WO2016099154A1 - 부품이 실장된 기판 검사방법 및 검사장치 - Google Patents

부품이 실장된 기판 검사방법 및 검사장치 Download PDF

Info

Publication number
WO2016099154A1
WO2016099154A1 PCT/KR2015/013814 KR2015013814W WO2016099154A1 WO 2016099154 A1 WO2016099154 A1 WO 2016099154A1 KR 2015013814 W KR2015013814 W KR 2015013814W WO 2016099154 A1 WO2016099154 A1 WO 2016099154A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
shield
component
region
shield region
Prior art date
Application number
PCT/KR2015/013814
Other languages
English (en)
French (fr)
Inventor
정중기
Original Assignee
주식회사 고영테크놀러지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 고영테크놀러지 filed Critical 주식회사 고영테크놀러지
Priority to CN201580068879.6A priority Critical patent/CN107110789B/zh
Priority to US15/536,213 priority patent/US10330609B2/en
Priority to EP15870321.5A priority patent/EP3236200B1/en
Publication of WO2016099154A1 publication Critical patent/WO2016099154A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N21/95607Inspecting patterns on the surface of objects using a comparative method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2518Projection by scanning of the object
    • G01B11/2527Projection by scanning of the object with phase change by in-plane movement of the patern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/0006Industrial image inspection using a design-rule based approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/0008Industrial image inspection checking presence/absence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/521Depth or shape recovery from laser ranging, e.g. using interferometry; from the projection of structured light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8829Shadow projection or structured background, e.g. for deflectometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8835Adjustable illumination, e.g. software adjustable screen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8887Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N2021/95638Inspecting patterns on the surface of objects for PCB's
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30141Printed circuit board [PCB]

