WO2016099092A1 - 마이크로파를 이용한 금속 마그네슘 제조장치 및 제조방법 - Google Patents

마이크로파를 이용한 금속 마그네슘 제조장치 및 제조방법 Download PDF

Info

Publication number
WO2016099092A1
WO2016099092A1 PCT/KR2015/013659 KR2015013659W WO2016099092A1 WO 2016099092 A1 WO2016099092 A1 WO 2016099092A1 KR 2015013659 W KR2015013659 W KR 2015013659W WO 2016099092 A1 WO2016099092 A1 WO 2016099092A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
metal
metal magnesium
microwave
microwaves
Prior art date
Application number
PCT/KR2015/013659
Other languages
English (en)
French (fr)
Inventor
최도영
김병관
Original Assignee
최도영
김병관
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 최도영, 김병관 filed Critical 최도영
Publication of WO2016099092A1 publication Critical patent/WO2016099092A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/20Obtaining alkaline earth metals or magnesium
    • C22B26/22Obtaining magnesium

Definitions

  • the present invention relates to a metal magnesium production apparatus and a manufacturing method
  • the present invention relates to an apparatus and a method for manufacturing metal magnesium using rapid heating principle using microwave.
  • Magnesium-containing alloy materials have excellent machinability, high vibration damping capability, excellent absorbency, light weight, and excellent electromagnetic shielding properties for vibration and stratification.
  • Electrolysis such as the Dow process, involves first producing anhydrous magnesium chloride (MgCl 2 ) from raw materials such as seawater or magnesite, and then electrolyzing them to produce metal magnesium.
  • MgCl 2 anhydrous magnesium chloride
  • the heat reduction method is commonly referred to as the Pigeon process, which is a fired dolomite (MgO.CaO) and reducing agent ferrosilicon (FeSi: Si) used as a raw material for smelting magnets in the semi-permanent tubes of sealed heat-resistant steels. Content 75-80%) and fluorspar (CaF 2 ) were mixed and molded at a constant ratio, and then the reaction material was added at high temperature (1,150 ⁇ 1,200 ° C) and vacuum (3 ⁇ 10Pa) to give a solid phase reduction reaction to Mg vapor. Mg crown is produced by condensing Mg vapor at 400 ⁇ 500 ° C in the shaft. Since the heat reduction method uses ordinary coal as a heat source and is an indirect heating method, energy efficiency is very low and a large amount of environmental pollutants are emitted.
  • the purpose of the present invention is to solve problems such as high energy use and large amount of environmental pollutants in the conventional metal magnesium production apparatus and manufacturing method.
  • the rapid heating method using microwave is introduced and the heating container itself is introduced.
  • the present invention provides a metal magnet manufacturing apparatus and a manufacturing method which can increase energy efficiency and minimize environmental pollution by including a heating element.
  • a heating container including a heating element generated by microwaves and containing a heated raw material; formed on the outside of the heating container, having a microwave permeability, and a refractory material Fireproof wall comprising;
  • a metal magnesium manufacturing apparatus using microwaves including a housing for receiving the heating vessel and the fireproof wall and reflecting microwaves; and a microwave generating portion for generating microwaves in the heating vessel.
  • It can be one or more.
  • the heating element may be one containing silicon carbide (SiC).
  • the heating element is titanium dioxide (Ti0 2 ), zinc oxide (ZnO), magnesium oxide (MgO), yttrium oxide (Y 2 0 3 ), iron oxide (Fe 2 0 3 ), manganese dioxide (Mn0 2 ), oxidation Add one or more selected from nickel (NiO), zirconia (Zr0 2 ), silica (Si0 2 ), alumina (A1 2 0 3 ), chromium oxide (Cr 2 0 3 ), cobalt (Co) and Cr (crume) It may be included as.
  • the fireproof wall is made of alumina (A1 2 0 3 ), silica (Si0 2 ), magnesium oxide (MgO),
  • It may include one or more selected from quicklime (CaO), mullite and graphite.
  • It may contain one or more selected from graphite (graph e).
  • the microwave generating unit may include a magnetron.
  • the microwave generating part may include a plurality of magnetrons.
  • the metal magnesium moisture production apparatus is connected to the upper portion of the heating vessel,
  • It may further include a collecting portion in which the metal magnesium produced in the heating vessel is collected.
  • It may comprise one or more materials selected from graphite, alumina (A1 2 0 3 ) and silica (SK) 2 ).
  • the collecting port may include heat resistant steel or heat resistant glass.
  • It may further comprise a collecting inducing part for moving magnesium to the collecting part.
  • [20] select any one of the collection induction vacuum pump and the gas suction pump.
  • Additional controls may be included.
  • the metal magnesium manufacturing apparatus includes a plurality of the metal magnesium manufacturing apparatuses, and the metal magnesium manufacturing apparatus is continuously added to each other.
  • a continuous metal magnesium production apparatus is provided.
  • the continuous metal magnesium manufacturing apparatus sequentially moves a plurality of metal magnesium manufacturing apparatuses over a moving tray, and enables heating, metal magnesium manufacturing, and cooling to be sequentially performed according to the moving position.
  • the step of layering the heated raw material containing magnesium in the heating vessel of the metal magnesium manufacturing apparatus (step a); generating a microwave in the heating vessel Preparing a vaporized magnesium by heating a heating raw material (step b); collecting the vaporized magnesium (step c); and cooling the collected vaporized magnesium to produce a metal magnesium (step d).
  • a method of manufacturing metal magnesium including;
  • the heated raw material includes magnesium oxide (MgO), quicklime (CaO),
  • It may further include one or more selected from Fe: Si (ferrosilicon), silicon (Si) and fluorite (CaF 2 ).
  • the rapid heating method using microwave and the heating element is included in the heating element to increase energy efficiency and minimize environmental pollution.
  • FIG. 1 is a schematic diagram of a metal magnet production apparatus according to an embodiment of the present invention.
  • FIG. 2 is a view illustrating a continuous metal magnet manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 3 is a flow chart sequentially showing a method of manufacturing metal magnesium according to an embodiment of the present invention.
  • Fig. 5 is a photograph showing the internal configuration of a metal magnet production apparatus of the present invention used in Test Example 1 of the present invention.
  • first and second can be used to describe various components, but The components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the apparatus for manufacturing metal magnesium of the present invention includes a heating vessel (10), a fireproof wall (20),
  • a housing 30 and a microwave generating portion 40 and further include a collecting portion 50, a collecting induction portion 60 and a temperature control portion 70.
  • the heating container 10 is made of a heating element (not shown) that is generated by microwaves.
  • Heating vessels (10) include carbon steel, silicon carbide (SiC), magnesium oxide (MgO), quicklime (CaO), silica (Si0 2 ), alumina (A1 2 0 3 ), mullite ( materials such as mulite) and heat-resistant steel crucibles containing carbon steel.
  • the heating element includes silicon carbide (SiC).
  • SiC silicon carbide
  • Additional transition metal oxides may be included to improve.
  • the fire wall 20 contains refractory material and is resistant to microwaves.
  • It has permeability and can be formed to surround the outside of the heating vessel 10, and it may be formed of alumina (A1 2 0 3 ), silica (Si0 2 ), magnesium oxide (MgO), quicklime (CaO),
  • the fire wall 20 can minimize the loss of heat inside the heating vessel 10 to the outside. It is a refractory material that has a durability against high temperature heat. Since the boiling point of the magnet is 1 100 ° C, it is preferable to have a fire resistance material at a higher temperature. Also, as described above, it is a microwave of alumina and silica. It can be made of permeable material to further improve the heating efficiency in the heating container (10).
