WO2016103668A1 - 鋼帯の線状溝形成方法および方向性電磁鋼板の製造方法 - Google Patents

鋼帯の線状溝形成方法および方向性電磁鋼板の製造方法 Download PDF

Info

Publication number
WO2016103668A1
WO2016103668A1 PCT/JP2015/006332 JP2015006332W WO2016103668A1 WO 2016103668 A1 WO2016103668 A1 WO 2016103668A1 JP 2015006332 W JP2015006332 W JP 2015006332W WO 2016103668 A1 WO2016103668 A1 WO 2016103668A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel strip
linear groove
mask member
forming
resist
Prior art date
Application number
PCT/JP2015/006332
Other languages
English (en)
French (fr)
Other versions
WO2016103668A8 (ja
Inventor
小林 弘和
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US15/538,355 priority Critical patent/US20180057956A1/en
Priority to JP2016510334A priority patent/JP6103133B2/ja
Publication of WO2016103668A1 publication Critical patent/WO2016103668A1/ja
Publication of WO2016103668A8 publication Critical patent/WO2016103668A8/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • C25F3/14Etching locally
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/02Local etching
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • C25F3/06Etching of iron or steel
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/201Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by an oblique exposure; characterised by the use of plural sources; characterised by the rotation of the optical device; characterised by a relative movement of the optical device, the light source, the sensitive system or the mask
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/24Curved surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/02Cores, Yokes, or armatures made from sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets
    • H01F41/024Manufacturing of magnetic circuits made from deformed sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets

Definitions

  • the present invention relates to a method for forming a linear groove on a steel strip such as a grain-oriented electrical steel sheet used for an iron core or the like in an electric device such as a transformer, and a method for producing a grain-oriented electrical steel sheet using this linear groove forming method. .
  • Oriented electrical steel sheets are mainly used as transformer core materials and are required to have good magnetic properties.
  • it is required to reduce the iron loss among the magnetic characteristics in order to reduce the energy loss.
  • Patent Document 1 there is a method of irradiating a surface of a steel plate that has been subjected to finish annealing with a laser.
  • this method is effective in improving the iron loss after laser irradiation, there is a problem that the iron loss is deteriorated by the stress relief annealing performed thereafter. For this reason, it is not preferable to apply this method to a magnetic steel sheet for a wound iron core that requires strain relief annealing.
  • Patent Document 2 discloses a technique of forming a linear groove by performing etching after applying a resist ink in a linear pattern as a technique that can suppress deterioration of iron loss even if strain relief annealing is performed. ing.
  • Patent Document 3 discloses a method of forming a linear groove by applying a negative type photo-etching resist to form a precise linear groove pattern.
  • Patent Document 4 describes a method of forming a linear groove pattern by applying a positive resist to form a linear groove pattern.
  • the resist ink flows due to the leveling action in the vicinity of the boundary between the application portion and the non-application portion of the resist ink.
  • the film thickness becomes thin and sufficient insulation cannot be secured.
  • the vicinity of the boundary between the resist ink application part and the non-application part will be reduced. Another problem arises that the groove shape is uneven in the thin film portion.
  • Patent Document 3 no consideration is given to the method of exposing a continuously running steel strip, and the method remains to produce a small cut plate. Therefore, it could not be used in the application of the magnetic domain refinement technique that requires forming a thin linear groove pattern on a steel strip having a large strip area.
  • the present invention advantageously solves the above-described problems, and forms a resist film obtained by drying a negative type photo-etching resist ink on a continuously running steel strip at high speed and with high accuracy. And it aims at providing the linear groove
  • An object of the present invention is to provide a method for producing a grain-oriented electrical steel sheet.
  • the gist configuration of the present invention is as follows. 1. A negative resist ink that is exposed to light and solidified is applied to a continuously running steel strip, dried to form a resist coating, and then a mask member that covers the resist coating surface and blocks light is used as a steel strip. The resist film not covered with the mask member is solidified by irradiating with light while moving in synchronization with the traveling speed, and then the resist film other than the solidified portion is removed with a developer, and the resist film is further etched. A method for forming a linear groove in a steel strip, in which a portion of the steel strip from which the resist film has been removed is dissolved and removed to form a linear groove.
  • the endless belt-shaped mask member is wound around a pair of rotating rolls arranged close to the steel strip and arranged in parallel in the traveling direction of the steel strip, and at that time, the mask member 2.
  • the mask member is formed into a cylindrical shape, and the cylindrical mask member is disposed close to the steel strip so that the axis is parallel to the width direction of the steel strip, and the cylindrical member is disposed at the arrangement position.
  • the silicon-containing steel slab is hot-rolled to form a hot-rolled sheet, and after performing hot-rolled sheet annealing as necessary, it is subjected to one or more cold rollings sandwiching intermediate annealing.
  • a grain-oriented electrical steel sheet through a series of steps of applying a final finishing annealing after applying a decarburizing annealing to the steel strip and then applying an annealing separator.
  • a fine and uniform linear groove is formed on a continuously running steel strip by patterning a resist film using a negative type photo-etching resist at high speed and with high accuracy. Moreover, there is no need for re-baking after etching. As a result, a grain-oriented electrical steel sheet having extremely high magnetic properties can be obtained under a reduced process.
  • the present invention is a method for forming a linear groove on a steel strip that runs continuously (through plate) by etching (dissolution and removal of the steel strip) through the steps shown in FIG.
  • a negative resist ink that is exposed to light and solidified is applied to a steel strip using a coating device.
  • the coating method at that time is particularly limited as long as it can form a resist film having a film thickness of 15 ⁇ m or less in terms of dry film thickness (in the present invention, unless otherwise specified, the resist film means a dry film).
  • a roll coater or the like often used for coating a steel strip can be used.
  • a slit die method, a curtain coater method, an ink jet method, a spray method, and the like can be appropriately selected according to the installation space of the coating device and the physical properties of the paint.
  • the negative resist ink can be used even if it is not liquid, and the resist film of the present invention can also be obtained by laminating a film formed in advance such as a dry film on a steel strip. Can be formed.
  • the resist ink to be used is a negative resist ink that is solidified by light irradiation prepared with a photosensitive resin material and the light irradiated portion remains as a mask during etching.
  • a negative resist ink it is not necessary to form a resist ink application or non-application part, so the groove pattern is not interrupted or stuck due to poor ink application. Can be formed.
  • the resist film itself has a good insulating property without performing a baking process at a high temperature again in order to solidify the remaining film like a positive resist ink. Can be granted. Therefore, since the insulating properties of the steel strip can be improved with fewer steps than when positive ink is used, the steel strip etching process described later can be performed accurately. Therefore, the present invention can produce a sharp groove pattern at a low cost.
  • the drying temperature of the paint it is sufficient if the drying temperature of the paint can be ensured, and an induction heating furnace or a hot air drying furnace can be appropriately selected depending on the utility environment of the factory. At that time, it is important that the film thickness of the resist film obtained by applying the resist ink and drying is 15 ⁇ m or less. This is because, if it is 15 ⁇ m or less, as shown in FIG. 2A, a groove-shaped resist pattern from which portions other than the light irradiation portion are removed can be appropriately formed.
  • the thickness of the resist film is preferably 15 ⁇ m or less.
  • the film thickness of the resist film is more preferably 10 ⁇ m or less.
  • the thickness of the resist film may be further reduced, but the insulation resistance during etching is secured to about 0.5 ⁇ m.
  • the film thickness of the resist film is defined as the dry film thickness after drying, and the average film thickness of 10 film thicknesses randomly selected by observation of the film cross section is used as the film thickness.
  • the light irradiation in the present invention is performed with light containing light in a specific wavelength region for solidifying the resist ink.
  • the specific wavelength region is specifically 200 to 400 nm.
  • the sufficient irradiation amount in the present invention is specifically about 100 to 1000 J / m 2, although it depends on the sensitivity at the start of curing of the resist ink.
  • any device can be used as long as it can irradiate the above-mentioned predetermined light with an ultra-high pressure mercury lamp, an excimer lamp or the like.
  • the mask member When performing light irradiation according to the present invention, the mask member is configured to be able to move in synchronization with the traveling speed of the steel strip. In fields such as semiconductors and electronic parts where photoetching is often used, exposure processing by light irradiation is generally performed with the substrate stationary, but a large-area steel strip runs at high speed. In the steel industry, it is not preferable to perform light irradiation in a stationary state from the viewpoint of productivity, and therefore it is necessary to continuously treat the substrate.
  • FIG. 3 For example, the mask member is hung on a pair of rotating rolls arranged close to the steel strip, and the rotating roll is rotated to move the mask member hung between the rotating rolls. At that time, it is conceivable to adopt a method of irradiating light with the moving speed of the mask member synchronized with the traveling speed of the steel strip. In the present specification, the movement of the mask member by wrapping between the rotating rolls in this way is referred to as rotational movement.