Definitions

  • the present invention relates to a substrate inspection method and inspection apparatus in which parts are mounted, and more particularly, to a substrate inspection method and inspection apparatus in which a shield is attached in addition to the component.
  • At least one printed circuit board is provided in an electronic device, and includes a component such as a chip on the printed circuit board.
  • the inspection of the component such as the chip from the printed circuit board is necessary to determine whether the component mounted on the printed circuit board is defective or to determine whether the pad connected to the component is defective.
  • a three-dimensional shape measuring apparatus using a grid pattern may be used. In other words, by measuring the three-dimensional shape, it is checked whether the component is distorted, whether the component is not mounted, whether the solder is overpaid or not.
  • electronic devices such as smart phones are equipped with various functions in the electronic devices.
  • devices such as smartphones are additionally formed to perform functions such as a camera, a DMB, and a GPS function.
  • Components responsible for these functions are spatially concentrated to form functional blocks.
  • a shield shied, 1000 as shown in FIG. Attached.
  • FIGS. 2A and 2B a component, that is, a lead 11 of the measurement target 10 is attached to the pad P formed on the substrate G by using the solder paste S, as shown in FIGS. 3A and 3B.
  • the shield is shielded by the edge portion 1100 of the shield 1000 and is mounted in a different form from each other, a large amount of time is required for inspecting the component as the setting is changed in each case and the quality of the component is judged. .
  • a problem to be solved by the present invention is that a board having a component mounted thereon can determine whether the mounting state of the component can be determined with a common configuration even if the same components are covered by the shield, without having to change a separate setting or inspection condition.
  • An inspection method and an inspection apparatus are provided.
  • a component mounted method for inspecting a substrate includes irradiating a pattern image toward a substrate through at least one lighting unit and reflecting the reflected image through the image capturing unit. Photographing, obtaining a three-dimensional shape, extracting a shield region from the three-dimensional shape, and inspecting a component mounting failure in a region other than the shield region in the three-dimensional shape.
  • an area higher than the height of the component may be determined as the shield region.
  • the recognized component Preset test conditions can be applied.
  • a method of inspecting a board having components mounted thereon includes obtaining a two-dimensional image of a substrate through a photographing unit, and using a shield (using the two-dimensional image). extracting a shield region, and inspecting a component mounting failure in a region other than the shield region.
  • the shield region in the step of extracting the shield region using the 2D image, the shield region may be extracted using at least one of brightness and color of the shield region.
  • the substrate mounting method of mounting the component, through the imaging unit, before the step of acquiring the two-dimensional image of the substrate, through the at least one lighting unit, irradiating the pattern image toward the substrate and taking an image may further include acquiring a three-dimensional shape by photographing the image reflected through the unit. In this case, the shield region is extracted from the three-dimensional shape.
  • the extracting of the shield region using the 2D image may include extracting the shield region using the 3D shape in addition to the 2D image.
  • an area higher than the height of the component may be determined as the shield region.
  • the part located at the bottom of the shield area is recognized using at least one of the CAD information and the part library information, and then the inspection condition preset to the recognized part. Can be applied.
  • a component mounted substrate inspection apparatus includes an image photographing unit and a central control unit.
  • the image capturing unit photographs an image reflected from a measurement object.
  • the central controller extracts a shield region from the photographed image, and then inspects a component mounting failure in a region excluding the shield region.
  • the central control unit may determine a region higher than the height of the component as the shield region.
  • the central controller may recognize a component located at the bottom of the shield area using at least one of CAD information and component library information, and then apply a preset inspection condition to the recognized component.
  • the image capturing unit may photograph a 2D image
  • the central controller may determine the shield area in the 3D shape using at least one of brightness and color of the 2D image.
  • the central control unit recognizes a component located below the shield region using at least one of CAD information and component library information in order to inspect a component mounting failure in an area other than the shield region, and then recognizes the component. Preset test conditions can be applied.
  • the board inspection apparatus in which the component is mounted may further include an illumination unit for irradiating a pattern to the measurement object.
  • the image may include a pattern image based on the pattern, and the central control unit may obtain a three-dimensional shape from the pattern image and extract the shield region from the three-dimensional shape.
  • an apparatus for supporting inspection of a component mounting failure of a board including a shield may provide an interface for displaying an image acquired by a photographing unit, and using the image, An interface for extracting a shield region is provided, and an interface for inspecting component mounting defects in an area except the shield region is provided.
  • the substrate inspection method in which the component is mounted according to the present invention even if the same components are covered by the shield, it is possible to determine whether the component is mounted or not with a common setting without any separate setting or inspection condition change. Promptness of inspection can be attained.
  • FIG. 1 is a perspective view illustrating a shield for excluding mutual interference of functional blocks for each function in a substrate.
  • FIG. 2A is a cross-sectional view showing a mounting state of parts not covered by the shield.
  • FIG. 2B is a plan view illustrating a mounting state of the component illustrated in FIG. 2A.
  • 3A and 3B are plan views showing mounting states of components covered by shields in different states.
  • FIG. 4 is a conceptual diagram illustrating an exemplary three-dimensional shape measuring apparatus used in the three-dimensional shape measuring method according to an embodiment of the present invention.
  • FIG. 5 is a block diagram showing a method for inspecting a board mounted with a component according to the present invention.
  • FIG. 6 is a plan view showing a two-dimensional image of a part partially covered by a shield.
  • FIG. 7 is a cross-sectional view of the three-dimensional shape obtained as a result of step S110 in FIG. 5, and is a conceptual diagram illustrating region A of FIG. 6.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • FIG. 4 is a conceptual diagram illustrating an exemplary three-dimensional shape measuring apparatus used in the three-dimensional shape measuring method according to an embodiment of the present invention.
  • the three-dimensional shape measuring apparatus used in the three-dimensional shape measuring method according to the present embodiment includes a measurement stage unit 100, an image capturing unit 200, first and second illumination units 300 and 400, The image acquirer 500, the module controller 600, and the central controller 700 may be included.
  • the measurement stage unit 100 may include a stage 110 for supporting the measurement object 10 and a stage transfer unit 120 for transferring the stage 110.
  • the measurement object 10 is moved by the stage 110 with respect to the image capturing unit 200 and the first and second lighting units 300 and 400.
  • the measuring position at can be changed.
  • the image capturing unit 200 is disposed above the stage 110 and receives the light reflected from the measurement object 10 to measure an image of the measurement object 10. That is, the image capturing unit 200 receives the light emitted from the first and second lighting units 300 and 400 and reflected from the measuring object 10 to take a plane image of the measuring object 10. .
  • the image capturing unit 200 may include a camera 210, an imaging lens 220, a filter 230, and a lamp 240.
  • the camera 210 receives the light reflected from the measurement object 10 to take a planar image of the measurement object 10.
  • the imaging lens 220 is disposed under the camera 210 to form light reflected from the measurement object 10 in the camera 210.
  • the filter 230 is disposed below the imaging lens 220 to filter the light reflected from the measurement object 10 to provide the imaging lens 220, and for example, a frequency filter, a color filter, and light. It may be made of any one of the intensity control filter.
  • the lamp 240 may be disposed in a circle below the filter 230 or may be disposed separately from the image capturing unit 200, and may include a plurality of LEDs.
  • light may be provided to the measurement object 10 to capture a specific image such as a two-dimensional shape of the measurement object 10.