  • the housing 30 may accommodate the heating vessel 10 and the fireproof wall 20.
  • the material may be a metallic material such as stainless steel, carbon steel, or carbon such as graphite. It is preferable to use a material, a carbon composite material.
  • the housing 30 has a property of not transmitting microwaves, and it is possible to cause the microwaves to be reflected back to the heating vessel 10. Accordingly, the inside of the heating vessel 10 Can improve the heating efficiency.
  • the microwave generator 40 generates microwaves in the heating vessel 10.
  • the housing 30 As a component, it may be installed outside the housing 30 with a medium capable of transmitting microwaves.
  • the microwave generator 40 may include a magnetron and may include a single or a plurality of magnetrons.
  • the magnetron generates strong microwave waves with an output two-pole vacuum tube and is used for radars and microwave ovens.
  • the operation principle of each step (1 ⁇ 6) is as follows.
  • Hot electrons emitted from the surface of the cathode are accelerated toward the anode.
  • Microwaves are generated while the hot electrons and magnetron circuits rotating around the cathode resonate.
  • the reason for the predetermined intervals is to prevent the occurrence of interference between microwaves.
  • the use of this extremely high magnetron can lead to higher process costs.
  • the collecting unit 50 may be connected to an upper portion of the heating container 10 to collect and accommodate the metal magnets produced in the heating container 10.
  • the collecting unit 50 may collect vaporized metal magnesium.
  • the material may be made of a ceramic material such as alumina (A1 2 0 3 ) or silica (Si0 2 ) that can be durable at high temperatures above the boiling point of the magnet (1100 o C), or stainless steel or carbon steel. Carbon materials such as metallic materials and graphite may be included and, preferably, made of heat resistant steel or heat resistant glass.
  • the collection induction part 60 is formed of the vaporized metal magnesium produced in the heating container 10.
  • the collection induction part 60 may include a vacuum pump or a gas suction pump.
  • the temperature control unit 70 may prevent the temperature in the heating vessel 10 from being excessively high or falling below the temperature required for the reaction, and may maintain an appropriate reaction temperature.
  • FIG. 2 is a schematic diagram schematically showing the structure of the continuous metal magnesium production apparatus 200 according to one embodiment of the present invention.
  • the continuous metal magnesium production apparatus 200 of the present invention will be described with reference to FIG. Let's explain.
  • the continuous metal magnesium manufacturing apparatus of the present invention, 200 is a metal magnesium as described above
  • a plurality of manufacturing apparatuses 100 may be included, and magnesium may be continuously produced and collected in each metal magnesium manufacturing apparatus.
  • the continuous metal magnesium production apparatus 200 of the present invention arranges a plurality of metal magnesium production apparatuses 100a, 100b, 100c, 100d on the moving tray 80 to sequentially move them. Depending on the location, the heating, metal magnet collection and cooling processes can be carried out sequentially.
  • the microwave generating unit 40 may be provided in a plurality of metal magnesium manufacturing apparatuses 100a, 100b, 100c, and 100d at predetermined intervals to evenly generate microwaves. At this time, the microwave generating unit 40 is not installed at the location where the cooling process is performed.
  • the installation position, spacing and number of the microwave generating unit 40 are a plurality of metal magnesium manufacturing apparatuses (U) 0a, 100b, 100c, i00d) can be adjusted in various ways depending on the size of the area where the magnesium manufacturing process is performed.
  • the collecting unit 50 and the collecting induction unit 60 may be installed at a position where a process of collecting vaporized metal magnesium is carried out by installing only one at a specific position.
  • the scope of the present invention is not limited thereto. In some cases, a plurality of collectors 50 may be installed.
  • 3 is a sequential method of manufacturing a metal magnet according to an embodiment of the present invention.
  • FIG. 3 is a flow chart illustrating the manufacturing method of metal magnesium according to the present invention.
  • step a Layer the raw material (step a).
  • the heated material is magnesium oxide (MgO), quicklime (CaO), silicon (Si),
  • Ferrosilicon Fe: Si
  • fluorite CaF 2
  • microwaves are generated in the heating vessel to heat the heated raw material to produce vaporized magnets (step b).
  • the heated raw material may self-heat by the microwave.
  • the heated material to be heated is about 800 ° C. The temperature can rise rapidly.
  • the heated material to be self-heated is further heated by a heating element containing silicon carbide of the heating container and heated up to about 1400 ° C., thereby separating the vaporized metal magnesium.
  • a heating element containing silicon carbide of the heating container may further include iron oxide, manganese dioxide, oxide cream, nickel oxide, zirconia, and the like as described above.
  • step c the prepared vaporized magnesium is collected.
  • a method of collecting magnesium involves placing a predetermined vacuum in the heating vessel.
  • It may be formed and collected at the collection portion of the vaporized metal magnet or more, in which case a vacuum pump may be used, or it may be collected by inhalation of vaporized metal magnesium using a gas suction pump.
  • step d To manufacture (step d).
  • step d the gaseous magnet is cooled to obtain pure metal magnesium in solid state.
  • FIG. 4 is a photograph of a metal magnesium manufacturing apparatus used in the test
  • FIG. 5 is a photograph showing the configuration of the inside of the housing. FIG. It is shown.
  • the magnetron was installed outside the chamber, inside the temperature sensor ⁇ housing, and the fireproof wall was made of alumina.
  • the heating vessel was made of silica outer wall and silicon carbide (SiC) material.
  • a heating element including a crucible and containing silicon carbide was installed between the crucible and the outer wall of the silica.
  • the heating element used was 5 wt% of silicon (Si).
  • the heating vessel and the fireproof wall were 0100 mm *.
  • a size of 40 mm (height) was used.
  • the micron device In a vacuum atmosphere, the micron device is operated to a microwave of lkW. The temperature was raised to 1450 ° C. and heated for 3 hours.
  • the heating vessel was cooled down to a degree capable of handling, and collected in a collecting unit.
  • Metal magnesium was prepared by the method, and 23 g of metal magnesium having a purity of 97% was prepared.
  • Alumina-less crucibles were used, and 75g of MgO, 75g of CaO, 5g of fluorite, and 50g of ferrosilicon (Si 75%) were used as the heating material.
  • the silver was 1200, not L450 o C. ° C by producing the magnesium metal in the same manner as in test example 1, except that hagoneun subjected to rise to a purity of 98 ⁇ 3 ⁇ 4 the metal magnesium 41g
  • FIG. 6 The appearance before and after the use of the alumina crucible (b) is shown in FIG. 6.
  • the alumina crucible was subjected to a reaction after the test and the appearance was damaged.
  • the silicon carbide crucible included in the present invention was found to have no cracking and only a slight etching phenomenon. Therefore, it is preferable to use a silicon carbide crucible including the basic materials MgO and CaO. I could see that. While the embodiments of the present invention have been described above, those of ordinary skill in the art will appreciate that additions, changes, and modifications of the component may be made without departing from the spirit of the present invention described in the claims. The invention may be variously modified and changed by deletion or addition, which is also within the scope of the invention.
  • the rapid heating method using microwaves and the heating element included in the heating element can increase energy efficiency and minimize environmental pollution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

