阻害する変異を導入する手段としては、該遺伝子のプロモーター領域に対する突然変異導入や、別のヌクレオチド配列での置換若しくは挿入による、当該プロモーターの不活性化が挙げられる。上記突然変異導や、ヌクレオチド配列の置換若しくは挿入のための具体的な手法としては、紫外線照射や部位特異的変異導入、相同組換え法、SOE(splicing by overlap extension)-PCR法(Gene,1989,77:61-68)などを挙げることができる。上記転写産物の翻訳を阻害する手段としては、マイクロRNAによるRNA干渉を挙げることができる。タンパク質の特異的阻害剤としては、当該タンパク質や、その受容体又はリガンドに特異的な抗体が挙げられる。
 好ましい実施形態において、本発明の改変シアノバクテリアは、上述の改変に加えて、さらにアシル-ACPチオエステラーゼをコードする異種遺伝子が導入されていてもよい。言い換えると、本発明の好ましい実施形態における改変シアノバクテリアは、LexA転写制御因子とアシル-ACPシンテターゼが機能喪失されており、かつさらにアシル-ACPチオエステラーゼをコードする異種遺伝子を保有するシアノバクテリアであり得る。アシル-ACPチオエステラーゼは、脂肪酸合成経路において、アシル-ACPから脂肪酸鎖を遊離させる酵素である。シアノバクテリアへのアシル-ACPチオエステラーゼの導入により、脂肪酸合成で生成したアシル-ACPから脂肪酸が切り出されて、遊離脂肪酸が生成されることが報告されている(非特許文献4)。一方で、シアノバクテリアでアシル-ACPチオエステラーゼの働きにより生成された遊離脂肪酸を効率的に分泌させるために、内生のアシル-ACPシンテターゼ遺伝子を機能喪失させることが有効であることが報告されている(Plant Physiol,2010,152:1598-1610)。したがって、本発明の改変シアノバクテリアに対して、アシル-ACPチオエステラーゼをコードする遺伝子を外部から導入することにより、その細胞内における脂肪酸の生成を促進し、改変シアノバクテリアの脂肪酸の分泌生産性を一層向上させることができる。
 本発明の改変シアノバクテリアに導入するアシル-ACPチオエステラーゼをコードする遺伝子としては、種子油に大量の中鎖脂肪酸を含有する植物、又は脂肪酸生産性藻類等から単離されたものを挙げることができる。例えば、以下の植物又は藻類:シロイヌナズナ(Arabidopsis thaliana);ブラディリゾビウム・ジャポニクム(Bradyrhizobium japonicum);セイヨウアブラナ(Brassica napus);クスノキ(Cinnamonum camphorum);カプシカム・シネンセ(Capsicum chinense);クフェア・フッケリアナ(Cuphea hookeriana);クフェア・ランセオラータ(Cuphea lanceolata);クフェア・パルストリス(Cuphea palustris);コリアンダー(Coriandrum sativum L.);ベニバナ(Carthamus tinctorius);クフェア・ライチイ(Cuphea wrightii);ギニアアブラヤシ(Elaeis guineensis);ワタ(Gossypium hirsutum);マンゴスチン(Garcinia mangostana);ヒマワリ(Helianthus annuus);ジャーマン・アイリス(Iris germanica);イチハツ(Iris tectorum);ナツメグ(Myristica fragrans);コムギ(Triticum aestivum);アメリカニレ(Ulmus Americana);シナモン(Cinnamomum camphorum);ココヤシ(Cocos nucifera);又は、ウンベルラリア・カリフォルニカ(Umbellularia californica)、に由来するアシル-ACPチオエステラーゼをコードする遺伝子が挙げられる。あるいは、大腸菌(Escherichia coli)のアシル-ACPチオエステラーゼをコードする遺伝子を、本発明の改変シアノバクテリアに導入することもできる。本発明の上記アシル-ACPチオエステラーゼをコードする異種遺伝子は、好ましくは、ウンベルラリア・カリフォルニカ由来のアシル-ACPチオエステラーゼ(NCBIデータベース GI:595955)をコードする遺伝子、シナモンのアシル-ACPチオエステラーゼ(GI:AAC49151.1)をコードする遺伝子、ココヤシのアシル-ACPチオエステラーゼ(GI:AEM72521.1)をコードする遺伝子、又は大腸菌のアシル-ACPチオエステラーゼ(GI:AAC73596.1)をコードする遺伝子である。上記植物や藻類、又は大腸菌由来のアシル-ACPチオエステラーゼをコードする遺伝子は、NCBIデータベース上で同定することができる。例えば、ウンベルラリア・カリフォルニカ由来のアシル-ACPチオエステラーゼ(UcTE)の遺伝子は、NCBIデータベースにてGenBank ID:U17097として登録されている。また例えば、シナモン及びココヤシのアシル-ACPチオエステラーゼをコードする遺伝子は、それぞれGenBank ID:U31813、及びGenBank ID:JF338905として登録されている。また例えば、E.coli K-12株のアシル-ACPチオエステラーゼをコードする遺伝子は、NCBI Gene ID:945127として登録されている。