  • the image capturing unit 200 may be disposed in a direction perpendicular to a plane, or may be inclined based on a normal perpendicular to the plane.
  • a direction perpendicular to a plane and an inclined direction At least one image capturing unit may be configured.
  • the image capturing unit 200 may be disposed parallel to the plane.
  • the image capturing unit 200 is an image of the light irradiated from the lamp 240 and reflected on the measurement object 10 and is irradiated by the first and second lighting units 300 and 400 and reflected by the measurement object 10. At least one of imaging of the grating pattern light may be performed.
  • the first lighting unit 300 irradiates, for example, in a direction perpendicular to the plane of the measurement object 10, or supports the measurement object 10 on the right side of the image capturing unit 200. It may be disposed inclined relative to.
  • the first lighting unit 300 may include a first lighting unit 310, a first grating unit 320, a first grating transfer unit 330, and a first condensing lens 340.
  • the first lighting unit 310 is composed of an illumination source and at least one lens to generate light, the first grating unit 320 is disposed below the first lighting unit 310 to the first illumination The light generated in the unit 310 is changed into the first lattice pattern light having the lattice pattern.
  • the first grating transfer unit 330 is connected to the first grating unit 320 to transfer the first grating unit 320, for example, one of the PZT (Piezoelectric) transfer unit or fine linear transfer unit It can be adopted.
  • the first condenser lens 340 is disposed under the first grating unit 320 to condense the first grating pattern light emitted from the first grating unit 320 to the measurement object 10.
  • the second lighting unit 400 may be disposed to be inclined with respect to the stage 110 supporting the measurement object 10 on the left side of the image capturing unit 200, for example.
  • the second lighting unit 400 may include a second lighting unit 410, a second grating unit 420, a second grating transfer unit 430, and a second condensing lens 440. Since the second lighting unit 400 is substantially the same as the first lighting unit 300 described above, detailed descriptions thereof will be omitted.
  • the first lighting unit 300 irradiates the N first grating pattern lights to the measurement target 10 while the first grating transfer unit 330 moves the first grating unit 320 N times in sequence.
  • the image capturing unit 200 may photograph the N first pattern images by sequentially receiving the N first grating pattern lights reflected from the measurement object 10.
  • the second lighting unit 400 moves N second grid pattern lights to the measurement target 10 while the second grid transfer unit 430 moves the second grid unit 420 sequentially N times.
  • the image capturing unit 200 may photograph the N second pattern images by sequentially applying the N second grid pattern lights reflected from the measurement object 10.
  • N is a natural number, for example, may be 3 or 4.
  • the first lighting unit 300 and the second lighting unit 400 may be provided in plural numbers, respectively, and only the first lighting unit 300 may be disposed.
  • the first lighting unit 300 may be configured as a liquid crystal display such as an LCD.
  • only the first and second lighting units 300 and 400 are described as an illumination device for generating the first and second grid pattern lights.
  • the number of the lighting units may be three or more. That is, the grid pattern light irradiated to the measurement object 10 may be irradiated from various directions, and various kinds of pattern images may be photographed.
  • three lighting units are arranged in an equilateral triangle shape around the image capturing unit 200
  • three grid pattern lights may be applied to the measurement object 10 in different directions
  • four lighting units may be applied.
  • four grid pattern lights may be applied to the measurement object 10 in different directions.
  • the image acquisition unit 500 is electrically connected to the camera 210 of the image capturing unit 200 to obtain and store the pattern images from the camera 210.
  • the image acquisition unit 500 includes an image system that receives and stores the N first pattern images and the N second pattern images photographed by the camera 210.
  • the module controller 600 is electrically connected to and controlled by the measurement stage unit 100, the image capturing unit 200, the first lighting unit 300, and the second lighting unit 400.
  • the module controller 600 includes, for example, a lighting controller, a grid controller, and a stage controller.
  • the lighting controller generates light by controlling the first and second lighting units 310 and 410, respectively, and the grid controller controls the first and second grid transfer units 330 and 430, respectively.
  • the second grid units 320 and 420 are moved.
  • the stage controller may control the stage transfer unit 120 to move the stage 110 up, down, left, and right.
  • the central control unit 700 is electrically connected to the image acquisition unit 500 and the module control unit 600 to control each. Specifically, the central control unit 700 receives the N first pattern images and the N second pattern images from the image system of the image acquisition unit 500, processes them, and processes the three-dimensional image of the object to be measured. The shape can be measured, and based on this, defects in component mounting can be inspected, and in particular, a shield region extraction and a component covered by the shield region can be recognized.
  • the central controller 700 may control the lighting controller, the grid controller, and the stage controller of the module controller 600, respectively.
  • the central control unit 700 may include an image processing board, a control board, and an interface board.
  • the central controller 700 may determine a region higher than the height of the component as a shield region.
  • the central control unit 700 may recognize a part located under the shield area using at least one of CAD information and part library information, and then apply a preset inspection condition to the recognized part.
  • the central controller 700 determines a shield area in the three-dimensional shape by using at least one of brightness and color of the two-dimensional image by using the two-dimensional image captured by the image capturing unit. Can be.
  • the central control unit 700 recognizes the component located at the lower portion of the shield region using at least one of the CAD information and the component library information in order to inspect the component mounting failure in the region other than the shield region in the three-dimensional shape. After that, the preset inspection condition can be applied to the recognized parts.
  • FIG. 5 is a block diagram showing a method for inspecting a board mounted with a component according to the present invention.
  • a grid image is irradiated toward a substrate on which the measurement target 10 is formed through at least one lighting unit 310 or 410.
  • the image reflected by the image capturing unit 200 is photographed, and the three-dimensional shape is measured by transferring the grid image and photographing again (step S110).
  • the grid patterned light passing through the grid grating units 320 and 420 is irradiated to the measurement object 10, and the image capturing unit 200 uses the optical triangulation method to outline the three-dimensional shape of the measurement object 10. You can get it. That is, by measuring the height value according to each position (X, Y) of a board
  • the shield region is extracted from the three-dimensional shape (step S120).
  • a three-dimensional shape may be used.
  • the cross-section of the three-dimensional shape with respect to the point A of FIG. 6 may be expressed as shown in FIG. 7, in which case, the shield in which the edge portion 1100 exists is located at a position higher than the component 10. It can be determined as an area.
  • the lamp 240 of FIG. 1 is turned on, and the coordinates of the edge portion 1100 of the shield 1000 in the two-dimensional image of FIG. 6 photographed through the camera 210.
  • the shield area can also be obtained.
  • the shield region may be extracted using at least one of brightness and color of the shield 1000.
  • both two-dimensional images and three-dimensional shapes may be considered to extract the shield region.
  • the brightness and the color of the shield 1000 of the two-dimensional image are similar to the color and the brightness of the substrate, it may not be easy to distinguish the shield 1000 and the substrate on the two-dimensional image.
  • the shield area is divided by considering both the 3D shape and the 2D image, a more accurate shield area may be extracted.
  • step S130 the mounting failure of the component is inspected in the remaining region except for the shield region.
  • the component located below the shield region is covered by the shield region so that at least a portion of the component is not imaged, and the portion is not capable of shape calculation in 2D image or 3D.
  • the corresponding test condition may be applied to the recognized part.
  • the parts library may be examined to determine whether they are the same as the existing parts, and the corresponding inspection conditions may be reflected.
  • the above two methods can be applied to reflect the inspection conditions.
  • the board inspection method in which the component of the present invention is mounted even if the same components are covered by the shield, it is possible to determine whether or not the mounting state of the component has a common setting without any separate setting or inspection condition change. Promptness of inspection can be attained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