본발명은 마이크로파에 의해 발열되는 발열체를 소재로 포함하고,피가열 원료를 수용하는가열용기;가열용기의 외부에 형성되고,마이크로파 투과성이 있으며, 내화재 (refractory material)를 포함하는 내화벽; 가열용기 및 내화벽을 수용하고, 마이크로파를 반사시키는 하우징;및 마이크로파를 상기 가열용기 내에 발생시키는 마이크로파 발생부;를 포함하는 마이크로파를 이용한 금속 마그네슘 제조장치에 관한 것이다. 이에 의하여,금속 마그네슘 제조 시 에너지 효율을 높이고,환경오염을 최소화할 수 있다.

Description

명세서
발명의명칭:마이크로파를이용한금속마그네슴제조장치및 제조방법
기술분야
[ 1 ] 본발명은금속마그네슘제조장치 및제조방법에관한것으로,보다
상세하게는마이크로파를이용한급속가열원리를이용한금속마그네슘 제조장치 및제조방법에관한것이다.
배경기술
[2] 마그네슴을함유한합금재료는우수한기계가공성과높은진동감쇠능,진동 및층격에 대한탁월한흡수성,경량성 ,우수한전자파차폐특성이 있다.이에 따라,최근에는컴퓨터,카메라,스마트폰,가전제품등의부품으로사용이 확대되고있디-.일반적으로금속마그네슘을제조하는방법은크게
전기분해법과열환원법을들수있다.
[3] 다우법 (Dow process)과같은전기분해법은바닷물이나마그네사이트와같은 원료로부터먼저무수염화마그네슘 (MgCl2)을제조하고,이를전기분해하여 이용하여금속마그네슘을제조하는것이다.이와같은전기분해법은금속 마그네슴의중간생성물질인염화마그네슘 (MgCl2)의제조공정이 비교적 복잡하고,전기소모량이 많아최근에는거의사용되지않고있디-.
[4] 열환원법은통상적으로피죤법 (Pidgeon process)이라고한다.피죤법은밀폐된 내열강의 반웅관에마그네슴제련원료로사용되는소성백운석 (MgO.CaO)과 환원제인페로실리콘 (FeSi:Si함량 75~80%)및형석 (CaF2)을일정한비율로 흔합하여성형한후,반웅원료를넣어고온 (1,150~1,200°C)및진공 (3~10Pa) 상태에서고상환원반웅시켜 Mg증기를발생시키고, Mg증기를웅축기에서 400~500°C로응축하여마그네슴크라운 (Mg Crown)을제조하는방법이다. 이러한열환원법은열원으로통상석탄을사용하고간접가열방식이기 때문에 에너지 효율이 매우낮고,다량의환경오염물질을배출하는문제점이 있다.
[5] 이와같은종래금속마그네슴의제조의문제점에따라,비효율적인에너지 소비 및환경문제를극복하여 에너지효율을높이고환경오염을최소화시킬수 있는금속마그네슘제조장치 및제조방법의 개발이요구되는실정이다. 발명의상세한설명
기술적과제
[6] 본발명의목적은종래금속마그네슘제조장치및제조방법에서의 많은 에너지사용및다량의환경오염물질배출등의문제점을해결하기위한 것으로,마이크로파를이용한급속가열방식을도입하고,가열용기자체에 발열체를포함함으로써에너지효율을높이고,환경오염을최소화할수있는 금속마그네슴제조장치 및제조방법을제공하는데 있다. 과제해결수단
[7] 본발명의 일측면에따르면,마이크로파에 의해발열되는발열체를소재로 포함하고,피가열원료를수용하는가열용기;상기가열용기의외부에형성되고, 마이크로파투과성이 있으며,내화재 (refractory material)를포함하는내화벽 ; 상기가열용기 및상기내화벽을수용하고,마이크로파를반사시키는하우징;및 마이크로파를상기가열용기내에발생시키는마이크로파발생부;를포함하는 마이크로파를이용한금속마그네슘제조장치가제공된다.
[8] 상기가열용기가카본스틸 (carbon steel),탄화규소 (SiC),산화마그네슴 (MgO),
[9] 생석회 (CaO)및실리카 (Si02),알루미나 (A1203),뮬라이트 (mulite)중에서선택된
1종이상을포함하는것일수있다.
[10] 상기발열체가탄화규소 (SiC)를포함하는것일수있다.
[1 1] 상기발열체가이산화티타늄 (Ti02),산화아연 (ZnO),산화마그네슘 (MgO), 산화이트륨 (Y203),산화철 (Fe203),이산화망간 (Mn02),산화니켈 (NiO), 지르코니아 (Zr02),실리카 (Si02),알루미나 (A1203),산화크롬 (Cr203),코발트 (Co) 및 Cr (크름)중에서선택된 1종이상을추가로포함하는것일수있다.
[ 12] 상기 내화벽이 알루미나 (A1203),실리카 (Si02),산화마그네슘 (MgO),
생석회 (CaO),물라이트 (mullite)및그래파이트 (graphite)증에서 선택된 1종 이상을포함하는것일수있다.
[13] 상기하우징이스테인리스스틸 (stainless steel),카본스틸 (carbon steel)및
그래파이트 (graph e)중에서선택된 1종이상을포함하는것일수있다.
[14] 상기마이크로파발생부가마그네트론 (magnetron)을포함하는것일수있다.
[15] 상기마이크로파발생부가복수의마그네트론을포함하는것일수있디—.
[16] 상기금속마그네습제조장치가상기가열용기의상부와연결되고,상기
가열용기에서 제조된금속마그네슘이포집되는포집부를추가로포함하는 것일수있다.
[17] 상기포집부가스테인리스스틸 (stainless steel),카본스틸 (carbon steel)및
그래파이트 (graphite),알루미나 (A1203)및실리카 (SK)2)중에서선택된 1종이상의 소재를포함하는것일수있다.
[1 8] 상기포집구가내열강또는내열유리를포함하는것일수있다.
