WO2016103552A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2016103552A1
WO2016103552A1 PCT/JP2015/005534 JP2015005534W WO2016103552A1 WO 2016103552 A1 WO2016103552 A1 WO 2016103552A1 JP 2015005534 W JP2015005534 W JP 2015005534W WO 2016103552 A1 WO2016103552 A1 WO 2016103552A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
compressor
reverse cycle
outdoor heat
during
Prior art date
Application number
PCT/JP2015/005534
Other languages
English (en)
French (fr)
Inventor
達也 牧野
啓太郎 星加
直紀 師井
広司 中島
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201580065700.1A priority Critical patent/CN107003028B/zh
Priority to US15/534,808 priority patent/US10544958B2/en
Priority to AU2015369514A priority patent/AU2015369514B2/en
Priority to EP15872133.2A priority patent/EP3244132B1/en
Priority to ES15872133T priority patent/ES2824481T3/es
Publication of WO2016103552A1 publication Critical patent/WO2016103552A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/08Exceeding a certain temperature value in a refrigeration component or cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/28Means for preventing liquid refrigerant entering into the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/31Low ambient temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Definitions

  • the present invention relates to an air conditioner that performs a reverse cycle operation in which a refrigerant is circulated contrary to the heating operation.
  • the air conditioner has a refrigerant circuit configured by sequentially connecting a compressor, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger.
  • the outdoor heat exchanger functions as an evaporator and the indoor heat exchanger functions as a condenser.
  • the refrigerant circulates in the order of the compressor, indoor heat exchanger, expansion valve, and outdoor heat exchanger. A heating cycle is performed.
  • reverse cycle operation is known in which the outdoor heat exchanger functions as a condenser and the indoor heat exchanger functions as an evaporator, and the refrigerant is circulated contrary to the heating cycle.
  • the refrigerant radiates heat to the outside in the outdoor heat exchanger. Therefore, the reverse cycle operation is performed if the frost formation of the outdoor heat exchanger is not eliminated even with the technique according to Patent Document 1.
  • the reverse cycle operation may be performed at regular time intervals for the purpose of returning the lubricating oil that has flowed from the compressor to the refrigerant circuit to the compressor other than when the outdoor heat exchanger is frosted.
  • the compressor operates at a relatively high speed that can melt the frost.
  • the compressor operates at a high rotational speed regardless of the actual frosted state of the outdoor heat exchanger. There is a risk that the compressor will break down.
  • the present invention has been made in view of such a point, and an object thereof is to prevent an unnecessary load from being applied to the compressor during reverse cycle operation.
  • the first invention includes a refrigerant circuit (20) in which a compressor (21), an outdoor heat exchanger (23), an expansion valve (24), and an indoor heat exchanger (25) are connected in order, and the outdoor heat.
  • Heating cycle in which the exchanger (23) functions as an evaporator and the indoor heat exchanger (25) functions as a condenser, or the outdoor heat exchanger (23) is condensed when the reverse cycle execution conditions are satisfied
  • a cycle control unit (32a) that causes the refrigerant circuit (20) to perform a reverse cycle in which the indoor heat exchanger (25) functions as an evaporator and causes the refrigerant to circulate in reverse to the heating cycle.
  • a rotation speed control unit that adjusts the rotation speed of the compressor (21) during execution of the reverse cycle according to an index correlated with the amount of frost formation of the outdoor heat exchanger (23) at the start of the reverse cycle ( 32b), and the rotation speed control unit (32b)
  • the air conditioner is characterized in that as the index indicates that the amount of frost formation on the outdoor heat exchanger (23) is smaller, the rotational speed of the compressor (21) during execution of the reverse cycle is lowered.
  • the refrigerant circuit (20) performs a reverse cycle that circulates the refrigerant in the opposite direction to the heating cycle
  • the reverse cycle is executed according to an index related to the frost formation amount of the outdoor heat exchanger (23) at the start of the reverse cycle.
  • the rotation speed of the compressor (21) inside is adjusted.
  • the rotational speed of the compressor (21) during the reverse cycle is lowered as the index indicates that the amount of frost formation in the outdoor heat exchanger (23) is small.
  • the rotational speed control unit (32b) determines the rotational speed of the compressor (21) during the reverse cycle execution according to the index during the reverse cycle execution. It is an air conditioning apparatus characterized by adjusting again.
  • the rotational speed of the compressor (21) during the reverse cycle is adjusted again according to the progress of the amount of frost formation due to the reverse cycle. Therefore, the outdoor heat exchanger (23) can be reliably defrosted and an unnecessary load can be further prevented from being applied to the compressor (21) during the reverse cycle.
  • the reverse cycle is executed such that the index at the start of the reverse cycle indicates that the frost formation amount of the outdoor heat exchanger (23) is small.
  • the degree of frosting of the outdoor heat exchanger (23) is greater than the degree of opening of the expansion valve (24) when the compressor (21) rotates at the maximum rotational speed.
  • the air conditioner further includes an opening degree adjusting unit (32c) that is reduced according to the amount.
  • the opening degree of the expansion valve (24) is large despite the small amount of frost formation in the outdoor heat exchanger (23), the liquid refrigerant is sometimes sucked into the compressor (21) during the reverse cycle. There is a risk that a liquid back phenomenon will occur.
  • the smaller the amount of frost on the outdoor heat exchanger (23) at the start of the reverse cycle the smaller the opening of the expansion valve (24), so that the occurrence of liquid back can be suppressed. . Therefore, it is possible to reduce an excessive load on the compressor (21) due to the occurrence of the liquid back.
  • the opening adjustment section (32c) determines the opening of the expansion valve (24) during the reverse cycle according to the index during the reverse cycle. It is an air conditioning apparatus characterized by adjusting again.
  • the opening of the expansion valve (24) during the reverse cycle is adjusted again according to the progress of the amount of frost formation due to the reverse cycle. Therefore, it is possible to further reduce the excessive load on the compressor (21) due to the occurrence of liquid back.
  • the amount of frost formation of the outdoor heat exchanger (23) is determined by whether or not the indicator satisfies a predetermined condition.
  • the air conditioner further includes a receiving unit (40) capable of receiving the change of the predetermined condition.
  • the rotation speed of the compressor (21) during the reverse cycle can be appropriately adjusted according to the installation environment.
  • the outdoor heat exchanger (23) can be reliably defrosted and an unnecessary load can be further prevented from being applied to the compressor (21) during the reverse cycle.
  • the rotational speed of the compressor (21) during the reverse cycle can be appropriately adjusted according to the installation environment.
  • FIG. 1 is a piping diagram showing a refrigerant circuit of an air conditioner.
  • FIG. 2 is a timing chart showing the operation over time of the rotation speed of the compressor and the opening degree of the expansion valve during the reverse cycle operation.
  • the air conditioner (10) includes an outdoor unit (11), an indoor unit (12), an indoor control unit (31), an outdoor control unit (32), and a remote controller (40).
  • the outdoor unit (11) and the indoor unit (12) are connected via a liquid side connecting pipe (13) and a gas side connecting pipe (14).
  • the outdoor unit (11), the indoor unit (12), the liquid side connecting pipe (13), and the gas side connecting pipe (14) form a refrigerant circuit (20).
  • This air conditioner (10) can perform reverse cycle operation in addition to cooling operation and heating operation.
  • the reverse cycle operation is mainly an operation for preventing or removing frost that has adhered to the outdoor heat exchanger (23) included in the outdoor unit (11) during heating operation. This is also performed to return the lubricating oil flowing out from the compressor (21) included in (11) to the refrigerant circuit (20) to the compressor (21).
  • the refrigerant circulates in the refrigerant circuit (20) in the same direction as in the cooling operation, that is, in the opposite direction to that in the heating operation.
  • the refrigerant circuit (20) mainly includes a compressor (21), a four-way switching valve (22), an outdoor heat exchanger (23), an expansion valve (24), and an indoor heat exchanger (25). These are connected in order.
  • the compressor (21), the four-way switching valve (22), the outdoor heat exchanger (23), and the expansion valve (24) are provided in the outdoor unit (11).
  • the outdoor unit (11) is also provided with an outdoor fan (15) for supplying outdoor air to the outdoor heat exchanger (23).
  • the indoor heat exchanger (25) is provided in the indoor unit (12).
  • the indoor unit (12) is provided with an indoor fan (16) for supplying room air to the indoor heat exchanger (25).
  • the discharge side of the compressor (21) is connected to the first port of the four-way switching valve (22) via a discharge pipe.
  • the suction side of the compressor (21) is connected to the second port of the four-way switching valve (22) via a suction pipe.
  • the outdoor heat exchanger (23), the expansion valve (24), and the indoor heat exchanger (25) are sequentially arranged from the third port to the fourth port of the four-way switching valve (22). Connected by piping.
  • Compressor (21) is a scroll type or rotary type hermetic compressor.
  • a variable capacity compressor that can change the capacity by changing the rotation speed (operating frequency) of the compressor (21) is employed.
  • the four-way switching valve (22) has a first state in which the first port communicates with the third port and the second port communicates with the fourth port (state shown by the solid line in FIG. 1), and the first port is the fourth port. And a state in which the second port communicates with the third port (a state indicated by a dotted line in FIG. 1).
  • the expansion valve (24) is a means for decompressing the refrigerant, and is constituted by an electronic expansion valve.
  • the opening degree of the expansion valve (24) is changed by the outdoor control unit (32) described later.
  • the cross-fin fin-and-tube heat exchanger is adopted for the outdoor heat exchanger (23).
  • the outdoor heat exchanger (23) functions as a refrigerant condenser during cooling operation and reverse cycle operation, and functions as a refrigerant evaporator during heating operation.