별도의 설정이나 검사조건의 변경없이 공통된 설정을 가지고 부품의 실장상태의 양부를 판단할 수 있는, 부품이 실장된 기판 검사방법이 제공된다. 이러한 검사방법은 적어도 하나의 조명부를 통해서, 기판을 향해 격자 이미지를 조사하고 영상 촬영부를 통해서 반사된 이미지를 촬영하고, 격자 이미지를 이송시키고 다시 촬영함으로써, 3차원 형상을 획득하는 단계와, 상기 3차원 형상에서 실드(shield) 영역을 추출하는 단계와, 상기 3차원 형상에서 실드 영역을 제외한, 실드 제거 3차원 형상을 추출하는 단계 및 상기 실드 제거 3차원 형상을 이용하여 부품 실장 불량을 검사하는 단계를 포함한다.

Description

부품이 실장된 기판 검사방법 및 검사장치
본 발명은 부품이 실장된 기판 검사방법 및 검사장치에 관한 것으로, 보다 상세히 부품 이외에도 실드(Shield)가 부착된 기판 검사방법 및 검사장치에 관한 것이다.
일반적으로, 전자장치 내에는 적어도 하나의 인쇄회로기판(printed circuit board; PCB)이 구비되며, 이러한 인쇄회로기판 상에는 칩(chip)과 같은 부품을 포함한다. 상기 칩과 같은 부품을 상기 인쇄회로기판으로부터 검사하는 작업은 상기 인쇄회로기판에 장착된 부품의 불량 여부를 판단하거나, 상기 부품과 연결된 패드 등의 불량 여부를 판단하기 위하여 필요하다.
이러한 불량 여부의 검출에는 격자 패턴을 이용한 3차원 형상 측정장치가 사용되어질 수 있다. 즉, 3차원 형상을 측정함으로써 부품의 틀어짐, 부품의 미실장 여부, 솔더의 과납, 미납 등의 여부를 검사하게 된다.
한편, 스마트폰과 같은 전자기기들은 전자기기들 내에 다양한 기능들이 구비된다. 즉, 스마트폰과 같은 기기들은 기본적인 통신기능 이외에도, 카메라, DMB, GPS 기능 등을 담당하기 위한 기능들이 부가적으로 형성되어 있다. 이들 기능을 담당하는 부품들은 공간적으로 집중되어 실장됨으로써 기능 블럭을 구성하는데, 기능 블럭들 상호간에 전기적 간섭을 배제하기 위하여, 도 1에서 도시된 바와 같은 실드(shied, 1000)가 기능 블럭들을 감싸도록 부착된다.
그러나, 전자파 차폐기능을 향상하기 위한 실드(1000)의 에지부(1100)에 의해 부품의 실장 상태가 가려지는 경우가 발생된다. 실드(1000)의 오프닝부(1200)에 실장된 부품들의 경우, 부품들의 실장상태를 검사하는게 크게 문제가 없으나, 실드(1000)의 에지부(1100)에 의해 가려진 부분에 대해서는 검사가 불가능하다.
그러나, 가려진 부분 이외의 나머지 부분에 대해서만이라도, 검사요구가 있으며, 현재 이러한 나머지 부분에 대해서 검사를 진행하기 위해서는 실드(1000)의 에지부(1100)에 의한 가림의 정도 및 형태가 모두 다르기 때문에 개별 부품 단위로 설정을 변경해서 검사가 진행되고 있는 실정이다.
즉, 도 2a 및 도 2b에서는 부품, 즉 측정 대상물(10)의 리드(11)가 기판(G)에 형성된 패드(P)에 솔더페이스트(S)를 이용하여 부착되는데, 도 3a 및 3b에서와 같이 실드(1000)의 에지부(1100)에 의해 가려진 상태로서 서로 상이한 형태로 실장되는 경우, 각각의 경우마다 설정을 변경해서, 부품의 양부를 판단함에 따라서, 부품 검사에 많은 시간이 소요되고 있다.
따라서, 본 발명이 해결하고자 하는 과제는 동일한 부품들이 실드에 의해 가려지더라도, 별도의 설정이나 검사조건의 변경없이 공통된 설정을 가지고 부품의 실장상태의 양부를 판단할 수 있는, 부품이 실장된 기판 검사방법 및 검사장치를 제공하는 것이다.
이러한 과제를 해결하기 위하여, 본 발명의 예시적인 일 실시예에 의한, 부품이 실장된 기판 검사방법은, 적어도 하나의 조명부를 통해서, 기판을 향해 패턴 이미지를 조사하고 영상 촬영부를 통해서 반사된 이미지를 촬영하여, 3차원 형상을 획득하는 단계와, 상기 3차원 형상에서 실드(shield) 영역을 추출하는 단계, 및 상기 3차원 형상에서 실드 영역을 제외한 영역에서 부품 실장 불량을 검사하는 단계를 포함한다.
이때, 상기 3차원 형상에서 실드 영역을 추출하는 단계에서, 상기 부품의 높이보다 높은 영역을 상기 실드 영역으로 결정할 수 있다.
또한, 상기 3차원 형상에서 실드 영역을 제외한 영역에서 부품 실장 불량을 검사하는 단계에서, 상기 실드 영역 하단에 위치한 부품에 대해 캐드 정보 및 부품 라이브러리 정보 중 적어도 하나를 이용하여 인식한 후, 인식된 부품에 기 설정된 검사 조건을 적용할 수 있다.
이러한 과제를 해결하기 위한 본 발명의 예시적인 다른 실시예에 의한, 부품이 실장된 기판 검사방법은, 촬영부를 통해서, 기판의 2차원 이미지를 획득하는 단계와, 상기 2차원 이미지를 이용하여 실드(shield) 영역을 추출하는 단계, 및 상기 실드 영역을 제외한 영역에서 부품 실장 불량을 검사하는 단계를 포함한다.
이때, 상기 2차원 이미지를 이용하여 실드 영역을 추출하는 단계에서, 상기 실드 영역의 밝기 및 색상 중 적어도 어느 하나를 이용하여 상기 실드 영역을 추출할 수 있다.
일 실시예로, 상기 부품이 실장된 기판 검사방법은, 상기 촬영부를 통해서, 기판의 2차원 이미지를 획득하는 단계 이전에, 적어도 하나의 조명부를 통해서, 상기 기판을 향해 패턴 이미지를 조사하고 영상 촬영부를 통해서 반사된 이미지를 촬영하여, 3차원 형상을 획득하는 단계를 더 포함할 수 있다. 이때, 상기 실드 영역은 상기 3차원 형상에서 추출된다.
또한, 상기 2차원 이미지를 이용하여 실드 영역을 추출하는 단계는, 상기 2차원 이미지 외에도 상기 3차원 형상을 추가적으로 이용하여 상기 실드 영역을 추출하는 단계를 포함할 수 있다.
또한, 상기 2차원 이미지 외에도 상기 3차원 형상을 추가적으로 이용하여 상기 실드 영역을 추출하는 단계에서, 상기 부품의 높이보다 높은 영역을 상기 실드 영역으로 결정할 수 있다.
또한, 상기 실드 영역을 제외한 영역에서 부품 실장 불량을 검사하는 단계에서, 실드 영역 하단에 위치한 부품에 대해 캐드 정보 및 부품 라이브러리 정보 중 적어도 하나를 이용하여 인식한 후, 인식된 부품에 기 설정된 검사 조건을 적용할 수 있다.
본 발명의 예시적인 일 실시예에 의한, 부품이 실장된 기판 검사장치는, 영상 촬영부 및 중앙 제어부를 포함한다. 상기 영상 촬영부는 측정 대상물로부터 반사된 이미지를 촬영한다. 상기 중앙 제어부는, 촬영된 상기 이미지로부터 실드(shield) 영역을 추출한 후, 상기 실드 영역을 제외한 영역에서 부품 실장 불량을 검사한다.
이때, 상기 중앙 제어부는, 상기 부품의 높이보다 높은 영역을 상기 실드 영역으로 결정할 수 있다.
또한, 상기 중앙 제어부는, 상기 실드 영역 하단에 위치한 부품에 대해 캐드 정보 및 부품 라이브러리 정보 중 적어도 하나를 이용하여 인식한 후, 인식된 부품에 기 설정된 검사 조건을 적용할 수 있다.
이와 다르게, 상기 영상 촬영부는 2차원 이미지를 촬영하고, 상기 중앙 제어부는 상기 2차원 이미지의 밝기 및 색상 중 적어도 어느 하나를 이용하여 상기 3차원 형상에서 상기 실드 영역을 결정할 수 있다.
또한, 상기 중앙 제어부는, 상기 실드 영역을 제외한 영역에서 부품 실장 불량을 검사하기 위하여, 상기 실드 영역 하단에 위치한 부품에 대해 캐드 정보 및 부품 라이브러리 정보 중 적어도 하나를 이용하여 인식한 후, 인식된 부품에 기 설정된 검사 조건을 적용할 수 있다.
상기 부품이 실장된 기판 검사장치는 상기 측정 대상물로 패턴을 조사하는 조명부를 더 포함할 수 있다. 이때, 상기 이미지는 상기 패턴에 의한 패턴 이미지를 포함할 수 있고, 상기 중앙 제어부는, 상기 패턴 이미지로부터 3차원 형상을 획득하고, 상기 3차원 형상에서 상기 실드 영역을 추출할 수 있다.
본 발명의 예시적인 일 실시예에 의한, 실드(shield)가 포함된 기판의 부품 실장 불량 검사를 지원하는 장치는, 촬영부에서 획득된 이미지를 표시하는 인터페이스를 제공하고, 상기 이미지를 이용하여, 실드 영역을 추출하기 위한 인터페이스를 제공하고, 상기 실드 영역을 제외한 영역에서 부품 실장 불량을 검사하기 위한 인터페이스를 제공한다.