[19] 상기금속마그네슘제조장치가상기가열용기에서제조된기화된금속
마그네슘을상기포집부로이동시키는포집유도부를추가로포함할수있다.
[20] 상기포집유도부가진공펌프및가스흡입펌프중에서선택된어느하나를
포함할수있다.
[21] 상기금속마그네슘제조장치가상기가열용기 내온도를조절하는온도
제어부를추가로포함할수있다.
[22] 본발명의 다른하나의측면에따르면,상기금속마그네슘제조장치를복수개 포함하고,각금속마그네슘제조장치에서 연속적으로금속마그네슘을 제조하는연속식금속마그네슘제조장치가제공된다.
[23] 상기 연속식금속마그네슴제조장치가복수개의금속마그네슘제조장치들을 이동트레이상에순차적으로배치하여 이동시키며,이동위치에따라가열, 금속마그네슘제조및냉각이순차적으로이루어지도록할수있다.
[24] 본발명의 다른또하나의측면에따르면,상기금속마그네슴제조장치의 가열용기에마그네슘을포함하는피가열원료를층전하는단계 (단계 a);상기 가열용기 내에마이크로파를발생시켜상기 피가열원료를가열함으로써 기화된마그네슴을제조하는단계 (단계 b);상기기화된마그네슘을포집하는 단계 (단계 c);및상기포집된기화된마그네슘을냉각하여금속마그네슘을 제조하는단계 (단계 d);를포함하는금속마그네슘제조방법이제공된다.
[25] 상기피가열원료가산화마그네슘 (MgO)을포함하고,생석회 (CaO),
Fe:Si (페로실리콘),실리콘 (Si)및형석 (CaF2)중에서선택된 1종이상을추가로 포함할수있다.
발명의효과
[26] 본발명의마이크로파를이용한금속마그네슘제조장치 및제조방법은
마이크로파를이용한급속가열방식을도입하고,가열용기자체에 발열체를 포함으로써 에너지 효율을높이고,환경오염올최소화할수있디-.
도면의간단한설명
[27] 도 1은본발명의 일실시예에따른금속마그네슴제조장치의 개략도이다.
[28] 도 2는본발명의 일실시예에따른연속식금속마그네슴제조장치의
개략도이다.
[29] 도 3은본발명의 일실시예에 따른금속마그네슘제조방법을순차적으로 나타낸흐름도이다.
[30] 도 4는본발명의시험예 1에사용된본발명의금속마그네슴제조장치의 사진이다.
[31] 도 5.는본발명의시험예 1에사용된본발명의금속마그네슴제조장치의 내부 구성을나타낸사진이다.
[32] 도 6은본발명의시험예 1에따른가열용기의 변화정도를비교한사진이다. 발명의실시를위한최선의형태
[33] 본발명은다양한변환을가할수있고여러가지실시예를가질수있는바, 특정실시예들을도면에 예시하고상세한설명에상세하게설명하고자한다. 그러나,이는본발명을특정한실시형태에 대해한정하려는것이 아니며,본 발명의사상및기술범위에포함되는모든변환,균등물내지 대체물올 포함하는것으로이해되어야한다.본발명을설명함에 있어서관련된공지 기술에 대한구체적인설명이본발명의요지를흐릴수있다고판단되는경우 그상세한설명을생략한다.
[34] 제 1,제 2등의용어는다양한구성요소들을설명하는데사용될수있지만,상기 구성요소들은상기용어들에의해한정되어서는안된다.상기용어들은하나의 구성요소를다른구성요소로부터구별하는목적으로만사용된다.
[35] 본출원에서사용한용어는단지특정한실시예를설명하기위해사용된
것으로,본발명을한정하려는의도가아니다.단수의표현은문맥상명백하게 다르게뜻하지않는한,복수의표현을포함한다.본출원에서, "포함하다"또는 "가지다' '둥의용어는명세서상에기재된특징,숫자,단계,동작,구성요소,부품 또는이들을조합한것이존재함을지정하려는것이지,하나또는그이상의 다른특징들이나슷자,단계,동작,구성요소,부품또는이들을조합한것들의 존재또는부가가능성을미리배제하지않는것으로이해되어야한다.
[36] .이하,본발명의실시예를첨부도면을참조하여상세히설명하기로하며,첨부 도면을참조하여설명함에있어,동일하거나대웅하는구성요소는동일한 도면번호를부여하고이에대한증복되는설명은생략하기로한다.
[37]
[38] 도 1.은본발명의일실시예에따른마이크로파를이용한금속마그네슘
제조장치 (100)의구조를개략적으로나타낸개략도이다.먼저,본발명의 마이크로파를이용한금속마그네슴제조장치에대하여도 1을참조하여 설명하도록한다.
[39] 본발명의금속마그네슘제조장치 (100)는가열용기 (10),내화벽 (20),
하우징 (30)및마이크로파발생부 (40)를포함하고,포집부 (50),포집유도부 (60)및 온도제어부 (70)를추가로포함하는것이바람직하다.
[40] 가열용기 (10)는마이크로파에의해발열되는발열체 (미도시)를소재로
포함하고,피가열원료를수용하여마그네슘을제조하는반웅용기이다.
[41] 가열용기 ( 10)는카본스틸 (carbon steel),탄화규소 (SiC),산화마그네슘 (MgO), 생석회 (CaO),실리카 (Si02),알루미나 (A1203),물라이트 (mulite)등을포함하는 소재일수있고,카본스틸 (carbon steel)을포함하는내열강금속도가니일수 있다.
[42] 상기발열체는탄화규소 (SiC)를포함한다.바람직하게는가열특성을
향상시키기위하여전이금속산화물을추가로포함시킬수있다.더욱
바람직하게는상온에서가열특성이우수한이산화티타늄 (Ti02),산화아연 (ZnO), 산화마그네슘 (MgO),산화이트륨 (Y203),산화철 (Fe203),이산화망간 (Mn02), 산화니켈 (NiO),실리카 (Si02),알루미나 (A1203),산화크롬 (Cr203),코발트 (Co), Cr (크름)등을포함시킬수있으며,고온에서가열특성이우수한지르코니아 (ZrO 2)등을포함시켜가열효율을향상시킬수있다.
