WO2016103799A1 - 軸流機械およびジェットエンジン - Google Patents

軸流機械およびジェットエンジン Download PDF

Info

Publication number
WO2016103799A1
WO2016103799A1 PCT/JP2015/075677 JP2015075677W WO2016103799A1 WO 2016103799 A1 WO2016103799 A1 WO 2016103799A1 JP 2015075677 W JP2015075677 W JP 2015075677W WO 2016103799 A1 WO2016103799 A1 WO 2016103799A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade row
casing
compressor
moving blade
axial flow
Prior art date
Application number
PCT/JP2015/075677
Other languages
English (en)
French (fr)
Inventor
室岡 武
加藤 大
真也 楠田
由香里 周藤
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to EP15872368.4A priority Critical patent/EP3176442B1/en
Publication of WO2016103799A1 publication Critical patent/WO2016103799A1/ja
Priority to US15/452,228 priority patent/US20170175676A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • F02K3/06Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type with front fan
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/002Axial flow fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • F04D29/526Details of the casing section radially opposing blade tips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/667Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by influencing the flow pattern, e.g. suppression of turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/685Inducing localised fluid recirculation in the stator-rotor interface

Definitions

  • the present invention relates to an axial flow machine and a jet engine that are used as a fan or an axial flow compressor and are subjected to a casing treatment.
  • An axial flow machine is used as a fan or an axial flow compressor, and is generally known as an apparatus constituting a part of a turbine engine such as a jet engine.
  • the axial flow machine includes at least one compressor including a plurality of moving blades, a moving blade row that rotates about a central axis, and a stationary blade row that is provided behind the moving blade row and includes a plurality of stationary blades. There are steps.
  • the fan is provided at the forefront of the engine and sucks outside air.
  • the axial flow compressor is installed between the fan and the combustion chamber, compresses the gas introduced from the fan while decelerating, and then supplies the compressed gas to the combustion chamber.
  • Patent Documents 1 to 4 propose a so-called casing treatment in which a groove or a flow path is formed on the inner surface of a casing that accommodates a moving blade row and a stationary blade row as a technique for increasing the surge margin.
  • the surge margin can be expanded by applying a casing treatment to the inner surface of the casing. Increasing the surge margin is always required with the development of turbine engines. On the other hand, as described in Patent Document 1, the conventional casing treatment increases the surge margin, but conversely has a problem of reducing the efficiency.
  • an object of the present invention is to provide an axial flow machine and a jet engine provided with a casing treatment that can suppress a decrease in efficiency and improve a stall margin.
  • a first aspect of the present invention is an axial-flow machine used as a fan or an axial-flow compressor, and has at least one stage composed of a moving blade row and a stationary blade row, and a cylindrical shape that houses the compressor.
  • an operating range expanding portion having a hollow portion communicating with the suction port and the jet port, and the flow path in the jet port is inclined in the direction opposite to the rotational direction of the moving blade row with respect to the radially inner side.
  • the axial flow machine may further include a plurality of fins that are installed in the jet outlet at intervals in the circumferential direction and constitute the flow path of the jet outlet.
  • the suction port may be provided on the inner surface of the casing at a position that intersects a shock wave generated when the moving blade row rotates at a design point.
  • the compressor may be provided in a plurality of stages, and the operating range expansion unit may be provided for a moving blade row in at least one of the compressors in the plurality of stages.
  • the second aspect of the present invention is a jet engine including the axial flow machine according to the first aspect.
  • an axial flow machine provided with a casing treatment capable of suppressing a decrease in efficiency and improving a stall margin.
  • FIG. 1 is a configuration diagram of a turbofan engine equipped with a fan and an axial compressor according to the present embodiment.
  • 2 (a) and 2 (b) are diagrams for explaining the operating range expansion unit according to the present embodiment, and FIG. 2 (b) is taken along line IIB-IIB in FIG. 2 (a).
  • FIG. FIG. 3 is a view for explaining a modification of the operating range expanding portion according to the present embodiment.
  • FIG. 4 is a graph showing the relationship between the flow rate (corrected flow rate) and the total pressure ratio by CFD (Computational Fluid Dynamics) analysis.
  • FIG. 5 is a graph showing the relationship between the flow rate (corrected flow rate) and the total pressure ratio by CFD analysis and the relationship between the flow rate (corrected flow rate) and efficiency.
  • symbol is attached
  • the left side (left side) is defined as the front side (front side) or the upstream side of the main stream S (see FIG. 2A), and the right side (right side) is defined as the rear side (rear side) or the downstream side of the main stream S.
  • shaft 1 is shown as a center axis
  • the circumferential direction and the radial direction are defined with reference to the axis 1.
  • the axial flow machine of this embodiment is used as a fan and an axial flow compressor, and constitutes a part of a turbofan engine that is one of gas turbine engines.
  • the engine including the axial flow machine of the present embodiment is not limited to a turbofan engine, and can be applied to jet engines such as a turbojet engine, a turboprop engine, a turboshaft engine, and a turbo ramjet engine.
  • the use of the gas turbine engine is not limited to aircraft. For example, it can be applied to a gas turbine engine for ships or power generation.
  • the axial compressor is simply referred to as a compressor
  • the turbofan engine is simply referred to as an engine.
  • FIG. 1 is a configuration diagram of an engine (turbo fan engine, jet engine) 10 equipped with a fan 2 and an axial compressor 3 according to the present embodiment.
  • the engine 10 includes a fan 2, a compressor 3, a combustion chamber 4, and a turbine 5. These are arranged on the shaft 1 from the upstream side to the downstream side of the mainstream.