본 발명에 의한, 부품이 실장된 기판 검사방법에 의하면, 동일한 부품들이 실드에 의해 가려지더라도, 별도의 설정이나 검사조건의 변경없이 공통된 설정을 가지고 부품의 실장상태의 양부를 판단할 수 있어, 검사의 신속성을 도모할 수 있다.
도 1은 기판에서 각 기능을 담당하는 기능 블럭들의 상호 간섭을 배제하기 위한 실드(shied)를 도시한 사시도이다.
도 2a는 실드에 의해 가려지지 않은 부품의 실장 상태를 도시한 단면도이다.
도 2b는 도 2a에서 도시된 부품의 실장 상태를 도시한 평면도이다.
도 3a 및 도 3b는 실드에 의해 서로 상이한 상태로 가려진 부품의 실장 상태를 도시한 평면도이다.
도 4는 본 발명의 일 실시예에 의한 3차원 형상 측정방법에 사용되는 예시적인 3차원 형상 측정장치를 도시한 개념도이다.
도 5는 본 발명에 의한 부품이 실장된 기판 검사방법을 도시한 블럭도이다.
도 6은 실드에 의해 일부가 가려진 부품의 이차원 이미지를 도시한 평면도이다.
도 7은 도 5에서 단계 S110의 결과로 얻어진 3차원 형상의 단면도로서, 도 6의 A영역을 도시한 개념도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성 요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소도 제1 구성 요소로 명명될 수 있다.
본 출원에서 사용한 용어는 단지 특정한 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 갖는다.
일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예들을 보다 상세하게 설명한다.
도 4는 본 발명의 일 실시예에 의한 3차원 형상 측정방법에 사용되는 예시적인 3차원 형상 측정장치를 도시한 개념도이다.
도 3을 참조하면, 본 실시예에 의한 3차원 형상 측정방법에 사용되는 3차원 형상 측정장치는 측정 스테이지부(100), 영상 촬영부(200), 제1 및 제2 조명부들(300,400), 영상 획득부(500), 모듈 제어부(600) 및 중앙 제어부(700)를 포함할 수 있다.
상기 측정 스테이지부(100)는 측정 대상물(10)을 지지하는 스테이지(110) 및 상기 스테이지(110)를 이송시키는 스테이지 이송유닛(120)을 포함할 수 있다. 본 실시예에서, 상기 스테이지(110)에 의해 상기 측정 대상물(10)이 상기 영상 촬영부(200)와 상기 제1 및 제2 조명부들(300,400)에 대하여 이동함에 따라, 상기 측정 대상물(10)에서의 측정위치가 변경될 수 있다.
상기 영상 촬영부(200)는 상기 스테이지(110)의 상부에 배치되어, 상기 측정 대상물(10)로부터 반사되어온 광을 인가받아 상기 측정 대상물(10)에 대한 영상을 측정한다. 즉, 상기 영상 촬영부(200)는 상기 제1 및 제2 조명부들(300,400)에서 출사되어 상기 측정 대상물(10)에서 반사된 광을 인가받아, 상기 측정 대상물(10)의 평면영상을 촬영한다.
상기 영상 촬영부(200)는 카메라(210), 결상렌즈(220), 필터(230) 및 램프(240)를 포함할 수 있다. 상기 카메라(210)는 상기 측정 대상물(10)로부터 반사되는 광을 인가받아 상기 측정 대상물(10)의 평면영상을 촬영하며, 일례로 CCD 카메라나 CMOS 카메라 중 어느 하나가 채용될 수 있다. 상기 결상렌즈(220)는 상기 카메라(210)의 하부에 배치되어, 상기 측정 대상물(10)에서 반사되는 광을 상기 카메라(210)에서 결상시킨다. 상기 필터(230)는 상기 결상렌즈(220)의 하부에 배치되어, 상기 측정 대상물(10)에서 반사되는 광을 여과시켜 상기 결상렌즈(220)로 제공하고, 일례로 주파수 필터, 컬러필터 및 광세기 조절필터 중 어느 하나로 이루어질 수 있다. 상기 램프(240)는 일 예로 상기 필터(230)의 하부에 원형으로 배치되거나 상기 영상 촬영부(200) 분리되어 배치될 수 있으며, 복수의 LED로 구성될 수 있다. 그리고 상기 측정 대상물(10)의 2차원 형상과 같은 특이영상을 촬영하기 위해 상기 측정 대상물(10)로 광을 제공할 수 있다.
한편, 상기 영상 촬영부(200)는 평면에 수직한 방향으로 배치되거나, 평면에 수직한 법선을 기준으로 경사지게 될 수 있으며, 복수의 영상 촬영부로 구성되는 경우에는 평면에 수직한 방향 및 경사진 방향에 적어도 하나의 영상 촬영부가 구성될 수 있다. 물론 상기 측정 대상물(10) 및 상기 영상 촬영부(200) 사이에 미러 혹은 빔스플리터가 채용된 경우에는 상기 영상 촬영부(200)가 평면과 평행하게 배치될 수도 있다.
이러한 상기 영상 촬영부(200)는 상기 램프(240)로부터 조사되어 측정대상물(10)에 반사된 광의 촬상 및 상기 제1 및 제2 조명부들(300,400)에서 조사되어 측정 대상물(10)에 반사된 격자 패턴광의 촬상 중 적어도 하나를 수행할 수 있다.
상기 제1 조명부(300)는 예를 들면 측정대상물(10)의 평면에 수직한 방향으로 조사하거나, 상기 영상 촬영부(200)의 우측에 상기 측정 대상물(10)을 지지하는 상기 스테이지(110)에 대하여 경사지게 배치될 수 있다. 상기 제1 조명부(300)는 제1 조명유닛(310), 제1 격자유닛(320), 제1 격자 이송유닛(330) 및 제1 집광렌즈(340)를 포함할 수 있다. 상기 제1 조명유닛(310)은 조명원과 적어도 하나의 렌즈로 구성되어 광을 발생시키고, 상기 제1 격자유닛(320)은 상기 제1 조명유닛(310)의 하부에 배치되어 상기 제1 조명유닛(310)에서 발생된 광을 격자무늬 패턴을 갖는 제1 격자 패턴광으로 변경시킨다. 상기 제1 격자 이송유닛(330)은 상기 제1 격자유닛(320)과 연결되어 상기 제1 격자유닛(320)을 이송시키고, 일례로 PZT(Piezoelectric) 이송유닛이나 미세직선 이송유닛 중 어느 하나를 채용할 수 있다. 상기 제1 집광렌즈(340)는 상기 제1 격자유닛(320)의 하부에 배치되어 상기 제1 격자유닛(320)로부터 출사된 상기 제1 격자 패턴광을 상기 측정 대상물(10)로 집광시킨다.
상기 제2 조명부(400)는 예를 들면 상기 영상 촬영부(200)의 좌측에 상기 측정 대상물(10)을 지지하는 상기 스테이지(110)에 대하여 경사지게 배치될 수 있다. 상기 제2 조명부(400)는 제2 조명유닛(410), 제2 격자유닛(420), 제2 격자 이송유닛(430) 및 제2 집광렌즈(440)를 포함할 수 있다. 상기 제2 조명부(400)는 위에서 설명한 상기 제1 조명부(300)와 실질적으로 동일하므로, 중복되는 상세한 설명은 생략한다.
상기 제1 조명부(300)는 상기 제1 격자 이송유닛(330)이 상기 제1 격자유닛(320)을 N번 순차적으로 이동하면서 상기 측정 대상물(10)로 N개의 제1 격자 패턴광들을 조사할 때, 상기 영상 촬영부(200)는 상기 측정 대상물(10)에서 반사된 상기 N개의 제1 격자 패턴광들을 순차적으로 인가받아 N개의 제1 패턴영상들을 촬영할 수 있다. 또한, 상기 제2 조명부(400)는 상기 제2 격자 이송유닛(430)이 상기 제2 격자유닛(420)을 N번 순차적으로 이동하면서 상기 측정 대상물(10)로 N개의 제2 격자 패턴광들을 조사할 때, 상기 영상 촬영부(200)는 상기 측정 대상물(10)에서 반사된 상기 N개의 제2 격자 패턴광들을 순차적으로 인가받아 N개의 제2 패턴영상들을 촬영할 수 있다. 여기서, 상기 N은 자연수로, 일 예로 3 또는 4일 수 있다.