 本発明でシアノバクテリアに導入するアシル-ACPチオエステラーゼ遺伝子の好ましい例としては、配列番号1で示されるアミノ酸配列からなるウンベルラリア・カリフォルニカ由来のアシル-ACPチオエステラーゼUcTEをコードする遺伝子、及び配列番号1で示されるUcTEのアミノ酸配列と80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上、なお好ましくは99%以上の同一性を有するアミノ酸配列からなり、かつアシル-ACPから脂肪酸鎖を遊離させる機能を有するポリペプチドをコードする遺伝子が挙げられる。
 アシル-ACPチオエステラーゼは、基質となるアシル-ACPの脂肪酸鎖長及び不飽和度に対して特異性を有する(米国特許第5298421号、Planta,1993,189:425-432)。したがって、導入するアシルACPチオエステラーゼの種類を変えることによって、シアノバクテリアに所望の鎖長や不飽和度の遊離脂肪酸を生産させることが可能である。例えば、上述のウンベリラリア・カリフォルニカ由来アシル-ACPチオエステラーゼ(UcTE)は、C12鎖長のアシル基に基質特異性を有し、生成する遊離脂肪酸は主にラウリン酸(C12:0)などのC12鎖長の遊離脂肪酸である。また例えば、上述のシナモン及びココヤシのアシル-ACPチオエステラーゼは、C14鎖長のアシル基に基質特異性を有し、生成する遊離脂肪酸は主にミリスチン酸(C14:0)などのC14鎖長の遊離脂肪酸である。また例えば、上述のE.coli K-12株のアシル-ACPチオエステラーゼは、C16又はC18鎖長のアシル基に基質特異性を有し、生成する遊離脂肪酸は主にパルミチン酸(C16:0)、パルミトレイン酸(C16:1)、ステアリン酸(C18:0)、オレイン酸(C18:1)、リノール酸(C18:2)、リノレン酸(C18:3)などのC16又はC18鎖長の遊離脂肪酸である。
 本発明の改変シアノバクテリアに導入される異種アシル-ACPチオエステラーゼ遺伝子は、シアノバクテリアにおけるコドン使用頻度にあわせて、コドンを至適化されることが好ましい。各種生物が使用するコドンの情報は、Codon Usage Database([www.kazusa.or.jp/codon/])から入手可能である。シアノバクテリア用にコドン至適化されたアシル-ACPチオエステラーゼ遺伝子の例としては、配列番号2で示されるヌクレオチド配列からなるUcTE(配列番号1)をコードするポリヌクレオチド、又は配列番号2で示されるヌクレオチド配列と80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上、なお好ましくは99%以上の同一性を有するヌクレオチド配列からなり、かつアシル-ACPから脂肪酸鎖を遊離させる機能を有するポリペプチドをコードするポリヌクレオチドが挙げられる。
 シアノバクテリアへの異種アシル-ACPチオエステラーゼ遺伝子の導入には、例えば、プラスミドベクターなどのベクターを用いることができる。ベクターは、発現ベクターが好ましい。例えば、異種アシル-ACPチオエステラーゼ遺伝子のDNA断片及びそれを発現させるためのプロモーターを含む発現ベクターを構築する。プロモーターとしては、lac、tac若しくはtrcプロモーター、イソプロピルβ-D-1-チオガラクトピラノシド(IPTG)の添加によって誘導可能な誘導体に関するプロモーター、又は、Rubiscoオペロン(rbc)、PSI反応中心タンパク質をコードする遺伝子(psaAB)若しくはPSII反応中心D1タンパク質をコードする遺伝子(psbA)などの発現に関わるシアノバクテリアから単離されたプロモーターを利用できるが、これらに限定されるわけではなく、シアノバクテリアにおいて機能する多様なプロモーターを利用することができる。また上記発現ベクターには、当該ベクターが適切に導入された宿主を選択するためのマーカー遺伝子(例えば、カナマイシン、クロラムフェニコール、スペクチノマイシン、エリスロマイシンなどの薬剤の耐性遺伝子)がさらに組み込まれていてもよい。上記発現ベクターを、公知の手段で親シアノバクテリア又は本発明の改変シアノバクテリアに導入し、形質転換する。シアノバクテリアへのベクターの導入法としては、自然形質転換法、エレクトロポレーション法、接合法などの一般的な方法を用いることができる。形質転換処理後のシアノバクテリアを選択培地、例えば、抗生物質含有培地で培養すれば、所望の形質を有する形質転換体を選択することができる。
 好ましい実施形態において、異種アシル-ACPチオエステラーゼ遺伝子は、シアノバクテリアのゲノム上の内因性アシル-ACPシンテターゼ遺伝子の領域に導入され、該シアノバクテリアにおいてアシル-ACPシンテターゼを機能喪失させるとともに、異種アシル-ACPチオエステラーゼの発現能を付与する。例えば、SOE-PCR法(Gene, 1989, 77:61-68)によって、両端にアシル-ACPシンテターゼ遺伝子領域のDNA断片が付加された異種アシル-ACPチオエステラーゼ遺伝子のDNA断片を構築し、これをベクターに挿入し、該ベクターをシアノバクテリアに導入してゲノム上アシル-ACPシンテターゼ遺伝子領域との相同組換えを起こさせることによって、ゲノム上のアシル-ACPシンテターゼ遺伝子の領域に異種アシル-ACPチオエステラーゼ遺伝子が導入された改変シアノバクテリアを得ることができる。別の実施形態において、異種アシル-ACPチオエステラーゼ遺伝子は、シアノバクテリアのゲノム上における、遺伝子導入をしてもシアノバクテリアに害を与えない領域(ニュートラルサイト)に導入されてもよい。
(3.脂肪酸生産方法)