  • the indoor heat exchanger (25) functions as a refrigerant evaporator during cooling operation and reverse cycle operation, and functions as a refrigerant condenser during heating operation.
  • the indoor control unit (31) is provided in the indoor unit (12), and the outdoor control unit (32) is provided in the outdoor unit (11).
  • Each of the indoor control unit (31) and the outdoor control unit (32) includes a microcomputer including a CPU and a memory. When the CPU executes various processes according to various programs stored in the memory, the indoor control unit (31) and the outdoor control unit (32) perform various controls.
  • the indoor control unit (31) controls the air volume of the indoor fan (16). For example, the indoor control unit (31) operates the indoor fan (16) at the rotation speed desired by the user during the heating operation and the cooling operation.
  • the indoor control unit (31) may stop the operation of the indoor fan (16) during the reverse cycle operation, or may operate the indoor fan (16) at a lower rotational speed than during heating operation or cooling operation. May be.
  • the outdoor control unit (32) controls the rotational speed of the compressor (21), the connection switching control of the port of the four-way switching valve (22) according to the operation type, the opening control of the expansion valve (24), the outdoor fan (15 ) Is controlled.
  • the operation of the outdoor control unit (32) will be described in detail later.
  • the remote controller (40) (corresponding to the reception unit) is attached to the wall surface of the room.
  • the remote controller (40) is directly communicable with the indoor control unit (31), and is communicably connected to the outdoor control unit (32) via the indoor control unit (31).
  • the remote controller (40) includes various setting buttons and a display unit, and can accept various settings input by the user via the setting buttons and display the setting contents. .
  • the refrigerant circuit (20) performs a heating cycle.
  • the outdoor control unit (32) sets the four-way switching valve (22) to the second so that the outdoor heat exchanger (23) functions as an evaporator and the indoor heat exchanger (25) functions as a condenser. Switch to state. Thereby, the four-way selector valve (22) is switched as indicated by the dotted arrow in FIG. 1, and the refrigerant circuit (20) performs the heating cycle.
  • the refrigerant In the heating cycle, when the refrigerant is compressed and discharged by the compressor (21), it is condensed and cooled by the indoor heat exchanger (25). The condensed and cooled refrigerant is decompressed by the expansion valve (24), and then is radiated to the outdoor air and evaporated by the outdoor heat exchanger (23). The evaporated refrigerant flows into the suction side of the compressor (21) through an accumulator (not shown).
  • the reverse cycle operation is mainly performed for preventing or defrosting the outdoor heat exchanger (23) during the heating operation.
  • moisture contained in outdoor air adheres to the outer surface of the outdoor heat exchanger (23), which is an evaporator, and forms frost.
  • This frost increases the heat exchange capacity of the outdoor heat exchanger (23). It is because it becomes a factor to reduce. Therefore, the reverse cycle operation is performed during the heating operation or after the heating operation. Further, when the reverse cycle operation is performed for the purpose of returning the lubricating oil to the compressor (21), the reverse cycle operation is performed at regular intervals.
  • the refrigerant circuit (20) performs a reverse cycle.
  • the outdoor heat exchanger (23) functions as a condenser
  • the outdoor heat exchanger (25) functions as an evaporator
  • the outdoor control unit (32) is switched in four directions. Switch the valve (22) to the first state. As a result, the four-way switching valve (22) is switched as indicated by the solid arrow in FIG. 1, and the refrigerant circuit (20) performs a reverse cycle.
  • the cycle controller (32a) of the outdoor controller (32) causes the refrigerant circuit (20) to perform the reverse cycle (reverse cycle operation) when the reverse cycle execution condition is satisfied.
  • the reverse cycle execution condition include the following (I) and (II).
  • (I) When a certain period of time has elapsed since the end of the previous reverse cycle operation (II) The temperature Tr on the outer surface of the outdoor heat exchanger (23) during or after heating operation is equal to or higher than the outdoor temperature Ta. When the temperature difference “Tr ⁇ Ta” becomes smaller than the predetermined difference
  • the above (I) is a condition for executing the reverse cycle operation to return the lubricating oil to the compressor (21).
  • the above (II) is a condition for performing the reverse cycle operation for preventing frost formation or defrosting of the outdoor heat exchanger (23).
  • the outdoor heat exchanger (23) may not be frosted.
  • the compressor (21) when performing reverse cycle operation is set to the same rotational speed as when (II) is established, in which frost formation on the outdoor heat exchanger (23) is suspected.
  • the compressor (21) When operating at, the compressor (21) is operated at a relatively high rotational speed. In this case, since the compression capacity of the compressor (21) is merely excessive although the outdoor heat exchanger (23) is not frosted, the compressor (21) is excessively loaded.
  • the rotation speed of the compressor (21) increases, the sound generated in the compressor (21) also increases.
  • the outdoor control unit (32) performs the reverse operation of the compressor (21) according to the actual frost formation amount of the outdoor heat exchanger (23). Control to adjust the number of rotations.
  • the outdoor control unit (32) can be used as a rotation speed control unit (32b) and an opening degree adjustment unit (32c) as shown in FIG. 1 in addition to the cycle control unit (32a) described above. Function.
  • the rotation speed control unit (32b) adjusts the rotation speed of the compressor (21) during the reverse cycle operation according to an index correlated with the frost formation amount of the outdoor heat exchanger (23) at the start of the reverse cycle operation. .
  • the rotation speed control unit (32b) indicates that the index at the start of the reverse cycle operation indicates that the amount of frost on the outdoor heat exchanger (23) is small, so that the compressor (21) in the reverse cycle operation Reduce the rotation speed.
  • the “index correlated with the amount of frost formation of the outdoor heat exchanger (23)” is a parameter having a value related to the actual amount of frost formation of the outdoor heat exchanger (23).
  • the temperature Ta, the temperature Tr of the outer surface of the outdoor heat exchanger (23), the value of a pressure sensor (not shown), the actual evaporation temperature Te, and the like can be mentioned.
  • the higher the temperature Tr of the outer surface of the outdoor heat exchanger (23) with respect to the outdoor temperature Ta the more the frosting amount on the outer surface of the outdoor heat exchanger (23) is greater. It can be judged that there are few.
  • the rotation speed control unit (32b) can determine that the amount of frost formation is larger.
  • the rotation speed control unit (32b) when the reverse cycle operation is started when either of the above (I) and (II) is established, the rotation speed control unit (32b) An index at the start of cycle operation is extracted, and the frost formation state of the outdoor heat exchanger (23) is determined according to the extracted index (determination 1 in FIG. 2).
  • the indices extracted in determination 1 are the outside air temperature Ta and the evaporation temperature Te.
  • the rotational speed control unit (32b) determines that the outdoor heat exchanger (23) is not frosted and compresses the compressed heat.
  • the machine (21) is operated at an equivalent rotational speed (for example, 51 rps) during non-frosting.
  • the rotation speed control unit (32b) determines that the outdoor heat exchanger (23) is frosted. Then, the compressor (21) is operated at an equivalent rotational speed (for example, 92 rps) at the time of frost formation. That is, in this embodiment, the equivalent rotational speed at the time of frost formation (92 rps) is larger than the equivalent rotational speed at the time of non-frost formation (51 rps).
  • the rotation speed control unit (32b) performs the index extraction again, and re-determines the frosting state of the outdoor heat exchanger (23) according to the index. (Decision 2), the number of rotations of the compressor (21) during the reverse cycle operation is adjusted again.
  • the reverse cycle operation is performed for a certain time, for example, 10 minutes.
  • the “predetermined time” according to the present embodiment is set to a time (5 minutes) that is exactly half of the certain time. Has been.
  • the predetermined time may not be limited to half of the fixed time, and can be set as appropriate.
  • the index newly extracted at the time of the determination 2 may be the same type as the index extracted at the time of the determination 1 (at the start of the reverse cycle operation) or may be a different type.
  • the case where the type of index extracted at the time of determination 1 is different from the type of index extracted at the time of determination 2 is illustrated.
  • the indices extracted at the time of judgment 2 are the current outer surface temperature Tr of the outdoor heat exchanger (23), the target temperature of the outer surface of the outdoor heat exchanger (23) at the end of the reverse cycle operation. Let Tf.
  • the rotational speed control unit (32b) determines that frosting has not occurred, and the rotational speed of the compressor (21) in operation is adjusted to a lower rotational speed corresponding to the non-frosting rotational speed (51 rps).
  • Tr ⁇ Tf + W °C When the index extracted at the time of determination 2 does not satisfy the predetermined condition (D), the rotation speed control unit (32b) determines that the outdoor heat exchanger (23) is frosted, and is operating. The number of revolutions of the compressor (21) is adjusted to the higher number of revolutions (92 rps) during frosting.
  • the rotation speed of the compressor (21) is the same as that at the time of non-frosting. Although it is an equivalent rotation speed (51 rps), it is determined that the outdoor heat exchanger (23) is frosted in the determination 2 after a predetermined time has elapsed, so the rotation speed of the compressor (21) is equivalent to that at the time of frost formation. This represents a case where the rotational speed is increased to 92 rps. That is, in the solid line in FIG.
  • the compressor (21) since the degree of frost formation of the outdoor heat exchanger (23) has progressed due to some influence between the start of the reverse cycle and the lapse of a predetermined time, the compressor (21) is In this example, the outdoor heat exchanger (23) is defrosted in the remaining time by increasing the number of rotations to 92 rps.