한편, 상기 제1 조명부(300) 및 제2 조명부(400)는 각각 복수개가 구비될 수 있으며, 상기 제1조명부(300)만 배치될 수도 있다. 그리고 상기 제1조명부(300)는 LCD 등의 액정표시장치로 구성될 수 있다. 본 실시예에서는 상기 제1 및 제2 격자 패턴광들을 발생시키는 조명장치로 상기 제1 및 제2 조명부들(300,400)만을 설명하였으나, 이와 다르게 상기 조명부의 개수는 3개 이상일 수도 있다. 즉, 상기 측정 대상물(10)로 조사되는 격자 패턴광이 다양한 방향에서 조사되어, 다양한 종류의 패턴영상들이 촬영될 수 있다. 예를 들어, 3개의 조명부들이 상기 영상 촬영부(200)를 중심으로 정삼각형 형태로 배치될 경우, 3개의 격자 패턴광들이 서로 다른 방향에서 상기 측정 대상물(10)로 인가될 수 있고, 4개의 조명부들이 상기 영상 촬영부(200)를 중심으로 정사각형 형태로 배치될 경우, 4개의 격자 패턴광들이 서로 다른 방향에서 상기 측정 대상물(10)로 인가될 수 있다.
상기 영상 획득부(500)는 상기 영상 촬영부(200)의 카메라(210)와 전기적으로 연결되어, 상기 카메라(210)로부터 상기 패턴영상들을 획득하여 저장한다. 예를 들어, 상기 영상 획득부(500)는 상기 카메라(210)에서 촬영된 상기 N개의 제1 패턴영상들 및 상기 N개의 제2 패턴영상들을 인가받아 저장하는 이미지 시스템을 포함한다.
상기 모듈 제어부(600)는 상기 측정 스테이지부(100), 상기 영상 촬영부(200), 상기 제1 조명부(300) 및 상기 제2 조명부(400)와 전기적으로 연결되어 제어한다. 상기 모듈 제어부(600)는 예를 들어, 조명 콘트롤러, 격자 콘트롤러 및 스테이지 콘트롤러를 포함한다. 상기 조명 콘트롤러는 상기 제1 및 제2 조명유닛들(310,410)을 각각 제어하여 광을 발생시키고, 상기 격자 콘트롤러는 상기 제1 및 제2 격자 이송유닛들(330,430)을 각각 제어하여 상기 제1 및 제2 격자유닛들(320, 420)을 이동시킨다. 상기 스테이지 콘트롤러는 상기 스테이지 이송유닛(120)을 제어하여 상기 스테이지(110)를 상하좌우로 이동시킬 수 있다.
상기 중앙 제어부(700)는 상기 영상 획득부(500) 및 상기 모듈 제어부(600)와 전기적으로 연결되어 각각을 제어한다. 구체적으로, 상기 중앙 제어부(700)는 상기 영상 획득부(500)의 이미지 시스템으로부터 상기 N개의 제1 패턴영상들 및 상기 N개의 제2 패턴영상들을 인가받아, 이를 처리하여 상기 측정 대상물의 3차원 형상을 측정할 수 있으며, 이를 토대로 부품 실장 불량을 검사할 수 있고, 특히, 실드 영역 추출 및 실드 영역에 가려진 부품을 인식할 수 있다. 또한, 상기 중앙 제어부(700)는 상기 모듈 제어부(600)의 조명 콘트롤러, 격자 콘트롤러 및 스테이지 콘트롤러를 각각 제어할 수 있다. 이와 같이, 상기 중앙 제어부(700)는 이미지처리 보드, 제어 보드 및 인터페이스 보드를 포함할 수 있다.
이후, 부품이 실장될 기판 검사 방법을 참조로 자세히 설명되겠지만, 상기 중앙 제어부(700)는, 상기 부품의 높이보다 높은 영역을 실드 영역으로 결정할 수 있다.
또한, 상기 중앙 제어부(700)는, 실드 영역 하단에 위치한 부품에 대해 캐드 정보 및 부품 라이브러리 정보 중 적어도 하나를 이용하여 인식한 후, 인식된 부품에 기 설정된 검사 조건을 적용할 수 있다.
이와 다르게, 상기 영상 촬영부에 촬영된 2차원 이미지를 이용하여 상기 중앙 제어부(700)는 상기 2차원 이미지의 밝기 및 색상 중 적어도 어느 하나를 이용하여 상기 3차원 형상에서 실드(shield) 영역을 결정할 수 있다.
또한, 상기 중앙 제어부(700)는, 상기 3차원 형상에서 실드 영역을 제외한 영역에서 부품 실장 불량을 검사하기 위하여, 실드 영역 하단에 위치한 부품에 대해 캐드 정보 및 부품 라이브러리 정보 중 적어도 하나를 이용하여 인식한 후, 인식된 부품에 기 설정된 검사 조건을 적용할 수 있다.
이하, 상기와 같은 3차원 형상 측정장치를 이용한, 부품이 실장된 기판 검사방법을 보다 상세하게 설명한다.
도 5는 본 발명에 의한 부품이 실장된 기판 검사방법을 도시한 블럭도이다.
도 4 및 5를 참조하면, 본 발명에 의한 부품이 실장된 기판 검사방법에 의하면, 먼저 적어도 하나의 조명부(310, 410)를 통해서, 측정 대상물(10)이 형성된 기판을 향해 격자 이미지를 조사하고 영상 촬영부(200)를 통해서 반사된 이미지를 촬영하고, 격자 이미지를 이송시키고 다시 촬영함으로써, 3차원 형상을 측정한다(단계 S110).
보다 상세히, 격자 격자 유닛(320, 420)을 통과한 격자패턴광을 측정 대상물(10)에 조사하여 영상촬영부(200)에서는 광삼각법을 이용하여 측정 대상물(10)의 3차원 형상의 윤곽을 얻을 수 있다. 즉, 기판의 각 위치(X,Y)에 따른 높이값을 측정함으로써, 기판의 전체 윤곽을 얻을 수 있는 것이다.
이후, 3차원 형상에서 실드 영역을 추출한다(단계 S120). 이러한 실드 영역을 추출하기 위해서는 3차원 형상을 이용할 수 있다. 예를 들면, 도 6의 A지점에 대한 3차원 형상의 단면은 도 7과 같이 표현될 수 있는데, 이 경우, 부품(10) 보다 높은 위치에 존재하는 영역을 에지부(1100)가 존재하는 실드 영역으로 판단할 수 있다.
다른 실시예로, 실드 영역을 추출하기 위해서, 도 1의 램프(240)를 점등하고, 카메라(210)를 통해서 촬영된 도 6의 2차원 이미지에서 실드(1000)의 에지부(1100)의 좌표(X, Y)를 획득함으로써, 실드 영역을 구할 수도 있다. 보다 상세히, 실드(1000)의 밝기 및 색상 중 적어도 어느 하나를 이용하여 상기 실드 영역을 추출할 수 있다. 이와 같이 2차원 이미지를 이용하여 실드 영역을 추출하는 경우, 부품(10)과 에지부(1100)의 높이 차이가 크지 않은 경우, 보다 정확하게 실드 영역을 추출할 수 있다.
또 다른 실시예로, 실드 영역을 추출하기 위해서, 2차원 이미지 및 3차원 형상을 모두 고려할 수도 있다. 2차원 이미지의 실드(1000)의 밝기 및 색상이 기판의 색상 및 밝기와 유사한 경우, 2차원 이미지 상에서 실드(1000)와 기판을 구분하는 것이 용이하지 않을 수 있다. 이 경우, 3차원 형상과 2차원 이미지를 모두 고려하여 실드 영역을 구분하는 경우, 보다 정확한 실드 영역을 추출할 수 있다.
이후, 실드 영역을 제외하고, 나머지 영역에서 부품의 실장 불량을 검사한다 (단계 S130).
보다 상세히, 기판을 상부에서 촬상하는 경우, 실드 영역 하단에 위치한 부품은 실드 영역에 의해 가려져서 부품의 적어도 일부분이 촬상되지 않게 되고, 해당 부분은 2D 이미지 또는 3D로 형상 산출을 할 수 없게 된다.
다만, 해당 부품이 기 설정된 검사 조건을 가지는 복수의 부품들 중 어느 부품과 동일한 부품인지 확인하여 인식되면, 해당 검사 조건을 인식된 부품에 적용할 수 있다. 이를 위하여 기존의 CAD 정보 등을 통해 해당 위치에 실장되는 부품 정보를 확인하고, 해당 부품에 대한 검사 조건을 적용할 수 있다. 또는, 실드에 의해 가려진 부품에 대한 촬상 후, 부품 라이브러리 등을 통해 기존 부품과 동일 여부를 검토하여 해당 검사조건을 반영할 수 있다.
또는 위의 두 가지 방법을 모두 적용하여 검사조건을 반영할 수도 있다.
이러한 검사조건을 통해, 가려지지 않은 부분에 대해 동일한 검사 조건을 토대로 실장 불량 즉, 미실장, 부품의 치우침, 틀어짐, 솔더 필렛 등을 검사한다.
이와 같이 본 발명의 부품이 실장된 기판 검사방법에 의하면, 동일한 부품들이 실드에 의해 가려지더라도, 별도의 설정이나 검사조건의 변경없이 공통된 설정을 가지고 부품의 실장상태의 양부를 판단할 수 있어, 검사의 신속성을 도모할 수 있다.
앞서 설명한 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술분야의 숙련된 당업자 또는 해당 기술분야에 통상의 지식을 갖는 자라면 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이다.  따라서, 전술한 설명 및 아래의 도면은 본 발명의 기술사상을 한정하는 것이 아닌 본 발명을 예시하는 것으로 해석되어야 한다.