 以上の手順で、本発明の改変シアノバクテリアを製造することができる。本発明の改変シアノバクテリアは、脂肪酸分泌生産性が向上している。したがって、本発明の改変シアノバクテリアを適切な条件で培養し、次いで分泌された脂肪酸を回収すれば、効率のよい微生物学的脂肪酸生産を実施することができる。本発明の脂肪酸生産方法でシアノバクテリアにより分泌生産される脂肪酸としては、各種遊離脂肪酸が挙げられ、好ましくはラウリン酸(C12:0)を豊富に含有する遊離脂肪酸であり得る。
 シアノバクテリアの培養は、一般に、BG-11培地(J Gen Microbiol,1979,111:1-61)を用いた液体培養又はその変法に基づいて実施することができる。脂肪酸生産のための培養期間としては、十分に菌体が増殖した条件で脂肪酸が高濃度に蓄積するように行えばよく、例えば、7~45日間、好ましくは10~30日間、より好ましくは14~21日間通気攪拌培養又は振とう培養することが好適である。
 上記培養により、シアノバクテリアは脂肪酸を生産し、当該脂肪酸を培養物中に分泌する。分泌された脂肪酸を回収する場合、培養物からろ過、遠心分離等により細胞等の固形分を除去し、残った液体成分を回収した後、クロロホルム/メタノール抽出法、ヘキサン抽出法、エタノール抽出法等により脂肪酸を回収又は精製すればよい。また、大規模な生産の場合は、細胞を除去した後の培養物より油分を圧搾又は抽出により回収後、脱ガム、脱酸、脱色、脱蝋、脱臭等の一般的な精製を行い、脂肪酸を得ることができる。本発明による脂肪酸生産方法では、脂肪酸がシアノバクテリアの細胞外に分泌されるので、脂肪酸回収のために細胞を破壊する必要がない。脂肪酸回収後に残った細胞は、繰り返し脂肪酸生産に使用することができる。
 本発明の改変シアノバクテリアを用いた脂肪酸生産方法により得られる脂肪酸は、食用として用いられ得る他、化粧品等に配合する乳化剤や、石鹸や洗剤等の洗浄剤、繊維処理剤、毛髪リンス剤、又は殺菌剤や防腐剤などの原料として利用することができる。
(4.例示的実施形態)
 上述した本発明の別の例示的実施形態として、さらに以下の組成物、製造方法、用途あるいは方法を本明細書に開示する。ただし、本発明はこれらの実施形態に限定されない。
<1>シアノバクテリアにおけるLexA型転写制御因子と、アシル-ACPシンテターゼとを機能喪失させることを含む、改変シアノバクテリアの製造方法。
<2>シアノバクテリアにおけるLexA型転写制御因子と、アシル-ACPシンテターゼとを機能喪失させることを含む、シアノバクテリアの脂肪酸分泌生産性の向上方法。
<3>LexA型転写制御因子と、アシル-ACPシンテターゼとが機能喪失した改変シアノバクテリア。
<4>好ましくは、シアノバクテリアにおけるLexA型転写制御因子をコードする遺伝子と、アシル-ACPシンテターゼをコードする遺伝子とを欠失又は不活性化することを含む、<1>記載の方法。
<5>好ましくは、シアノバクテリアにおけるLexA型転写制御因子をコードする遺伝子と、アシル-ACPシンテターゼをコードする遺伝子とを欠失又は不活性化することを含む、<2>記載の方法。
<6>好ましくは、LexA型転写制御因子をコードする遺伝子と、アシル-ACPシンテターゼをコードする遺伝子とが欠失又は不活性化されている、<3>記載の改変シアノバクテリア。
<7>好ましくは、さらにアシル-ACPチオエステラーゼをコードする異種遺伝子を導入することを含む、<1>又は<4>記載の方法。
<8>好ましくは、さらにアシル-ACPチオエステラーゼをコードする異種遺伝子を導入することを含む、<2>又は<5>記載の方法。
<9>好ましくは、アシル-ACPチオエステラーゼをコードする異種遺伝子を含む、<3>又は<6>記載の改変シアノバクテリア。
<10>上記<4>~<9>のいずれか1において、好ましくは、上記LexA型転写制御因子をコードする遺伝子は以下より選択される:
(1)sll1626、SYNPCC7002_A1849、SYNW1582、P9303_19141、PMT0380、AM1_3948、cce_1899、cce_5074、PCC8801_2186、alr4908、及びall3272からなる群より選択される遺伝子;ならびに
(2)上記(1)に示される遺伝子のいずれかのヌクレオチド配列と、40%以上、好ましくは50%以上、より好ましくは60%以上、さらに好ましくは70%以上、さらにより好ましくは80%以上、なお好ましくは90%以上、なお好ましくは95%以上、なお好ましくは98%以上、なお好ましくは99%以上の同一性を有するヌクレオチド配列からなり、かつLexA型転写制御因子としての構造及び機能を有するポリペプチドをコードするポリヌクレオチド。
<11>上記<4>~<10>のいずれか1において、好ましくは、上記アシル-ACPシンテターゼをコードする遺伝子は以下より選択される:
(1)Slr1609、SYNPCC7002_A0675、SYNW0669、P9303_21391、PMT0215、AM1_5562、AM1_2147、CCE_1133、PCC8801_0332、及びAlr3602からなる群より選択されるタンパク質をコードするポリヌクレオチド;ならびに
(2)上記(1)に示されるポリヌクレオチドのいずれかのヌクレオチド配列と、40%以上、好ましくは50%以上、より好ましくは60%以上、さらに好ましくは70%以上、さらにより好ましくは80%以上、なお好ましくは90%以上、なお好ましくは95%以上、なお好ましくは98%以上、なお好ましくは99%以上の同一性を有するヌクレオチド配列からなり、かつアシル-ACPを合成する機能を有するポリペプチドをコードするポリヌクレオチド。
<12>上記<7>~<11>のいずれか1において、好ましくは、上記アシル-ACPチオエステラーゼをコードする異種遺伝子は以下より選択される:
(1)配列番号1で示されるアミノ酸配列からなるポリペプチドをコードする遺伝子;ならびに
(2)配列番号1で示されるアミノ酸配列と80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上、なお好ましくは99%以上の同一性を有するアミノ酸配列からなり、かつアシル-ACPから脂肪酸鎖を遊離させる機能を有するポリペプチドをコードする遺伝子;
(3)配列番号2で示されるヌクレオチド配列からなるポリヌクレオチド;及び
(4)配列番号2で示されるヌクレオチド配列と80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上、なお好ましくは99%以上の同一性を有するヌクレオチド配列からなり、かつアシル-ACPから脂肪酸鎖を遊離させる機能を有するポリペプチドをコードするポリヌクレオチド。
<13>上記<7>~<11>のいずれか1において、好ましくは、上記アシル-ACPチオエステラーゼをコードする異種遺伝子は、シナモン(Cinnamomum camphorum)又はココヤシ(Cocos nucifera)のアシル-ACPチオエステラーゼをコードする遺伝子である。
<14>上記<7>~<11>のいずれか1において、好ましくは、上記アシル-ACPチオエステラーゼをコードする異種遺伝子は、大腸菌(Escherichia coli)K-12のアシル-ACPチオエステラーゼをコードする遺伝子である。
<15>上記<7>~<14>のいずれか1において、好ましくは、上記アシル-ACPチオエステラーゼをコードする異種遺伝子は、上記シアノバクテリアのゲノム配列中における、上記アシル-ACPシンテターゼをコードする遺伝子の領域に導入されるか、又はニュートラルサイトに導入される。
<16>上記<1>~<15>のいずれか1において、上記シアノバクテリアは、
 好ましくは、シネコシスティス属(Synechocystis)、シネココッカス属(Synechococcus)、プロクロロコッカス属(Prochlorococcus)、アカリオクロリス属(Acaryochloris)、シアノセイス属(Cyanothece)、又はアナベナ属(Anabaena)のシアノバクテリアであり、
 より好ましくは、シネコシスティス・エスピーPCC6803、シネコシスティス・エスピーPCC7509、シネコシスティス・エスピーPCC6714、シネココッカス・エスピーPCC7002、シネココッカス・エスピーWH8102、プロクロロコッカス・エスピーMIT9303、プロクロロコッカス・マリナスMIT9313、アカリオクロリス・マリアナMBIC11017、シアノセイス・エスピーATCC51142、シアノセイス・エスピーPCC8801、又はアナベナ・エスピーPCC7120である。
<17>上記<1>、<4>、<7>、<10>~<16>のいずれか1に記載の方法で製造された改変シアノバクテリア、又は<3>、<6>、<9>、<10>~<16>のいずれか1に記載の改変シアノバクテリアを培養することを含む、脂肪酸生産方法。
<18>好ましくは、上記改変シアノバクテリアに、ウンベリラリア・カリフォルニカ由来アシル-ACPチオエステラーゼをコードする遺伝子が導入されており、かつC12鎖長の遊離脂肪酸が主に生産される、<17>記載の方法。
<19>好ましくは、上記改変シアノバクテリアに、シナモン(Cinnamomum camphorum)又はココヤシ(Cocos nucifera)のアシル-ACPチオエステラーゼをコードする遺伝子が導入されており、かつC14鎖長の遊離脂肪酸が主に生産される、<17>記載の方法。
<20>好ましくは、上記改変シアノバクテリアに、大腸菌(Escherichia coli)K-12のアシル-ACPチオエステラーゼをコードする遺伝子が導入されており、かつC16又はC18鎖長の遊離脂肪酸が主に生産される、<17>記載の方法。
 以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれに限定されるものではない。
実施例1 LexA型転写制御因子/アシル-ACPシンテターゼ二重欠損シアノバクテリア改変株の構築
(1)LexA転写制御因子破壊株の構築
 単細胞光ヘテロ栄養性シアノバクテリウムであるシネコシスティス・エスピーPCC6803において、LexA型転写制御因子の遺伝子sll1626を削除した。シネコシスティス・エスピーPCC6803野生株のゲノムDNAを鋳型として、表1記載のプライマーセットを用いて、sll1626up断片(配列番号19)及びsll1626down断片(配列番号20)を増幅した。これらのPCR産物とカナマイシン耐性マーカー遺伝子(pRL161プラスミドからHincII処理により切り出したもの)の3断片を混合したDNA溶液を鋳型として、fusion PCRを実施し、lexA破壊コンストラクトΔsll1626::Km断片を取得した。このΔsll1626::Km断片でシネコシスティス・エスピーPCC6803株を形質転換し、カナマイシン耐性選抜でLexA転写制御因子破壊株(Δsll1626株)を取得した。
Figure JPOXMLDOC01-appb-T000001
(2)LexA転写制御因子破壊株におけるLexA発現量の検証