  • the rotation speed of the compressor (21) is equivalent to the rotation speed ( 92 rps), but it was determined that the outdoor heat exchanger (23) is not frosted in the determination 2 after a predetermined time has elapsed, and therefore the rotation speed of the compressor (21) is equivalent to the rotation speed when the frost is not frosted ( 51 rps). That is, in the dotted line of FIG. 2, since the frost formation of the outdoor heat exchanger (23) has been eliminated between the start of the reverse cycle and the elapse of a predetermined time, the rotation speed of the compressor (21) is adjusted at the elapse of the predetermined time. An example of lowering to 51 rps is shown.
  • the compressor (21) during the reverse cycle operation is compared with the case where the frost is formed.
  • the number of revolutions is reduced.
  • the rotational speed of the compressor (21) is adjusted not only at the start of the reverse cycle operation but also during the reverse cycle operation. This reduces the load on the compressor (21) in accordance with the frosting state of the outdoor heat exchanger (23) that has changed during reverse cycle operation, and the outdoor heat exchanger (23) more reliably. It can be defrosted.
  • the opening adjustment unit (32c) opens the expansion valve (24) as the index at the start of the reverse cycle operation (the index related to the determination 1) indicates that the amount of frost formation in the outdoor heat exchanger (23) is small. Decrease the degree. That is, the outdoor heat exchanger (23) is adjusted such that the smaller the amount of frost formation, the smaller the opening of the expansion valve (24) as the rotational speed of the compressor (21) is lower. . Furthermore, the opening degree adjusting unit (32c) adjusts the opening degree of the expansion valve (24) during the reverse cycle operation again according to the index during the reverse cycle operation (the index according to the determination 2).
  • the opening degree adjustment unit (32c) expands during reverse cycle operation.
  • the opening degree of the valve (24) is adjusted to an equivalent opening degree at the time of frost formation (an opening degree corresponding to the rotation speed “92 rps” at the time of frost formation of the compressor (21)).
  • the opening degree adjustment unit (32c) expands the expansion valve during reverse cycle operation.
  • the opening degree of (24) is adjusted to an equivalent opening degree during non-frosting (an opening degree corresponding to the rotational speed “51 rps” when the compressor (21) is not frosting).
  • the equivalent opening during non-frosting is smaller than the corresponding opening during frosting. Accordingly, the corresponding opening degree when the frost is not formed is when the rotation speed of the compressor (21) during the reverse cycle operation is the highest (92 rps) because the frost amount of the outdoor heat exchanger (23) is the maximum. It can be said that it is smaller than the opening degree of the expansion valve (24).
  • the opening degree adjustment unit (32c) Re-adjusts the opening of the expansion valve (24) during reverse cycle operation to a corresponding opening during frost formation (an opening corresponding to the rotational speed “92 rps” during frost formation of the compressor (21)).
  • the opening degree adjustment unit (32c) the opening degree of 24) is readjusted to an equivalent opening degree during non-frosting (an opening degree corresponding to the rotational speed “51 rps” when the compressor (21) is not frosting).
  • the opening degree of the expansion valve (24) is the non-frosting time.
  • it is an equivalent opening degree (an opening degree corresponding to the rotational speed “51 rps” of the compressor (21))
  • it is determined that the outdoor heat exchanger (23) is frosted in the determination 2 after a predetermined time has elapsed.
  • the opening degree of the expansion valve (24) represents a case where the opening degree is increased to a corresponding opening degree during frosting (an opening degree corresponding to the rotational speed “92 rps” of the compressor (21)).
  • the opening degree of the expansion valve (24) is equivalent to the opening degree at the time of frosting ( The opening (corresponding to the rotational speed “92 rps” of the compressor (21)), but in the determination 2 after a predetermined time has passed, it is determined that the outdoor heat exchanger (23) is not frosted.
  • the opening degree of 24) represents a case where the opening degree is lowered to an equivalent opening degree during non-frosting (an opening degree corresponding to the rotational speed “51 rps” of the compressor (21)).
  • the compressor (21 ) And the opening degree of the expansion valve (24) during reverse cycle operation is also reduced. That is, the opening degree of the expansion valve (24) during the reverse cycle operation corresponds to the compression capacity of the compressor (21). Therefore, during reverse cycle operation, for example, when the rotational speed of the compressor (21) is low and the opening of the expansion valve (24) is large relative to the heat exchange capacity of the indoor heat exchanger (25) that is the evaporator Does not occur.
  • the amount of frost formation of the outdoor heat exchanger (23) at the start of the reverse cycle operation is based on the index extracted at the start of the reverse cycle operation (A) to (C). Or at least one of the above (A) to (C) is not satisfied.
  • the amount of frost formation of the outdoor heat exchanger (23) during the reverse cycle operation is determined by whether or not the index extracted during the reverse cycle operation satisfies the above (D).
  • These predetermined conditions (A) to (D) are preferably determined as appropriate according to the installation environment of the air conditioner (10). For example, this is because the condition in which the outdoor heat exchanger (23) actually forms frost differs depending on whether the air conditioner (10) is installed in a cold region or not.
  • the remote controller can accept changes in the predetermined conditions (A) to (D) and can overwrite the memory of the outdoor control unit (32).
  • the predetermined conditions (A) to (D) are changed when the air conditioner (10) is installed, for example, by an installation operator. Thereby, the rotation speed of the compressor (21) at the time of reverse cycle operation and the opening degree of the expansion valve (24) can be appropriately adjusted according to the installation environment.
  • the rotational speed of the compressor (21) during the reverse cycle operation is adjusted according to an index related to the frost formation amount of the outdoor heat exchanger (23) at the start of the reverse cycle operation.
  • the rotational speed of the compressor (21) during the reverse cycle operation is lowered as the index indicates that the amount of frost formation on the outdoor heat exchanger (23) is smaller. That is, if the amount of frost on the outdoor heat exchanger (23) at the start of the reverse cycle operation is large, the rotational speed of the compressor (21) is increased, and conversely, the outdoor heat exchanger (23) at the start of the reverse cycle operation. If the amount of frost formation is small, the rotational speed of the compressor (21) is reduced. Therefore, during reverse cycle operation, the compressor (21) does not operate at an unnecessarily high rotational speed, and operates at a rotational speed as necessary, so that an unnecessary load is placed on the compressor (21). This can be prevented.
  • the rotational speed of the compressor (21) during the reverse cycle operation is adjusted again according to the progress of the amount of frost formed by the reverse cycle operation. Therefore, it is possible to reliably defrost the outdoor heat exchanger (23) and to further prevent an unnecessary load from being applied to the compressor (21) during the reverse cycle operation.
  • the opening degree of the expansion valve (24) is large despite the small amount of frost formation in the outdoor heat exchanger (23), the liquid refrigerant is sometimes sucked into the compressor (21) during the reverse cycle. There is a risk that a liquid back phenomenon will occur.
  • the smaller the amount of frost on the outdoor heat exchanger (23) at the start of the reverse cycle the smaller the opening of the expansion valve (24). Can do. Therefore, it is possible to reduce an excessive load on the compressor (21) due to the occurrence of the liquid back.
  • the opening degree of the expansion valve (24) during the reverse cycle is adjusted again according to the progress of the amount of frost formation due to the reverse cycle. Therefore, it is possible to further reduce the excessive load on the compressor (21) due to the occurrence of liquid back.
  • the predetermined conditions (A) to (D) can be changed via the remote controller (40).
  • the rotation speed of the compressor (21) at the time of reverse cycle operation, and also the opening degree of the expansion valve (24) at the time of reverse cycle operation are adjusted suitably. Will be able to.
  • the predetermined conditions (A) to (C) according to the determination 1 and the predetermined condition (D) according to the determination 2 are different, but the predetermined condition according to the determination 1 and the predetermined condition according to the determination 2 are different from each other. May be the same.
  • the predetermined time in FIG. 2 is as short as 1 minute, for example, the predetermined condition according to the determination 1 and the predetermined condition according to the determination 2 can be made the same.
  • the index according to the determination 1 and the index according to the determination 2 are of the same type.
  • both the rotation speed of the compressor (21) in the case of reverse cycle operation and the opening degree of an expansion valve (24) are adjusted to either of two types.
  • the rotational speed of the compressor (21) and the opening degree of the expansion valve (24) during the reverse cycle operation may be finely adjusted according to the amount of frost formation in the outdoor heat exchanger (23). In this case, the smaller the amount of frost formation in the outdoor heat exchanger (23), the lower the rotational speed of the compressor (21) and the smaller the opening of the expansion valve (24).
  • the readjustment of the rotational speed of the compressor (21) according to the determination 2 may not necessarily be performed.
  • the opening degree adjustment of the expansion valve (24) according to the determination 1 is not necessarily performed.
  • the readjustment of the opening degree of the expansion valve (24) according to the determination 2 may not necessarily be performed.
  • the remote controller (40) may have a specification that does not accept changes in the predetermined conditions (A) to (C) related to the determination 1 and the predetermined condition (D) related to the determination 2. In this case, in each of the determinations 1 and 2, conditions set at the time of shipment of the air conditioner (10) are used.
  • the present invention is useful for an air conditioner that performs a reverse cycle operation in which a refrigerant is circulated contrary to a heating operation.
  • Air conditioner 20 Refrigerant circuit 21 Compressor 23 Outdoor heat exchanger 24 expansion valve 25 Indoor heat exchanger 32a Cycle control unit 32b Speed controller 32c Opening adjustment section 40 Remote controller (reception part)