  • 1 is a steel strip
  • 2 is a rotating roll
  • 3 is a light irradiation device (light source)
  • 4 is a mask member.
  • the moving speed of the mask member and the traveling speed of the steel strip can be completely synchronized.
  • FIG. 3 shows a case where an endless belt-like mask member is wound around two rotating rolls to synchronize with the traveling speed of the steel strip
  • the rotating roll may be one or more than three.
  • the mask member may be a mask member that is not an endless belt, such as a belt-shaped mask member wound in a coil shape, which is taken out on one side to mask the steel strip and then wound on the other side.
  • the mask member is cylindrical, and the mask member itself is a self-rotating mask member 5 that is rotated by a rotating shaft with cantilever support.
  • the peripheral speed and steel of the cylindrical mask member are as follows. It is also conceivable to adopt a method of irradiating light with synchronizing the traveling speed of the belt.
  • the cylindrical shape is not particularly limited as long as the circumferential irradiation speed of the mask member can be synchronized with the traveling speed of the steel strip, and is not particularly limited, but considering the gap between the resist film and the mask member described below. A thing with a small curvature is preferable.
  • the gap between the resist film and the mask member in the present invention, it means a range of close proximity arrangement
  • it is preferably 150 ⁇ m or less.
  • the gap between the resist film and the mask member is larger than 150 ⁇ m, the light is diffracted and the mask part is also exposed. This is because the resist film is solidified at the mask portion and the resist pattern after development becomes non-uniform.
  • the gap between the resist film and the mask member is 100 ⁇ m or less, and 0 ⁇ m is particularly preferable as shown in FIG.
  • the width other than the solidified portion (non-solidified portion) in the present invention is preferably 20 ⁇ m or more and 500 ⁇ m or less. If the thickness is smaller than 20 ⁇ m, the light blocking portion of the mask member associated therewith becomes narrow, and there is a risk that the light blocking when the light is irradiated cannot be sufficiently blocked and the entire surface is solidified. On the other hand, if the width other than the solidified portion is wider than 500 ⁇ m, a sufficient iron loss improvement effect may not be obtained.
  • the rotating roll used in the present invention is not particularly limited as long as it can synchronize the moving speed of the mask member and the traveling speed of the steel strip, such as a rotating type and a belt driving type. It is preferable because adjustment is easy.
  • the material of the mask member is not particularly limited as long as it covers the resist coating surface and can block the light during light irradiation.
  • a mask member or the like formed on a glass substrate having a thickness of several millimeters in a pattern shape for exposing a metal thin film such as chromium to a thickness of about 0.1 to 1 ⁇ m is used.
  • a flexible material is suitable, and a mask in which a metal thin film such as chromium is formed on a transparent film sheet that can transmit light can be suitably used.
  • the formation pattern of the linear grooves is preferably an angle within 30 ° with respect to the steel strip width direction. If the angle is larger than this, the effect of improving the iron loss in the final product is not sufficient.
  • the term “linear” includes not only a straight line but also a broken line or a continuous line of dots.
  • the formation pattern of the linear groove is a pitch in the longitudinal direction of the steel strip, and the range is 20 mm or less. This is because if the pitch is wider than this range, a sufficient iron loss improvement effect cannot be obtained.
  • the pitch is preferably 1 mm or more.
  • the method of removing the resist film in the non-solidified portion other than the portion solidified by light irradiation is appropriately selected depending on the resist composition, but a method of immersing in an organic solvent or an alkaline solution is easy. Further, in order to increase the removal speed of the resist film, a method of heating the steel strip in advance, raising the solution temperature, generating a flow in the solution tank, or providing a jet nozzle may be taken.
  • the etching of the steel strip may be either chemical etching or electrolytic etching.
  • electrolytic etching has better controllability.
  • electrolytic etching it is preferable to carry out in an electrolytic bath such as NaCl aqueous solution or KCl aqueous solution, but detailed limitation is not necessary, and it may be carried out according to a conventional method.
  • the groove depth to be etched is preferably 5 ⁇ m or more. If the groove depth is shallower than that, a sufficient iron loss improvement effect cannot be obtained.
  • the upper limit of the groove depth to be etched is not particularly limited, but is about 1 ⁇ 2 of the plate thickness in consideration of productivity and the like.
  • the steel strip after etching is transported to a resist coating stripping facility.
  • the unnecessary resist film after etching that adversely affects the downstream process is removed by a resist stripping facility, and the steel sheet is cleaned.
  • the peeling method is not particularly specified. For example, there is a method in which the steel strip is immersed in an alkaline solution such as an organic solvent, sodium hydroxide, or sodium orthosilicate.
  • an alkaline solution such as an organic solvent, sodium hydroxide, or sodium orthosilicate.
  • the grain-oriented electrical steel sheet after heating and hot rolling a silicon-containing steel slab to be a hot-rolled sheet, is subjected to hot-rolled sheet annealing as necessary, and once or two times with intermediate annealing. It is manufactured by a series of processes in which the above cold rolling is performed to form a cold rolled steel strip, and then the cold rolled steel strip is decarburized and annealed, and then an annealing separator is applied, followed by final finish annealing.
  • the above-described cold-rolled steel strip linear groove forming method is applied to the cold-rolled steel strip after cold rolling to form linear grooves on the steel strip surface. Then, the magnetic domain subdivision is effectively achieved, and a grain-oriented electrical steel sheet having excellent magnetic properties can be obtained.
  • the cold-rolled steel strip after the formation of the linear groove is subjected to decarburization annealing (primary recrystallization annealing) and then final finishing annealing (secondary recrystallization annealing) according to a conventional method.
  • decarburization annealing primary recrystallization annealing
  • secondary recrystallization annealing final finishing annealing
  • composition of the steel strip other than those described above and the manufacturing process of the grain-oriented electrical steel sheet may follow conventional methods.
  • a resist ink containing an acrylic group-containing resin or the like as a component was used.
  • the drying furnace was dried at a furnace temperature of 250 ° C. using a hot air drying furnace.
  • An ultra-high pressure mercury lamp was used as the light source. Removal of the resist film other than the solidified portion was performed by immersion in an alkaline solution.
  • a resist ink was subjected to pattern printing by conventional offset gravure roll printing, and an etched steel plate was also produced and evaluated for magnetic properties.
  • the material of each roll was a grooved roll with a hard chrome plating for the gravure roll, and a rubber roll with a rubber lining for the offset roll.
  • a non-application portion having a rotation direction width of 100 ⁇ m and an application portion having a rotation direction width of 3 mm was used.
  • Rubber lining thickness is 20mm, rubber is urethane rubber, hardness is Hs80 °.
  • the roll diameter of each roll is 250 mm for both the gravure roll and the offset roll.
  • the used coating liquid is a resist ink mainly composed of an alkyd resin.
  • This resist ink was diluted with ethylene glycol monobutyl ether and used by adjusting the viscosity at 20 ° C. to be about 1500 mPa ⁇ s.
  • the electrolytic etching was performed in a NaCl electrolytic bath at a current density of 30 A / dm 2 for several tens of seconds until a groove depth of 30 ⁇ m was achieved.
  • W 17/50 was evaluated for iron loss at 1.7 T and 50 Hz.
  • the appearance is ⁇ ⁇ ⁇ , where there is a break or deformation in the linear groove, ⁇ ⁇ ⁇ , if there is a slight change in the groove depth, or deformation, taking into account the superiority or inferiority of the iron loss evaluation.
  • the case where the grooves were formed to a uniform depth was marked with ⁇ .
  • Table 1 shows the evaluation results of the iron loss and the appearance of the inventive examples and the comparative examples.
  • the present invention is not limited to this.
  • the present invention can be similarly applied to steel strips and electromagnetic steel sheets having other thicknesses.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