[43] 내화벽 (20)은내화재 (refractory material)을포함하고,마이크로파에대한
투과성을가지며,가열용기 (10)의외부를둘러싸도록형성될수있고, 알루미나 (A1203),실리카 (Si02),산화마그네슘 (MgO),생석회 (CaO),
물라이트 (mullite),그래파이트 (graphite)등을포함할수있다.
[44] 내화벽 (20)은가열용기 (10)내부의열이외부로손실되는것을최소화할수 있고,높은온도의열에대해내구성을가지는내화성물질이다.마그네슴의 끓는점이 1 100°C이므로,이보다높은온도에서내화성을갖는물질인것이 바람직하다.또한,상술한바와같이알루미나,실리카둥의마이크로파 투과물질로이루어져가열용기 (10)내가열효율을더욱향상시킬수있디-.
[45] 하우징 (30)은상기가열용기 (10)및내화벽 (20)을수용할수있다.그소재는 스테인리스스틸 (stainless steel),카본스틸 (carbon steel)등의금속계물질이나, 그래파이트와같은탄소재료,탄소복합재료를사용하는것이바람직하다.이에 따라,하우징 (30)은마이크로파를투과되지않는특성을가지며,마이크로파가 가열용기 (10)로반사되도록할수있다.이에따라,가열용기 (10)내부의 가열효율을더욱향상시킬수있다.
[46] 마이크로파발생부 (40)는가열용기 (10)내에마이크로파를발생시키는
구성요소로서,마이크로파를전달할수있는매개체를구비하여하우징 (30) 외부에설치될수도있다.
[47] 마이크로파발생부 (40)는마그네트론 (magnetron)올포함할수있으며,단수 또는복수로포함할수있다.상기마그네트론이란출력 2극진공관으로강한 극초단파전자파를만들어내는것으로,레이더,전자레인지등에활용되며, 단계별 (1~6)동작원리는아래와같다.
[48] 1 )외부에서 DC자기장을가해준다.
[49] 2)음극을고온으로가열하여열전자가방출될수있는준비상태로만들어 준다.
[50] 3)양극과음극사이에 DC고전압이가해진다.
[51] 4)음극표면에서방출된열전자가양극쪽으로가속된다.
[52] 5)양극쪽으로가속되는열전자가자기장에의해휘어져음극주변을
회전한다.
[53] 6)음극주변을회전하는열전자와마그네트론회로가공진하면서마이크로 웨이브를발생한다.
[54]
[55] 바람직하게는,전력이 lkW이하의다수의마그네트론들을소정의간격을두고 설치하여사용하는것이바람직하다.상기소정의간격을두는이유는 마이크로파간의간섭현상이일어나는것을방지하기위함이다.전력이 지나치게높은마그네트론을사용할경우공정비용이상승할수있다.
[56] 포집부 (50)은가열용기 (10)에서제조된금속마그네슴을포집하여수용할수 있도록가열용기 (10)의상부와연결될수있다.포집부 (50)는기화된금속 마그네슘을포집하는것으로,그소재는마그네슴의끓는점 (1100oC)이상의 고온에서내구성을가질수있는알루미나 (A1203),실리카 (Si02)등의세라믹 재료를사용하거나,스테인리스스틸,카본스틸과같은금속재,그래파이트등의 탄소재료성분을포함할수있고,바람직하게는,내열강또는내열유리로제조될 수있다. [57] 포집유도부 (60)은가열용기 (10)에서제조된기화된금속마그네슘이
포집부 (50)로용이하게 이동할수있도록하는구성요소이다.
[58] 상기 기화된금속마그네슘을포집부 (50)로이동시키기위해서는가열용기 (10) 내소정의진공분위기를형성하거나,기화된마그네슘을직접흡입할수있다. 이에따라,포집유도부 (60)는진공펌프또는가스흡입펌프를포함할수있다.
[59] 온도제어부 (70)는가열용기 (10)내온도가지나치게높아지거나반웅에필요한 온도이하로떨어지는것을방지하고,적절한반응온도를유지하도록할수 있다.
[60]
[61 ] 도 2는본발명의 일실시예에따른연속식금속마그네슘제조장치 (200)의 구조를개략적으로나타낸개략도이다.이하,도 2를참조하여본발명의 연속식 금속마그네슘제조장치 (200)에 대해설명하도록한다.
[62] 본발명의 연속식금속마그네슘제조장치 (200)는상술한금속마그네슴
제조장치 (100)를복수개포함하고,각금속마그네슘제조장치에서 연속적으로 마그네슘을제조하고포집할수있다.
[63] 구체적으로,본발명의 연속식금속마그네슘제조장치 (200)가복수개의금속 마그네슴제조장치들 (100a, 100b, 100c, lOOd)을이동트레이 (80)상에 배치하여 순차적으로이동시키며,이동위치에따라가열,금속마그네슴포집 및 냉각공정이순차적으로이루어질수있다.
[64] 도 2에도시된바와같이,마이크로파발생부 (40)는복수개의금속마그네슘 제조장치들 ( 100a, 100b, 100c, 100d)에마이크로파를고르게발생시키기 위하여 소정의간격을두고복수개설치될수있다.이때,냉각공정이 이루어지는 위치에는마이크로파발생부 (40)를설치하지 않는다.마이크로파발생부 (40)의 설치위치,간격 및개수는복수개의금속마그네슘제조장치들 (U)0a, 100b, 100c, i00d)의크기마그네슘제조공정이 이루어지는영역의크기등의조건에 따라다양하게조절할수있다.
[65] 또한,포집부 (50)및포집유도부 (60)는특정위치에하나만설치하여기화된 금속마그네슘이포집되는공정이 이루어지는위치에설치될수있다.그러나본 발명의 범위가여기에 한정되지않으며 ,경우에따라복수개의포집부 (50)를 설치할수있다.
[66]
[67] 도 3은본발명의 일실시예에따른금속마그네슴제조방법을순차적으로
나타낸흐름도이다.이하,도 3을참조하여본발명의금속마그네슘제조방법을 설명하도록한다.