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 逆サイクル運転時に圧縮機にかかる負荷を軽減する。サイクル制御部(32a)は、逆サイクル実行条件が満たされた場合、室外熱交換器(23)を凝縮器として機能させ室内熱交換器(25)を蒸発器として機能させて暖房サイクルとは逆に冷媒を循環させる。回転数制御部(32b)は、上記逆サイクル開始時の室外熱交換器(23)の着霜量に相関した指標に応じて、逆サイクル実行中の圧縮機(21)の回転数を調整する。回転数制御部(32b)は、逆サイクル開始時の指標が、室外熱交換器(23)の着霜量が少ないことを示す程、逆サイクル実行中の圧縮機(21)の回転数を低くする。

Description

空気調和装置
 本発明は、暖房運転時とは逆に冷媒を循環させる逆サイクル運転を行う空気調和装置に関するものである。
 空気調和装置は、圧縮機、室外熱交換器、膨張弁及び室内熱交換器が順に接続されて構成された冷媒回路を有する。暖房運転時、室外熱交換器は蒸発器として機能し室内熱交換器は凝縮器として機能して、冷媒回路では、圧縮機、室内熱交換器、膨張弁、室外熱交換器の順に冷媒が循環する暖房サイクルが行われる。
 暖房サイクルの際、室外熱交換器では冷媒によって室外空気が冷やされるため、室外熱交換器が着霜する場合がある。これに対し、特許文献1には、室外熱交換器の着霜を検知した場合、暖房運転を行ったままの状態で、圧縮機の回転数を低下させて室外熱交換器における更なる着霜を抑制する技術が開示されている。
特開平4-3865号公報
 ところで、室外熱交換器を凝縮器且つ室内熱交換器を蒸発器として機能させて、暖房サイクルとは逆に冷媒を循環させる逆サイクル運転が知られている。逆サイクル運転の際、室外熱交換器では冷媒が外部に放熱するため、上記特許文献1に係る技術を以てしても室外熱交換器の着霜が解消されなければ、逆サイクル運転が行われる。
 しかし、逆サイクル運転は、室外熱交換器の着霜時以外にも、圧縮機から冷媒回路へと流出した潤滑油を圧縮機に戻す目的で一定時間経過毎(定期的)に行われることもあり、また逆サイクル運転の間、圧縮機は霜を溶かすことのできる比較的高い回転数で運転する。すると、逆サイクル運転の度に、実際の室外熱交換器の着霜状態とは関係なく圧縮機が高い回転数で運転することとなるため、圧縮機には内部温度上昇や液冷媒が圧縮機に戻ってくるといった負担がかかり、圧縮機が故障する虞もある。
 本発明は、かかる点に鑑みてなされたものであり、その目的は、逆サイクル運転時の圧縮機に不必要な負荷がかかることを防ぐことである。
 第1の発明は、圧縮機(21)と室外熱交換器(23)と膨張弁(24)と室内熱交換器(25)とが順に接続されてなる冷媒回路(20)と、上記室外熱交換器(23)を蒸発器として機能させ上記室内熱交換器(25)を凝縮器として機能させる暖房サイクル、又は、逆サイクル実行条件が満たされた場合に上記室外熱交換器(23)を凝縮器として機能させ上記室内熱交換器(25)を蒸発器として機能させて上記暖房サイクルとは逆に冷媒を循環させる逆サイクル、を上記冷媒回路(20)に行わせるサイクル制御部(32a)と、上記逆サイクル開始時の上記室外熱交換器(23)の着霜量に相関した指標に応じて、上記逆サイクル実行中の上記圧縮機(21)の回転数を調整する回転数制御部(32b)とを備え、上記回転数制御部(32b)は、上記逆サイクル開始時の上記指標が、上記室外熱交換器(23)の着霜量が少ないことを示す程、上記逆サイクル実行中の上記圧縮機(21)の回転数を低くすることを特徴とする空気調和装置である。
 室外熱交換器(23)の着霜量に関する指標としては、室外温度Ta、室外熱交換器(23)の外表面の温度Tr等が挙げられる。ここでは、暖房サイクルとは逆に冷媒を循環させる逆サイクルを冷媒回路(20)が行う際、逆サイクル開始時の室外熱交換器(23)の着霜量に関する指標に応じて、逆サイクル実行中の圧縮機(21)の回転数が調整される。特に、当該指標が、室外熱交換器(23)の着霜量が少ないことを示す程、逆サイクル実行中の圧縮機(21)の回転数は下げられる。即ち、逆サイクル開始時の室外熱交換器(23)の着霜量が多ければ、圧縮機(21)の回転数は上げられ、逆に逆サイクル開始時の室外熱交換器(23)の着霜量が少なければ、圧縮機(21)の回転数が下げられる。従って、冷媒回路(20)が逆サイクルを行う際、圧縮機(21)は、不必要に高い回転数で運転することはなく、必要に応じた回転数で運転するため、逆サイクル時の圧縮機(21)に不必要な負荷がかかることを防ぐことができる。
 第2の発明は、第1の発明において、上記回転数制御部(32b)は、上記逆サイクル実行中の上記指標に応じて、上記逆サイクル実行中の上記圧縮機(21)の回転数を再度調整することを特徴とする空気調和装置である。
 ここでは、逆サイクルによる着霜量の経過に応じて、逆サイクル実行途中の圧縮機(21)の回転数が再度調整される。従って、室外熱交換器(23)を確実に除霜できると共に、逆サイクル時の圧縮機(21)に不必要な負荷がかかることをより防ぐことができる。
 第3の発明は、第1の発明または第2の発明において、上記逆サイクル開始時の上記指標が、上記室外熱交換器(23)の着霜量が少ないことを示す程、上記逆サイクル実行中に上記圧縮機(21)が最大回転数で回転する場合の上記膨張弁(24)の開度よりも、上記膨張弁(24)の開度を上記室外熱交換器(23)の着霜量にあわせて小さくする開度調整部(32c)、を更に備えることを特徴とする空気調和装置である。
 例えば、室外熱交換器(23)の着霜量が少ないにも拘わらず膨張弁(24)の開度が大きいと、場合によっては、逆サイクル中に液冷媒が圧縮機(21)に吸入されてしまう液バック現象が発生する虞がある。これに対し、ここでは、逆サイクル開始時の室外熱交換器(23)の着霜量が少ない程、膨張弁(24)の開度は小さくなるため、液バックの発生を抑制することができる。従って、液バックの発生により圧縮機(21)に過大な負荷がかかることを低減できる。
 第4の発明は、第3の発明において、上記開度調整部(32c)は、上記逆サイクル実行中の上記指標に応じて、上記逆サイクル実行中の上記膨張弁(24)の開度を再度調整することを特徴とする空気調和装置である。
 ここでは、逆サイクルによる着霜量の経過に応じて、逆サイクル実行途中の膨張弁(24)の開度が再度調整される。従って、液バックの発生等により圧縮機(21)に過大な負荷がかかることを、より低減できる。
 第5の発明は、第1の発明から第4の発明のいずれか1つにおいて、上記室外熱交換器(23)の着霜量の大小は、上記指標が所定条件を満たすか否かで判断され、上記所定条件の変更を受け付け可能な受付部(40)を更に備えることを特徴とする空気調和装置である。
 これにより、空気調和装置(10)の設置環境に応じて所定条件を変更することで、設置環境に応じて逆サイクル時の圧縮機(21)の回転数を適宜調整することができるようになる。
 本発明によれば、逆サイクル時の圧縮機(21)に不必要な負荷がかかることを防ぐことができる。
 上記第2の発明によれば、室外熱交換器(23)を確実に除霜できると共に、逆サイクル時の圧縮機(21)に不必要な負荷がかかることをより防ぐことができる。
 上記第3の発明によれば、液バックの発生により圧縮機(21)に過大な負荷がかかることを低減できる。
 上記第4の発明によれば、液バックの発生等により圧縮機(21)に過大な負荷がかかることを、より低減できる。
 上記第5の発明によれば、設置環境に応じて逆サイクル時の圧縮機(21)の回転数を適宜調整することができるようになる。
図1は、空気調和装置の冷媒回路を示す配管系統図である。 図2は、逆サイクル運転の際の、圧縮機の回転数及び膨張弁の開度の経時的動作を示すタイミングチャートである。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 ≪実施形態≫
 <概要>
 図1に示すように、空気調和装置(10)は、室外ユニット(11)、室内ユニット(12)、室内制御部(31)、室外制御部(32)、及びリモートコントローラ(40)を備える。室外ユニット(11)と室内ユニット(12)とは、液側連絡配管(13)及びガス側連絡配管(14)を介して接続されている。室外ユニット(11)と室内ユニット(12)と液側連絡配管(13)とガス側連絡配管(14)とによって、冷媒回路(20)が形成されている。
 この空気調和装置(10)は、冷房運転及び暖房運転の他に、逆サイクル運転を行うことが可能となっている。逆サイクル運転とは、主に、暖房運転時に室外ユニット(11)に含まれる室外熱交換器(23)に霜が着くことを予防もしくは着いた霜を除去するための運転であるが、室外ユニット(11)に含まれる圧縮機(21)から冷媒回路(20)へと流出した潤滑油を圧縮機(21)に戻すためにも行われる。逆サイクル運転では、冷房運転時と同様の方向、つまりは暖房運転時と逆方向に、冷媒回路(20)内を冷媒が循環する。
 なお、逆サイクル運転の動作については、後で詳述する。
 <構成>
  -冷媒回路-
 図1に示すように、冷媒回路(20)は、主として、圧縮機(21)、四方切換弁(22)、室外熱交換器(23)、膨張弁(24)及び室内熱交換器(25)を含み、これらは順に接続されている。圧縮機(21)、四方切換弁(22)、室外熱交換器(23)及び膨張弁(24)は、室外ユニット(11)に設けられている。室外ユニット(11)には、室外熱交換器(23)に室外空気を供給するための室外ファン(15)も設けられている。室内熱交換器(25)は、室内ユニット(12)に設けられている。更に、室内ユニット(12)には、室内熱交換器(25)へ室内空気を供給する室内ファン(16)が設けられている。
 圧縮機(21)の吐出側は、吐出配管を介して四方切換弁(22)の第1ポートに接続されている。圧縮機(21)の吸入側は、吸入配管を介して四方切換弁(22)の第2ポートに接続されている。また、冷媒回路(20)において、四方切換弁(22)の第3ポートから第4ポートへ向かって順に、室外熱交換器(23)、膨張弁(24)及び室内熱交換器(25)が、配管によって接続されている。
 圧縮機(21)は、スクロール型またはロータリ型の全密閉型圧縮機である。本実施形態では、圧縮機(21)の回転数(運転周波数)を変化させることで容量を変更することのできる容量可変型の圧縮機が採用されている。
 四方切換弁(22)は、第1ポートが第3ポートと連通し且つ第2ポートが第4ポートと連通する第1状態(図1の実線で示す状態)と、第1ポートが第4ポートと連通し且つ第2ポートが第3ポートと連通する状態(図1の点線で示す状態)とに切り換わる。
 膨張弁(24)は、冷媒を減圧する手段であって、電子膨張弁で構成される。膨張弁(24)の開度は、後述する室外制御部(32)によって変更される。