  • the engine 10 further includes a casing (outer casing, fan case) 7 and a casing (inner casing, core cowl) 8 housed in the casing 7 and positioned on the same axis as the casing 7. Both the casing 7 and the casing 8 are formed in a cylindrical shape extending along the axis 1.
  • the casing 7 accommodates the fan 2 in front of the inside thereof.
  • the casing 8 is installed behind the fan 2 in the casing 7 and accommodates the compressor 3, the combustion chamber 4, and the turbine 5.
  • the basic operation of each part is the same as the conventional one. That is, the fan 2 rotates about the shaft 1 as a central axis, sucks forward gas, and discharges it backward.
  • the compressor 3 compresses the gas that has flowed into the casing 8 out of the gas (working fluid, air in the present embodiment) sucked by the fan 2 and supplies the compressed gas to the combustion chamber 4.
  • the combustion chamber 4 burns a mixed gas of compressed gas and fuel.
  • the turbine 5 converts the pressure energy of the expanding combustion gas into rotational energy, drives the fan 2 and the compressor 3, and discharges the combustion gas from the exhaust duct 6.
  • the compressor 3 may adopt a multi-shaft type divided into a plurality of compressors according to the pressure of the gas to be compressed. The same applies to the turbine 5.
  • the casing 8 is comprised by connecting the some cylindrical member which accommodates each part of the compressor 3 grade
  • the fan 2 and the compressor 3 of this embodiment will be described.
  • the configuration of the fan 2 and the compressor 3 will be described with reference to FIGS. 2 and 3.
  • the dimensions, shapes, etc. of the moving blades, the stationary blades, and the operating range expansion portion (described later) of the fan 2 and the compressor 3 are not limited to these drawings, and can be appropriately changed as long as the effects of the present invention are obtained.
  • the fan 2 and the compressor 3 include a moving blade row 31 that rotates about the shaft 1, and a stationary blade row 32 that is installed behind the moving blade row 31 along the shaft 1. At least one stage of compressor 30 is provided.
  • the moving blade row 31 is composed of a plurality of moving blades 33 arranged radially about the axis 1 (see FIG.
  • the moving blade 33 of the moving blade row 31 has a leading edge (leading edge) 33a located on the upstream side of the main flow S and a rear edge (trailing edge) 33b located on the downstream side of the main flow S (FIG. 2 ( a)).
  • the tip 33c of the moving blade 33 is slightly separated from the inner surface 7a (8a) of the casing 7 (8).
  • All the rotor blades 33 have the same cross-sectional shape and are curved so as to protrude in the same direction in the circumferential direction.
  • the stationary blades 34 of the stationary blade row 32 have the same shape. That is, the stationary blade row 32 is also composed of a plurality of stationary blades 34 that are installed radially about the axis 1.
  • the stationary blade 34 is fixed to the inner surface 7a (8a) of the casing 7 (8), for example.
  • the number of stages of the compressor 30 is appropriately set according to the specifications of the engine 10.
  • FIG. 2 (a) and 2 (b) show an operating range expansion unit 40 as a casing treatment according to the present embodiment.
  • FIG. 2B is a cross-sectional view taken along line IIB-IIB in FIG.
  • the axial flow machine as the fan 2 or the compressor 3 includes an operation range expanding unit 40.
  • the operating range expanding portion 40 is formed in at least one of the casing 7 and the casing 8, sucks a part of the gas flowing into the moving blade row 31 from the suction port 41, and ejects it at the front side of the moving blade row 31. 42 erupts.
  • the operating range expansion unit 40 is provided for the moving blade row 31 in at least one stage of the plurality of stages of compressors 30.
  • the operating range expansion unit 40 may be provided only for the moving blade row 31 in the first stage compressor 30 or may be provided for each moving blade row 31 in the other stage compressor 30.
  • the operating range expansion unit 40 includes a suction port 41 and a jet port 42 that open to the inner surface 7a (8a) of the casing 7 (8), and a cavity 43 that allows the suction port 41 and the jet port 42 to communicate with each other.
  • the suction port 41 opens into a region 7 b (8 b) corresponding to the moving blade row 31 on the inner surface 7 a (8 a) of the casing 7 (8), and sucks a part of the gas flowing into the moving blade row 31. Further, the suction port 41 is provided on the rear side with respect to an intersecting position P described later.
  • the region 7b (8b) is a band-shaped portion having a width from the front edge 33a to the rear edge 33b of the moving blade 33 in the axial direction on the inner surface 7a (8a) of the casing 7 (8) and extending in the circumferential direction. is there.
  • the region 7b (8b) is a portion corresponding to (opposed to) the locus of the tip 33c of the rotating rotor blade 33 on the inner surface 7a (8a) of the casing 7 (8).
  • the suction port 41 is formed in a groove shape having the same cross-sectional shape and extending in the circumferential direction.
  • the depth direction of the suction port 41 is parallel to the radial direction.
  • the suction port 41 functions as a so-called diffuser that decelerates and compresses the gas flowing in from the casing 7.
  • the width of the suction port 41 in the axial direction is constant at any point in the radial direction. In the cross section including the shaft 1, the height of the cavity 43 in the radial direction is larger than the width of the suction port 41. Therefore, from the viewpoint of reducing the pressure loss, the width of the suction port 41 may gradually increase toward the outside in the radial direction.
  • the ejection port 42 opens to the front side of the moving blade row 31 on the inner surface 7a of the casing 7 and ejects the gas sucked from the suction port 41.
  • the spout 42 is formed as a groove extending in the circumferential direction with the same cross-sectional shape, and further, fins 44 described later are provided therein.
  • the ejection port 42 extends in the radial direction.
  • the width of the jet nozzle 42 in the axial direction is constant at any radial position. This width is smaller than the height of the cavity 43. Therefore, the jet nozzle 42 reduces the pressure of the gas at the time of jetting and accelerates the gas.
  • the ejection port 42 is provided with a plurality of fins 44 installed at intervals in the circumferential direction.