 鋼帯に対し、感光して固化するネガ型のレジストインクを塗布し、乾燥してレジスト被膜を形成したのち、該レジスト被膜面を覆って光を遮断するマスク部材を、鋼帯の走行速度と同期させて移動させながら光照射を行って、上記マスク部材で覆われないレジスト被膜を固化させたのち、現像液にて該固化部分以外のレジスト被膜を除去することにより、高速かつ高精度にパターン形成されたエッチング用のレジスト被膜を得ることができ、さらにエッチングにより該レジスト被膜を除去した部分の鋼帯を溶解、除去することによって、鋼帯の表面に、微細で均一な線状溝を形成することができる。

Description

鋼帯の線状溝形成方法および方向性電磁鋼板の製造方法
 本発明は、変圧器などの電気機器における鉄心などに用いられる方向性電磁鋼板などの鋼帯に対する線状溝の形成方法、およびこの線状溝形成方法を利用する方向性電磁鋼板の製造方法に関する。
 方向性電磁鋼板は、主に変圧器の鉄心用材料として用いられ、その磁気特性が良好であることが要求される。特に、鉄心として使用する場合は、エネルギー損失を小さくするために、磁気特性の中でも鉄損を小さくすることが求められる。
 従来、鉄損を小さくする方法として、Siの含有量を上げて鋼板の電気抵抗を増大させることや、結晶方位を(110)[001]方位に高度に揃えること、鋼板の板厚を薄くすることなどが試みられてきた。
 しかし、上記した冶金学的な方法のみによる鉄損低減には限界があった。そこで、さらに鉄損を低減させる方法として、人為的に磁区を細分化する手法が提案された。
 磁区の細分化方法には、特許文献1に記載されたように、仕上げ焼鈍済みの鋼板表面にレーザーを照射する方法がある。しかしながら、この方法は、レーザー照射後の鉄損改善には効果があるものの、その後施される歪取り焼鈍によって鉄損の劣化をきたすという問題がある。そのため、歪取り焼鈍を必須とする巻鉄心用の電磁鋼板に対してこの方法を適用することは好ましくない。
 一方、歪取り焼鈍を行っても鉄損の劣化を抑制できる技術として、特許文献2には、レジストインクを線状にパターン塗布した後、エッチングを行って線状溝を形成する手法が開示されている。
 さらに、ネガ型のフォトエッチング用レジストを塗布して、精密な線状溝パターンを形成して線状溝を形成する方法が特許文献3に記載されている。
 また、特許文献4には、ポジ型レジストを塗布して線状溝パターンを形成し、これを利用して線状溝を形成する方法が記載されている。
特公昭57-2252号公報 特許第2942074号公報 特許第3488333号公報 特公平5-69284号公報
 しかしながら、特許文献2に記載の方法では、レジストインクの塗布段階において、線状溝が潰れていたり、途切れていたりすると、エッチングにおいて均一な線状溝が形成されず、磁気特性にばらつきが生じてしまうといった問題があった。
 また、特許文献2に記載されたような、コーティングにより線状パターンを形成する方法においては、レジストインクの塗布部と未塗布部との境界付近では、レベリング作用によってレジストインクが流れてしまうため、膜厚が薄くなって十分な絶縁性が確保できないといった問題があった。
 なお、上記したレジストインクの流れに起因した問題を解決するために、エッチング処理時間を短縮しようと、最初から強力なエッチング処理を施すと、レジストインクの塗布部と未塗布部との境界付近の薄膜部分で溝形状にムラができてしまうという別の問題が生じる。
 さらに、より細い形状の溝パターンを作製し、エッチング負荷を低減しようとした場合には、パターン塗布したレジストインクが濡れ広がって、未塗布部が潰れてしまうため、未塗布部にはある程度幅のある太いパターンを形成しなければならないといった問題があった。
 また、特許文献3では、連続して走行する鋼帯に対して露光する方法については何ら考慮されておらず、小さな切板を製作する方法に留まっている。そのため、帯状大面積の鋼帯に対して細い線状溝パターンを形成することが求められる磁区細分化技術の用途では、使用できなかった。
 ここで、鋼帯に線状溝を形成する場合には、鋼帯のエッチング工程が必要であるが、電解エッチングを施す際には、鋼帯に強い絶縁性が付与されていなければならない。
 しかしながら、特許文献4のようにポジ型のレジストインクを用いた場合は、露光した部分が反応して、可溶化する方式であるため、除去した部分以外のレジスト被膜は、強い絶縁性を有していない。
 そこで、レジスト被膜を強力に固化して鋼帯に強い絶縁性を持たせるために、再度焼付け処理を施す必要がある。すなわち、ポジ型のレジストインクを用いる場合には、新たに焼付け工程を追加しなければいけないという問題が残っている。
 本発明は、上記した問題を有利に解決するもので、連続的に走行する鋼帯上に、ネガ型のフォトエッチング用レジストインクを乾燥させて得たレジスト被膜を、高速かつ高精度にパターン形成し、それをエッチングすることによって微細で均一な線状溝を形成することができる鋼帯の線状溝形成方法を提供することを目的とする。
 また、本発明は、上記した線状溝形成方法を利用して、方向性電磁鋼板用の鋼帯に線状溝を形成することにより、最終的に高い磁気特性を有する方向性電磁鋼板を得ることができる方向性電磁鋼板の製造方法を提供することを目的とする。
 すなわち、本発明の要旨構成は次のとおりである。
1.連続して走行する鋼帯に対し、感光して固化するネガ型のレジストインクを塗布し、乾燥してレジスト被膜を形成したのち、該レジスト被膜面を覆って光を遮断するマスク部材を鋼帯の走行速度と同期させて移動させながら光照射を行って、上記マスク部材で覆われないレジスト被膜を固化させたのち、現像液にて該固化部分以外のレジスト被膜を除去し、さらにエッチングにより該レジスト被膜を除去した部分の鋼帯を溶解、除去して線状溝を形成する鋼帯の線状溝形成方法。
2.前記鋼帯に近接し、かつ該鋼帯の進行方向に並列に配置した一対の回転ロールに、無端ベルト状の前記マスク部材を掛け回して回動移動させるものとし、その際、該マスク部材の回動移動速度を、該鋼帯の走行速度と同期させる前記1に記載の鋼帯の線状溝形成方法。
3.前記マスク部材を円筒形にし、該円筒形としたマスク部材を、その軸心が前記鋼帯の幅方向に平行として、該鋼帯に近接して配置し、この配置位置にて該円筒形のマスク部材を、該軸心を回転軸として回転させるものとし、その際、該円筒形のマスク部材の周速を、該鋼帯の走行速度と同期させる前記1に記載の鋼帯の線状溝形成方法。
4.前記レジスト被膜の膜厚を15μm以下とする前記1~3のいずれかに記載の鋼帯の線状溝形成方法。
5.前記マスク部材と、前記レジスト被膜とのギャップを150μm以下とする前記1~4のいずれかに記載の鋼帯の線状溝形成方法。
6.前記固化部分以外の非固化部分の幅を、20μm以上500μm以下とする前記1~5のいずれかに記載の鋼帯の線状溝形成方法。
7.前記線状溝を、鋼帯の幅方向に対する角度が30°以下で、かつ鋼帯長手方向に20mm以下のピッチで形成する前記1~6のいずれかに記載の鋼帯の線状溝形成方法。
8.前記線状溝の溝深さを5μm以上とする前記1~7のいずれかに記載の鋼帯の線状溝形成方法。
9.含けい素鋼スラブを、加熱後、熱間圧延して熱延板とし、必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延を施して鋼帯とし、ついで該鋼帯に脱炭焼鈍を施したのち、焼鈍分離剤を塗布してから、最終仕上げ焼鈍を施す一連の工程によって方向性電磁鋼板を製造するに当たり、
 上記冷間圧延後の鋼帯に対して、前記1~8のいずれかに記載の線状溝形成方法を適用して、該鋼帯の表面に線状溝を形成する方向性電磁鋼板の製造方法。
 本発明によれば、連続的に走行する鋼帯上に、ネガ型のフォトエッチング用レジストを用いたレジスト被膜を、高速かつ高精度にパターン形成して、微細で均一な線状溝を形成することができ、しかもエッチング後に再焼付けの必要がない。その結果、省工程の下で、極めて高い磁気特性を有する方向性電磁鋼板を得ることができる。
本発明の実施工程を示す図である。 本発明においてレジスト被膜が薄い場合と厚い場合の様子を説明する図である。 本発明における光照射時の、マスク部材の使用の一例を説明する図である。 本発明における光照射時の、マスク部材の使用の他の例を説明する図である。
 以下、本発明を具体的に説明する。
 本発明は、連続して走行(通板)する鋼帯に、図1に示す工程を経て、エッチング(鋼帯の溶解、除去)により線状溝を形成する方法である。
 まず、本発明では、鋼帯に、塗布装置を用いて、感光して固化するネガ型のレジストインクを塗布する。その際の塗布方法は、ドライ膜厚換算で15μm以下の膜厚を有するレジスト被膜(本発明で、特に断らない場合は、レジスト被膜は乾燥被膜を意味する)を形成できる方式であれば特に限定されず、鋼帯への被膜塗装によく用いられるロールコーター等を使用することができる。その他の塗布方法としては、塗布装置の設置スペースや塗料の物性等に応じて、スリットダイ方式、カーテンコーター方式、インクジェット方式およびスプレー方式などが適宜選択できる。
 また、本発明において、ネガ型のレジストインクは、液状のものでなくても使用可能であり、ドライフィルム等、予め成膜されたフィルムを鋼帯にラミネートすることによっても本発明のレジスト被膜が形成できる。
 本発明において、用いるレジストインクは、感光性の樹脂材料を調合した光照射により固化し、光照射した部分がエッチング時のマスクとして残存するネガ型のレジストインクとする。ネガ型のレジストインクを用いることで、レジストインクの塗布部や未塗布部を形成する必要がないため、インクの塗布不良によって溝パターンが途切れたり、引っ付いたりすることがなく、均一な溝パターンを形成することができる。
 また、ネガ型のレジストインクを用いることで、ポジ型レジストインクのように、残存被膜を固化するために、再度の高温での焼付け処理を行わなくても、レジスト被膜自身に良好な絶縁特性が付与できる。そのため、ポジ型インクを用いた場合に比べて少ない工程にて、鋼帯の絶縁特性を高めることができるので、後述する鋼帯のエッチング処理を的確に行うことができる。
 ゆえに、本発明は、低コストでかつ鮮鋭な溝パターンを作製することが可能となる。
 さらに、塗布後のレジストインクの乾燥に使用する装置としては、塗料の乾燥温度を確保できれば良く、誘導加熱炉でも熱風乾燥炉でも、工場のユーティリティ環境等により適宜選択できる。
 その際、レジストインクを塗布後乾燥して得られたレジスト被膜の膜厚は15μm以下とすることが重要である。というのは、15μm以下であれば、図2のAに示すように、光照射部以外を除去した溝形状のレジストパターンが、適切に形成できるからである。
 なお、膜厚が15μmを超えた場合でも、エッチングする際の絶縁抵抗については問題ないレベルが確保できる。しかしながら、膜厚が15μmを超えた場合は、光照射をした際に、マスクが上手く機能せず、鋼帯からの光の乱反射によりマスク下部まで露光されてしまい、レジスト被膜のパターン化が困難となる(図2のB参照)。レジスト被膜のパターン化が上手くいかないと、矩形の溝パターンが上手く形成されずにマスク部が一部固化して、レジスト被膜の除去工程後も、マスク部の底部に薄くその被膜が残存する現象が生じてしまう。かかる現象が生じると、鋼帯をエッチングする際に、通電不良によるスパークなどが生じて、エッチング不良を招来するという問題が生じる。
 従って、レジスト被膜の膜厚は、好ましくは15μm以下とする。なお、レジスト被膜の膜厚は、より好ましくは10μm以下である。
 一方、エッチング時の絶縁抵抗さえ確保できれば、レジスト被膜の膜厚は、更に薄くても構わないが、エッチング時の絶縁抵抗が確保されるのは0.5μm程度までである。
 本発明において、レジスト被膜の膜厚は、乾燥後のドライ膜厚と定義され、その膜厚は、被膜断面観察により無作為に選択した10箇所の被膜厚みの平均の膜厚を用いる。
 本発明における光照射は、レジストインクを固化させるための特定波長域の光を含んだ光で行う。ここで、特定波長域とは、具体的に、200~400nmである。
 また、光源としては、超高圧水銀灯、エキシマランプなど、上記特定波長域の光を照射し、十分な照射量が得られるものが挙げられる。ここで、本発明における十分な照射量は、レジストインキの硬化開始の感度にもよるが、具体的に、100~1000J/m2程度である。
 さらに、光照射装置については、超高圧水銀灯、エキシマランプなどによって、上記した所定の光を照射できる装置であれば何でもよい。
 本発明で光照射を行う際、マスク部材は、鋼帯の走行速度に同期させて移動できる方式とする。
 フォトエッチングがよく使用される半導体や、電子部品などの分野では、光照射による露光処理を、基材が静止した状態で行うのが一般的であるが、大面積の鋼帯が高速で走行する鉄鋼業界においては、光照射を静止状態で行うことは、生産性の観点から好ましくないので、基材を連続処理する必要がある。
 他方、レジストインクが固化するには、ある程度の照射時間が必要である。そのため、図3に示すように、例えば、鋼帯に近接配置とした一対の回転ロールにマスク部材を掛け回し、回転ロールを回転させることで、回転ロール間に掛け回したマスク部材を移動させる。その際、マスク部材の移動速度を、鋼帯の走行速度と同期させて光照射する方式を採用することが考えられる。本明細書では、このように回転ロール間を掛け回してマスク部材を移動させことを回動移動と呼ぶ。なお、図3中、1は鋼帯、2は回転ロール、3は光照射装置(光源)および4はマスク部材である。
 図3に示した方式で、マスク部材を鋼帯に接触させて回動移動させるようにすれば、マスク部材の移動速度と鋼帯の走行速度とを完全に同期させることが可能となる。なお、図3では2本の回転ロールに無端ベルト状のマスク部材を掛け回して鋼帯の走行速度と同期させる場合について示したが、回転ロールを1本または3本以上の複数本としても良い。また、マスク部材は、コイル状に巻き取ったベルト状のマスク部材を一方で払い出して鋼帯をマスクしたのち、他方で巻き取る等、無端ベルト状ではないマスク部材を用いてもよい。
 また、図4に示すように、マスク部材を円筒形とし、マスク部材自身を、片持ち支持による回転軸で回転させることによる自転型マスク部材5とし、かかる円筒形のマスク部材の周速と鋼帯の走行速度を同期させて光照射する方式を採用することも考えられる。円筒形の形状は、マスク部材の周速を、鋼帯の走行速度に同期させて光照射を行うことができれば、特に限定はされないが、以下に述べるレジスト被膜とマスク部材とのギャップを考慮すると曲率が小さいものが好ましい。
 ここで、レジスト被膜とマスク部材とのギャップ(本発明では、近接配置の範囲を意味する)であるが、本発明では150μm以下とすることが好ましい。本発明のような大面積の光照射部分に対して、狭い幅をマスクする場合、レジスト被膜とマスク部材とのギャップが150μmより大きいと、光が回折してマスク部分も露光されてしまうため、マスク部分でレジスト被膜の固化が発生し、現像後のレジストパターンが不均一となってしまうからである。より好ましくはレジスト被膜とマスク部材とのギャップは100μm以下であり、図3に示すように0μmが特に好ましい。
 また、本発明において良好な電磁特性を得るためには、形成する溝幅をある程度狭くすることが望ましく、エッチング時の負荷からも溝幅は狭い方が好ましい。そのため、本発明における固化部分以外(非固化部)の幅は20μm以上500μm以下とすることが好ましい。なお、20μmよりも狭くすると、それに伴うマスク部材の光遮断部が狭くなって、光照射した際の光遮断が十分にできずに、全面固化してしまうおそれがある。一方、固化部分以外の幅が500μmより広いと十分な鉄損改善効果が得られなくなるおそれがある。
 なお、本発明で用いる回転ロールは、自転式、ベルト駆動式等、マスク部材の移動速度と鋼帯の走行速度を同期させることができれば、特に制限はされないが、自転方式が、走行速度の微調整が容易であることから好ましい。
 また、マスク部材の材質は、レジスト被膜面を覆って、光照射時の光が遮断できれば、特に限定されない。一般的には、数ミリ厚のガラス基板上にクロム等の金属薄膜を露光するパターン形状に0.1~1μm程度成膜したマスク部材などが用いられるが、本発明では鋼帯に同期させてマスクを移動させる観点から、フレキシブルな材料が適しており、光を透過できる透明フィルムシートなどの上にクロム等の金属薄膜を成膜したマスクを好適に用いることができる。
 線状溝の形成パターンは、鋼帯幅方向に対して30°以内の角度とすることが好ましい。これより角度が大きいと最終製品における鉄損改善効果が十分ではないからである。
 なお、本発明において、線状とは、直線だけではなく、破断線や点の連なり線などを含むものとする。
 また、線状溝の形成パターンは、鋼帯長手方向のピッチで、20mm以下の範囲とする。この範囲よりピッチが広いと十分な鉄損改善効果が得られないからである。なお、上記ピッチは、好ましくは1mm以上である。
 光照射により固化した部分以外の、非固化部のレジスト被膜の除去方法は、レジスト組成によって適宜選択されるが、有機溶剤やアルカリ系の溶液に浸漬する方法が容易である。また、上記レジスト被膜の除去速度を速めるため、事前に鋼帯を加熱する、溶液温度を上げる、溶液槽内に流れを発生させる、噴流ノズルを設けるなどの手法を講じてもよい。
 次に、レジスト被膜が除去された部分の鋼帯のエッチング方法について説明する。
 鋼帯のエッチングは、化学エッチング、電解エッチングどちらでもよいが、通電量により溝深さを設定できるため、電解エッチングの方が制御性は良好である。電解エッチングの場合には、NaCl水溶液、KCl水溶液等の電解浴中で行うのが好ましいが、詳細な限定は必要なく、常法に従って行えば良い。
 エッチングする溝深さは、5μm以上とすることが好ましい。それより溝深さが浅いと十分な鉄損改善効果が得られない。なお、エッチングする溝深さの上限は、特に限定されないが、生産性等を考慮すると板厚の1/2程度である。
 エッチング後の鋼帯は、レジスト被膜剥離設備に搬送される。レジスト剥離設備にて下流工程に悪影響を及ぼすエッチング後の不要レジスト被膜を除去し、鋼板の洗浄を行う。剥離の方法は特に指定するものではないが、例えば有機溶剤や水酸化ナトリウム、オルソ珪酸ソーダ等のアルカリ系の溶液に鋼帯を浸漬する方法がある。なお、ブラシやスクレーパなどの物理的な剥離手段を併用してもよい。
 ところで、方向性電磁鋼板は、含けい素鋼スラブを、加熱後、熱間圧延して熱延板とし、必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延を施して冷延鋼帯とし、ついで該冷延鋼帯に脱炭焼鈍を施したのち、焼鈍分離剤を塗布してから、最終仕上げ焼鈍を施す一連の工程によって製造されるが、上述した冷延鋼帯に対する線状溝形成方法を、方向性電磁鋼板用の冷延鋼帯に適用することは有利である。
 すなわち、上記した方向性電磁鋼板の製造に際し、冷間圧延後の冷延鋼帯に対して上述した冷延鋼帯の線状溝形成方法を適用して、鋼帯表面に線状溝を形成すると、磁区の細分化が効果的に達成されて、磁気特性に優れた方向性電磁鋼板を得ることができる。
 なお、線状溝形成後の冷延鋼帯は、その後、常法に従って脱炭焼鈍(一次再結晶焼鈍)を施した後、最終仕上げ焼鈍(二次再結晶焼鈍)を施すことによって、本発明に従う方向性電磁鋼板とすることができる。
 なお、本発明において、上述した以外の鋼帯の成分組成や、方向性電磁鋼板の製造工程は、常法に従えば良い。
 質量%で、Siを3.3%含有した、板厚:0.23mmの冷間圧延後の鋼帯に対して、表1に記載した条件でネガ型レジストインキの塗布を行い、ついで、乾燥、光の照射、固化部分以外(非固化部)のレジスト被膜の除去、電解エッチングを行った。その後、残存する固化部分のレジスト被膜を除去したのち、脱炭焼鈍を施し、最終仕上げ焼鈍を行った後、得られた方向性電磁鋼板の磁気特性について評価した。
 なお、今回、作製した線状溝の溝形状は、鋼帯幅方向に対する角度を10°、鋼帯長手方向の溝ピッチを3mm、溝深さを30μmとした。
 レジスト被膜の形成には、アクリル基含有樹脂等を成分とするレジストインキを用いた。乾燥炉は、熱風乾燥炉を用いて炉温250℃にて乾燥した。光源は、超高圧水銀灯を用いた。固化部分以外のレジスト被膜の除去はアルカリ溶液中への浸漬により行った。
 比較例として、従来法のオフセットグラビアロール印刷によってレジストインキをパターン印刷し、エッチングを行った鋼板も作製し、磁気特性について評価した。
 オフセットグラビアロール塗布装置において、各ロールの材質はグラビアロールが硬質クロムめっきを施した溝付ロール、オフセットロールがゴムをライニングしたゴムロールを使用した。グラビアロールの溝形状は、非塗布部の回転方向幅が100μm、塗布部の回転方向幅が3mmのものを用いた。ゴムライニング厚は20mm、ゴムはウレタンゴムで硬度はHs80°である。各ロールのロール径はグラビアロール、オフセットロール共に250mmである。使用した塗布液はアルキド系樹脂を主成分とするレジストインクである。このレジストインクをエチレングリコールモノブチルエーテルで希釈し、20℃時での粘度が1500 mPa・s程度となるよう調整して使用した。
 電解エッチングは、NaCl電解浴中にて、電流密度:30A/dm2で、30μmの溝深さとなるまで数十秒間の処理を行った。
 本実施例で、W17/50は1.7T、50Hzでの鉄損を評価した。また、外観は、線状溝に途切れや変形が見受けられるものは×、軽微な溝深さ変動、変形がみられるものは鉄損評価の優劣を加味して△~○、美麗な直線状の溝が均一な深さに形成されているものは◎とした。
 発明例および比較例の鉄損および外観の評価結果を表1に併記する。
Figure JPOXMLDOC01-appb-T000001
 表1に示したように、発明例では、ネガ型レジストインクと光照射装置の使用によって、均一なレジスト被膜パターンを形成し、エッチングにより均一な線状溝を形成することが可能となることが分かる。また、磁気特性についても優良な結果を示している。
 比較例である、従来のオフセットグラビアロール印刷を使用した場合には、塗布ムラやインクの濡れ広がりが発生して、外観欠陥、溝潰れとなり、精度の高い均一な線状溝を保てずに、エッチング後の磁気特性においても劣位な結果となった。
 なお、本実施例では、基材として厚さ0.23mmの冷間圧延後の鋼帯を用いて方向性電磁鋼板を製造した場合について説明したが、本発明は、これだけに限定されるものではなく、他の厚みの鋼帯、電磁鋼板に対しても同様に適用することができる。
 1 鋼帯
 2 回転ロール
 3 光照射装置(光源)
 4 マスク部材
 5 自転型マスク部材

Claims (9)

  1.  連続して走行する鋼帯に対し、感光して固化するネガ型のレジストインクを塗布し、乾燥してレジスト被膜を形成したのち、該レジスト被膜面を覆って光を遮断するマスク部材を鋼帯の走行速度と同期させて移動させながら光照射を行って、上記マスク部材で覆われないレジスト被膜を固化させたのち、現像液にて該固化部分以外のレジスト被膜を除去し、さらにエッチングにより該レジスト被膜を除去した部分の鋼帯を溶解、除去して線状溝を形成する鋼帯の線状溝形成方法。
  2.  前記鋼帯に近接し、かつ該鋼帯の進行方向に並列に配置した一対の回転ロールに、無端ベルト状の前記マスク部材を掛け回して回動移動させるものとし、その際、該マスク部材の回動移動速度を、該鋼帯の走行速度と同期させる請求項1に記載の鋼帯の線状溝形成方法。
  3.  前記マスク部材を円筒形にし、該円筒形としたマスク部材を、その軸心が前記鋼帯の幅方向に平行として、該鋼帯に近接して配置し、この配置位置にて該円筒形のマスク部材を、該軸心を回転軸として回転させるものとし、その際、該円筒形のマスク部材の周速を、該鋼帯の走行速度と同期させる請求項1に記載の鋼帯の線状溝形成方法。
  4.  前記レジスト被膜の膜厚を15μm以下とする請求項1~3のいずれか1項に記載の鋼帯の線状溝形成方法。
  5.  前記マスク部材と、前記レジスト被膜とのギャップを150μm以下とする請求項1~4のいずれか1項に記載の鋼帯の線状溝形成方法。
  6.  前記固化部分以外の非固化部分の幅を、20μm以上500μm以下とする請求項1~5のいずれか1項に記載の鋼帯の線状溝形成方法。
  7.  前記線状溝を、鋼帯の幅方向に対する角度が30°以下で、かつ鋼帯長手方向に20mm以下のピッチで形成する請求項1~6のいずれか1項に記載の鋼帯の線状溝形成方法。
  8.  前記線状溝の溝深さを5μm以上とする請求項1~7のいずれか1項に記載の鋼帯の線状溝形成方法。
  9.  含けい素鋼スラブを、加熱後、熱間圧延して熱延板とし、必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延を施して鋼帯とし、ついで該鋼帯に脱炭焼鈍を施したのち、焼鈍分離剤を塗布してから、最終仕上げ焼鈍を施す一連の工程によって方向性電磁鋼板を製造するに当たり、
     上記冷間圧延後の鋼帯に対して、請求項1~8のいずれか1項に記載の線状溝形成方法を適用して、該鋼帯の表面に線状溝を形成する方向性電磁鋼板の製造方法。
PCT/JP2015/006332 2014-12-25 2015-12-18 鋼帯の線状溝形成方法および方向性電磁鋼板の製造方法 WO2016103668A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/538,355 US20180057956A1 (en) 2014-12-25 2015-12-18 Method for forming linear groove on steel strip and method for manufacturing grain-oriented electrical steel sheet
JP2016510334A JP6103133B2 (ja) 2014-12-25 2015-12-18 鋼帯の線状溝形成方法および方向性電磁鋼板の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014262886 2014-12-25
JP2014-262886 2014-12-25

Publications (2)

Publication Number Publication Date
WO2016103668A1 true WO2016103668A1 (ja) 2016-06-30
WO2016103668A8 WO2016103668A8 (ja) 2017-07-27

Family

ID=56149731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/006332 WO2016103668A1 (ja) 2014-12-25 2015-12-18 鋼帯の線状溝形成方法および方向性電磁鋼板の製造方法

Country Status (3)

Country Link
US (1) US20180057956A1 (ja)
JP (1) JP6103133B2 (ja)
WO (1) WO2016103668A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3257973A4 (en) * 2015-02-10 2018-03-21 JFE Steel Corporation Method for producing grain-oriented electrical steel sheet

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3211453A1 (en) * 2016-02-26 2017-08-30 ams AG Optical proximity sensor arrangement and method for producing an optical proximity sensor arrangement
EP3654355A1 (de) * 2018-11-14 2020-05-20 Siemens Aktiengesellschaft Elektroblech mit strukturierter oberfläche zur domänenverfeinerung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62179105A (ja) * 1986-02-03 1987-08-06 Nippon Steel Corp 低鉄損一方向性電磁鋼板の製造方法
JPH0442159A (ja) * 1990-06-08 1992-02-12 Kato Hatsujo Kaisha Ltd フォトレジストにおける露光方法および装置
JPH11288080A (ja) * 1998-04-02 1999-10-19 Mitsubishi Alum Co Ltd フォトレジスト印刷用マスクと印刷装置および印刷方法と電極箔の製造方法および印刷用ロール
JP2011059196A (ja) * 2009-09-07 2011-03-24 Fujifilm Corp 凸状シートの製造方法および凸状シートの製造装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62179105A (ja) * 1986-02-03 1987-08-06 Nippon Steel Corp 低鉄損一方向性電磁鋼板の製造方法
JPH0442159A (ja) * 1990-06-08 1992-02-12 Kato Hatsujo Kaisha Ltd フォトレジストにおける露光方法および装置
JPH11288080A (ja) * 1998-04-02 1999-10-19 Mitsubishi Alum Co Ltd フォトレジスト印刷用マスクと印刷装置および印刷方法と電極箔の製造方法および印刷用ロール
JP2011059196A (ja) * 2009-09-07 2011-03-24 Fujifilm Corp 凸状シートの製造方法および凸状シートの製造装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3257973A4 (en) * 2015-02-10 2018-03-21 JFE Steel Corporation Method for producing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
WO2016103668A8 (ja) 2017-07-27
US20180057956A1 (en) 2018-03-01
JP6103133B2 (ja) 2017-03-29
JPWO2016103668A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
WO2016092858A1 (ja) 冷延鋼帯の線状溝形成方法および方向性電磁鋼板の製造方法
JP6146535B2 (ja) 方向性電磁鋼板の製造方法
JP6103133B2 (ja) 鋼帯の線状溝形成方法および方向性電磁鋼板の製造方法
JP5971157B2 (ja) 塗布装置および塗布方法
JP5229432B1 (ja) 方向性電磁鋼板及び方向性電磁鋼板の製造方法
JP2020090709A (ja) 方向性電磁鋼板の鉄損改善方法およびその装置
JP6230798B2 (ja) 塗布方法および塗布装置
JP6015919B2 (ja) 方向性電磁鋼板の製造方法
JP6394617B2 (ja) 低鉄損方向性電磁鋼板を製造するための設備列及び低鉄損方向性電磁鋼板の製造方法
JP4239233B2 (ja) 方向性電磁鋼板の製造方法および方向性電磁鋼板のエッチングマスク形成装置
JPH0569284B2 (ja)
KR101536432B1 (ko) 박판 주조용 주조롤의 표면 처리 방법 및 장치
JPH086140B2 (ja) 低鉄損方向性電磁鋼板の製造方法
JP6007883B2 (ja) 金属ストリップの処理装置および金属ストリップの製造方法
JP7040585B1 (ja) 金属ストリップ表面への溝形成方法、および方向性電磁鋼板の製造方法
JP6835022B2 (ja) 方向性電磁鋼板の溝形成用設備列、方向性電磁鋼板の溝形成方法、及び方向性電磁鋼板の製造方法
JP2003320289A (ja) 金属板への液体又はスラリーの均一塗布方法及び塗布装置
KR100502239B1 (ko) 소둔분리제 코팅용 롤 코터 및 이 롤 코터를 이용하여소둔분리제를 코팅하는 방향성전기강판의 제조방법
JP2022061431A (ja) 金属ストリップ表面への溝形成方法、および方向性電磁鋼板の製造方法
JPH10130899A (ja) 低鉄損方向性電磁鋼板の製造方法
GB630718A (en) Improvements in or relating to a method of and means for marking polished strip steel in rolls
JPH1088235A (ja) 低鉄損方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016510334

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872241

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15538355

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15872241

Country of ref document: EP

Kind code of ref document: A1