 室外熱交換器(23)には、クロスフィン式のフィンアンドチューブ型熱交換器が採用されている。室外熱交換器(23)は、冷房運転時及び逆サイクル運転時には冷媒の凝縮器として機能し、暖房運転時には冷媒の蒸発器として機能する。
 室内熱交換器(25)には、室外熱交換器(23)と同様、クロスフィン式のフィンアンドチューブ型熱交換器が採用されている。室内熱交換器(25)は、冷房運転時及び逆サイクル運転時には冷媒の蒸発器として機能し、暖房運転時には冷媒の凝縮器として機能する。
  -各種制御部-
 図1に示すように、室内制御部(31)は室内ユニット(12)に設けられ、室外制御部(32)は室外ユニット(11)に設けられている。室内制御部(31)及び室外制御部(32)それぞれは、CPU及びメモリを含むマイクロコンピュータで構成されている。CPUがメモリ内に格納された各種プログラムに従って各種処理を実行することで、室内制御部(31)及び室外制御部(32)は、様々な制御を行う。
 室内制御部(31)は、室内ファン(16)の風量制御を行う。例えば、室内制御部(31)は、暖房運転時及び冷房運転時には、ユーザの所望する回転数にて室内ファン(16)を運転させる。また、室内制御部(31)は、逆サイクル運転時、室内ファン(16)の運転を停止させてもよいし、暖房運転や冷房運転時よりも低い回転数で室内ファン(16)を運転させてもよい。
 室外制御部(32)は、圧縮機(21)の回転数制御、運転種類に応じた四方切換弁(22)のポートの接続切換制御、膨張弁(24)の開度制御、室外ファン(15)の運転制御を行う。室外制御部(32)の動作については、後で詳述する。
  -リモートコンローラ-
 リモートコントローラ(40)(受付部に相当)は、室内の壁面等に取り付けられている。リモートコントローラ(40)は、室内制御部(31)と直接通信可能であって、室外制御部(32)とは室内制御部(31)を介して通信可能に接続されている。図示してはいないが、リモートコントローラ(40)は、各種設定ボタン及び表示部を備えており、ユーザが設定ボタンを介して入力した各種設定を受け付けたり、設定内容を表示させたりすることができる。
 <運転動作>
 次に、暖房運転時の空気調和装置(10)の動作、及び、逆サイクル運転時の空気調和装置(10)の動作について説明する。
  -暖房運転-
 空気調和装置(10)が暖房運転を行う際、冷媒回路(20)は暖房サイクルを行う。暖房サイクルでは、室外熱交換器(23)が蒸発器として機能し室内熱交換器(25)が凝縮器として機能するように、室外制御部(32)は、四方切換弁(22)を第2状態に切り換える。これにより、四方切換弁(22)は、図1の点線の矢印に示すように切り換えられ、冷媒回路(20)は、暖房サイクルを行う。
 暖房サイクルでは、冷媒は、圧縮機(21)にて圧縮され吐出されると、室内熱交換器(25)にて凝縮及び冷却される。凝縮及び冷却された冷媒は、膨張弁(24)にて減圧され、その後室外熱交換器(23)にて室外空気に放熱して蒸発する。蒸発後の冷媒は、図示しないアキュムレータを介して圧縮機(21)の吸入側に流入される。
  -逆サイクル運転-
 既に述べたように、逆サイクル運転は、主に、暖房運転時における室外熱交換器(23)の着霜防止もしくは除霜のために行われる。暖房運転時、蒸発器である室外熱交換器(23)の外表面には室外空気中に含まれる水分が付着して霜となり、この霜は、室外熱交換器(23)の熱交換能力を低下させる要因となるからである。そのため、逆サイクル運転は、暖房運転の途中または暖房運転の後に行われる。また、逆サイクル運転が潤滑油を圧縮機(21)に戻す目的で行われる場合、逆サイクル運転は、一定期間経過毎(定期的)に行われる。
 逆サイクル運転では、冷媒回路(20)は逆サイクルを行う。逆サイクルにおいては、冷房運転と同様、室外熱交換器(23)は凝縮器として機能し、室内熱交換器(25)は蒸発器として機能するように、室外制御部(32)は、四方切換弁(22)を第1状態に切り換える。これにより、四方切換弁(22)は、図1の実線の矢印に示すように切り換えられ、冷媒回路(20)は、逆サイクルを行う。
 逆サイクルでは、冷媒は、圧縮機(21)にて圧縮されて吐出されると、室外熱交換器(23)にて凝縮及び冷却される。凝縮及び冷却された冷媒は、膨張弁(24)にて減圧され、その後室内熱交換器(25)にて室内空気に放熱して蒸発する。蒸発後の冷媒は、図示しないアキュムレータを介して圧縮機(21)の吸入側に流入される。
 <逆サイクル運転の制御について>
 以下、逆サイクル運転時に室外制御部(32)が行う制御について、図2を用いて詳述する。
 先ず、室外制御部(32)のサイクル制御部(32a)は、逆サイクル実行条件が満たされた場合に、上記逆サイクルを冷媒回路(20)に行わせる(逆サイクル運転)。逆サイクル実行条件としては、例えば以下の(I)(II)が挙げられる。
(I)前回の逆サイクル運転の終了時から一定期間が経過した場合
(II)暖房運転時または暖房運転終了後の室外熱交換器(23)の外表面の温度Trが室外温度Ta以上だが、これらの温度差“Tr-Ta”が所定差より小さくなった場合
 上記(I)は、潤滑油を圧縮機(21)に戻すために逆サイクル運転を実行する条件である。上記(II)は、室外熱交換器(23)の着霜予防または除霜のために逆サイクル運転を実行する条件である。
 ところで、上記(I)の成立時、室外熱交換器(23)は着霜していない可能性がある。すると、仮に上記(I)が成立したことによって逆サイクル運転を行う際の圧縮機(21)を、室外熱交換器(23)の着霜が疑われる上記(II)成立時と同様の回転数にて運転させるとすると、圧縮機(21)は比較的高い回転数で運転することとなる。この場合、室外熱交換器(23)は着霜していないにもかかわらず圧縮機(21)の圧縮能力がただ過大となるため、圧縮機(21)には過剰に負荷がかかってしまう。また、圧縮機(21)の回転数が高くなると、圧縮機(21)にて発生する音も大きくなる。
 そこで、本実施形態に係る室外制御部(32)は、図2に示すように、逆サイクル運転の際、実際の室外熱交換器(23)の着霜量に応じて圧縮機(21)の回転数等を調整する制御を行う。このような制御を行うため、室外制御部(32)は、上述したサイクル制御部(32a)に加え、図1に示すように回転数制御部(32b)及び開度調整部(32c)としても機能する。
  ―回転数制御部―
 回転数制御部(32b)は、逆サイクル運転開始時の室外熱交換器(23)の着霜量に相関した指標に応じて、逆サイクル運転中の圧縮機(21)の回転数を調整する。特に、回転数制御部(32b)は、逆サイクル運転開始時の上記指標が、室外熱交換器(23)の着霜量が少ないことを示す程、逆サイクル運転中の圧縮機(21)の回転数を低くする。
 ここで、“室外熱交換器(23)の着霜量に相関した指標”とは、室外熱交換器(23)の実際の着霜量に関連した値を有するパラメータであって、例えば、室外温度Ta、室外熱交換器(23)の外表面の温度Tr、圧力センサ(図示せず)の値、実際の蒸発温度Te等が挙げられる。例えば、室外温度Taに対して室外熱交換器(23)の外表面の温度Trが高い程、回転数制御部(32b)は、室外熱交換器(23)の外表面における着霜量はより少ないと判定できる。逆に、室外温度Taに対して室外熱交換器(23)の外表面の温度Trが低い程、回転数制御部(32b)は、着霜量はより大きいと判定できる。
 具体的に、本実施形態では、上記(I)(II)のいずれかが成立したことにより逆サイクル運転が開始された際、図2に示すように、回転数制御部(32b)は、逆サイクル運転開始時の指標を抽出し、抽出した指標に応じて室外熱交換器(23)の着霜状態を判定する(図2の判定1)。判定1にて抽出される指標を、外気温度Ta及び蒸発温度Teとする。回転数制御部(32b)は、抽出した指標が以下の所定条件(A)~(C)の少なくとも1つを満たす場合、室外熱交換器(23)は着霜していないと判定し、圧縮機(21)を非着霜時の相当回転数(例えば51rps)にて運転させる。
(A)Ta≧X℃
(B)Te≧Y℃
(C)Te≧Ta+Z℃
 判定1にて抽出される指標が上記所定条件(A)~(C)をいずれも満たさない場合、回転数制御部(32b)は、室外熱交換器(23)は着霜していると判定し、圧縮機(21)を着霜時の相当回転数(例えば92rps)にて運転させる。つまり、本実施形態では、着霜時の相当回転数(92rps)は、非着霜時の相当回転数(51rps)よりも大きい。
 更に、回転数制御部(32b)は、逆サイクル運転開始時から所定時間が経過した際、指標の抽出を改めて行い、その指標に応じて室外熱交換器(23)の着霜状態を再判定して(判定2)、逆サイクル運転中の圧縮機(21)の回転数を再度調整する。
 なお、本実施形態では、逆サイクル運転は、例えば10分である一定時間の間行われるが、本実施形態に係る“所定時間”は、上記一定時間のちょうど半分の時間(5分)に設定されている。但し、所定時間は、一定時間の半分に限定されずとも良く、適宜設定されることができる。
 ここで、判定2の際に改めて抽出される指標は、判定1の際(逆サイクル運転開始時)に抽出される指標と同一の種類であってもよいし、異なる種類であってもよい。本実施形態では、判定1の際に抽出される指標の種類と、判定2の際に抽出される指標の種類とが、異なる場合を例示する。具体的に、判定2の際に抽出される指標を、室外熱交換器(23)の現在の外表面の温度Tr、逆サイクル運転終了時の室外熱交換器(23)の外表面の目標温度Tfとする。
 具体的に、回転数制御部(32b)は、逆サイクル運転から所定時間が経過した判定2の際に抽出した指標が以下の所定条件(D)を満たす場合、室外熱交換器(23)は着霜していないと判定して、運転中の圧縮機(21)の回転数を、低い方の回転数である非着霜時の相当回転数(51rps)に調整する。
(D)Tr≧Tf+W℃
 判定2の際に抽出した指標が上記所定条件(D)を満たさない場合、回転数制御部(32b)は、室外熱交換器(23)は着霜していると判定して、運転中の圧縮機(21)の回転数を、高い方の回転数である着霜時の相当回転数(92rps)に調整する。
 一例として、図2の実線では、逆サイクル運転開始時の判定1では室外熱交換器(23)は着霜していないと判定されたため、圧縮機(21)の回転数は非着霜時の相当回転数(51rps)であるが、所定時間経過後の判定2では室外熱交換器(23)は着霜していると判定されたため、圧縮機(21)の回転数が着霜時の相当回転数(92rps)に上げられた場合を表している。つまり、図2の実線では、逆サイクル開始時から所定時間経過までの間に何らかの影響により室外熱交換器(23)の着霜度合が進んだため、所定時間経過の時点で圧縮機(21)の回転数を92rpsへと上昇させることで、残りの時間で室外熱交換器(23)を除霜する例を表している。