Claims (16)

  1. 적어도 하나의 조명부를 통해서, 기판을 향해 패턴 이미지를 조사하고 영상 촬영부를 통해서 반사된 이미지를 촬영하여, 3차원 형상을 획득하는 단계;
    상기 3차원 형상에서 실드(shield) 영역을 추출하는 단계; 및
    상기 3차원 형상에서 실드 영역을 제외한 영역에서 부품 실장 불량을 검사하는 단계를 포함하는 부품이 실장된 기판 검사방법.
  2. 제1 항에 있어서,
    상기 3차원 형상에서 실드 영역을 추출하는 단계에서,
    상기 부품의 높이보다 높은 영역을 상기 실드 영역으로 결정하는 것을 특징으로 하는 부품이 실장된 기판 검사방법.
  3. 제1 항에 있어서,
    상기 3차원 형상에서 실드 영역을 제외한 영역에서 부품 실장 불량을 검사하는 단계에서,
    상기 실드 영역 하단에 위치한 부품에 대해 캐드 정보 및 부품 라이브러리 정보 중 적어도 하나를 이용하여 인식한 후, 인식된 부품에 기 설정된 검사 조건을 적용하는 것을 특징으로 하는 부품이 실장된 기판 검사방법.
  4. 촬영부를 통해서, 기판의 2차원 이미지를 획득하는 단계;
    상기 2차원 이미지를 이용하여 실드(shield) 영역을 추출하는 단계; 및
    상기 실드 영역을 제외한 영역에서 부품 실장 불량을 검사하는 단계를 포함하는 부품이 실장된 기판 검사방법.
  5. 제4 항에 있어서,
    상기 2차원 이미지를 이용하여 실드 영역을 추출하는 단계에서,
    상기 실드 영역의 밝기 및 색상 중 적어도 어느 하나를 이용하여 상기 실드 영역을 추출하는 것을 특징으로 하는 부품이 실장된 기판 검사방법.
  6. 제4 항에 있어서,
    상기 촬영부를 통해서, 기판의 2차원 이미지를 획득하는 단계 이전에,
    적어도 하나의 조명부를 통해서, 상기 기판을 향해 패턴 이미지를 조사하고 영상 촬영부를 통해서 반사된 이미지를 촬영하여, 3차원 형상을 획득하는 단계를 더 포함하고,
    상기 실드 영역은 상기 3차원 형상에서 추출되는 것을 특징으로 하는 부품이 실장된 기판 검사방법.
  7. 제6 항에 있어서,
    상기 2차원 이미지를 이용하여 실드 영역을 추출하는 단계는,
    상기 2차원 이미지 외에도 상기 3차원 형상을 추가적으로 이용하여 상기 실드 영역을 추출하는 단계를 포함하는 것을 특징으로 하는 부품이 실장된 기판 검사방법.
  8. 제7 항에 있어서,
    상기 2차원 이미지 외에도 상기 3차원 형상을 추가적으로 이용하여 상기 실드 영역을 추출하는 단계에서,
    상기 부품의 높이보다 높은 영역을 상기 실드 영역으로 결정하는 것을 특징으로 하는 부품이 실장된 기판 검사방법.
  9. 제4 항에 있어서,
    상기 실드 영역을 제외한 영역에서 부품 실장 불량을 검사하는 단계에서,
    상기 실드 영역 하단에 위치한 부품에 대해 캐드 정보 및 부품 라이브러리 정보 중 적어도 하나를 이용하여 인식한 후, 인식된 부품에 기 설정된 검사 조건을 적용하는 것을 특징으로 하는 부품이 실장된 기판 검사방법.
  10. 측정 대상물로부터 반사된 이미지를 촬영하는 영상 촬영부; 및
    촬영된 상기 이미지로부터 실드(shield) 영역을 추출한 후, 상기 실드 영역을 제외한 영역에서 부품 실장 불량을 검사하는 중앙 제어부;
    를 포함하는 부품이 실장된 기판 검사장치.
  11. 제10 항에 있어서,
    상기 중앙 제어부는,
    상기 부품의 높이보다 높은 영역을 상기 실드 영역으로 결정하는 것을 특징으로 하는 부품이 실장된 기판 검사장치.
  12. 제10 항에 있어서,
    상기 중앙 제어부는,
    상기 실드 영역 하단에 위치한 부품에 대해 캐드 정보 및 부품 라이브러리 정보 중 적어도 하나를 이용하여 인식한 후, 인식된 부품에 기 설정된 검사 조건을 적용하는 것을 특징으로 하는 부품이 실장된 기판 검사장치.
  13. 제10 항에 있어서,
    상기 영상 촬영부는 2차원 이미지를 촬영하고,
    상기 중앙 제어부는 상기 2차원 이미지의 밝기 및 색상 중 적어도 어느 하나를 이용하여 상기 실드 영역을 결정하는 것을 특징으로 하는 부품이 실장된 기판 검사장치.
  14. 제10 항에 있어서,
    상기 중앙 제어부는, 상기 실드 영역을 제외한 영역에서 부품 실장 불량을 검사하기 위하여, 상기 실드 영역 하단에 위치한 부품에 대해 캐드 정보 및 부품 라이브러리 정보 중 적어도 하나를 이용하여 인식한 후, 인식된 부품에 기 설정된 검사 조건을 적용하는 것을 특징으로 하는 부품이 실장된 기판 검사장치.
  15. 제10 항에 있어서,
    상기 측정 대상물로 패턴을 조사하는 조명부를 더 포함하고,
    상기 이미지는 상기 패턴에 의한 패턴 이미지를 포함하며,
    상기 중앙 제어부는, 상기 패턴 이미지로부터 3차원 형상을 획득하고, 상기 3차원 형상에서 상기 실드 영역을 추출하는 것을 특징으로 하는 부품이 실장된 기판 검사장치.
  16. 실드(shield)가 포함된 기판의 부품 실장 불량 검사를 지원하는 장치로서,
    촬영부에서 획득된 이미지를 표시하는 인터페이스를 제공하고,
    상기 이미지를 이용하여, 실드 영역을 추출하기 위한 인터페이스를 제공하고,
    상기 실드 영역을 제외한 영역에서 부품 실장 불량을 검사하기 위한 인터페이스를 제공하는 것을 특징으로 하는 부품 실장 불량 검사 지원 장치.
PCT/KR2015/013814 2014-12-16 2015-12-16 부품이 실장된 기판 검사방법 및 검사장치 WO2016099154A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580068879.6A CN107110789B (zh) 2014-12-16 2015-12-16 贴装有部件的基板检查方法及检查装置
US15/536,213 US10330609B2 (en) 2014-12-16 2015-12-16 Method and apparatus of inspecting a substrate with a component mounted thereon
EP15870321.5A EP3236200B1 (en) 2014-12-16 2015-12-16 Method and apparatus of inspecting a substrate having components mounted thereon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0181723 2014-12-16
KR1020140181723A KR101622628B1 (ko) 2014-12-16 2014-12-16 부품이 실장된 기판 검사방법 및 검사장치

Publications (1)

Publication Number Publication Date
WO2016099154A1 true WO2016099154A1 (ko) 2016-06-23

Family

ID=56103927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/013814 WO2016099154A1 (ko) 2014-12-16 2015-12-16 부품이 실장된 기판 검사방법 및 검사장치

Country Status (5)