  • Each fin 44 is formed in a plate shape extending in the axial direction, and constitutes at least a flow path of the ejection port 42. Moreover, as shown in these figures, it may protrude into the cavity 43 and further extend backward in the cavity 43.
  • Each fin 44 is inclined in the same direction as the rotational direction R of the moving blade row 31 with respect to the radially outward direction, and defines the flow direction of the gas ejected from the ejection port 42.
  • the flow path (the depth direction of the ejection port 42) in the ejection port 42 is directed radially inward so as to generate a gas swirling in a direction opposite to the rotation direction R of the rotor blade row 31. And inclined in the direction opposite to the rotation direction R.
  • the hollow portion 43 is formed inside the casing 7 and allows the suction port 41 and the jet port 42 to communicate with each other.
  • the cavity is a strip-shaped space extending in the axial direction and extending in the circumferential direction with the same cross-sectional shape. As described above, the height of the cavity 43 in the radial direction is larger than the width of the suction port 41. Accordingly, the gas flowing in from the suction port 41 is decelerated and compressed, and moves in the cavity 43 toward the jet port 42. The height of the cavity 43 in the radial direction is constant at any point in the axial direction.
  • the operating range expansion unit 40 configured as described above will be described.
  • the pressure increases toward the downstream side.
  • a pressure difference is generated between the suction port 41 and the jet port 42.
  • part of the gas in the moving blade row 31 is sucked into the suction port 41 and ejected from the ejection port 42.
  • the operating range expansion unit 40 circulates a part of the gas flowing into the moving blade row 31 between the moving blade row 31 and the front side thereof.
  • the gas ejected from the ejection port 42 supplements the flow rate of the gas flowing into the rotor blade row 31.
  • the occurrence of the surge can be prevented at a flow rate at which the surge is generated in a normal compressor not provided with the operating range expansion unit 40. That is, the stall point of the fan 2 or the compressor 3 can be moved to the lower flow rate side. That is, the stall margin is improved.
  • the pressure difference before and after the moving blade row 31 is proportional to the amount of work that the moving blade row 31 has done for the gas.
  • This work amount is the product of the difference between the circumferential components of the relative speeds of the gas flowing into the blade row 31 (main flow) and the gas discharged from the blade row 31 (main flow) and the rotational speed of the blade row 31.
  • the flow path in the ejection port 42 is inclined in the direction opposite to the rotational direction R of the rotor blade row 31 with respect to the radially inner side. Therefore, gas is ejected from the ejection port 42 so as to turn in the opposite direction to the rotation direction R.
  • the jet of gas that generates the reverse swirling flow increases the difference in the relative speed, resulting in increased work.
  • the incidence angle which is the difference between the inflow angle of the flow into the moving blade row 31 and the blade inlet angle of the moving blade moving blade 33, is larger than in the case where the operating range expanding portion 40 is not provided. Increased dorsal peeling. Therefore, by sucking out the separation region on the back side of the moving blade by the suction port 41, the surge can be avoided and the surge margin can be increased.
  • the suction port 41 when the suction port 41 is provided on the rear side of the intersection position P, it is possible to increase the inflow amount to the suction port 41 and the ejection amount from the ejection port 42 when the flow rate decreases.
  • the pressure difference between the suction port 41 and the jet port 42 is small at the design point and the inflow amount to the suction port 41 and the jet amount from the jet port 42 are small, the efficiency is not deteriorated.
  • the flow path of the ejection port 42 may be inclined with respect to the radial direction so as to be directed from the front side of the cavity 43 toward the moving blade row and moving blade row 31 in the cross section including the shaft 1. Good.
  • the length of the flow path of the spout 42 is not changed. In this case, the same effect as that obtained when the flow path of the ejection port 42 extends in the radial direction in the cross section including the shaft 1 can be obtained, and the position of the cavity 43 can be brought closer to the shaft 1. Therefore, for example, the thickness and weight of the casing 7 (8) can be reduced.
  • FIG. 4 is a graph showing the relationship between the flow rate (corrected flow rate) by CFD analysis and the total pressure ratio.
  • a circle ( ⁇ ) indicates the analysis result of the compressor according to the present embodiment
  • a triangle ( ⁇ ) indicates the analysis result of the compressor as a comparative example.
  • the operating range expansion unit in the compressor according to the present embodiment is omitted.
  • x in the figure is a stall point. As shown in this figure, in the compressor according to this embodiment, an improvement in stall margin of 23% on the low flow rate side and 27% on the high flow rate side is seen.
  • FIG. 5 is a graph showing the relationship between the flow rate (corrected flow rate) and the total pressure ratio by CFD analysis and the relationship between the flow rate (corrected flow rate) and efficiency.
  • a circle ( ⁇ ) indicates the analysis result of the compressor according to the present embodiment
  • a triangle ( ⁇ ) indicates the analysis result of the compressor as Comparative Example 1.
  • the operation range expansion part of the compressor which concerns on this embodiment is abbreviate
  • squares ( ⁇ ) indicate the analysis results of the compressor as Comparative Example 2.
  • the flow path in the jet outlet in the working range expansion portion of the present embodiment is inclined so as to generate a gas swirling in the same direction as the rotating direction of the rotor blade row.
  • the stall margin of the compressor of the present embodiment is greatly improved compared to Comparative Example 1 and Comparative Example 2.
  • the efficiency is also improved with respect to Comparative Example 1, which is equivalent to the efficiency of Comparative Example 2. In other words, the efficiency does not decrease even when the casing treatment is performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