[68] 먼저,금속마그네슴제조장치의가열용기에마그네슘을포함하는피가열
원료를층전한다 (단계 a).
[69] 상기피가열원료는산화마그네슘 (MgO),생석회 (CaO),실리콘 (Si),
페로실리콘 (Fe:Si),형석 (CaF2),등을포함할수있다. [70] 이후,상기가열용기 내에마이크로파를발생시켜상기피가열원료를 가열함으로써 기화된마그네슴을제조한다 (단계 b).
[71] 이때,상기피가열원료는상기마이크로파에의해자체발열할수있다.
[72] 하나의실시예로,가열용기및내화벽이 0100mm * 40mm (높이)의크기를가진 금속마그네슘제조장치를사용하고마이크로파 lkW를사용하여가열한경우, 상기피가열원료는약 800°C까지온도가급상승될수있다.
[73] 이후,상기자체발열한피가열원료는상기가열용기의탄화규소를포함하는 발열체에의해추가가열되어 약 1400°C까지가열됨으로써기화된금속 마그네슘을분리할수있다.상기발열체는가열특성을향상시키기위하여 상술한바와같이산화철,이산화망간,산화크름,산화니켈,지르코니아등을 추가로포함할수있다.
[74] 다음으로,상기 제조된기화된마그네슘을포집한다 (단계 c).
[75] 마그네슘을포집하는방법은상기가열용기 내부에소정의 진공분위기를
형성하여기화된금속마그네슴이상부의포집부에서포집되는방법일수 있으며 ,이때진공펌프를사용할수있다.또는,가스흡입펌프를사용하여 기화된금속마그네슘을흡입하는방법으로포집할수도있다.
[76] 마지막으로,상기포집된기화된마그네슘을냉각하여금속마그네슴올
제조한다 (단계 d).
[77] 단계 d에 의하여 기체상태의마그네슴이 냉각되어고체상태의순수한금속 마그네슘을수득할수있다.
발명의실시를위한형태
[78] [실시예]
[79] 시예 1
[80] 본발명의 일실시예에따른금속마그네슘제조장치를이용하여금속
마그네슘을제조하였다.
[81] 도 4는시험에서사용한금속마그네슘제조장치의사진이고,도 5는하우징 내부의구성을나타낸사진으로,챔버내부의측면사진 (a)과가열용기 및 내화벽의상면사진 (b)을나타낸것이다.
[82] 도 4및도 5에따르면,마그네트론은챔버의외부에 설치하였고,온도센서툽 하우징 내부에설치하였으며,내화벽은알루미나를사용하였다.가열용기는 실리카외벽 및탄화규소 (SiC)재질의도가니를포함하고,도가니와실리카외벽 사이에탄화규소를포함하는발열체를설치하였다.상기 발열체는실리콘 (Si)이 5wt%포함하는것을사용하였다.가열용기 및내화벽은 0100mm *
40mm (높이)의크기인것을사용하였다.
[83] 피가열원료인소성 백운석 (MgO, CaO) 100g,형석 (CaF2) 5g,금속규소 (Si)분말 25g을혼합한후,프레스작업을통해펠렛형태로만들어도가니에층전하였다.
[84] 진공분위기하에서,마이크론장치를가동시켜 lkW의마이크로파로 1450°C에도달할때까지온도를상승시키고, 3시간동안온도를유지하며 가열하였다.
[85] 이후,가열용기를취급가능할정도로층분히식히고,포집부에포집된
생성물을분리하여순도 95%의금속마그네슘 24g을수득하였다.
[86]
[87] 실시예 2
[88] 탄화규소재질도가니대신에알루미나재질의도가니를사용한것을
제외하고는실시예 1과동일한방법으로금속마그네슴을제조하여,순도 94% 금속마그네슘 22g을수득하였다.
[89]
[9이 시예 3
[91] 카본스틸재질의도가니를사용한것을제외하고는,시험예 1과동일한
방법으로금속마그네슘을제조하여,순도 97%의금속마그네슘 23g을
수득하였다.
[92]
[93] 심시예 4
[94] 피가열원료로 Mg0 75g, Ca0 75g,형석 5g,페로실리콘 (FeSi:Si함량 75<¾) 50g을 흔합한것을사용하고,온도는 1200°C까지상승시켜실시한것을제외하고는 시험예 2와동일한방법으로금속마그네슘올제조하여,순도 95%의금속 마그네슴 42g을수득하였다.
[95]
[96] 심시예 5 ·
[97] 탄화규소가아닌알루미나재질의도가니를사용하고,피가열원료로 MgO 75g, CaO 75g,형석 5g,페로실리콘 (Si 75%) 50g을흔합한것을사용하였으며,은도는 L450oC가아닌 1200°C까지상승시켜실시한것을제외하고는시험예 1과동일한 방법으로금속마그네슘을제조하여 ,순도 98<¾금속마그네슘 41g을
수득하였다.
[98]
[99] [시험예]
[100] 실시예 1에서사용된탄화규소재질도가니 (a)와실시예 2에서사용된
알루미나재질도가니 (b)의사용전과사용후의모습을비교하여도 6에 나타내었다.
[101 ] 도 6에따르면,알루미나도가니는시험후반웅이발생하여외관이손상된
것으로나타났으나,본발명에포함되는탄화규소도가니는크렉발생이없으며 약간의식각현상만이나타난것을확인할수있었다.따라서,염기성재질인 MgO, CaO를포함한탄화규소재질의도가니를사용하는것이더욱바람직함을 알수있었다. [ 103] 이상,본발명의실시예들에 대하여설명하였으나,해당기술분야에서 통상의 지식을가진자라면특허청구범위에기재된본발명의사상으로부터 벗어나지 않는범위 내에서,구성요소의부가,변경,삭제또는추가등에의해본발명을 다양하게수정 및변경시킬수있을것이며,이또한본발명의권리범위 내에 포함된다고할것이다.
산업상이용가능성
[ 104] 본발명의마이크로과를이용한금속마그네슘제조장치 및제조방법은
마이크로파를이용한급속가열방식을도입하고,가열용기자체에발열체를 포함으로써에너지효율을높이고,환경오염을최소화할수있다.