Country Link
US (1) US10330609B2 (ko)
EP (1) EP3236200B1 (ko)
KR (1) KR101622628B1 (ko)
CN (2) CN107110789B (ko)
WO (1) WO2016099154A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102285760B1 (ko) * 2017-02-13 2021-08-05 주식회사 고영테크놀러지 인쇄 회로 기판에 실장된 부품을 검사하는 장치, 그 동작 방법 및 컴퓨터 판독 가능한 기록 매체
KR102249225B1 (ko) * 2017-12-28 2021-05-10 주식회사 고영테크놀러지 기판에 삽입된 커넥터에 포함된 복수의 핀의 삽입 상태를 검사하는 방법 및 기판 검사 장치
CN111788883B (zh) * 2018-02-26 2021-11-05 株式会社高迎科技 部件贴装状态的检查方法、印刷电路板检查装置及计算机可读记录介质
KR102182698B1 (ko) * 2019-01-11 2020-11-24 한화정밀기계 주식회사 전자부품 인식장치 및 전자부품 인식방법
CN109870466B (zh) * 2019-01-25 2021-06-01 深圳市华星光电半导体显示技术有限公司 用于显示装置外围线路区匹配缺陷点与线路编号的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920006031B1 (ko) * 1988-05-09 1992-07-27 다떼이시 덴끼 가부시끼 가이샤 기판등의 검사장치 및 그 동작방법
KR970058512A (ko) * 1995-12-01 1997-07-31 구자홍 부품장착 상태 자동 검사장치 및 방법
KR20110063966A (ko) * 2009-12-07 2011-06-15 주식회사 고영테크놀러지 3차원 검사방법 및 이를 이용한 3차원 검사장치
KR20110088967A (ko) * 2010-01-29 2011-08-04 주식회사 고영테크놀러지 소자의 불량 검사방법
KR20130098221A (ko) * 2012-02-27 2013-09-04 주식회사 고영테크놀러지 기판 검사방법

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347232A (ja) * 1993-06-04 1994-12-20 Mitsubishi Heavy Ind Ltd プリント基板外観検査装置
JP2004177377A (ja) * 2002-11-29 2004-06-24 Hitachi Ltd 検査方法および検査装置
JP2004340832A (ja) 2003-05-16 2004-12-02 Matsushita Electric Ind Co Ltd 回路基板の外観検査方法及び回路基板の外観検査装置
DE602004017330D1 (de) * 2004-11-19 2008-12-04 Sony Ericsson Mobile Comm Ab Elektromagnetische Abschirmung für elektrische Bauteile auf einer gedrucken Leiterplatte
JP4539355B2 (ja) 2005-02-08 2010-09-08 オムロン株式会社 基板検査装置並びにそのパラメータ設定方法およびパラメータ設定装置
JP4563205B2 (ja) * 2005-02-08 2010-10-13 富士機械製造株式会社 実装された電子部品の検査方法及び装置
KR100612932B1 (ko) * 2005-12-14 2006-08-14 주식회사 고영테크놀러지 3차원 형상 측정장치 및 방법
KR101251372B1 (ko) * 2008-10-13 2013-04-05 주식회사 고영테크놀러지 3차원형상 측정방법
DE102010028894B4 (de) * 2009-05-13 2018-05-24 Koh Young Technology Inc. Verfahren zur Messung eines Messobjekts
US9091725B2 (en) * 2009-07-03 2015-07-28 Koh Young Technology Inc. Board inspection apparatus and method
DE102010064635B4 (de) * 2009-07-03 2024-03-14 Koh Young Technology Inc. Verfahren zum Untersuchen eines Messobjektes
WO2011049190A1 (ja) * 2009-10-24 2011-04-28 株式会社Djtech 外観検査装置及び印刷半田検査装置
KR101657952B1 (ko) * 2010-11-15 2016-09-20 주식회사 고영테크놀러지 기판 검사방법
JP2012108012A (ja) 2010-11-18 2012-06-07 Panasonic Corp 半田付け検査方法及び半田付け検査装置
KR101779020B1 (ko) * 2012-03-22 2017-09-18 한화테크윈 주식회사 부품 실장 방법
CN104020177B (zh) * 2014-06-26 2016-06-15 重庆大学 连铸坯表面缺陷双ccd扫描成像检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920006031B1 (ko) * 1988-05-09 1992-07-27 다떼이시 덴끼 가부시끼 가이샤 기판등의 검사장치 및 그 동작방법
KR970058512A (ko) * 1995-12-01 1997-07-31 구자홍 부품장착 상태 자동 검사장치 및 방법
KR20110063966A (ko) * 2009-12-07 2011-06-15 주식회사 고영테크놀러지 3차원 검사방법 및 이를 이용한 3차원 검사장치
KR20110088967A (ko) * 2010-01-29 2011-08-04 주식회사 고영테크놀러지 소자의 불량 검사방법
KR20130098221A (ko) * 2012-02-27 2013-09-04 주식회사 고영테크놀러지 기판 검사방법

Also Published As

Publication number Publication date
US20170363548A1 (en) 2017-12-21
US10330609B2 (en) 2019-06-25
EP3236200B1 (en) 2019-09-04
EP3236200A4 (en) 2018-07-18
EP3236200A1 (en) 2017-10-25
KR101622628B1 (ko) 2016-05-20
CN111007070A (zh) 2020-04-14
CN107110789A (zh) 2017-08-29
CN107110789B (zh) 2020-01-07

Similar Documents

Publication Publication Date Title
WO2016099154A1 (ko) 부품이 실장된 기판 검사방법 및 검사장치
KR101590831B1 (ko) 기판의 이물질 검사방법
WO2009142390A2 (ko) 표면형상 측정장치
WO2013048093A2 (ko) 비접촉식 부품검사장치 및 부품검사방법
KR101295760B1 (ko) 다중 격자 무늬를 이용한 비전검사장치
WO2012121558A1 (ko) 영상 선명도가 개선된 비전검사장치
WO2011087337A2 (ko) 기판 검사장치
WO2013009065A2 (ko) 엘이디 부품의 3차원비전검사장치 및 비전검사방법
WO2013176482A1 (ko) 3차원 형상 측정장치의 높이 측정 방법
JP5411913B2 (ja) 端子のチップ位置設定方法
WO2017014518A1 (ko) 검사 시스템 및 검사 방법
WO2015026211A1 (ko) 기판 검사 장치
JPH10300448A (ja) プリント回路板アセンブリの検査装置及び方法
KR20110089486A (ko) 실장기판 검사장치 및 검사방법
WO2012134146A1 (ko) 스테레오 비전과 격자 무늬를 이용한 비전검사장치
WO2013100223A1 (ko) 기판 검사장치의 높이정보 생성 방법
EP0871027A2 (en) Inspection of print circuit board assembly
KR101684244B1 (ko) 기판 검사방법
WO2012150782A1 (ko) 편광판과 다중 격자 무늬를 이용한 비전검사장치
WO2012134147A1 (ko) 가시광선의 격자무늬와 비가시광선의 격자 무늬를 이용한 비전검사장치
KR101876391B1 (ko) 단색광 모아레의 다채널 이미지를 이용한 3차원 검사 장치
KR101056995B1 (ko) 3차원 형상 검사방법
WO2013122442A1 (ko) 엘이디 부품의 검사장치 및 검사방법
KR20140099136A (ko) 복수 행의 조명부재를 포함하는 비전검사장치
WO2016093597A9 (ko) 기판 상에 형성된 부품의 터미널 검사방법 및 기판 검사장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15870321

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15536213

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015870321

Country of ref document: EP