 軸流機械は、動翼列(31)及び静翼列(32)からなる少なくとも1段の圧縮機(30)と、圧縮機(30)を収容するケーシング(7)と、ケーシング(7)の内面(7a)において動翼列(31)に対応する領域(7b)内に開口する吸入口(41)、ケーシング(7)の内面(7a)において動翼列(31)よりも前側に開口する噴出口(42)、ケーシング(7)の内部に形成され、吸入口(41)及び噴出口(42)を連通させる空洞部(43)を有する作動範囲拡大部(40)とを備える。噴出口(42)内の流路は、径方向内方に対して動翼列(31)の回転方向と逆向きに傾斜している。

Description

軸流機械およびジェットエンジン
 本発明は、ファンまたは軸流圧縮機として用いられ、ケーシングトリートメントが施された軸流機械およびジェットエンジンに関する。
 軸流機械は、ファンまたは軸流圧縮機として用いられ、ジェットエンジン等のタービンエンジンの一部を構成する装置として一般的に知られている。軸流機械は、複数の動翼からなり、中心軸を中心として回転する動翼列と、動翼列の後方に設けられ、複数の静翼からなる静翼列とを有する圧縮機を少なくとも1段備えている。ファンはエンジンの最前部に設けられ、外気を吸入する。軸流圧縮機はファンと燃焼室の間に設置され、ファンから取り入れられた気体を減速しながら圧縮し、その後、燃焼室に供給する。
 ファンや軸流圧縮機が動翼列と静翼列とが交互に配列する多段式である場合、気体の速度、圧力、温度が各段を通過するたびに変化する。一方、定常運転において各動翼列は所定の回転数で回転している。従って、気体の流量と圧力比の関係において、全ての段が効率良く作動する範囲(いわゆる作動範囲)は狭い。ファン及び軸流圧縮機の稼働状態がこの作動範囲を逸脱した場合はサージ(ストール)が発生しやすくなる。
 このストールの発生を未然に防止するため、設計点からストール点までのマージン(以下、サージマージン)を拡大することが考えられる。特許文献1~4は、このサージマージンの拡大化を図った技術として、動翼列及び静翼列を収容するケーシングの内面に溝または流路を形成する所謂ケーシングトリートメントを提案している。
特開2009-236069号公報 米国特許第7811049号明細書 米国特許第5607284号明細書 米国特許第8066471号明細書
 特許文献1~4に示すように、ケーシングの内面にケーシングトリートメントを施すことで、サージマージンを拡大させることができる。サージマージンの拡大化は、タービンエンジンの開発に伴い常に要求されている。一方、特許文献1でも述べているように、従来のケーシングトリートメントはサージマージンを拡大させるものの、逆に効率を低下させる問題があった。
 本発明は、このような事情を鑑みて成されたものである。即ち、本発明は、効率の低下を抑制すると共に、ストールマージンを改善させることができるケーシングトリートメントが施された軸流機械およびジェットエンジンの提供を目的とする。
 本発明の第1の態様はファンまたは軸流圧縮機として用いられる軸流機械であって、動翼列及び静翼列からなる少なくとも1段の圧縮機と、前記圧縮機を収容する筒状のケーシングと、前記ケーシングの内面において前記動翼列に対応する領域内に開口する吸入口、前記ケーシングの前記内面において前記動翼列よりも前側に開口する噴出口、前記ケーシングの内部に形成され、前記吸入口及び前記噴出口を連通させる空洞部を有する作動範囲拡大部とを備え、前記噴出口内の流路は、径方向内方に対して前記動翼列の回転方向と逆向きに傾斜していることを要旨とする。
 前記軸流機械は、前記噴出口内に周方向に間隔を置いて設置され、前記噴出口の前記流路を構成する複数のフィンを更に備えてもよい。
 前記吸入口は、前記ケーシングの内面において、設計点で前記動翼列が回転したときに発生する衝撃波と交差する位置に設けられてもよい。
 前記圧縮機が複数段設けられ、前記作動範囲拡大部は複数段の前記圧縮機のうちの少なくとも1段の圧縮機における動翼列に対して設けられてもよい。
 また、本発明の第2の態様は、第1の態様に係る軸流機械を備えるジェットエンジンである。
 本発明によれば、効率の低下を抑制すると共に、ストールマージンを改善させることができるケーシングトリートメントが施された軸流機械を提供できる。
図1は、本実施形態のファン及び軸流圧縮機を搭載したターボファンエンジンの構成図である。 図2(a)及び図2(b)は、本実施形態に係る作動範囲拡大部を説明するための図であり、図2(b)は、図2(a)におけるIIB-IIB線に沿った断面図である。 図3は、本実施形態に係る作動範囲拡大部の変形例を説明するための図である。 図4は、CFD(Computational Fluid Dynamics)解析による流量(修正流量)と全圧比との関係を示すグラフである。 図5は、CFD解析による流量(修正流量)と全圧比との関係及び流量(修正流量)と効率との関係を示すグラフである。
 以下、本発明の実施形態に係る軸流機械について添付図面に基づいて説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。各図において、左側(左方)を前側(前方)或いは主流S(図2(a)参照)の上流側、右側(右方)を後側(後方)或いは主流Sの下流側と定義する。また、図1では中心軸として軸1を示し、その延伸方向を軸方向と称する。さらに、軸1を基準として周方向及び径方向を定義する。
 本実施形態の軸流機械はファン及び軸流圧縮機として用いられ、ガスタービンエンジンの一つであるターボファンエンジンの一部を構成する。ただし、本実施形態の軸流機械を含むエンジンはターボファンエンジンに限られず、ターボジェットエンジン、ターボプロップエンジン、ターボシャフトエンジン、ターボラムジェットエンジンなどのジェットエンジンにも適用可能である。また、ガスタービンエンジンの用途も航空機用に限られない。例えば、船舶用や発電用のガスタービンエンジンにも適用可能である。以下、説明の便宜上、軸流圧縮機を単に圧縮機と称し、ターボファンエンジンを単にエンジンと称する。