Claims

청구범위
[청구항 1 ] 마이크로파에의해발열되는발열체를소재로포함하고,피가열원료를 수용하는가열용기;
상기가열용기의외부에형성되고,마이크로파투과성이있으며, 내화재 (refractory material)를포함하는내화벽 ;
상기가열용기및상기내화벽을수용하고,마이크로파를반사시키는 하우징;및
마이크로파를상기가열용기내에발생시키는마이크로파발생부;를 포함하는마이크로파를이용한금속마그네슘제조장치.
[청구항 2] 게 1항에있어서,
상기가열용기가카본스틸 (carbon steel),탄화규소 (SiC),
산화마그네슴 (MgO),생석회 (CaO),실리카 (Si02),알루미나 (A1203)및 물라이트 (mulite)증에서선택된 1종이상을포함하는것을특징으로하는 금속마그네슘제조장치.
[청구항 3] 제 1항에있어서,
상기발열체가탄화규소 (SiC)를포함하는것을특징으로하는 마이크로파를이용한금속마그네슴제조장치.
[청구항 4] 제 3항에있어서,
상기발열체가이산화티타늄 (Ti02),산화아연 (ZnO),산화마그네슘 (MgO), 산화이트륨 (Y203),산화철 (Fe203),이산화망간 (Mn02),산화니켈 (NiO), 지르코니아 (Zr02),실리카 (Si02),알루미나 (A1203),산화크롬 (Cr203), 코발트 (Co)및 Cr (크름)증에서선택된 1종이상을추가로포함하는것을 특징으로하는마이크로파를이용한금속마그네슘제조장치 .
[청구항 5] 제 1항에있어서,
상기내화벽이알루미나 (A1203),실리카 (Si02),산화마그네슘 (MgO), 뮬라이트 (mullite),생석회 (CaO)및그래파이트 (graphite)중에서선택된 1종이상을포함하는것을특징으로하는마이크로파를이용한금속 마그네슘제조장치.
[청구항 6] 제 1항에있어서,
상기하우징이스테인리스스틸 (stainless steel),카본스틸 (carbon steel)및 그래파이트 (graphite)중에서선택된 1종이상을포함하는것을특징으로 하는마이크로파를이용한금속마그네슴제조장치 .
[청구항 7] 제 1항에있어서,
상기마이크로파발생부가마그네트론 (magnetron)을포함하는것을 특징으로하는마이크로파를이용한금속마그네슴제조장치.
[청구항 8] 제 7항에있어서,
상기마이크로파발생부가복수의마그네트론을포함하는것을특징으로 하는마이크로파를이용한금속마그네슴제조장치.
[청구항 9] 제 1항에 있어서,
상기금속마그네슘제조장치가상기가열용기의상부와연결되고,상기 가열용기에서제조된금속마그네슘이포집되는포집부를추가로 포함하는것을특징으로하는마이크로파를이용한금속마그네슴 제조장치.
[청구항 10] 제 9항에 있어서,
상기포집부가스테인리스스틸 (stainless steel),카본스틸 (carbon steel)및 그래파이트 (graphite),알루미나 (A1203)및실리카 (Si02)중에서 선택된 1종 이상의소재를포함하는것을특징으로하는마이크로파를이용한금속 마그네슘제조장치.
[청구항 11] 제 9항에 있어서,
상기포집구가내열강또는내열유리를포함하는것을특징으로하는 마이크로파를이용한금속마그네슘제조장치.
[청구항 1 제 9항에 있어서,
상기금속마그네슴제조장치가상기가열용기에서제조된기화된금속 마그네슘을상기포집부로이동시키는포집유도부를추가로포함하는 것을특징으로하는금속마그네슴제조장치 .
[청구힝 · 13] 제 12항에 있어서,
상기포집유도부가진공펌프및가스흡입펌프중에서선택된어느 하나를포함하는것을특징으로하는금속마그네슴제조장치 .
[청구항 14] 제 1항에 있어서,
상기 금속마그네슴제조장치가상기가열용기 내은도를조절하는온도 제어부를추가로포함하는것을특징으로하는금속마그네슘제조장치.
[청구항 15] 제 1항에따른금속마그네슘제조장치를복수개포함하고,각금속
마그네슘제조장치에서 연속적으로금속마그네슘올제조하는연속식 금속마그네슴제조장치.
[청구항 16] 제 15항에 있어서,
상기 연속식금속마그네슘제조장치가복수개의금속마그네슘 제조장치들을이동트레이상에순차적으로배치하여 이동시키며,이동 위치에따라가열,금속마그네슘제조및냉각이순차적으로 이루어지도록하는것을특징으로하는연속식금속마그네슘제조장치 .
[청구항 1.7] 제 1항에 따른금속마그네슘제조장치의가열용기에마그네슘을
포함하는피가열원료를층전하는단계 (단계 a);
상기가열용기 내에마이크로파를발생시켜상기피가열원료를 가열함으로써 기화된마그네슴을제조하는단계 (단계 b); 상기 기화된마그네슴을포집하는단계 (단계 c);및
상기포집된기화된마그네슴을냉각하여금속마그네슘을제조하는 단계 (단계 d);를
포함하는금속마그네슘제조방법.
[청구항 181 제 Π항에있어서,
상기피가열원료가산화마그네슘 (MgO)을포함하고,생석회 (CaO), 실리콘 (Si),페로실리콘 (Fe:Si)및형석 (CaF2)증에서선택된 1종이상을 추가로포함하는것을특징으로하는금속마그네슘제조방법.
PCT/KR2015/013659 2014-12-15 2015-12-14 마이크로파를 이용한 금속 마그네슘 제조장치 및 제조방법 WO2016099092A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20140180336 2014-12-15
KR10-2014-0180336 2014-12-15