 上記(1)で構築したΔsll1626株におけるLexA発現量を調べた。シアノバクテリアの培養は、50mL大型試験管に加えた50mLのBG-11培地中で、一定の照明下(50μE・m-2・sec-1)、30℃で無菌空気を吹き込みながら行った。野生株及びΔsll1626株を培養後、遠心分離によって培養液上清を除き得られた菌体を破砕バッファー(50mM Tris-HCl(pH7.5)、50mM NaCl)で懸濁した。懸濁液にジルコニアビーズを加えて菌体を破砕し、菌体由来のタンパク質溶液を取得した。各サンプルにつき、1.0x107細胞分に相当するタンパク質溶液を分取し、SDS-PAGEに供し、LexAタンパク質をウエスタンブロット解析により検出した。
 ウエスタンブロット解析では、まず、得られたタンパク質溶液に1×サンプルバッファー(62.5mM Tris-HCl(pH6.8),5% 2-メルカプトエタノール,2%SDS,5%スクロース,0.002%Bromophenol blue)になるよう可溶化し、15%SDS-PAGEを行った後、PVDF(polyvinyl difluoridine membrane:Immobilon;0.45μm pore size;Millipore)にブロッティングした。一次抗体として抗His-lexAポリクローナル抗体を用いた。二次抗体としてHRP標識抗ウサギIgG抗体(Biorad)を使用した。その後、EzWestLumi plus(ATTO)を用いて発光させ、X線フィルムに感光させることでLexA由来のバンドを検出した。
 その結果、図1に示したように、野生株ではLexAバンドが確認できたが、lexA欠損株(Δsll1626株)ではLexAに由来するバンドがほぼ確認されず、LexAタンパク質量が顕著に低減していることが示された。この結果から、lexA欠損Δsll1626株では、LexA型転写制御因子の機能が低減されていることが確認された。
(3)LexA型転写制御因子/アシル-ACPシンテターゼ二重欠損株の構築
 シネコシスティス・エスピーPCC6803での脂肪酸の培養液中への分泌生産は、内生のアシル-ACPシンテターゼ(Slr1609)の機能喪失によって達成できる(Plant Physiol,2010,152:1598-1610)。また、PCC6803株にアシル-ACPチオエステラーゼ酵素をコードする遺伝子を導入することで、脂肪酸生産量が促進されることが報告されている(非特許文献4)。本実施例では、Δsll1626株のゲノム上のアシル-ACPシンテターゼをコードする遺伝子であるslr1609のコード領域間に、スペクチノマイシン耐性遺伝子を挿入してslr1609遺伝子を不活性化させることで、アシル-ACPシンテターゼが機能喪失し、脂肪酸生産性が向上した改変株を作製した。さらに、該slr1609コード領域にシネコシスティス・エスピーPCC6803にあわせてコドンを最適化したウンベリラリア・カリフォルニカ(Umbellularia californica)由来のアシル-ACPチオエステラーゼ(UcTE)遺伝子を挿入することで、脂肪酸生産性がさらに向上した改変株を作製した。以下に改変株の作製手順を詳細に説明する。
 シネコシスティス・エスピーPCC6803株の野生株のゲノムDNAより、表2記載のプライマーslr1609f-F及びslr1609r-Rを用いてslr1609遺伝子の部分断片(2049bp)を増幅し、pUC118プラスミド(タカラバイオ株式会社)のHincIIサイト間にクローニングし、pUC118-slr1609プラスミドを取得した。
 pDG1726プラスミド(Guerout-Fleury et al.,Gene,1995,167:335-336)を鋳型として、表2記載のプライマーslr1609/sp-F及びslr1609/sp-Rを用いたPCRにより、スペクチノマイシン耐性マーカー遺伝子断片(sp断片:配列番号21)を取得した。次に、上記pUC118-slr1609プラスミドを鋳型として、表2記載のプライマーslr1609f-R及びslr1609r-Fを用いたPCRにより、slr1609遺伝子コード領域間の242bp領域が削除された直鎖DNA断片を取得し、該断片とsp断片をIn-Fusion(登録商標)PCRクローニング法(Clontech)を用いて結合し、間にsp断片が挿入されたslr1609遺伝子コード領域のDNA配列を含むpUC118-slr1609::spプラスミドを得た。
 上記pUC118-slr1609::spプラスミドを鋳型とし、表2記載のプライマーslr1609f-R及びSp-Fを用いたPCRにより、該プラスミドを線状化した。表2記載のプライマーslr1609/psbA2-F及びpsbA2/UcTE-Rを用いてシネコシスティス・エスピーPCC6803由来psbA2遺伝子のプロモーター領域断片(配列番号22)をPCR増幅した。ウンベリラリア・カリフォルニカ由来のアシル-ACPチオエステラーゼ(UcTE)遺伝子断片(UcTE断片:配列番号2)は、非特許文献4に記載されているシネコシスティス・エスピーPCC6803にあわせてコドンを最適化した配列を人工合成により作製し、これを表2記載のプライマーUcTE-F及びUcTE/sp-Rを用いてPCR増幅することで作製した。次いで、上記線状化したプラスミドに、上記psbA2のプロモーター領域断片、及びUcTE断片を加えてIn-Fusion(登録商標)PCRクローニング法(Clontech)によりクローニングし、slr1609遺伝子コード領域間にpsbA2プロモーター領域断片、UcTE断片、及びsp断片の順序に並んで挿入されたpUC118-slr1609::psbA2-UcTE-spプラスミドを得た。
 上記で得たpUC118-slr1609::spプラスミドでシネコシスティス・エスピーPCC6803野生株を形質転換し、スペクチノマイシン耐性により選抜することで、ゲノム上のアシル-ACPシンテターゼ遺伝子slr1609を不活性化させたΔslr1609::sp株を取得した。
 上記で得たpUC118-slr1609::psbA2-UcTE-spプラスミドで別のシネコシスティス・エスピーPCC6803野生株を形質転換し、スペクチノマイシン耐性により選抜することで、ゲノム上のアシル-ACPシンテターゼslr1609遺伝子コード領域間にコドンを最適化したアシル-ACPチオエステラーゼ(UcTE)遺伝子を導入することにより、アシル-ACPシンテターゼ遺伝子slr1609が不活性化するとともにアシル-ACPチオエステラーゼ発現能が付与されたΔslr1609::UcTE株を取得した。
 さらに、pUC118-slr1609::spプラスミドで、上記(1)で作製したΔsll1626株を形質転換し、スペクチノマイシン耐性により選抜することで、ゲノム上のLexAの遺伝子sll1626及びアシル-ACPシンテターゼ遺伝子slr1609を不活性化させたΔsll1626Δslr1609::sp株を取得した。
 さらに、pUC118-slr1609::psbA2-UcTE-spプラスミドで別の上記(1)で作製したΔsll1626株を形質転換し、スペクチノマイシン耐性により選抜することで、ゲノム上のLexAの遺伝子sll1626が不活性化し、さらにアシル-ACPシンテターゼslr1609遺伝子コード領域間にコドンを最適化したアシル-ACPチオエステラーゼ(UcTE)遺伝子を導入することにより、アシル-ACPシンテターゼ遺伝子slr1609が不活性化するとともにアシル-ACPチオエステラーゼ発現能が付与されたΔsll1626Δslr1609::UcTE株を取得した。
Figure JPOXMLDOC01-appb-T000002
実施例2 シアノバクテリア改変株における脂肪酸分泌生産性向上
(1)改変株の培養
 実施例1で製造したシアノバクテリア改変株を培養し、脂肪酸分泌生産性を調べた。シアノバクテリアの培養は、OD730=0.2を初発菌体濃度として、50mL三角フラスコに加えた25mLのBG-11培地中で、一定の照明下(60μE・m-2・sec-1)、30℃で、ロータリーシェーカー(120rpm)を用いて行った。この条件で、Δslr1609::sp株、Δsll1626Δslr1609::sp株、Δslr1609::UcTE株、及びΔsll1626Δslr1609::UcTE株をそれぞれ2週間培養した。
(2)脂肪酸組成分析
 培養終了後、培養液50mLに1g NaHPO4、及び内部標準としてメタノールに溶解した7-ペンタデカノン(1mg/mL)を50μL添加した。この液に対してヘキサン10mLを添加し、十分に攪拌した後に10分間静置した。室温、2500rpmで10分間遠心分離を行った後、上層部分をナス型フラスコに採取し、減圧濃縮を行った。遠心分離した下層にさらにヘキサン5mLを添加して攪拌し、遠心分離する操作を2回繰り返し、乾燥サンプルを得た。乾燥したサンプルに5%塩酸メタノール溶液を3mL添加し、80℃で3時間恒温処理することにより、脂肪酸のメチルエステル化処理を行った。その後、ヘキサン3mLを添加し、十分に攪拌した後に5分間静置した。上層部分を採取し、適宜濃縮を実施し、ガスクロマトグラフィー解析に供した。測定条件を以下に示す。[キャピラリーカラム:DB-1 MS 30m×200μm×0.25μm(J&W Scientific)、移動相:高純度ヘリウム、カラム内流量:1.0mL/分、昇温プログラム:100℃(1分間)→10℃/分→300℃(5分間)、平衡化時間:1分間、注入口:スプリット注入(スプリット比:100:1),圧力14.49psi,104mL/分、注入量1μL、洗浄バイアル:メタノール・クロロホルム、検出器温度:300℃]
 ガスクロマトグラフィー解析により得られた波形データのピーク面積より、各脂肪酸のメチルエステル量を定量した。なお、測定した各ピーク面積を内部標準である7-ペンタデカノンのピーク面積と比較することで試料間の補正を行った。培養液1リットルあたりに含まれる各脂肪酸の量及びその合計量を算出した。
 結果を図2、3、及び表3に示す。なお、図2、3及び表3の値は、独立した3回の培養とクロマトグラフィー解析の結果の平均値である。図2から明らかなように、LexAの遺伝子sll1626とアシルACPシンテターゼの遺伝子slr1609を破壊したΔsll1626Δsll1609::sp株では、LexAの遺伝子を破壊していないΔslr1609::sp株と比べて、各遊離脂肪酸生産量が増加し、総遊離脂肪酸量も大幅に増加した。また図3から明らかなように、LexAの遺伝子sll1626とアシルACPシンテターゼの遺伝子slr1609を破壊し、チオエステラーゼUcTEの遺伝子を導入したΔsll1626Δsll1609::UcTE株では、LexAの遺伝子を破壊していないΔslr1609::UcTE株と比べて、各遊離脂肪酸及び総遊離脂肪酸生産量が大幅に増加した。具体的には、表3に示すとおり、培養2週間で、Δsll1626Δsll1609::sp株は、Δslr1609::sp株に比べて2.92倍の総脂肪酸生産量を示し、Δsll1626Δsll1609::UcTE株は、Δslr1609::UcTE株に比べて1.41倍の総脂肪酸生産量を示した。さらに、チオエステラーゼUcTEを導入したΔsll1626Δsll1609::UcTE株では、アシル-ACPチオエステラーゼ遺伝子を導入していないΔsll1626Δsll1609::sp株に比べて、脂肪酸生産量が1.84倍に増加した。また、UcTE遺伝子導入株では、UcTE遺伝子非導入株と比べて、C12脂肪酸の生産量が大きく増加した。
Figure JPOXMLDOC01-appb-T000003

Claims (25)

  1.  シアノバクテリアにおけるLexA型転写制御因子と、アシル-ACPシンテターゼとを機能喪失させることを含む、改変シアノバクテリアの製造方法。
  2.  シアノバクテリアにおけるLexA型転写制御因子をコードする遺伝子と、アシル-ACPシンテターゼをコードする遺伝子とを欠失又は不活性化することを含む、請求項1記載の方法。
  3.  前記LexA型転写制御因子をコードする遺伝子がsll1626、SYNPCC7002_A1849、SYNW1582、alr4908及びall3272からなる群より選択される遺伝子である、請求項2記載の方法。
  4.  前記アシル-ACPシンテターゼをコードする遺伝子がslr1609、SYNPCC7002_A0675、SYNW0669及びalr3602からなる群より選択される遺伝子である、請求項2又は3記載の方法。
  5.  さらにアシル-ACPチオエステラーゼをコードする異種遺伝子を導入することを含む、請求項1~4のいずれか1項記載の方法。
  6.  前記アシル-ACPチオエステラーゼをコードする遺伝子が、配列番号1で示されるアミノ酸配列又はこれと90%以上の同一性を有するアミノ酸配列からなるポリペプチドをコードする遺伝子である、請求項5記載の方法。
  7.  前記アシル-ACPチオエステラーゼをコードする遺伝子が、前記アシル-ACPシンテターゼをコードする遺伝子の領域に導入される、請求項5又は6記載の方法。
  8.  前記シアノバクテリアが、シネコシスティス属、シネココッカス属、又はアナベナ属に属する、請求項1~7のいずれか1項記載の方法。
  9.  シアノバクテリアにおけるLexA型転写制御因子と、アシル-ACPシンテターゼとを機能喪失させることを含む、シアノバクテリアの脂肪酸分泌生産性の向上方法。
  10.  シアノバクテリアにおけるLexA型転写制御因子をコードする遺伝子と、アシル-ACPシンテターゼをコードする遺伝子とを欠失又は不活性化することを含む、請求項9記載の方法。
  11.  前記LexA型転写制御因子をコードする遺伝子がsll1626、SYNPCC7002_A1849、SYNW1582、alr4908及びall3272からなる群より選択される遺伝子である、請求項10記載の方法。
  12.  前記アシル-ACPシンテターゼをコードする遺伝子がslr1609、SYNPCC7002_A0675、SYNW0669及びalr3602からなる群より選択される遺伝子である、請求項10又は11記載の方法。
  13.  さらにアシル-ACPチオエステラーゼをコードする異種遺伝子を導入することを含む、請求項9~12のいずれか1項記載の方法。
  14.  前記アシル-ACPチオエステラーゼをコードする遺伝子が、配列番号1で示されるアミノ酸配列又はこれと90%以上の同一性を有するアミノ酸配列からなるポリペプチドをコードする遺伝子である、請求項13記載の方法。
  15.  前記アシル-ACPチオエステラーゼをコードする遺伝子が、前記アシル-ACPシンテターゼをコードする遺伝子の領域に導入される、請求項13又は14記載の方法。
  16.  前記シアノバクテリアが、シネコシスティス属、シネココッカス属、又はアナベナ属に属する、請求項9~15のいずれか1項記載の方法。
  17.  LexA型転写制御因子と、アシル-ACPシンテターゼとが機能喪失した改変シアノバクテリア。
  18.  LexA型転写制御因子をコードする遺伝子と、アシル-ACPシンテターゼをコードする遺伝子とが欠失又は不活性化されている、請求項17記載の改変シアノバクテリア。
  19.  前記LexA型転写制御因子をコードする遺伝子がsll1626、SYNPCC7002_A1849、SYNW1582、alr4908及びall3272からなる群より選択される遺伝子である、請求項18記載の改変シアノバクテリア。
  20.  前記アシル-ACPシンテターゼをコードする遺伝子がslr1609、SYNPCC7002_A0675、SYNW0669及びalr3602からなる群より選択される遺伝子である、請求項18又は19記載の改変シアノバクテリア。
  21.  さらにアシル-ACPチオエステラーゼをコードする異種遺伝子を含む、請求項17~20のいずれか1項記載の改変シアノバクテリア。
  22.  前記アシル-ACPチオエステラーゼをコードする遺伝子が、配列番号1で示されるアミノ酸配列又はこれと90%以上の同一性を有するアミノ酸配列からなるポリペプチドをコードする遺伝子である、請求項21記載の改変シアノバクテリア。
  23.  前記アシル-ACPチオエステラーゼをコードする遺伝子が、前記アシル-ACPシンテターゼをコードする遺伝子の領域に導入されている、請求項21又は22記載の改変シアノバクテリア。
  24.  シネコシスティス属、シネココッカス属、又はアナベナ属に属する、請求項17~23のいずれか1項記載の改変シアノバクテリア。
  25.  請求項1~8のいずれか1項記載の方法で製造された改変シアノバクテリア、又は請求項17~24のいずれか1項記載の改変シアノバクテリアを培養することを含む、脂肪酸生産方法。
PCT/JP2015/085669 2014-12-22 2015-12-21 改変シアノバクテリア WO2016104424A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016566346A JP6663856B2 (ja) 2014-12-22 2015-12-21 改変シアノバクテリア
AU2015368667A AU2015368667A1 (en) 2014-12-22 2015-12-21 Modified cyanobacteria
US15/536,423 US10287612B2 (en) 2014-12-22 2015-12-21 Modified cyanobacteria

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-258493 2014-12-22
JP2014258493 2014-12-22

Publications (1)

Publication Number Publication Date
WO2016104424A1 true WO2016104424A1 (ja) 2016-06-30

Family

ID=56150443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085669 WO2016104424A1 (ja) 2014-12-22 2015-12-21 改変シアノバクテリア

Country Status (4)

Country Link
US (1) US10287612B2 (ja)
JP (1) JP6663856B2 (ja)
AU (1) AU2015368667A1 (ja)
WO (1) WO2016104424A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7551990B2 (ja) 2020-08-28 2024-09-18 大成建設株式会社 遊離脂肪酸の分離方法と回収方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4063483A4 (en) * 2019-11-21 2023-12-20 Panasonic Intellectual Property Management Co., Ltd. MODIFIED CYANOBACTERIA, METHOD FOR PRODUCING MODIFIED CYANOBACTERIA AND METHOD FOR PRODUCING PROTEINS
CN117229988B (zh) * 2023-09-20 2024-03-29 中国科学院西北生态环境资源研究院 一种无抗生素、高效稳定性表达的工程菌株及其构建方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011505838A (ja) * 2007-12-11 2011-03-03 シンセティック ジェノミクス インコーポレーテッド 光合成微生物による脂肪酸の分泌
JP2011229482A (ja) * 2010-04-28 2011-11-17 Saitama Univ 遺伝子改変シアノバクテリア

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011059745A1 (en) * 2009-10-28 2011-05-19 The Arizona Board Of Regents For And On Behalf Of Arizona State University Bacterium for production of fatty acids
JP5798729B2 (ja) * 2009-12-25 2015-10-21 花王株式会社 チオエステラーゼ改変体を用いた脂肪酸含有脂質の製造方法
WO2011127069A1 (en) * 2010-04-06 2011-10-13 Targeted Growth, Inc. Modified photosynthetic microorganisms for producing lipids
US9523096B2 (en) * 2010-12-20 2016-12-20 Matrix Genetics, Llc Modified photosynthetic microorganisms for producing lipids
JP6341676B2 (ja) 2014-01-31 2018-06-13 花王株式会社 改変シアノバクテリア

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011505838A (ja) * 2007-12-11 2011-03-03 シンセティック ジェノミクス インコーポレーテッド 光合成微生物による脂肪酸の分泌
JP2011229482A (ja) * 2010-04-28 2011-11-17 Saitama Univ 遺伝子改変シアノバクテリア

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAMEI A. ET AL.: "Functional analysis of LexA-like gene sll1626 in Synechocystis sp. PCC 6803 using DNA microarray", PLANT AND CELL PHYSIOLOGY, vol. 42, 2001, pages s95 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7551990B2 (ja) 2020-08-28 2024-09-18 大成建設株式会社 遊離脂肪酸の分離方法と回収方法

Also Published As

Publication number Publication date
US20180163237A1 (en) 2018-06-14
JP6663856B2 (ja) 2020-03-13
JPWO2016104424A1 (ja) 2017-09-28
AU2015368667A1 (en) 2017-07-13
US10287612B2 (en) 2019-05-14

Similar Documents

Publication Publication Date Title
US8709766B2 (en) Use of endogenous promoters in genetic engineering of Nannochloropsis gaditana
US9982272B2 (en) Algal mutants having a locked-in high light acclimated phenotype
CA2778150C (en) Modified neutral lipid encapsulating proteins and uses thereof
AU2016349822B2 (en) Algal mutants with increased lipid productivity
CN107709562A (zh) 指导rna/cas内切核酸酶系统
JP6592434B2 (ja) 脂質の製造方法
CA2889985C (en) Improved acyltransferase polynucleotides, polypeptides, and methods of use
WO2016104424A1 (ja) 改変シアノバクテリア
JP2016518112A (ja) 改質油を製造するためのチオエステラーゼおよび細胞
AU2012294956A1 (en) Methods for increasing CO2 assimilation and oil production in photosynthetic organisms
US8987551B2 (en) Modified oil encapsulating proteins and uses thereof
JP6568718B2 (ja) 脂質の製造方法
CA2889980A1 (en) Novel acyltransferase polynucleotides, poypeptides, and methods of use
JP6341676B2 (ja) 改変シアノバクテリア
US11124798B2 (en) Algal lipid productivity via genetic modification of a TPR domain containing protein
WO2019069969A1 (ja) 脂質の製造方法
JP6501105B2 (ja) 茎が肥大化した植物の生産方法
KR102302827B1 (ko) 크리스퍼 간섭을 이용한 유전자 발현 억제용 조성물
Venkatasalam Plastoglobules: a new destination for recombinant proteins produced in transplastomic plants and characterization of plastidial At-SOUL heme binding protein
CN118414430A (zh) 修饰的酰基转移酶多核苷酸、多肽和使用方法
US20160046968A1 (en) Novel strain secreting fatty acids by phospholipase and method for producing fatty acids using it
JP2016127810A (ja) 転写制御因子の機能阻害によりキシラン及び/又はリグニンを効率よく産生する植物を生産する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872992

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016566346

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15536423

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015368667

Country of ref document: AU

Date of ref document: 20151221

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15872992

Country of ref document: EP

Kind code of ref document: A1