 図1は、本実施形態のファン2及び軸流圧縮機3を搭載したエンジン(ターボファンエンジン、ジェットエンジン)10の構成図である。この図に示すように、エンジン10は、ファン2と、圧縮機3と、燃焼室4と、タービン5と、を備えている。これらは主流の上流側から下流側に向かって軸1上に配列している。エンジン10はさらに、ケーシング(外側ケーシング、ファンケース)7と、ケーシング7に収容され、ケーシング7と同心軸上に位置するケーシング(内側ケーシング、コアカウル)8とを備えている。ケーシング7及びケーシング8は何れも軸1に沿って延伸する筒状に形成されている。ケーシング7は、その内部の前方にファン2を収容する。ケーシング8は、ケーシング7内においてファン2の後方に設置され、圧縮機3、燃焼室4及びタービン5を収容する。各部の基本的な動作は、従来のものと同一である。即ち、ファン2は軸1を中心軸として回転し、前方の気体を吸入して後方に排出する。圧縮機3は、ファン2が吸入した気体(作動流体、本実施形態では空気)のうちケーシング8内に流入したものを減速させながら圧縮し、燃焼室4に供給する。燃焼室4は圧縮された気体と燃料との混合ガスを燃焼する。タービン5は膨張する燃焼ガスの圧力エネルギーを回転エネルギーに変換し、ファン2及び圧縮機3を駆動すると共に、燃焼ガスを排気ダクト6から排出する。なお、圧縮機3は、圧縮される気体の圧力に応じて複数の圧縮機に分割された多軸式のものを採用してもよい。これはタービン5についても同様である。また、ケーシング8は圧縮機3等の各部を収容する複数の筒状部材を連結することで構成されている。
 本実施形態のファン2及び圧縮機3について説明する。説明の便宜上、図2及び図3を用いてファン2及び圧縮機3の構成を示す。なお、ファン2及び圧縮機3の動翼、静翼及び作動範囲拡大部(後述)の寸法、形状等はこれらの図に限定されず、本発明の効果が得られる限り適宜変更可能である。図2に示すように、ファン2及び圧縮機3は、軸1を中心として回転する動翼列31と、軸1に沿って動翼列31の後方に設置される静翼列32とからなる少なくとも1段の圧縮機30を備えている。動翼列31は、軸1を中心として放射状に設置される複数の動翼33からなる(図2(b)参照)。動翼列31の動翼33は、主流Sの上流側に位置する前縁(リーディングエッジ)33aと、主流Sの下流側に位置する後縁(トレイリングエッジ)33bとを有する(図2(a)参照)。また、動翼33の先端33cは、ケーシング7(8)の内面7a(8a)から僅かに離隔している。何れの動翼33も同一の断面形状を有し、周方向において同一の向きに突出するように湾曲している。なお、静翼列32の静翼34も同様の形状を有する。即ち、静翼列32も軸1を中心として放射状に設置される複数の静翼34からなる。静翼34は例えば、ケーシング7(8)の内面7a(8a)に固定されている。なお、圧縮機30の段数はエンジン10の仕様に応じて適宜設定される。
 図2(a)及び図2(b)は、本実施形態に係るケーシングトリートメントとしての作動範囲拡大部40を示している。図2(b)は図2(a)におけるIIB-IIB線に沿った断面図である。図2(a)に示すように、ファン2又は圧縮機3としての軸流機械は、作動範囲拡大部40を備えている。即ち、作動範囲拡大部40はケーシング7及びケーシング8のうちの少なくとも一方に形成され、動翼列31に流入した気体の一部を吸入口41から吸引し、動翼列31の前側で噴出口42から噴出する。本実施形態の軸流機械が複数段の圧縮機30を有する場合、作動範囲拡大部40は複数段の圧縮機30のうちの少なくとも1段の圧縮機30における動翼列31に対して設けられる。例えば、作動範囲拡大部40は、初段の圧縮機30における動翼列31のみに対して設けられてもよく、その他の段圧縮機30における各動翼列31対して設けられてもよい。
 作動範囲拡大部40は、ケーシング7(8)の内面7a(8a)に開口する吸入口41及び噴出口42と、吸入口41と噴出口42を連通させる空洞部43とを有する。吸入口41は、ケーシング7(8)の内面7a(8a)において動翼列31に対応する領域7b(8b)内に開口し、動翼列31に流入した気体の一部を吸引する。また、吸入口41は後述の交差位置Pよりも後側に設けられる。領域7b(8b)は、ケーシング7(8)の内面7a(8a)において、軸方向において動翼33の前縁33aから後縁33bまでの幅を有し、周方向に延伸する帯状の部分である。換言すれば、領域7b(8b)は、ケーシング7(8)の内面7a(8a)において、回転する動翼33の先端33cの軌跡に対応する(対向する)部分である。
 以下、作動範囲拡大部40がケーシング7に形成されている例について述べる。作動範囲拡大部40の構成は、ケーシング8に形成される場合も同様であるため、特に断らない限り詳細な説明を省略する。
 吸入口41は同一の断面形状で周方向に延伸する溝状に形成される。吸入口41の深さ方向は径方向と平行である。吸入口41は、ケーシング7から流入した気体を減速させ、且つ、圧縮する所謂ディフューザとして機能する。軸方向における吸入口41の幅は、径方向の何れの個所において一定である。なお、軸1を含む断面において、径方向における空洞部43の高さは吸入口41の幅よりも大きい。従って圧力損失を低減する観点から、吸入口41の幅は、径方向外方に向かうに連れて徐々に広がっていてもよい。
 噴出口42は、ケーシング7の内面7aにおいて動翼列31よりも前側に開口し、吸入口41から吸引された気体を噴出する。噴出口42は、同一の断面形状で周方向に延伸する溝として形成され、更にその内部に後述のフィン44が設けられている。軸1を含む断面において、噴出口42は径方向に延伸している。また、軸方向における噴出口42の幅は、径方向の何れの個所においても一定である。なお、この幅は空洞部43の高さよりも小さい。従って、噴出口42は、噴出の際に気体の圧力を低減させると共に、当該気体を加速させる。