Publications (1)

Publication Number Publication Date
WO2016099092A1 true WO2016099092A1 (ko) 2016-06-23

Family

ID=56126902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/013659 WO2016099092A1 (ko) 2014-12-15 2015-12-14 마이크로파를 이용한 금속 마그네슘 제조장치 및 제조방법

Country Status (1)

Country Link
WO (1) WO2016099092A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106282605A (zh) * 2016-09-14 2017-01-04 李华梅 氧化镁与碳以真空微波加热生产金属镁
CN106756107A (zh) * 2016-12-27 2017-05-31 深圳市中启新材料有限公司 一种真空微波炼镁装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002212647A (ja) * 2001-01-23 2002-07-31 Dowa Mining Co Ltd 高純度金属の高度精製方法およびその精製装置
KR20120074071A (ko) * 2010-12-27 2012-07-05 재단법인 포항산업과학연구원 연속식 마그네슘 응축장치
KR20120074927A (ko) * 2010-12-28 2012-07-06 재단법인 포항산업과학연구원 마그네슘 제조 장치
KR101224941B1 (ko) * 2010-07-02 2013-02-19 (주)원진월드와이드 마이크로웨이브를 이용한 퍼니스
KR20140113859A (ko) * 2013-03-15 2014-09-25 주식회사 포스코 가열유닛 및 이를 포함한 환원로

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002212647A (ja) * 2001-01-23 2002-07-31 Dowa Mining Co Ltd 高純度金属の高度精製方法およびその精製装置
KR101224941B1 (ko) * 2010-07-02 2013-02-19 (주)원진월드와이드 마이크로웨이브를 이용한 퍼니스
KR20120074071A (ko) * 2010-12-27 2012-07-05 재단법인 포항산업과학연구원 연속식 마그네슘 응축장치
KR20120074927A (ko) * 2010-12-28 2012-07-06 재단법인 포항산업과학연구원 마그네슘 제조 장치
KR20140113859A (ko) * 2013-03-15 2014-09-25 주식회사 포스코 가열유닛 및 이를 포함한 환원로

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106282605A (zh) * 2016-09-14 2017-01-04 李华梅 氧化镁与碳以真空微波加热生产金属镁
CN106756107A (zh) * 2016-12-27 2017-05-31 深圳市中启新材料有限公司 一种真空微波炼镁装置

Similar Documents

Publication Publication Date Title
Yang et al. Synthesis of ZrO2/ZrW2O8 composites with low thermal expansion
Yuan et al. Synthesis of γ‐AlON powders by a combinational method of carbothermal reduction and solid‐state reaction
CN107352994B (zh) 一种镁铝尖晶石透明陶瓷的制备方法
Tani et al. Fabrication and thermal expansion properties of ZrW2O8/Zr2WP2O12 composites
JP2013538294A (ja) マイクロ波またはミリ波加熱による金属と合金との粉末の焼結
RU2016125041A (ru) Печь для плавки и выдерживания сплава
WO2016099092A1 (ko) 마이크로파를 이용한 금속 마그네슘 제조장치 및 제조방법
CN105926029A (zh) 一种利用微波快速合成氧化锌晶须的方法
CN102603276A (zh) 一种莫来石纤维的制备方法
CN109369183A (zh) 一种红外透明陶瓷材料及其制备方法
CN109941993A (zh) 一种高真空低温提纯石墨的方法
Wang et al. Production of magnesium by vacuum aluminothermic reduction with magnesium aluminate spinel as a by-product
CN105777162A (zh) 一种掺杂Y2O3的BaZrO3耐火材料
CN101551194B (zh) 感应加热法烧结透明陶瓷的装置
CN102674818B (zh) 通过浸渗坯体制备氧化铝陶瓷的方法
Huang et al. Effect of TiO2 on sintering and grain growth kinetics of MgO from MgCl2· 6H2O
Lin et al. Impact of reducing conditions on the stabilization of Mg0. 2Co0. 2Ni0. 2Cu0. 2Zn0. 2O high-entropy oxide
Zhang et al. Synthesis of Zr2WP2O12/ZrO2 composites with adjustable thermal expansion
Mathews et al. A rapid combustion synthesis of MgO stabilized Sr-and Ba-β-alumina and their microwave sintering
CN105693246A (zh) 一种氧化钇透明陶瓷的制备方法
Mohan et al. Reaction sintered zinc oxide incorporated magnesium aluminate spinel from commercial grade oxide reactants
CN102731109A (zh) 一种AlON材料的合成方法
Jiang et al. Synthesis of Y2O3-MgO nanopowder and infrared transmission of the sintered nanocomposite
CN104233046B (zh) 一种氮化铬铁的生产方法
CN106588015A (zh) 一种基于介孔氧化钇制备氧化钇陶瓷的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15870259

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15870259

Country of ref document: EP

Kind code of ref document: A1