 図2の点線では、逆サイクル運転開始時の判定1では室外熱交換器(23)は着霜していると判定されたため、圧縮機(21)の回転数は着霜時の相当回転数(92rps)であるが、所定時間経過後の判定2では室外熱交換器(23)は着霜していないと判定されたため、圧縮機(21)の回転数が非着霜時の相当回転数(51rps)に下げられた場合を表している。つまり、図2の点線では、逆サイクル開始時から所定時間経過までの間に室外熱交換器(23)の着霜が解消されたため、所定時間経過の時点で圧縮機(21)の回転数を51rpsへと下降させた例を示している。
 このように、本実施形態では、逆サイクル運転開始時の室外熱交換器(23)が着霜していない場合、着霜している場合に比して逆サイクル運転中の圧縮機(21)の回転数を低くしている。これにより、逆サイクル運転中の圧縮機(21)の回転数は、不必要に高い回転数とはならないため、圧縮機(21)に不必要に負荷がかかることがない。更に、本実施形態では、逆サイクル運転開始時のみならず逆サイクル運転の途中においても、圧縮機(21)の回転数が調整される。これにより、逆サイクル運転の間に変化した室外熱交換器(23)の着霜状態にあわせて、圧縮機(21)にかかる負荷を軽減したり、室外熱交換器(23)をより確実に除霜したりすることができる。
  ―開度調整部―
 本実施形態では、図2に示すように、室外熱交換器(23)の着霜状態に応じて、圧縮機(21)の回転数のみならず膨張弁(24)の開度も調整される。開度調整部(32c)は、逆サイクル運転開始時の指標(判定1に係る指標)が、室外熱交換器(23)の着霜量が少ないことを示す程、膨張弁(24)の開度を小さくする。即ち、室外熱交換器(23)が着霜量が少ない程、圧縮機(21)の回転数が低回転であることに伴って膨張弁(24)の開度も小さくなるように調整される。更に、開度調整部(32c)は、逆サイクル運転中の指標(判定2に係る指標)に応じて、逆サイクル運転中の膨張弁(24)の開度を再度調整する。
 具体的に、上記回転数制御部(32b)が判定1にて室外熱交換器(23)が着霜していると判定した場合、開度調整部(32c)は、逆サイクル運転中の膨張弁(24)の開度を、着霜時の相当開度(圧縮機(21)の着霜時の回転数“92rps”に相当する開度)に調整する。逆に、上記回転数制御部(32b)が判定1にて室外熱交換器(23)が着霜していないと判定した場合、開度調整部(32c)は、逆サイクル運転中の膨張弁(24)の開度を、非着霜時の相当開度(圧縮機(21)の非着霜時の回転数“51rps”に相当する開度)に調整する。非着霜時の相当開度は、着霜時の相当開度よりも小さい。従って、非着霜時の相当開度は、室外熱交換器(23)の着霜量が最大であるが故に逆サイクル運転中の圧縮機(21)の回転数が最も高くなる場合(92rps)の膨張弁(24)の開度よりも小さいと言える。
 また具体的に、判定1から所定時間経過後の判定2において、室外熱交換器(23)が着霜していると回転数制御部(32b)が判定した場合、開度調整部(32c)は、逆サイクル運転中の膨張弁(24)の開度を、着霜時の相当開度(圧縮機(21)の着霜時の回転数“92rps”に相当する開度)に調整し直す。逆に、判定2において、室外熱交換器(23)が着霜していないと回転数制御部(32b)が判定した場合、開度調整部(32c)は、逆サイクル運転中の膨張弁(24)の開度を、非着霜時の相当開度(圧縮機(21)の非着霜時の回転数“51rps”に相当する開度)に調整し直す。
 一例として、図2の実線では、逆サイクル運転開始時の判定1では室外熱交換器(23)は着霜していないと判定されたため、膨張弁(24)の開度は非着霜時の相当開度(圧縮機(21)の回転数“51rps”に相当する開度)であるが、所定時間経過後の判定2では室外熱交換器(23)は着霜していると判定されたため、膨張弁(24)の開度は着霜時の相当開度(圧縮機(21)の回転数“92rps”に相当する開度)に上げられた場合を表している。
 図2の点線では、逆サイクル運転開始時の判定1では室外熱交換器(23)は着霜していると判定されたため、膨張弁(24)の開度は着霜時の相当開度(圧縮機(21)の回転数“92rps”に相当する開度)であるが、所定時間経過後の判定2では室外熱交換器(23)は着霜していないと判定されたため、膨張弁(24)の開度は非着霜時の相当開度(圧縮機(21)の回転数“51rps”に相当する開度)に下げられた場合を表している。
 このように、本実施形態では、逆サイクル運転開始時の室外熱交換器(23)が着霜していない場合、着霜している場合に比して、逆サイクル運転中の圧縮機(21)の回転数を低くし逆サイクル運転中の膨張弁(24)の開度も小さくしている。つまり、逆サイクル運転中の膨張弁(24)の開度は、圧縮機(21)の圧縮能力に対応したものとなっている。そのため、逆サイクル運転時、蒸発器である室内熱交換器(25)の熱交換能力に対して、例えば圧縮機(21)の回転数が低く膨張弁(24)の開度が大きいといった場合は生じない。従って、逆サイクル運転時、室外熱交換器(23)で凝縮された液冷媒を室内熱交換器(25)が蒸発しきれず、圧縮機(21)に液冷媒が流入してしまう液バック現象の発生が抑制される。また、逆サイクル運転時、圧縮機(21)の回転数が高く膨張弁(24)の開度が小さいといった場合も生じない。従って、蒸発圧力の低下及び圧縮機(21)の吸入過熱度の上昇により冷凍能力が低下して逆サイクル運転の運転効率が低下することも防止できる。
 なお、本実施形態では、上述したように、逆サイクル運転開始時の室外熱交換器(23)の着霜量の大小は、逆サイクル運転開始時に抽出した指標が上記(A)~(C)の少なくとも1つを満たすか、それとも上記(A)~(C)の全てを満たさないかによって判定されている。逆サイクル運転中の室外熱交換器(23)の着霜量の大小は、逆サイクル運転中に抽出した指標が上記(D)を満たすか否かによって判断されている。これらの所定条件(A)~(D)は、空気調和装置(10)の設置環境に応じて、適宜決定されることが好ましい。例えば、空気調和装置(10)が寒冷地に設置された場合とそうでない場合とでは、室外熱交換器(23)が実際に着霜する条件が異なるためである。
 そこで、所定条件(A)~(D)が、空気調和装置(10)の出荷前の状態にて予め室外制御部(32)のメモリに記憶されていたとしても、本実施形態に係るリモートコントローラ(40)は、所定条件(A)~(D)の変更を受け付けて、室外制御部(32)のメモリに上書きすることが可能となっている。所定条件(A)~(D)の変更は、空気調和装置(10)の据え付け作業時に、例えば据え付け作業者によって行われる。これにより、逆サイクル運転時の圧縮機(21)の回転数及び膨張弁(24)の開度を、設置環境に応じて適宜調整することができる。
 なお、上記所定条件(A)~(D)のX,Y,Z,Wは、定数を表している。
 <効果>
 本実施形態では、逆サイクル運転開始時の室外熱交換器(23)の着霜量に関する指標に応じて、逆サイクル運転中の圧縮機(21)の回転数が調整される。特に、当該指標が、室外熱交換器(23)の着霜量が少ないことを示す程、逆サイクル運転中の圧縮機(21)の回転数は下げられる。即ち、逆サイクル運転開始時の室外熱交換器(23)の着霜量が多ければ、圧縮機(21)の回転数は上げられ、逆に逆サイクル運転開始時の室外熱交換器(23)の着霜量が少なければ、圧縮機(21)の回転数が下げられる。従って、逆サイクル運転の際、圧縮機(21)は、不必要に高い回転数で運転することはなく、必要に応じた回転数で運転するため、圧縮機(21)に不必要な負荷がかかることを防ぐことができる。
 また、本実施形態では、逆サイクル運転による着霜量の経過に応じて、逆サイクル運転途中の圧縮機(21)の回転数が再度調整される。従って、室外熱交換器(23)を確実に除霜できると共に、逆サイクル運転時の圧縮機(21)に不必要な負荷がかかることをより防ぐことができる。
 例えば、室外熱交換器(23)の着霜量が少ないにも拘わらず膨張弁(24)の開度が大きいと、場合によっては、逆サイクル中に液冷媒が圧縮機(21)に吸入されてしまう液バック現象が発生する虞がある。これに対し、本実施形態では、逆サイクル開始時の室外熱交換器(23)の着霜量が少ない程、膨張弁(24)の開度は小さくなるため、液バックの発生を抑制することができる。従って、液バックの発生により圧縮機(21)に過大な負荷がかかることを低減できる。
 また、本実施形態では、逆サイクルによる着霜量の経過に応じて、逆サイクル実行途中の膨張弁(24)の開度が再度調整される。従って、液バックの発生等により圧縮機(21)に過大な負荷がかかることを、より低減できる。
 また、本実施形態では、リモートコントローラ(40)を介して所定条件(A)~(D)を変更可能となっている。これにより、空気調和装置(10)の設置環境に応じて、逆サイクル運転時の圧縮機(21)の回転数、更には逆サイクル運転時の膨張弁(24)の開度を、適宜調整することができるようになる。
 ≪その他の実施形態≫
 上記実施形態については、以下のような構成としてもよい。
 上記実施形態では、判定1に係る所定条件(A)~(C)と判定2に係る所定条件(D)とが異なる内容であるが、判定1に係る所定条件と判定2に係る所定条件とは、同一であっても良い。例えば、図2の所定時間が例えば1分のように短い場合に、判定1に係る所定条件と判定2に係る所定条件とを、同一とすることができる。この場合、判定1に係る指標と判定2に係る指標とが同一種類であることは、言うまでもない。
 また、上記実施形態では、図2に示すように、逆サイクル運転の際の圧縮機(21)の回転数及び膨張弁(24)の開度のいずれもが、2通りのいずれかに調節される場合を例示した。しかし、逆サイクル運転の際の圧縮機(21)の回転数及び膨張弁(24)の開度は、室外熱交換器(23)の着霜量に応じてより細かく調整されてもよい。この場合、室外熱交換器(23)の着霜量が少ない程、圧縮機(21)の回転数は低く調整され、膨張弁(24)の開度は小さく調整される。
 また、判定2に係る圧縮機(21)の回転数の再調整は、必ずしも行われずとも良い。
 また、判定1に係る膨張弁(24)の開度調整は、必ずしも行われずとも良い。
 また、判定2に係る膨張弁(24)の開度の再調整は、必ずしも行われずとも良い。
 また、リモートコントローラ(40)は、判定1に係る所定条件(A)~(C)及び判定2に係る所定条件(D)の変更を受け付けない仕様であってもよい。この場合、各判定1,2では、空気調和装置(10)の出荷時に設定された条件が用いられる。
 以上説明したように、本発明は、暖房運転時とは逆に冷媒を循環させる逆サイクル運転を行う空気調和装置について有用である。
10 空気調和装置
20 冷媒回路
21 圧縮機
23 室外熱交換器
24 膨張弁
25 室内熱交換器
32a サイクル制御部
32b 回転数制御部
32c 開度調整部
40 リモートコントローラ(受付部)