 図2(a)及び図2(b)に示すように、噴出口42には、周方向に間隔を置いて設置された複数のフィン44が設けられている。各フィン44は軸方向に延伸する板状に形成され、少なくとも噴出口42の流路を構成する。また、これらの図に示すように、空洞部43に突出し、さらに空洞部43内で後方に延伸していてもよい。各フィン44は、径方向外方に対して動翼列31の回転方向Rと同じ方向に傾斜し、噴出口42から噴出される気体の流れ方向を規定する。換言すると、噴出口42内の流路(噴出口42の深さ方向)は、動翼列31の回転方向Rに対して逆向きに旋回する気体を発生させるように、径方向内方に対して回転方向Rと逆向きに傾斜している。
 空洞部43はケーシング7の内部に形成され、吸入口41及び噴出口42を連通させる。空洞部は軸方向に延伸すると共に、同一の断面形状で周方向に延伸する帯状の空間である。上述したように、径方向における空洞部43の高さは吸入口41の幅よりも大きい。従って、吸入口41から流入した気体は減速されると共に圧縮され、噴出口42に向けて空洞部43内を移動する。径方向における空洞部43の高さは、軸方向の何れの個所においても一定である。
 上記の構成による作動範囲拡大部40の動作及び効果について説明する。動翼列31内では下流側に向かって圧力が増加する。この圧力増加を受け、吸入口41と噴出口42との間には圧力差が発生する。その結果、動翼列31内の気体の一部が吸入口41に吸引され、噴出口42から噴出する。換言すれば、作動範囲拡大部40は、動翼列31に流入した気体の一部を動翼列31とその前側との間で循環させる。噴出口42から噴出した気体は、動翼列31に流入する気体の流量を補う。従って、作動範囲拡大部40が設けられていない通常の圧縮機でサージが発生する流量において、当該サージの発生を防止できる。即ち、ファン2又は圧縮機3のストール点をより低流量側に移動させることができる。つまり、ストールマージンが改善する。
 また、動翼列31前後の圧力差は、動翼列31が気体に対して成した仕事量に比例する。この仕事量は、動翼列31に流入する気体(主流)と動翼列31から排出された気体(主流)の各相対速度の周方向成分との差および動翼列31の回転速度の積に比例する。本実施形態において、噴出口42内の流路は、径方向内方に対して動翼列31の回転方向Rと逆向きに傾斜している。従って、噴出口42からは、回転方向Rに対して逆向きに旋回するように、気体が噴出される。この逆向きの旋回流を発生する気体の噴出によって、上記の相対速度の差が大きくなる結果、仕事量が増える。ただし、作動範囲拡大部40を設けない場合と比べて、動翼列31への流れの流入角と動翼動翼33の翼入口角の差であるインシデンス角は大きくなるため、動翼33の背側の剥離が増大する。そこで、吸入口41によって前記動翼の背側の剥離領域を吸い出すことで、当該サージを回避することができ、サージマージンを増大させることができる。
 なお、動翼列31が高速で回転した場合、動翼33間において主流Sの一部が音速に達し、その結果、衝撃波が発生する。この衝撃波はケーシング7の内面7a(領域7b)(ケーシング8の内面8a(領域8b))に到達する。設計点で動翼列31が回転したとき、この到達点は図2(a)に示す交差位置Pに位置する。また、この到達点は、流量が減少すると交差位置Pから前方に移動し、吸入口41での圧力が増加するため、吸入口41と噴出口42との間の圧力差が増加し、吸入口41から吸引される流量が増加する。従って、吸入口41を交差位置Pよりも後側に設けた場合、流量が減少した時の吸入口41への流入量と噴出口42からの噴出量を増加させることができる。一方、設計点では前記吸入口41と噴出口42との間の圧力差が小さく、前記吸入口41への流入量と噴出口42からの噴出量は少ないため、効率を悪化させることはない。
 また、図3に示すように、噴出口42の流路は、軸1を含む断面において空洞部43の前側から動翼列動翼列31に向かうように径方向に対して傾斜していてもよい。ただし、噴出口42の流路の長さは変えない。この場合、噴出口42の流路が軸1を含む断面において径方向に延伸する場合と同一の効果が得られると共に、空洞部43の位置を軸1に近づけることが可能になる。従って、例えば、ケーシング7(8)の厚さや重量の低減が可能になる。
 図4は、CFD解析による流量(修正流量)と全圧比との関係を示すグラフである。丸(○)は本実施形態に係る圧縮機の解析結果を示し、三角(△)は比較例としての圧縮機の解析結果を示す。比較例の圧縮機では、本実施形態に係る圧縮機のうちの作動範囲拡大部が省略されている。また、図中の×はストール点である。この図に示すように、本実施形態に係る圧縮機では、低流量側で23%、高流量側で27%のストールマージンの改善が見られる。
 図5は、CFD解析による流量(修正流量)と全圧比との関係及び流量(修正流量)と効率との関係を示すグラフである。丸(○)は本実施形態に係る圧縮機の解析結果を示し、三角(△)は比較例1としての圧縮機の解析結果を示す。比較例1の圧縮機では、本実施形態に係る圧縮機のうちの作動範囲拡大部が省略されている。さらに、四角(□)は比較例2としての圧縮機の解析結果を示す。比較例2の圧縮機では、本実施形態の作動範囲拡大部における噴出口内の流路を、動翼列の回転方向と同一の向きに旋回する気体を発生させるように傾斜させている。図5に示すように、本実施形態の圧縮機のストールマージンは比較例1及び比較例2に対して大幅に改善している。効率の面でも比較例1に対して改善しており、これは比較例2の効率と同等である。即ち、ケーシングトリートメントを施しても効率が低下しない。
 以上、本発明によれば、効率の低下を抑制すると共に、ストールマージンを改善させることができるケーシングトリートメントが施されたファンまたは軸流圧縮機を提供できる。なお、本発明は上述の実施形態に限定されない。即ち、本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。
 

Claims (5)

  1. ファンまたは軸流圧縮機として用いられる軸流機械であって、
     動翼列及び静翼列からなる少なくとも1段の圧縮機と、
     前記圧縮機を収容する筒状のケーシングと、
     前記ケーシングの内面において前記動翼列に対応する領域内に開口する吸入口、前記ケーシングの前記内面において前記動翼列よりも前側に開口する噴出口、前記ケーシングの内部に形成され、前記吸入口及び前記噴出口を連通させる空洞部を有する作動範囲拡大部と
    を備え、
     前記噴出口内の流路は、径方向内方に対して前記動翼列の回転方向と逆向きに傾斜していることを特徴とする軸流機械。
  2.  前記噴出口内に周方向に間隔を置いて設置され、前記噴出口の前記流路を構成する複数のフィンを更に備えることを特徴とする請求項1に記載の軸流機械。
  3.  前記吸入口は、前記ケーシングの内面において、設計点で前記動翼列が回転したときに発生する衝撃波との交差位置よりも後側に設けられることを特徴とする請求項1又は2に記載の軸流機械。
  4.  前記圧縮機が複数段設けられ、前記作動範囲拡大部は複数段の前記圧縮機のうちの少なくとも1段の圧縮機における動翼列に対して設けられることを特徴とする請求項1~3の何れか一項に記載の軸流機械。
  5.  請求項1~4の何れか一項に記載の軸流機械を備えるジェットエンジン。
     
PCT/JP2015/075677 2014-12-22 2015-09-10 軸流機械およびジェットエンジン WO2016103799A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15872368.4A EP3176442B1 (en) 2014-12-22 2015-09-10 Axial flow device with casing treatment and jet engine
US15/452,228 US20170175676A1 (en) 2014-12-22 2017-03-07 Axial flow device and jet engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014258675A JP2016118165A (ja) 2014-12-22 2014-12-22 軸流機械およびジェットエンジン
JP2014-258675 2014-12-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/452,228 Continuation US20170175676A1 (en) 2014-12-22 2017-03-07 Axial flow device and jet engine

Publications (1)

Publication Number Publication Date
WO2016103799A1 true WO2016103799A1 (ja) 2016-06-30

Family

ID=56149840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075677 WO2016103799A1 (ja) 2014-12-22 2015-09-10 軸流機械およびジェットエンジン

Country Status (4)

Country Link
US (1) US20170175676A1 (ja)
EP (1) EP3176442B1 (ja)
JP (1) JP2016118165A (ja)
WO (1) WO2016103799A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107152419B (zh) * 2017-07-24 2019-07-02 北京航空航天大学 一种根部串联多段叶型的大弯折角压气机静子叶片
CN112166462A (zh) * 2018-04-24 2021-01-01 华莱士·皮特 用于触觉信息传递的磁性可编程致动器
JP7221078B2 (ja) 2019-02-27 2023-02-13 三菱重工業株式会社 翼及びこれを備えた回転機械
JP7400314B2 (ja) * 2019-10-03 2023-12-19 株式会社Ihi ファンまたは圧縮機の気流制御装置
JP7443087B2 (ja) * 2020-02-26 2024-03-05 本田技研工業株式会社 軸流圧縮機
US11702945B2 (en) 2021-12-22 2023-07-18 Rolls-Royce North American Technologies Inc. Turbine engine fan case with tip injection air recirculation passage
US11946379B2 (en) 2021-12-22 2024-04-02 Rolls-Royce North American Technologies Inc. Turbine engine fan case with manifolded tip injection air recirculation passages
US11732612B2 (en) * 2021-12-22 2023-08-22 Rolls-Royce North American Technologies Inc. Turbine engine fan track liner with tip injection air recirculation passage