Claims (5)

  1.  圧縮機(21)と室外熱交換器(23)と膨張弁(24)と室内熱交換器(25)とが順に接続されてなる冷媒回路(20)と、
     上記室外熱交換器(23)を蒸発器として機能させ上記室内熱交換器(25)を凝縮器として機能させる暖房サイクル、又は、逆サイクル実行条件が満たされた場合に上記室外熱交換器(23)を凝縮器として機能させ上記室内熱交換器(25)を蒸発器として機能させて上記暖房サイクルとは逆に冷媒を循環させる逆サイクル、を上記冷媒回路(20)に行わせるサイクル制御部(32a)と、
     上記逆サイクル開始時の上記室外熱交換器(23)の着霜量に相関した指標に応じて、上記逆サイクル実行中の上記圧縮機(21)の回転数を調整する回転数制御部(32b)と
    を備え、
     上記回転数制御部(32b)は、上記逆サイクル開始時の上記指標が、上記室外熱交換器(23)の着霜量が少ないことを示す程、上記逆サイクル実行中の上記圧縮機(21)の回転数を低くする
    ことを特徴とする空気調和装置。
  2.  請求項1において、
     上記回転数制御部(32b)は、上記逆サイクル実行中の上記指標に応じて、上記逆サイクル実行中の上記圧縮機(21)の回転数を再度調整する
    ことを特徴とする空気調和装置。
  3.  請求項1または請求項2において、
     上記逆サイクル開始時の上記指標が、上記室外熱交換器(23)の着霜量が少ないことを示す程、上記逆サイクル実行中に上記圧縮機(21)が最大回転数で回転する場合の上記膨張弁(24)の開度よりも、上記膨張弁(24)の開度を上記室外熱交換器(23)の着霜量にあわせて小さくする開度調整部(32c)、
    を更に備える
    ことを特徴とする空気調和装置。
  4.  請求項3において、
     上記開度調整部(32c)は、上記逆サイクル実行中の上記指標に応じて、上記逆サイクル実行中の上記膨張弁(24)の開度を再度調整する
    ことを特徴とする空気調和装置。
  5.  請求項1から請求項4のいずれか1つにおいて、
     上記室外熱交換器(23)の着霜量の大小は、上記指標が所定条件を満たすか否かで判断され、
     上記所定条件の変更を受け付け可能な受付部(40)
    を更に備える
    ことを特徴とする空気調和装置。
PCT/JP2015/005534 2014-12-26 2015-11-04 空気調和装置 WO2016103552A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580065700.1A CN107003028B (zh) 2014-12-26 2015-11-04 空调装置
US15/534,808 US10544958B2 (en) 2014-12-26 2015-11-04 Air conditioner with defrost control
AU2015369514A AU2015369514B2 (en) 2014-12-26 2015-11-04 Air conditioner
EP15872133.2A EP3244132B1 (en) 2014-12-26 2015-11-04 Air conditioner
ES15872133T ES2824481T3 (es) 2014-12-26 2015-11-04 Acondicionador de aire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014265924A JP5999171B2 (ja) 2014-12-26 2014-12-26 空気調和装置
JP2014-265924 2014-12-26

Publications (1)

Publication Number Publication Date
WO2016103552A1 true WO2016103552A1 (ja) 2016-06-30

Family

ID=56149629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005534 WO2016103552A1 (ja) 2014-12-26 2015-11-04 空気調和装置

Country Status (7)

Country Link
US (1) US10544958B2 (ja)
EP (1) EP3244132B1 (ja)
JP (1) JP5999171B2 (ja)
CN (1) CN107003028B (ja)
AU (1) AU2015369514B2 (ja)
ES (1) ES2824481T3 (ja)
WO (1) WO2016103552A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108603706B (zh) * 2016-02-05 2021-03-23 三菱电机株式会社 空调装置
JP6869371B2 (ja) * 2017-11-24 2021-05-12 三菱電機株式会社 空気調和機
CN109827361A (zh) * 2018-12-29 2019-05-31 西安交通大学 空调系统及空调系统的逆循环除霜方法、装置
JP7275329B2 (ja) * 2020-02-05 2023-05-17 三菱電機株式会社 空気調和機
CN111780347A (zh) * 2020-06-17 2020-10-16 宁波奥克斯电气股份有限公司 空调外机的除霜方法、装置、空调器及存储介质
CN112524777B (zh) * 2020-11-18 2022-10-28 青岛海尔空调器有限总公司 一种空调器的温度调节时间控制方法、装置及空调器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03195877A (ja) * 1989-12-25 1991-08-27 Toshiba Corp ヒートポンプエアコンの除霜制御方法
JPH07139857A (ja) * 1993-11-12 1995-06-02 Mitsubishi Electric Corp 空気調和機
JPH08226715A (ja) * 1995-02-23 1996-09-03 Mitsubishi Electric Corp ヒートポンプ式空気調和機
JP2003065638A (ja) * 2001-08-28 2003-03-05 Hitachi Ltd 空気調和装置
JP2009092335A (ja) * 2007-10-11 2009-04-30 Panasonic Corp 空気調和機
JP2009109165A (ja) * 2007-11-01 2009-05-21 Panasonic Corp 空気調和機の運転制御方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62255762A (ja) * 1986-04-30 1987-11-07 株式会社日立製作所 空気調和機
JPH0799297B2 (ja) * 1986-06-25 1995-10-25 株式会社日立製作所 空気調和機
JPH079331B2 (ja) * 1986-12-26 1995-02-01 松下電器産業株式会社 ヒートポンプ式空気調和機の運転制御方法
JP3004676B2 (ja) 1990-04-20 2000-01-31 株式会社日立製作所 冷凍サイクル装置
JP2831838B2 (ja) * 1990-11-06 1998-12-02 株式会社東芝 空気調和機
US5319943A (en) * 1993-01-25 1994-06-14 Copeland Corporation Frost/defrost control system for heat pump
JP3341404B2 (ja) * 1993-10-29 2002-11-05 ダイキン工業株式会社 空気調和装置の運転制御装置
JP3457743B2 (ja) * 1994-08-19 2003-10-20 東芝キヤリア株式会社 空気調和機
JPH09142139A (ja) * 1995-09-22 1997-06-03 Denso Corp 車両用空調装置
JP3598809B2 (ja) * 1997-08-25 2004-12-08 三菱電機株式会社 冷凍サイクル装置
JP2000035265A (ja) 1998-07-15 2000-02-02 Fujitsu General Ltd 空気調和機の制御方法
KR100292510B1 (ko) * 1998-11-20 2001-11-15 구자홍 인버터냉장고의최적제상주기제어방법
SG88804A1 (en) * 1999-12-07 2002-05-21 Sanyo Electric Co Air conditioner
KR100484802B1 (ko) * 2002-07-03 2005-04-22 엘지전자 주식회사 두 개의 압축기를 구비한 공기조화기의 제상운전방법
US20070033955A1 (en) * 2003-07-10 2007-02-15 Ran Luo Electrically controlled defrost and expansion valve apparatus
EP1826513B1 (en) * 2005-07-26 2019-10-23 Mitsubishi Electric Corporation Refrigerating air conditioner
US20070251256A1 (en) * 2006-03-20 2007-11-01 Pham Hung M Flash tank design and control for heat pumps
JP2010054145A (ja) * 2008-08-29 2010-03-11 Hitachi Appliances Inc ヒートポンプ給湯機
JP2010230240A (ja) * 2009-03-27 2010-10-14 Panasonic Corp 空気調和装置
CN102449408B (zh) * 2009-05-29 2014-07-30 大金工业株式会社 空调装置
JP5490234B2 (ja) * 2010-05-26 2014-05-14 三菱電機株式会社 冷凍空調装置
KR101387541B1 (ko) * 2011-10-12 2014-04-21 엘지전자 주식회사 공기조화기 및 공기조화기의 제상방법
JP5435069B2 (ja) * 2012-05-01 2014-03-05 ダイキン工業株式会社 空調システム及び除霜運転方法
WO2014084343A1 (ja) * 2012-11-30 2014-06-05 サンデン株式会社 車両用空気調和装置
JP6125325B2 (ja) * 2013-05-20 2017-05-10 サンデンホールディングス株式会社 車両用空気調和装置
JP5692302B2 (ja) * 2013-08-08 2015-04-01 株式会社富士通ゼネラル 空気調和装置
JP5549771B1 (ja) * 2013-09-12 2014-07-16 株式会社富士通ゼネラル 空気調和装置
JP5929862B2 (ja) * 2013-09-30 2016-06-08 ダイキン工業株式会社 空気調和装置
JP6201872B2 (ja) * 2014-04-16 2017-09-27 三菱電機株式会社 空気調和機
US10473353B2 (en) * 2014-04-22 2019-11-12 Hitachi-Johnson Controls Air Conditioning, Inc. Air conditioner and defrosting operation method therefor
EP3225930B1 (en) * 2014-11-26 2020-08-12 Hitachi-Johnson Controls Air Conditioning, Inc. Air conditioner
JP6402661B2 (ja) * 2015-03-20 2018-10-10 ダイキン工業株式会社 冷凍装置
US20160320117A1 (en) * 2015-04-30 2016-11-03 Daikin Industries, Ltd. Air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03195877A (ja) * 1989-12-25 1991-08-27 Toshiba Corp ヒートポンプエアコンの除霜制御方法
JPH07139857A (ja) * 1993-11-12 1995-06-02 Mitsubishi Electric Corp 空気調和機
JPH08226715A (ja) * 1995-02-23 1996-09-03 Mitsubishi Electric Corp ヒートポンプ式空気調和機
JP2003065638A (ja) * 2001-08-28 2003-03-05 Hitachi Ltd 空気調和装置
JP2009092335A (ja) * 2007-10-11 2009-04-30 Panasonic Corp 空気調和機
JP2009109165A (ja) * 2007-11-01 2009-05-21 Panasonic Corp 空気調和機の運転制御方法

Also Published As

Publication number Publication date
CN107003028A (zh) 2017-08-01
JP2016125732A (ja) 2016-07-11
AU2015369514B2 (en) 2017-07-20
JP5999171B2 (ja) 2016-09-28
CN107003028B (zh) 2018-04-27
EP3244132B1 (en) 2020-09-23
US20170321939A1 (en) 2017-11-09
EP3244132A1 (en) 2017-11-15
AU2015369514A1 (en) 2017-07-13
ES2824481T3 (es) 2021-05-12
US10544958B2 (en) 2020-01-28
EP3244132A4 (en) 2018-09-12

Similar Documents

Publication Publication Date Title
WO2016103552A1 (ja) 空気調和装置
JP6594698B2 (ja) 冷凍・空調装置
US10145595B2 (en) Refrigeration cycle apparatus
WO2010137344A1 (ja) 空気調和装置
JP6252606B2 (ja) 冷凍装置
JP6785987B2 (ja) 冷凍サイクル装置
EP2372272A1 (en) Refrigeration equipment
CN113614463B (zh) 空调装置
CN111033152B (zh) 制冷机
JP2016109413A (ja) 空調機
JP5900463B2 (ja) 空気調和システム
JP6615236B2 (ja) 冷凍システム
JP6949208B2 (ja) 空気調和機
JP2011085269A (ja) 空気調和機
JP2015148414A (ja) 空気調和機
WO2018167866A1 (ja) 空気調和装置
WO2016084796A1 (ja) 空調機
JP2008190767A (ja) 冷凍装置
JP2005133970A (ja) 空気調和装置
JP5858022B2 (ja) 空気調和装置
WO2013077136A1 (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872133

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15534808

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015872133

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015369514

Country of ref document: AU

Date of ref document: 20151104

Kind code of ref document: A