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995018922A1 (en) * 1994-01-07 1995-07-13 British Technology Group Limited Housings for axial flow fans
JPH08159097A (ja) * 1994-12-08 1996-06-18 Ishikawajima Harima Heavy Ind Co Ltd ファン及び圧縮機のケーシング
JPH08232605A (ja) * 1994-12-29 1996-09-10 United Technol Corp <Utc> 軸流ガスタービンエンジン用チップシュラウド組立体
JPH0925898A (ja) * 1995-05-09 1997-01-28 Hitachi Ltd 軸流ファン及びそれに用いるエアーセパレータ
JP2005536687A (ja) * 2002-08-23 2005-12-02 エムテーウー・アエロ・エンジンズ・ゲーエムベーハー ターボ圧縮機の再循環構造
US20090041576A1 (en) * 2007-08-10 2009-02-12 Volker Guemmer Fluid flow machine featuring an annulus duct wall recess
JP2011085095A (ja) * 2009-10-16 2011-04-28 Mitsubishi Heavy Ind Ltd 排気ターボ過給機のコンプレッサ
JP2012513561A (ja) * 2008-12-23 2012-06-14 スネクマ 最適化された空洞部を備える圧縮機ケーシング
JP2013040587A (ja) * 2011-08-18 2013-02-28 Ihi Corp 遠心圧縮機

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE451873B (sv) * 1982-07-29 1987-11-02 Do G Pk I Experiment Axialflekt
US5474417A (en) * 1994-12-29 1995-12-12 United Technologies Corporation Cast casing treatment for compressor blades
US7631483B2 (en) * 2003-09-22 2009-12-15 General Electric Company Method and system for reduction of jet engine noise
DE102004055439A1 (de) * 2004-11-17 2006-05-24 Rolls-Royce Deutschland Ltd & Co Kg Strömungsarbeitsmaschine mit dynamischer Strömungsbeeinflussung
EP1862641A1 (de) * 2006-06-02 2007-12-05 Siemens Aktiengesellschaft Ringförmiger Strömungskanal für eine in Axialrichtung von einem Hauptstrom durchströmbare Strömungsmaschine
US9115594B2 (en) * 2010-12-28 2015-08-25 Rolls-Royce Corporation Compressor casing treatment for gas turbine engine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995018922A1 (en) * 1994-01-07 1995-07-13 British Technology Group Limited Housings for axial flow fans
JPH08159097A (ja) * 1994-12-08 1996-06-18 Ishikawajima Harima Heavy Ind Co Ltd ファン及び圧縮機のケーシング
JPH08232605A (ja) * 1994-12-29 1996-09-10 United Technol Corp <Utc> 軸流ガスタービンエンジン用チップシュラウド組立体
JPH0925898A (ja) * 1995-05-09 1997-01-28 Hitachi Ltd 軸流ファン及びそれに用いるエアーセパレータ
JP2005536687A (ja) * 2002-08-23 2005-12-02 エムテーウー・アエロ・エンジンズ・ゲーエムベーハー ターボ圧縮機の再循環構造
US20090041576A1 (en) * 2007-08-10 2009-02-12 Volker Guemmer Fluid flow machine featuring an annulus duct wall recess
JP2012513561A (ja) * 2008-12-23 2012-06-14 スネクマ 最適化された空洞部を備える圧縮機ケーシング
JP2011085095A (ja) * 2009-10-16 2011-04-28 Mitsubishi Heavy Ind Ltd 排気ターボ過給機のコンプレッサ
JP2013040587A (ja) * 2011-08-18 2013-02-28 Ihi Corp 遠心圧縮機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3176442A4 *

Also Published As

Publication number Publication date
US20170175676A1 (en) 2017-06-22
JP2016118165A (ja) 2016-06-30
EP3176442B1 (en) 2020-11-11
EP3176442A4 (en) 2018-03-21
EP3176442A1 (en) 2017-06-07

Similar Documents

Publication Publication Date Title
WO2016103799A1 (ja) 軸流機械およびジェットエンジン
JP7011502B2 (ja) 遠心圧縮機のパイプディフューザ
EP2520763B1 (en) Impeller
EP2778427B1 (en) Compressor bleed self-recirculating system
JP6468414B2 (ja) 圧縮機静翼、軸流圧縮機、及びガスタービン
EP3179113A1 (en) Venturi effect endwall treatment
EP2775119B1 (en) Compressor shroud reverse bleed holes
JPS5810600B2 (ja) 軸流圧縮機のケ−シング
CN108979737B (zh) 具有插入件的发动机部件及其内分离灰尘的方法
JP2016516932A (ja) サイクロン式汚れ分離タービン加速装置
JP2017530299A (ja) 遠心圧縮機のディフューザ通路の境界層制御
JP2016109124A (ja) 漏洩流を制御するための軸流圧縮機端壁処理部
JP2014502700A (ja) バイパスターボジェット
US9822792B2 (en) Assembly for a fluid flow machine
US10519976B2 (en) Fluid diodes with ridges to control boundary layer in axial compressor stator vane
EP2971547B1 (en) Cantilever stator with vortex initiation feature
JP6651404B2 (ja) ターボ機械
US20140356128A1 (en) Method and device for stabilizing a compressor current
JP2009281155A (ja) 遷音速二段遠心圧縮機
WO2019167319A1 (ja) ロケットエンジン用ターボポンプ
JP2019163728A (ja) 軸流圧縮機の可変静翼構造
JP2013072418A (ja) 圧縮機
EP2778346B1 (en) Rotor for a gas turbine engine, corresponding gas turbine engine and method of improving gas turbine engine rotor efficiency
CN109083687B (zh) 最小化横穿冷却孔的横流的方法和用于涡轮发动机的部件
JP7041033B2 (ja) 軸流圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872368

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015872368

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015872368

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE