WO2016098832A1 - ポリヌクレオチド/シゾフィラン複合体及びそれを含む医薬組成物 - Google Patents
ポリヌクレオチド/シゾフィラン複合体及びそれを含む医薬組成物 Download PDFInfo
- Publication number
- WO2016098832A1 WO2016098832A1 PCT/JP2015/085276 JP2015085276W WO2016098832A1 WO 2016098832 A1 WO2016098832 A1 WO 2016098832A1 JP 2015085276 W JP2015085276 W JP 2015085276W WO 2016098832 A1 WO2016098832 A1 WO 2016098832A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polynucleotide
- schizophyllan
- complex
- derivative
- bond
- Prior art date
Links
- WDQLRUYAYXDIFW-RWKIJVEZSA-N (2r,3r,4s,5r,6r)-4-[(2s,3r,4s,5r,6r)-3,5-dihydroxy-4-[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-[[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-6-(hydroxymethyl)oxane-2,3,5-triol Chemical compound O[C@@H]1[C@@H](CO)O[C@@H](O)[C@H](O)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)[C@H](O)[C@@H](CO[C@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)O1 WDQLRUYAYXDIFW-RWKIJVEZSA-N 0.000 title claims abstract description 145
- 229920002305 Schizophyllan Polymers 0.000 title claims abstract description 145
- 108091033319 polynucleotide Proteins 0.000 title claims abstract description 123
- 102000040430 polynucleotide Human genes 0.000 title claims abstract description 123
- 239000002157 polynucleotide Substances 0.000 title claims abstract description 122
- 239000008194 pharmaceutical composition Substances 0.000 title claims abstract description 13
- 239000002131 composite material Substances 0.000 title abstract description 8
- 239000001257 hydrogen Substances 0.000 claims abstract description 21
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 21
- 125000002637 deoxyribonucleotide group Chemical group 0.000 claims description 18
- 239000005547 deoxyribonucleotide Substances 0.000 claims description 14
- 238000000333 X-ray scattering Methods 0.000 claims description 11
- 238000005259 measurement Methods 0.000 claims description 11
- 238000006116 polymerization reaction Methods 0.000 claims description 8
- 238000000569 multi-angle light scattering Methods 0.000 claims description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 abstract 1
- CTMZLDSMFCVUNX-VMIOUTBZSA-N cytidylyl-(3'->5')-guanosine Chemical group O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@H](OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=C(C(N=C(N)N3)=O)N=C2)O)[C@@H](CO)O1 CTMZLDSMFCVUNX-VMIOUTBZSA-N 0.000 description 55
- 108020004414 DNA Proteins 0.000 description 39
- 238000000034 method Methods 0.000 description 26
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 18
- 102000039446 nucleic acids Human genes 0.000 description 14
- 108020004707 nucleic acids Proteins 0.000 description 14
- 150000007523 nucleic acids Chemical class 0.000 description 14
- 230000000890 antigenic effect Effects 0.000 description 12
- 210000004027 cell Anatomy 0.000 description 12
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 10
- 230000003308 immunostimulating effect Effects 0.000 description 10
- 108090000765 processed proteins & peptides Proteins 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 8
- 238000000149 argon plasma sintering Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 241000699666 Mus <mouse, genus> Species 0.000 description 7
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical group OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 7
- 239000002253 acid Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 6
- 238000005227 gel permeation chromatography Methods 0.000 description 6
- 230000036039 immunity Effects 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 108090000623 proteins and genes Proteins 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 229940104302 cytosine Drugs 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 125000003729 nucleotide group Chemical group 0.000 description 5
- 244000052769 pathogen Species 0.000 description 5
- 150000004713 phosphodiesters Chemical group 0.000 description 5
- 230000001766 physiological effect Effects 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- 238000000790 scattering method Methods 0.000 description 5
- 238000005199 ultracentrifugation Methods 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 102000013462 Interleukin-12 Human genes 0.000 description 4
- 108010065805 Interleukin-12 Proteins 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- 206010028980 Neoplasm Diseases 0.000 description 4
- 101710163270 Nuclease Proteins 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 4
- 230000037396 body weight Effects 0.000 description 4
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 4
- 150000004676 glycans Chemical class 0.000 description 4
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 4
- 230000007062 hydrolysis Effects 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- 230000028993 immune response Effects 0.000 description 4
- 208000015181 infectious disease Diseases 0.000 description 4
- 230000015788 innate immune response Effects 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 229920002521 macromolecule Polymers 0.000 description 4
- 239000002773 nucleotide Substances 0.000 description 4
- 229920001282 polysaccharide Polymers 0.000 description 4
- 239000005017 polysaccharide Substances 0.000 description 4
- 102000005962 receptors Human genes 0.000 description 4
- 108020003175 receptors Proteins 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 108091034117 Oligonucleotide Proteins 0.000 description 3
- 102000002689 Toll-like receptor Human genes 0.000 description 3
- 108020000411 Toll-like receptor Proteins 0.000 description 3
- 239000002671 adjuvant Substances 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 230000000536 complexating effect Effects 0.000 description 3
- 239000012228 culture supernatant Substances 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 210000003024 peritoneal macrophage Anatomy 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229960005486 vaccine Drugs 0.000 description 3
- KHWCHTKSEGGWEX-RRKCRQDMSA-N 2'-deoxyadenosine 5'-monophosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(O)=O)O1 KHWCHTKSEGGWEX-RRKCRQDMSA-N 0.000 description 2
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 2
- 229930024421 Adenine Natural products 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 229920002498 Beta-glucan Polymers 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 239000012980 RPMI-1640 medium Substances 0.000 description 2
- 108091028664 Ribonucleotide Proteins 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- 102000008235 Toll-Like Receptor 9 Human genes 0.000 description 2
- 108010060818 Toll-Like Receptor 9 Proteins 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 229960000643 adenine Drugs 0.000 description 2
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 230000000259 anti-tumor effect Effects 0.000 description 2
- 210000003719 b-lymphocyte Anatomy 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 230000004700 cellular uptake Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000002983 circular dichroism Methods 0.000 description 2
- 230000009918 complex formation Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 210000004443 dendritic cell Anatomy 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 229960001438 immunostimulant agent Drugs 0.000 description 2
- 239000003022 immunostimulating agent Substances 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 210000002540 macrophage Anatomy 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- 230000009871 nonspecific binding Effects 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 239000008363 phosphate buffer Substances 0.000 description 2
- 150000003230 pyrimidines Chemical class 0.000 description 2
- 230000003252 repetitive effect Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000002336 ribonucleotide Substances 0.000 description 2
- 125000002652 ribonucleotide group Chemical group 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000000235 small-angle X-ray scattering Methods 0.000 description 2
- 238000000527 sonication Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 229940035893 uracil Drugs 0.000 description 2
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 108020004491 Antisense DNA Proteins 0.000 description 1
- 108020000946 Bacterial DNA Proteins 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 102100040840 C-type lectin domain family 7 member A Human genes 0.000 description 1
- 210000001239 CD8-positive, alpha-beta cytotoxic T lymphocyte Anatomy 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 229920002558 Curdlan Polymers 0.000 description 1
- 239000001879 Curdlan Substances 0.000 description 1
- 229930183912 Cytidylic acid Natural products 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 229920001503 Glucan Polymers 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 101000829958 Homo sapiens N-acetyllactosaminide beta-1,6-N-acetylglucosaminyl-transferase Proteins 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 102100023315 N-acetyllactosaminide beta-1,6-N-acetylglucosaminyl-transferase Human genes 0.000 description 1
- 230000006051 NK cell activation Effects 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 241000009328 Perro Species 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- KDCGOANMDULRCW-UHFFFAOYSA-N Purine Natural products N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 1
- 108091034057 RNA (poly(A)) Proteins 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 101500027983 Rattus norvegicus Octadecaneuropeptide Proteins 0.000 description 1
- 241000222481 Schizophyllum commune Species 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 210000000447 Th1 cell Anatomy 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 230000003187 abdominal effect Effects 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 208000030961 allergic reaction Diseases 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000005349 anion exchange Methods 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 210000000612 antigen-presenting cell Anatomy 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 239000003816 antisense DNA Substances 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 244000309466 calf Species 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 210000001715 carotid artery Anatomy 0.000 description 1
- 230000007969 cellular immunity Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000001142 circular dichroism spectrum Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 229940078035 curdlan Drugs 0.000 description 1
- 235000019316 curdlan Nutrition 0.000 description 1
- IERHLVCPSMICTF-XVFCMESISA-N cytidine 5'-monophosphate Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(O)=O)O1 IERHLVCPSMICTF-XVFCMESISA-N 0.000 description 1
- IERHLVCPSMICTF-UHFFFAOYSA-N cytidine monophosphate Natural products O=C1N=C(N)C=CN1C1C(O)C(O)C(COP(O)(O)=O)O1 IERHLVCPSMICTF-UHFFFAOYSA-N 0.000 description 1
- 230000016396 cytokine production Effects 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 108010025838 dectin 1 Proteins 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-K dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [O-]P([O-])([S-])=S NAGJZTKCGNOGPW-UHFFFAOYSA-K 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-N dithiophosphoric acid Chemical class OP(O)(S)=S NAGJZTKCGNOGPW-UHFFFAOYSA-N 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007515 enzymatic degradation Effects 0.000 description 1
- 238000011067 equilibration Methods 0.000 description 1
- 239000012894 fetal calf serum Substances 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 238000009169 immunotherapy Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229940117681 interleukin-12 Drugs 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 230000009456 molecular mechanism Effects 0.000 description 1
- 238000004776 molecular orbital Methods 0.000 description 1
- 210000002850 nasal mucosa Anatomy 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229940046166 oligodeoxynucleotide Drugs 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- KHIWWQKSHDUIBK-UHFFFAOYSA-N periodic acid Chemical compound OI(=O)(=O)=O KHIWWQKSHDUIBK-UHFFFAOYSA-N 0.000 description 1
- 210000004303 peritoneum Anatomy 0.000 description 1
- 210000001539 phagocyte Anatomy 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 210000003800 pharynx Anatomy 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical group 0.000 description 1
- 239000003495 polar organic solvent Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- 238000006268 reductive amination reaction Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/36—Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
Definitions
- the present invention relates to a novel polynucleotide / schizophyllan complex and a pharmaceutical composition containing the same.
- the basic principle of vaccine infection prevention is to induce acquired immunity by artificial pseudo-infection, and to induce antibody production and cellular immunity against specific pathogens.
- acquired immunity T cells and B cells responsible for “memory” of immunity play a central role, and the diversity of antibody variable regions due to DNA reconstitution results in specific immune responses to countless antigens. It is known to make it possible.
- innate immunity in which phagocytic cells such as leukocytes, macrophages, and dendritic cells play a central role, has traditionally been a non-specific process of phagocytosing pathogens and foreign substances.
- TLR Toll-like receptor
- CpG DNA DNA having a CpG sequence
- CpG DNA DNA having a CpG sequence
- the CpG sequence is a sequence based on 6 bases in which cytosine (C) and guanine (G) are arranged in the center, and is a base sequence that is rare in mammals and often found in microorganisms. In mammals, most CpG sequences present in a small number are methylated. An unmethylated CpG sequence hardly present in mammals has a strong immunostimulatory activity (see, for example, Non-Patent Documents 1 to 3).
- CpG DNA taken into cells by endocytosis is recognized by TLR9 present in the phagosome-like endoplasmic reticulum and strongly induces a Th1 reaction.
- the Th1 reaction has a strong antitumor activity while suppressing an allergic reaction that is predominantly a Th2 reaction.
- CpG DNA does not have side effects such as toxicity as seen in some adjuvants. Therefore, CpG DNA is expected as an adjuvant for allergic diseases and neoplastic diseases in addition to infection prevention (see Non-Patent Document 4, for example).
- CpG DNA when used as an adjuvant for immunotherapy, how CpG DNA can reach the target cell while avoiding degradation by nucleases in the cytoplasm and plasma and nonspecific binding to proteins. It becomes a problem.
- schizophyllan hereinafter sometimes abbreviated as “SPG”
- SPG schizophyllan
- antisense DNA CpG DNA
- CpG DNA CpG DNA
- a single-stranded nucleic acid is prepared by dissolving schizophyllan, which exists in a triple helix in nature, in an aprotic polar organic solvent such as dimethyl sulfoxide (DMSO) or an alkaline solution of 0.1 N or more and dissociating it into a single strand. And the solvent was returned to water or neutrality to form a triple helix complex consisting of one nucleic acid molecule and two schizophyllan molecules.
- DMSO dimethyl sulfoxide
- Dectin-1 targeting delivery of TNF- ⁇ antisense ODNs complexed with ⁇ -1,3-glucan protects mice from LPS-induced hepatitis.
- a Polysaccharide Carrier for Immunostimulatory CpG DNAs to Enhance Cytokine Secretion M. Mizu, K.
- the present invention has been made in view of such circumstances, and an object thereof is to provide a polynucleotide / schizophyllan complex having excellent productivity and high immunostimulatory activity, and a pharmaceutical composition containing the same.
- a first aspect of the present invention that meets the above-mentioned object is schizophyllan, A polynucleotide or polynucleotide derivative having a CpG sequence, which binds to the schizophyllan via a hydrogen bond, Provided is a polynucleotide / schizophyllan complex characterized by forming a complex having a triple helical structure composed of one molecular chain of the polynucleotide or polynucleotide derivative and two molecular chains of the schizophyllan.
- the above-mentioned problem is solved.
- the molecular weight may be 1 ⁇ 10 5 or more and 3 ⁇ 10 6 or less.
- the measured value of the inertial radius by multi-angle light scattering measurement or X-ray small angle scattering may be 20 nm or more and 200 nm or less.
- the X-ray scattering intensity I measured using small-angle X-ray scattering is expressed in terms of the logarithm of the q value defined by the following formula (I).
- the slope a in the range of q from 10 ⁇ 1 nm to 1 nm ⁇ 1 is preferably ⁇ 1.5 or more and ⁇ 0.5 or less.
- ⁇ represents the X-ray scattering angle
- ⁇ represents the X-ray wavelength
- the polynucleotide or polynucleotide derivative is a polynucleotide derivative in which a part or all of the phosphodiester bond is substituted with a phosphorothioate bond or a phosphorodithioate bond. It may be.
- the polynucleotide or polynucleotide derivative may be deoxyribonucleotide or a derivative thereof.
- the degree of polymerization of a portion of deoxyribonucleotide or a derivative thereof bonded to the above-mentioned schizophyllan through a hydrogen bond may be 10 or more.
- the portion bonded to the schizophyllan through a hydrogen bond may be deoxyribonucleotide, and the degree of polymerization thereof may be 60 or more.
- the moiety bound to the schizophyllan through a hydrogen bond is a derivative of deoxyribonucleotide in which a phosphodiester bond is substituted with a phosphorothioate bond in deoxyribonucleotide.
- the degree of polymerization may be 20 or more.
- a derivative of deoxyribonucleotide in which the phosphodiester bond is substituted with a phosphorodithioate bond in the deoxyribonucleotide in the portion bonded to the schizophyllan through a hydrogen bond It may be.
- the second aspect of the present invention solves the above problems by providing a pharmaceutical composition comprising the polynucleotide / schizophyllan complex according to the first aspect of the present invention.
- a polynucleotide / schizophyllan complex can be formed through hydrogen bonding between schizophyllan and a polynucleotide regardless of the type, molecular weight, combination, etc. of the polynucleotide having schizophyllan and CpG sequences,
- a polynucleotide / schizophyllan complex can be obtained by a single operation.
- the pharmaceutical composition comprising the polynucleotide / schizophyllan complex of the present invention has a more specific immune response with respect to a polynucleotide having a broad CpG sequence than when a polynucleotide having a CpG sequence is used alone. Can be guided effectively. Therefore, application as a vaccine or an immunostimulant can be expected.
- polynucleotide / Schizophyllan complex (hereinafter sometimes simply referred to as “polynucleotide / schizophyllan complex”) according to the first embodiment of the present invention is referred to as “schizophyllan”.
- schizophyllan a polynucleotide or polynucleotide derivative having a CpG sequence bonded to schizophyllan via a hydrogen bond.
- the polynucleotide or polynucleotide derivative and schizophyllan form a complex having a triple helix structure consisting of one molecular chain of the polynucleotide or polynucleotide derivative and two molecular chains of schizophyllan. is doing.
- the polynucleotide or polynucleotide derivative used for the production of the polynucleotide / schizophyllan complex can bind to schizophyllan via a hydrogen bond and has a CpG sequence.
- Oligonucleotide having an immune response stimulating activity was discovered by Tokunaga et al. In 1984 in the process of searching for an antitumor component of BCG. Then, it has been clarified that the activation action is caused by a specific base sequence containing cytosine guanine dinucleotide (5′-CpG-3 ′: so-called CpG sequence) (for example, Tokunaga, T. et al. , Et al., J. Natl. Cancer Inst., 72, 955 (1984) and Tokunaga, T., et al., J. Natl. Cancer Res., 79, 682 (1988)).
- cytosine guanine dinucleotide 5′-CpG-3 ′: so-called CpG sequence
- an unmethylated CpG motif is a short nucleotide sequence (generally consisting of 4 to 10 nucleotides) containing at least one cytosine (C) -guanine (G) sequence. Which is not methylated at position 5 of cytosine in the cytosine-guanine sequence.
- CpG means unmethylated CpG unless otherwise specified.
- CpG motifs examples include adenine, G: guanine, C: cytosine, T: thymine, U: uracil).
- AACGTT AGCGTT, GACGTT, GGCGTT, ACGCGTC, AGCGTC, GACGTC, GGCGTC, AACGCC, AGCGCC, GACGCC, GGCGCC, AACCGCT, AGCGCT, GACGCT, and GGCGCT
- An oligonucleotide composed of about 8 to 100 containing these sequences has immunostimulatory activity.
- the following sequence is an example of an immunostimulatory oligonucleotide containing a CpG motif that has been reported to be effective for NK cell activation (underlined indicates a CpG motif and capital letters represent thiolated DNA) (eg S. Iho, T. Yamamoto, T. Takahashi and S. Yamamoto, J. immunol., 1999, 163, 3642-3652.).
- a polynucleotide (for example, RNA or DNA) containing the above-described CpG sequence may be hybridized with a polynucleotide or polynucleotide derivative having a base sequence that binds to schizophyllan via a hydrogen bond. It can be obtained or synthesized using any known method.
- the polynucleotide or polynucleotide derivative is a chimeric nucleic acid in which the 5 ′ end of RNA is bound to the 3 ′ end of DNA, the phosphodiester bond between RNA and DNA is particularly susceptible to degradation.
- the hydroxyl group at the 2 ′ position in the 5 ′ terminal nucleotide of RNA bound to DNA is substituted with a methoxy group or a fluoro group and / or the 3 ′ position of the first ribonucleotide bound to DNA and the RNA adjacent thereto It is preferable to improve the resistance to hydrolysis by derivatizing the phosphodiester group between the 5′-position and the phosphorothioate group.
- polynucleotide derivatives may be used in place of polynucleotides in order to improve in vivo stability.
- examples of polynucleotide derivatives include those in which all or part of the 2′-position hydroxyl group of ribonucleotide is substituted with fluorine or methoxy group, polyribonucleotide (RNA) or polydeoxyribonucleotide (DNA) phosphodiester And those in which all or part of the group is substituted with a phosphorothioate group.
- the phosphodiester group of the polyribonucleotide or polydeoxyribonucleotide is substituted with a phosphorothioate group, it is preferable that 50% or more of the phosphodiester bond is substituted with a phosphorothioate group.
- the position of the phosphodiester group substituted with the phosphorothioate group is not particularly limited, and a plurality of consecutive phosphodiester groups may be substituted, or the phosphorothioate groups may be substituted so as not to be adjacent to each other.
- polynucleotide or the polynucleotide derivative having a partial base sequence bonded through a hydrogen bond include polyadenosine (polyadenylic acid, polyriboadenylic acid) (polyA), polycytidine (polycytidylic acid, Polyribocytidylic acid) (polyC), polydeoxyadenosine (polydeoxyadenylic acid, polydeoxyriboadenylic acid) (poly (dA)), polydeoxythymidine (polydeoxythymidylic acid, polydeoxyribothymidylic acid) (poly (dT)) It is done.
- the number of bases of the polynucleotide is not particularly limited as long as it can form a complex having a triple helix structure with schizophyllan as described above. However, in order to improve the complex formation ability, the polynucleotide binds to schizophyllan. It preferably has a repeating sequence of any one of polyadenosine (polyA), polycytidine (polyC), polydeoxyadenosine (poly (dA)), and polydeoxythymidine (poly (dT)) having high ability.
- the types of bases and nucleotides or nucleotide derivatives constituting the preferred repetitive sequence and the number of bases are appropriately determined according to the length of the polynucleotide or polynucleotide derivative part having the CpG sequence, the molecular weight of schizophyllan used, and the like.
- the length of the repetitive sequence is that if the number of bases is small, it is difficult to form a triple helical structure by hydrogen bonding with schizophyllan. Therefore, the number of bases must be 10 or more, and preferably 20 to 80. 30 to 80 is more preferable.
- the molecular weight of schizophyllan is appropriately adjusted according to the base sequence and base length of the polynucleotide or polynucleotide derivative contained in the polynucleotide / schizophyllan complex.
- the so-called cluster effect polymeric cooperative phenomenon
- the weight average molecular weight (per molecular chain) of schizophyllan that can form a complex with a nucleic acid varies depending on the type and higher order structure of the nucleobase, but is preferably 20,000 or more, more preferably 40,000 or more. More preferably, it is 60,000 or more.
- the number of hydroxyl groups that form hydrogen bonds with nucleobases on the polynucleotide is usually 5 or more, preferably 8 or more, and more preferably 10 or more.
- the weight average molecular weight of schizophyllan can be determined using any known method such as a light scattering method or a sedimentation velocity method (ultracentrifugation method).
- Schizofiran is generally produced by fungi and eubacteria, so it is obtained by culturing these microorganisms, homogenizing the cells, and isolating them from impurities such as cell eluate and insoluble residue by a method such as ultracentrifugation. be able to.
- the thus obtained schizophyllan has a high molecular weight (weight average molecular weight of about several hundred thousand) and takes a triple helical structure. If necessary, the molecular weight may be lowered.
- the molecular weight reduction is performed by appropriately selecting appropriate methods and conditions from enzymatic degradation, acid hydrolysis and the like.
- the weight average molecular weight of the polynucleotide / schizophyllan complex can be measured using any known method such as gel permeation chromatography (GPC) and viscosity measurement.
- the molecular weight of the polynucleotide / schizophyllan complex is preferably 1 ⁇ 10 5 or more and 3 ⁇ 10 6 or less.
- the measured value of the inertial radius by multi-angle light scattering measurement or X-ray small angle scattering is preferably 20 nm or more and 200 nm or less.
- the inertial radius of the polynucleotide / schizophyllan complex is less than 20 nm or more than 200 nm, it is difficult to recognize the receptor for schizophyllan present on the cell surface, so that it is considered that the cellular uptake hardly occurs.
- any known method can be used for measuring the radius of inertia of the polynucleotide / schizophyllan complex. For example, it is described in the literature (The Journal of Physical Chemistry B 116 (1), 87-94 (2011)). More specifically, based on the molecular weight of the polynucleotide / schizophyllan complex, the light scattering method is expected to be less than 10 nm when the radius of inertia is expected to be 10 nm or more. For those, the X-ray small angle scattering method is preferably used.
- the X-ray scattering intensity I measured using X-ray small angle scattering was plotted against the logarithm of the q value (absolute value of the scattering vector) defined by the following formula (I).
- the slope a in the range of q from 10 ⁇ 1 nm to 1 nm ⁇ 1 is ⁇ 1.5 or more and ⁇ 0.5 or less.
- ⁇ represents the X-ray scattering angle
- ⁇ represents the X-ray wavelength
- the q value is a function of the X-ray scattering angle ⁇ and the X-ray wavelength ⁇
- the relationship between the X-ray scattering intensity I and the q value indicates the angle and wavelength dependence of the X-ray scattering intensity I. .
- the a value corresponds to the slope a when the X-ray scattering intensity I is plotted against the logarithm of the q value.
- the slope a in the range of q from 10 ⁇ 1 nm to 1 nm ⁇ 1 is preferably ⁇ 1.5 or more and ⁇ 0.5 or less.
- composition includes the polynucleotide / schizophyllan complex according to the first embodiment of the present invention. .
- the pharmaceutical composition in addition to the polynucleotide / schizophyllan complex and polynucleotide / schizophyllan complex as active ingredients, any known ingredients (any carrier, excipient and additive acceptable for pharmaceutical use) ) And formulation methods can be used.
- the pharmaceutical composition can take the form of tablets, suppositories, capsules, syrups, microcapsules such as nanogels, sterile liquids, injections such as suspensions, aerosols, sprays, and the like.
- the pharmaceutical composition can be administered to humans or warm-blooded animals (mouse, rat, rabbit, sheep, pig, cow, horse, chicken, cat, dog, monkey, etc.) by either oral or parenteral routes.
- parenteral administration routes include subcutaneous, intradermal and intramuscular injection, intraperitoneal administration, infusion, spraying on the nasal mucosa and pharynx, and the like.
- the dose of the active ingredient polynucleotide / schizophyllan complex varies depending on the activity, the disease to be treated, the type of animal to be administered, the body weight, sex, age, severity of the disease, administration method, and the like. Taking an adult with a body weight of 60 kg as an example, in the case of oral administration, the daily dose is usually about 0.1 to about 100 mg, preferably about 1.0 to about 50 mg, more preferably about 1.0 to about 20 mg. In the case of parenteral administration, the daily dose is usually about 0.01 to about 30 mg, preferably about 0.1 to about 20 mg, more preferably about 0.1 to about 10 mg. When administered to other animals, the dose obtained by converting the above dose to a dose per unit body weight and multiplying by the body weight of the animal to be administered is used.
- the pharmaceutical composition can be used as a vaccine, an immunostimulant, and the like for the treatment and prevention of infectious diseases caused by pathogens such as bacteria and viruses by activating immunity and tumors such as cancer.
- Example 1 Production of schizophyllan having different molecular weights
- Schizophyllum commune Fries was cultured, and schizophyllan produced in the culture solution was separated and purified to obtain high molecular weight schizophyllan.
- the polymeric schizophyllan was physically decomposed by sonication.
- the molecular weight of schizophyllan obtained by changing the sonication time could be changed.
- schizophyllan In order to obtain further low molecular weight schizophyllan, it was treated with formic acid.
- the obtained schizophyllan with different molecular weights can be found in literature (Norisuye et al., J. Polym. Sci., Polym. Phys. Ed. 1980, 18, 547, Yanaki et al., Macromolecules 1980, 13, 1462, Kashiwagi et al., Macromolecules 1981, 14 , 1220), and purified by separation using water as a good solvent and acetone or methanol as a poor solvent.
- the obtained sample name and the obtained molecular weight are shown in Table 1. Further, each sample was subjected to 1 H NMR measurement in DMSO at 70 ° C., and the ⁇ -1,3-glucan skeleton was retained. In particular, from the peak ratio of chemical shifts of 4.1 ppm and 4.5 ppm, ⁇ - It was confirmed that the side chain of 1,6-glucan bond was retained in the range of 2 to 5 with respect to glucose 10 of the main chain. Regarding chemical structure, it is described on pages 87-90 of Toshio Yanagi's thesis (Osaka University Faculty of Science, 1984). (1) Gas chromatogram after appropriate treatment after hydrolysis with sulfuric acid. (2) Hakomori Law (Reference: Bulletin of Yamagata University (Agriculture), Vol.
- the molecular weight was determined by a scattering method using a light scattering photometer, a centrifugal equilibrium method using ultracentrifugation, and a scattering method using X-ray small angle scattering.
- the light scattering method is suitable for determining the molecular weight of a sample having a relatively high molecular weight
- the centrifugal equilibrium method is suitable for determining a medium amount to a low molecular weight sample
- the X-ray small angle scattering is suitable for determining a molecular weight of a sample having a relatively low molecular weight. Since molecular weight determination in an aqueous system has many errors, it was determined by two or more independent methods.
- Table 1 shows the results.
- the literature Nasuye et al., J. Polym. Sci., Polym. Phys. Ed. 1980, 18, 547.
- Schizophyllan is judged to have a triple helix structure in water.
- the weight average molecular weight is 20,000 or more, preferably 30,000 or more as one polymer chain of schizophyllan, the majority of schizophyllan has a triple helical structure in water.
- the weight average molecular weight is 10,000 or less, it can be determined that the polymer exists as one polymer chain in water.
- LS light scattering
- UCF ultracentrifugation
- SAXS X-ray small angle scattering method.
- LS light scattering
- UCF ultracentrifugation
- SAXS X-ray small angle scattering method.
- the ratio of the weight average molecular weight to the number average molecular weight determined from the GPC chromatogram for light scattering, and for ultracentrifugation, data from centrifugal equilibration (Fujita, H. Foundations of Ultracentrifugal Analysis; Wiley: New York, 1975 ) Determined according to the method described.
- Note 2 It is known that schizophyllan maintains the same conformation as neutral water in order to improve the accuracy of light scattering. Measured in aqueous O1N NaOH.
- Example 2 at different molecular weights schizophyllan and nucleic poly (dA) X of the complexed known nucleic acid solid phase synthesis, was synthesized poly (dA) X is a polymer of deoxyadenosine monophosphate.
- X represents the degree of polymerization. That is, (dA) X indicates an X-mer of deoxyadenosine.
- S-poly (dA) X which is a phosphorothioate derivative in which one of the oxygen atoms of phosphoric acid of the phosphodiester bond is substituted with sulfur, and two of the oxygen atoms of phosphoric acid are substituted with sulfur.
- a phosphorodithioate derivative D-poly (dA) X was also synthesized. All were purified using HPLC to obtain a purified product having a purity of 99% or more.
- schizophyllan was dissolved in a 0.25N NaOH solution (15 mg / mL) and allowed to stand for 2 days or longer to completely dissociate schizophyllan into a single strand, followed by poly (deoxyribonucleotide / schizophyllan complex).
- Body) solution and phosphate buffer (330 mM NaH 2 PO 4 , pH 4.5) are mixed so that the pH is in the range of 6-7, and the mixing ratio of schizophyllan and deoxyribonucleotide is 3:
- a basic aqueous solution of schizophyllan was added so as to be 1, and stirred. The obtained solution was allowed to stand at 4 ° C. overnight, and various measurements were performed.
- DMSO remains undesirably when used in a biological experiment.
- the polymerization X of deoxyadenosine monophosphate is preferably 20 or more, more preferably 40 or more, and 60 for the yield of the complex to be close to 100%.
- the above is necessary.
- the phosphorothioate type S-poly (dA) X it is preferably 10 or more, more preferably 20 or more, and 40 or more is necessary to make the yield of the complex close to 100%.
- phosphorodithioate type D-poly (dA) X it is preferably 10 or more, and 20 or more is necessary for the yield of the complex to be close to 100%.
- Example 3 Conjugation of schizophyllan having different molecular weights with poly (dA) X tail added CpG DNA CpG DNA was added as a K-type CpG DNA with a poly dA tail: (dA) 40 at the 5'-end 5 ′-(dA) 40 -ATCGACTCTCGAGCGTCTC-3 ′ (SEQ ID NO: 1; abbreviated as (dA) 40 -K3), and 5 ′-(dA) 40 -GGTGCATCGATGCAGGGGGGG (SEQ ID NO: 1) as D-type CpG DNA (DA) 40 -D35).
- Both DNA phosphate backbones are phosphorothioate, and both samples are synthetic products of Hokaido System Science, which are purified by high performance liquid chromatography. Further, K3- (dA) 40 and D35- (dA) 40 with a poly dA tail added to the 3′-end were synthesized in the same manner. The composite of these samples was evaluated in the same manner as in Example 2. The results are shown in Table 5.
- Example 4 Purification of complex, molecular weight, measurement of spread and cell irritation Unreacted DNA has a much lower molecular weight than the complex and can be separated by GPC. The solution flowing out from the detector was collected while confirming the fraction of the complex. Further, unreacted schizophyllan was removed by a method using an anion exchange column described in JP 2011-178707 A. Using these methods, a composite rate of 90% or more could be achieved from a mixed solution having a composite rate of 50% or less. Even if this purified complex was left as an aqueous solution at room temperature for 10 days, the complexing rate did not change.
- the weight average absolute molecular weight Mw was determined by the method described in the literature (The Journal of Physical Chemistry B 116 (1), 87-94 (2011)).
- the inertia radius Rg was measured.
- the light scattering method was used for those having a thickness of 10 nm or more, and the X-ray small angle scattering method was used for those having a thickness of less than 10 nm.
- the distribution of molecular weight and radius of inertia becomes large, so the minimum and maximum values of both measured values were recorded.
- mice-derived peritoneal macrophages were isolated by the following method (hereinafter referred to as “physiological activity”). That is, isolation of mouse-derived peritoneal macrophages was performed by a conventional method described in the literature. That is, the carotid artery of an 8-week-old female Balb / c mouse was cut and bled to death, disinfected with 70% ethanol, a cut was made in the abdominal skin, and the skin was peeled to expose the peritoneum.
- Cold PBS phosphate buffered saline
- the mixture was centrifuged at 1,000 rpm for 10 minutes at 4 ° C. using a polypropylene centrifuge tube. The supernatant was removed, and the suspension was suspended in RPMI 1640 medium containing 10% calf fetal serum (edited by the Japanese Biochemical Society, New Chemistry Experiment Course 12, Molecular Immunology I, Immune Cells / Cytokine, Tokyo Kagaku Dojin (1989)).
- a 96-well plate was inoculated with 2 ⁇ 10 5 mouse-derived peritoneal macrophages suspended in RPMI 1640 medium containing 100 ⁇ L of 10% fetal calf serum, and cultured on the plate at 37 ° C. under 5% CO 2 for 2 hours. After adhesion, CpG DNA and a complex of CpG DNA and schizophyllan were added, and the culture supernatant was recovered after culturing at 37 ° C. under 5% CO 2 for 24 hours. The total amount of IL-12 in the mouse contained in the culture supernatant was measured using Mouse Interleukin-12 Total ELISA (manufactured by Endogen) according to the attached protocol.
- the amount of total IL-12 contained in the culture supernatant was higher in the immunostimulatory agent of the present invention, which is a complex than in the administration of CpG DNA alone.
- the results are shown as ⁇ when the difference is twice or more as being physiologically active, and x when the difference is similar.
- the table shows the results for complexes containing D-type CpG DNA, but the results were similar for complexes containing K-type CpG DNA.
- FIG. 1 shows a graph in which the molecular weight calculated from the multi-angle light scattering measurement is plotted against the radius of inertia in the Sd (A) 40 -D35 complex using S1, S2, and S3. It was found that the molecular weight and radius of inertia of the complex formed increased with the increase in the molecular weight of schizophyllan. When the bioactivity of the prepared complex was evaluated, the complex having a large molecular weight and radius of inertia showed high activity, but the activity of the complex having a small radius of inertia was very small.
- Example 5 Preparation of polynucleotide / schizophyllan complex Relationship between concentration and degree of branching and physiological activity
- Sd (A) 40 -D35 using S3 in Example 2, the preparation of the complex
- schizophyllan was dissolved in a 0.25N NaOH solution at a concentration of 15 mg / mL to dissociate schizophyllan into a single strand, and then a poly (deoxyribonucleotide / schizophyllan complex) solution and a phosphate buffer (330 mM NaH). 2 PO 4 , pH 4.5).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Inorganic Chemistry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
本発明は、シゾフィランと、シゾフィランと水素結合を介して結合し、CpG配列を有するポリヌクレオチド又はポリヌクレオチド誘導体とを含み、ポリヌクレオチド又はポリヌクレオチド誘導体の分子鎖1本と前記シゾフィランの分子鎖2本とからなる三重螺旋構造を有する複合体を形成していることを特徴とするポリヌクレオチド/シゾフィラン複合体及びそれを含む医薬組成物に関する。
Description
本発明は、新規なポリヌクレオチド/シゾフィラン複合体及びそれを含む医薬組成物に関する。
ワクチンによる感染予防の基本的な原理は、人為的な擬似感染により、獲得免疫を誘導し、特定の病原体に対する抗体産生や細胞性免疫を誘導することにある。獲得免疫においては、免疫の「記憶」を担当するT細胞やB細胞が中心的な役割を果たし、DNAの再構成による抗体の可変領域の多様性が、無数の抗原への特異的な免疫反応を可能にしていることが知られている。一方、白血球、マクロファージ、樹状細胞等の食細胞が中心的な役割を果たしている自然免疫は、従来、病原体や異物を貪食する非特異的なプロセスであり、獲得免疫成立までの「一時しのぎ」としての役割のみを果たしていると考えられていたが、自然免疫の分子機構に関する研究の進展により、自然免疫においても、自己・非自己の特異的な認識が行われていることや、自然免疫が獲得免疫の成立に必須であることが明らかにされた。より具体的には、樹状細胞、マクロファージ、B細胞等の抗原提示細胞に存在するToll様受容体(TLR)ファミリーが、様々な病原体と反応し、サイトカインの産生を誘導し、ナイーブT細胞のTh1細胞への分化の促進、キラーT細胞の活性化等を通して、獲得免疫を誘導することが、最近の研究により明らかにされた。
一連のTLRファミリーにより認識される病原体の構成成分は多岐にわたるが、その中の1つに、TLR9のリガンドである、CpG配列を有するDNA(CpG DNA)がある。CpG配列は、中心部にシトシン(C)とグアニン(G)が並ぶ6個の塩基を基本とする配列で、ほ乳類には少なく、微生物には多く見られる塩基配列である。また、ほ乳類においては、少数存在するCpG配列の殆どがメチル化を受けている。ほ乳類中に殆ど存在しない非メチル化CpG配列は、強力な免疫賦活活性を有している(例えば、非特許文献1~3参照)。エンドサイトーシスにより細胞内に取り込まれたCpG DNAは、ファゴソーム様小胞体に存在するTLR9により認識され、Th1反応を強く誘導する。Th1反応は、Th2反応が優位なアレルギー反応を抑制すると共に、強い抗腫瘍活性を有する。また、CpG DNAには、一部のアジュバントに見られるような毒性等の副作用もない。そのため、CpG DNAは、感染予防に加え、アレルギー疾患、腫瘍性疾患に対するアジュバントとしても期待されている(例えば非特許文献4参照)。
しかし、CpG DNAを免疫療法のアジュバントとして使用する場合、細胞質や血漿中のヌクレアーゼによる分解や、タンパク質との非特異的な結合を回避しつつ、いかに標的細胞の内部にCpG DNAを到達させるかが問題となる。
本発明者らは、新規な遺伝子キャリアとしてシゾフィラン(以下、「SPG」と略称する場合がある。)に着目し、これまでに、シゾフィランが核酸医薬(アンチセンスDNA、CpG DNA)をはじめとする種々の核酸と新しいタイプの複合体を形成することを見出してきた(例えば、特許文献1、2、非特許文献5~7参照)。
天然では三重螺旋で存在するシゾフィランを、ジメチルスルホキシド(DMSO)等の非プロトン性極性有機溶媒、或いは0.1N以上のアルカリ溶液に溶解して1本鎖に解離させた後に、1本鎖の核酸を加え、溶媒を水或いは中性に戻すことによって、核酸1分子とシゾフィラン2分子とからなる三重螺旋複合体が形成することを見出した。この場合、三重螺旋複合体におけるシゾフィラン分子と核酸分子とは、主として水素結合と疎水性相互作用により分子間結合を形成しているものと考えられている(非特許文献8参照)。
上述のように、核酸をシゾフィランと複合化することにより、ヌクレアーゼによる核酸分子の加水分解や、血漿タンパク質と核酸との非特異的な結合等の、核酸分子と生体内タンパク質との望ましくない相互作用を抑制しつつ、核酸を細胞の内部に到達させることが可能になった。シゾフィランと核酸との複合体、さらには抗原性を有するタンパク質を含む3元複合体を利用して、CpG DNAの細胞内へのデリバリーに成功した(例えば、特許文献3、4、非特許文献9~11参照)。
Bacterial CpG DNA Activates Immune Cells to Signal Infectious Danger, H. Wagner, Adv. Immunol., 73, 329-368 (1999).
CpG Motifs in Bacterial DNA and Their Immune Effects, M. Krieg, Annu. Rev. Immunol., 20, 709-760 (2002).
The discovery of immunostimulatory DNA sequence, S. Yamamoto, T. Yamamoto, and T. Tokunaga, Springer Seminars in Immunopathology, 22, 11-19 (2000).
「標準免疫学」第2版、医学書院、2002年、333頁
Molecular Recognition of Adenine, Cytosine, and Uracil in a Single-Stranded RNA by a Natural Polysaccharide: Schizophyllan. K. Sakurai and S. Shinkai, J. Am. Chem. Soc., 122, 4520-4521 (2000).
Polysaccharide-Polynucleotide Complexes. 2. Complementary Polynucleotide Mimic Behavior of the Natural Polysaccharide Schizophyllan in the Macromolecular Complex with Single-Stranded RNA and DNA. K. Sakurai, M. Mizu and S. Shinkai, Biomacromolecules, 2, 641-650 (2001).
Dectin-1 targeting delivery of TNF-α antisense ODNs complexed with β-1,3-glucan protects mice from LPS-induced hepatitis. S. Mochizuki and K. Sakurai, J. Control. Release, 151 (2011) 155-161.
Structural Analysis of the Curdlan/Poly (cytidylic acid) Complex with Semiempirical Molecular Orbital Calculations. K. Miyoshi, K. Uezu, K. Sakurai and S. Shinkai, Biomacromolecules, 6, 1540-1546 (2005).
A Polysaccharide Carrier for Immunostimulatory CpG DNAs to Enhance Cytokine Secretion, M. Mizu, K. Koumoto, T. Anada, T. Matsumoto, M. Numata, S. Shinkai, T. Nagasaki and K. Sakurai, J. Am. Chem. Soc., 126, 8372-8373 (2004).
Protection of Polynucleotides against Nuclease-mediated Hydrolysis by Complexation with Schizophyllan, M. Mizu, K. Koumoto, T. Kimura, K. Sakurai and S. Shinkai, Biomaterials, 25, 15, 3109-3116 (2004).
Synthesis and in Vitro Characterization of Antigen-Conjugated Polysaccharide as a CpG DNA Carrier, N. Shimada, K. J. Ishii, Y. Takeda, C. Coban, Y. Torii, S. Shinkai, S. Akira and K. Sakurai, Bioconjugate Chem., 17 1136-1140 (2006).
しかしながら、上記従来の技術は、以下のような課題を有していた。例えば、非特許文献11記載のシゾフィラン/抗原性を有するタンパク質/CpG DNAの3元複合体の製造方法においては、過ヨウ素酸酸化により、シゾフィランの側鎖のグルコース残基上にホルミル基を生成させ、還元的アミノ化反応により、ホルミル基と抗原性を有するペプチド(以下、「抗原性ペプチド」と略称する場合がある。)のアミノ基とを反応させ、シゾフィランと抗原性ペプチドとが共有結合した複合体を形成するが、収率がきわめて低いという課題を有していた。かかる事情に鑑みて、例えば、特許文献4記載のシゾフィラン/抗原性タンパク質(抗原性ペプチド)/CpG DNAの3元複合体の製造方法においては、側鎖にホルミル基を有するシゾフィランと抗原性ペプチドとを、アルカリ水溶液中で反応させると同時に中和を行ない、或いはアルカリ水溶液中で反応させて逐次中和を行なうことにより、シゾフィランの側鎖上のホルミル基と抗原性ペプチドのアミノ基との反応性及び収率を向上させている。しかしながら、ペプチドには複数のアミノ基が存在するため、反応点の制御が困難である。したがって、抗原性ペプチドの反応位置による免疫原性の違いや、シゾフィランとの反応生成物が複雑な混合物となることに起因する分離精製の困難性等の問題の発生が懸念される。また、水素結合による複合体形成を利用したシゾフィランとDNAとの複合体の形成に比べ、シゾフィランと抗原性ペプチドの共有結合の形成に基づく複合体の形成は煩雑な工程を必要とする。これらの点において、特許文献4記載のシゾフィラン/抗原性ペプチド/CpG DNAの3元複合体の製造方法は、生産性等の点で依然として課題を有している。
本発明はかかる事情に鑑みてなされたもので、生産性に優れ、高い免疫賦活活性を有するポリヌクレオチド/シゾフィラン複合体及びそれを含む医薬組成物を提供することを目的とする。
前記目的に沿う本発明の第1の態様は、シゾフィランと、
前記シゾフィランと水素結合を介して結合し、CpG配列を有するポリヌクレオチド又はポリヌクレオチド誘導体とを含み、
前記ポリヌクレオチド又はポリヌクレオチド誘導体の分子鎖1本と前記シゾフィランの分子鎖2本とからなる三重螺旋構造を有する複合体を形成していることを特徴とするポリヌクレオチド/シゾフィラン複合体を提供することにより上記課題を解決するものである。
前記シゾフィランと水素結合を介して結合し、CpG配列を有するポリヌクレオチド又はポリヌクレオチド誘導体とを含み、
前記ポリヌクレオチド又はポリヌクレオチド誘導体の分子鎖1本と前記シゾフィランの分子鎖2本とからなる三重螺旋構造を有する複合体を形成していることを特徴とするポリヌクレオチド/シゾフィラン複合体を提供することにより上記課題を解決するものである。
本発明の第1の態様に係るポリヌクレオチド/シゾフィラン複合体において、分子量が1×105以上3×106以下であってもよい。
本発明の第1の態様に係るポリヌクレオチド/シゾフィラン複合体において、多角度光散乱測定又はX線小角散乱による慣性半径の測定値が20nm以上200nm以下であってもよい。
本発明の第1の態様に係るポリヌクレオチド/シゾフィラン複合体において、X線小角散乱を用いて測定したX線の散乱強度Iを、下記の式(I)で定義されるq値の対数に対しプロットした場合、qが10-1nmから1nm-1の範囲における傾きaが-1.5以上-0.5以下であることが好ましい。
なお、式(I)において、θはX線の散乱角を表し、λはX線の波長を表す。
本発明の第1の態様に係るポリヌクレオチド/シゾフィラン複合体において、前記ポリヌクレオチド又はポリヌクレオチド誘導体が、ホスホジエステル結合の一部又は全部がホスホロチオエート結合もしくはホスホロジチオエート結合で置換されたポリヌクレオチド誘導体であってもよい。
本発明の第1の態様に係るポリヌクレオチド/シゾフィラン複合体において、前記ポリヌクレオチド又はポリヌクレオチド誘導体が、デオキシリボヌクレオチド又はその誘導体であってもよい。
本発明の第1の態様に係るポリヌクレオチド/シゾフィラン複合体において、デオキシリボヌクレオチド又はその誘導体のうち、前記シゾフィランと水素結合を介して結合する部分の重合度が10以上であってもよい。
本発明の第1の態様に係るポリヌクレオチド/シゾフィラン複合体において、前記シゾフィランと水素結合を介して結合する部分がデオキシリボヌクレオチドであり、その重合度が60以上であってもよい。
本発明の第1の態様に係るポリヌクレオチド/シゾフィラン複合体において、前記シゾフィランと水素結合を介して結合する部分が、デオキシリボヌクレオチドにおいてホスホジエステル結合がホスホロチオエート結合に置換されたデオキシリボヌクレオチドの誘導体であり、その重合度が20以上であってもよい。
本発明の第1の態様に係るポリヌクレオチド/シゾフィラン複合体において、前記シゾフィランと水素結合を介して結合する部分が、デオキシリボヌクレオチドにおいてホスホジエステル結合がホスホロジチオエート結合に置換されたデオキシリボヌクレオチドの誘導体であってもよい。
本発明の第2の態様は、本発明の第1の態様に係るポリヌクレオチド/シゾフィラン複合体を含む医薬組成物を提供することにより上記課題を解決するものである。
本発明によると、以下のような有利な効果が得られる。
(1)シゾフィラン及びCpG配列を有するポリヌクレオチドの種類、分子量、組み合わせ等に関わりなく、シゾフィランとポリヌクレオチドとの間の水素結合を介してポリヌクレオチド/シゾフィラン複合体を形成できるため、広範なシゾフィランとCpG配列を有するポリヌクレオチドの組み合わせについて、単一の操作によりポリヌクレオチド/シゾフィラン複合体を得ることができる。
(1)シゾフィラン及びCpG配列を有するポリヌクレオチドの種類、分子量、組み合わせ等に関わりなく、シゾフィランとポリヌクレオチドとの間の水素結合を介してポリヌクレオチド/シゾフィラン複合体を形成できるため、広範なシゾフィランとCpG配列を有するポリヌクレオチドの組み合わせについて、単一の操作によりポリヌクレオチド/シゾフィラン複合体を得ることができる。
(2)シゾフィランとCpG配列を有するポリヌクレオチドとの水素結合は、溶媒のpHを変化させることにより迅速かつ高効率に反応を進行させることができる。したがって、短時間に高収率でポリヌクレオチド/シゾフィラン複合体が得られ、単離精製に要する手間も軽減することが可能になる。したがって、本発明のポリヌクレオチド/シゾフィラン複合体は、生産性に優れており、低コストで製造することができる。
(3)本発明のポリヌクレオチド/シゾフィラン複合体を用いることにより、CpG配列を有するポリヌクレオチドを単独で使用した場合に比べ、CpG配列を有するポリヌクレオチドに特異的な免疫応答の誘導をより効果的に行うことができる。
(4)本発明のポリヌクレオチド/シゾフィラン複合体を含む医薬組成物は、CpG配列を有するポリヌクレオチドを単独で用いた場合よりも、広範なCpG配列を有するポリヌクレオチドについて特異的な免疫応答をより効果的に誘導できる。そのため、ワクチンや免疫賦活剤としての応用が期待できる。
続いて、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
[1]ポリヌクレオチド/シゾフィラン複合体
本発明の第一の実施の形態に係るポリヌクレオチド/シゾフィラン複合体(以下、単に「ポリヌクレオチド/シゾフィラン複合体」と略称する場合がある。)は、シゾフィランと、シゾフィランと水素結合を介して結合し、CpG配列を有するポリヌクレオチド又はポリヌクレオチド誘導体とを含んでいる。
本発明の第一の実施の形態に係るポリヌクレオチド/シゾフィラン複合体(以下、単に「ポリヌクレオチド/シゾフィラン複合体」と略称する場合がある。)は、シゾフィランと、シゾフィランと水素結合を介して結合し、CpG配列を有するポリヌクレオチド又はポリヌクレオチド誘導体とを含んでいる。
ポリヌクレオチド/シゾフィラン複合体において、ポリヌクレオチド又はポリヌクレオチド誘導体と、シゾフィランとは、ポリヌクレオチド又はポリヌクレオチド誘導体の分子鎖1本とシゾフィランの分子鎖2本とからなる三重螺旋構造を有する複合体を形成している。
ポリヌクレオチド/シゾフィラン複合体の製造に使用されるポリヌクレオチド又はポリヌクレオチド誘導体は、シゾフィランと水素結合を介して結合することができると共に、CpG配列を有している。
免疫応答の刺激活性を有するオリゴヌクレオチドは、1984年にTokunagaらによりBCGの抗腫瘍性成分を検索する過程で発見された。そして、その活性化作用がシトシン・グアニンジヌクレオチド(5’-CpG-3’:所謂CpG配列)を含む特定の塩基配列に起因するものであることが明らかにされた(例えば、Tokunaga,T., et al., J. Natl. Cancer Inst., 72, 955(1984)及びTokunaga,T., et al., J. Natl. Cancer Res., 79, 682(1988)を参照。)。
脊椎動物又は植物以外のCpG配列をもつゲノムDNAにも同様の活性が認められている。免疫刺激活性にはCpGコアの前後の配列も重要と考えられ、特に、メチル化されていないCpGを有し、その前後に置換プリン(Pu)と置換ピリミジン(Py)が配列した5’-PuPuCpGPyPy-3’が、代表的な非メチル化CpGモチーフとしてコンセンサスを得ている(例えば、Krieg, A.,他, Nature, 374, 576(1995)を参照。)。ここで、非メチル化CpGモチーフとは、よく知られているように、少なくとも1つのシトシン(C)-グアニン(G)配列を含む短いヌクレオチド配列(一般的には4~10個のヌクレオチドから成る配列)であって、該シトシン-グアニン配列におけるシトシンの5位がメチル化されていないものを指称する。なお、以下の説明において、CpGとは、特に断らない限り非メチル化CpGを意味する。
有用なCpGモチーフ(ヘキサマー)の例を以下に記載する(但し、A:アデニン、G:グアニン、C:シトシン、T:チミン、U:ウラシル)。
AACGTT、AGCGTT、GACGTT、GGCGTT、AACGTC、AGCGTC、GACGTC、GGCGTC、AACGCC、AGCGCC、GACGCC、GGCGCC、AACGCT、AGCGCT、GACGCT、及びGGCGCT
これらの配列を含む8~100個程度で構成されるオリゴヌクレオチドが免疫刺激活性を有するものである。
以下の配列は、NK細胞の活性化に有効と報告されたCpGモチーフを含む免疫刺激性オリゴヌクレオチドの例である(下線部分がCpGモチーフを示し、また、大文字はチオール化DNAを表わす)(例えば、S. Iho, T. Yamamoto, T. Takahashi and S. Yamamoto, J. immunol., 1999, 163, 3642-3652. を参照。)。
accgataccggtgccggtgacggcaccacg
accgatagcgctgccggtgacggcaccacg
accgatgacgtcgccggtgacggcaccacg
accgattcgcgagccggtgacggcaccacg
ggggggggggggcgatcggggggggggggg
gggggggggggacgatcgtcgggggggggg
ggggggggggggaacgttgggggggggggg
GAGAACGCTCGACCTTCGAT
TCCATGACGTTCCTGATGCT
TCTCCCAGCGTGCGCCAT
GGggtcaacgttgaGGGGGg
accgatagcgctgccggtgacggcaccacg
accgatgacgtcgccggtgacggcaccacg
accgattcgcgagccggtgacggcaccacg
ggggggggggggcgatcggggggggggggg
gggggggggggacgatcgtcgggggggggg
ggggggggggggaacgttgggggggggggg
GAGAACGCTCGACCTTCGAT
TCCATGACGTTCCTGATGCT
TCTCCCAGCGTGCGCCAT
GGggtcaacgttgaGGGGGg
上述したCpG配列を含むポリヌクレオチド(例えば、RNA又はDNA)と、シゾフィランと水素結合を介して結合する塩基配列を有するポリヌクレオチド又はポリヌクレオチド誘導体とをハイブリッドさせてもよく、そのようなハイブリッドは、任意の公知の方法を用いて入手又は合成できる。なお、ポリヌクレオチド又はポリヌクレオチド誘導体が、DNAの3’末端側にRNAの5’末端側が結合したキメラ核酸である場合、RNAとDNAの間のホスホジエステル結合が、特に分解を受けやすくなるため、DNAと結合したRNAの5’末端側ヌクレオチドにおける2’位のヒドロキシル基をメトキシ基又はフルオロ基で置換し、かつ/又はDNAと結合した最初のリボヌクレオチドの3’位と、それに隣接するRNAの5’位との間のホスホジエステル基をホスホロチオエート基で置換する等の誘導体化を行い、加水分解に対する耐性を向上させておくことが好ましい。
ポリヌクレオチドは、生体内でヌクレアーゼによる分解を受けやすいので、生体内での安定性を向上させるために、ポリヌクレオチドの代わりにポリヌクレオチド誘導体を用いてもよい。ポリヌクレオチド誘導体の例としては、リボヌクレオチドの2’位のヒドロキシル基の全部又は一部がフッ素又はメトキシ基で置換されているもの、ポリリボヌクレオチド(RNA)又はポリデオキシリボヌクレオチド(DNA)のホスホジエステル基の全部又は一部がホスホロチオエート基で置換されているもの等が挙げられる。ポリリボヌクレオチド又はポリデオキシリボヌクレオチドのホスホジエステル基の一部がホスホロチオエート基で置換されている場合、ホスホジエステル結合の50%以上がホスホロチオエート基で置換されていることが好ましい。ホスホロチオエート基で置換されるホスホジエステル基の位置は特に制限されず、連続した複数のホスホジエステル基が置換されていてもよく、或いはホスホロチオエート基が互いに隣り合わないように置換されていてもよい。
水素結合を介して結合する部分塩基配列を有するポリヌクレオチド又はポリヌクレオチド誘導体の具体例としては、シゾフィランと結合能が高いポリアデノシン(ポリアデニル酸、ポリリボアデニル酸)(polyA)、ポリシチジン(ポリシチジル酸、ポリリボシチジル酸)(polyC)、ポリデオキシアデノシン(ポリデオキシアデニル酸、ポリデオキシリボアデニル酸)(poly(dA))、ポリデオキシチミジン(ポリデオキシチミジル酸、ポリデオキシリボチミジル酸)(poly(dT))が挙げられる。ポリヌクレオチドの塩基数は、上述のとおり、シゾフィランとの間で三重螺旋構造を有する複合体を形成できる限りにおいて特に制限されないが、複合体形成能を向上させるために、ポリヌクレオチドは、シゾフィランと結合能が高いポリアデノシン(polyA)、ポリシチジン(polyC)、ポリデオキシアデノシン(poly(dA))、ポリデオキシチミジン(poly(dT))のいずれかの繰り返し配列を有していることが好ましい。好ましい繰り返し配列を構成する塩基及びヌクレオチド又はヌクレオチド誘導体の種類並びに塩基数は、CpG配列を有するポリヌクレオチド又はポリヌクレオチド誘導体部分の長さ、用いられるシゾフィランの分子量等に応じて適宜決定される。繰り返し配列の長さは、塩基数が少ないと、シゾフィランとの水素結合による三重螺旋構造の形成が困難であるため、塩基数は、10以上である必要があり、20~80であることが好ましく、30~80であることが更に好ましい。
シゾフィランの分子量は、ポリヌクレオチド/シゾフィラン複合体に含まれるポリヌクレオチド又はポリヌクレオチド誘導体の塩基配列及び塩基長等に応じて適宜調節される。しかし、分子量が小さいと、いわゆるクラスター効果(高分子系の協同現象)が発現し難くなり好ましくない。通常は、核酸と複合体を形成しうるシゾフィランの重量平均分子量(分子鎖1本あたり)としては、核酸塩基の種類や高次構造によって異なるが、好ましくは2万以上、さらに好ましくは4万以上、より好ましくは6万以上である。また、ポリヌクレオチド上の核酸塩基と水素結合を形成する水酸基の数は、通常は、5個以上、好ましくは、8個以上、さらに好ましくは、10個以上必要である。
なお、シゾフィランの重量平均分子量は、光散乱法、沈降速度法(超遠心法)等の任意の公知の方法を用いて決定することができる。
なお、シゾフィランの重量平均分子量は、光散乱法、沈降速度法(超遠心法)等の任意の公知の方法を用いて決定することができる。
シゾフィランは、一般に菌類や真性細菌によって産生されるため、これらの微生物を培養後、菌体をホモゲナイズし、細胞溶出分や不溶性残渣等の不純物から超遠心法等の方法により単離することにより得ることができる。一般に、このようにして得られるシゾフィランは高分子量(重量平均分子量が数十万程度)で三重螺旋構造を取る。必要に応じて低分子化して用いてもよい。低分子化は、酵素分解、酸加水分解等から適宜適当な方法及び条件を選択して行う。
(3)ポリヌクレオチド/シゾフィラン複合体の製造
シゾフィランは、通常、水中で三重螺旋構造を呈している。したがって、ポリヌクレオチド又はポリヌクレオチド誘導体と複合体を形成するためには、DMSOのような溶媒に溶解して分子間水素結合及び疎水性相互作用による会合状態を解いて一本鎖にする。これにポリヌクレオチドを含有する水溶液(又はアルコール等の極性溶媒の溶液)を添加していくと、溶媒の極性の増大に伴い、疎水性相互作用によりポリヌクレオチドとシゾフィランとが会合し、ポリヌクレオチドの分子鎖を取り込みながら分子内及び分子間でポリヌクレオチド又はポリヌクレオチド誘導体とシゾフィランとの会合体が形成される。その結果、1分子のポリヌクレオチド又はポリヌクレオチド誘導体と2分子のシゾフィラン分子とからなる三重螺旋構造を有する複合体が形成される。複合体の形成は、例えば、CD(円偏光二色性)スペクトルを測定することにより、コンホメーション変化を調べることによって確認することができる。
シゾフィランは、通常、水中で三重螺旋構造を呈している。したがって、ポリヌクレオチド又はポリヌクレオチド誘導体と複合体を形成するためには、DMSOのような溶媒に溶解して分子間水素結合及び疎水性相互作用による会合状態を解いて一本鎖にする。これにポリヌクレオチドを含有する水溶液(又はアルコール等の極性溶媒の溶液)を添加していくと、溶媒の極性の増大に伴い、疎水性相互作用によりポリヌクレオチドとシゾフィランとが会合し、ポリヌクレオチドの分子鎖を取り込みながら分子内及び分子間でポリヌクレオチド又はポリヌクレオチド誘導体とシゾフィランとの会合体が形成される。その結果、1分子のポリヌクレオチド又はポリヌクレオチド誘導体と2分子のシゾフィラン分子とからなる三重螺旋構造を有する複合体が形成される。複合体の形成は、例えば、CD(円偏光二色性)スペクトルを測定することにより、コンホメーション変化を調べることによって確認することができる。
ポリヌクレオチド/シゾフィラン複合体の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)及び粘度測定等の任意の公知の方法を用いて測定することができる。ポリヌクレオチド/シゾフィラン複合体の分子量は、好ましくは、1×105以上3×106以下である。
ポリヌクレオチド/シゾフィラン複合体において、多角度光散乱測定又はX線小角散乱による慣性半径の測定値は、好ましくは、20nm以上200nm以下である。ポリヌクレオチド/シゾフィラン複合体の慣性半径が20nmを下回り、或いは200nmを超えると、細胞表面に存在するシゾフィランの受容体に認識されにくくなるため、細胞への取り込みが起こりにくくなると考えられる。
ポリヌクレオチド/シゾフィラン複合体の慣性半径の測定には任意の公知の方法を用いることができるが、例えば、文献(The Journal of Physical Chemistry B 116 (1), 87-94(2011))に記載されている方法を用いることができ、より具体的には、ポリヌクレオチド/シゾフィラン複合体の分子量より、慣性半径が10nm以上であると予想されるものについては光散乱法、10nm未満であると予想されるものについてはX線小角散乱法が好ましく用いられる。
ポリヌクレオチド/シゾフィラン複合体において、X線小角散乱を用いて測定したX線の散乱強度Iを、下記の式(I)で定義されるq値(散乱ベクトルの絶対値)の対数に対しプロットした場合、qが10-1nmから1nm-1の範囲における傾きaが-1.5以上-0.5以下であることが好ましい。
なお、式(I)において、θはX線の散乱角を表し、λはX線の波長を表す。したがって、q値はX線の散乱角θ及びX線の波長λの関数であり、X線の散乱強度Iとq値との関係は、X線の散乱強度Iの角度及び波長依存性を示す。
X線散乱強度Iとq値との間には、I∝qaという関係が成立する。したがって、a値は、X線の散乱強度Iを、q値の対数に対しプロットした場合の傾きaに相当する。a値は、高分子鎖の形状を反映し、a=-1のときは枝分かれのない棒状であることを示している。|a|<1のときは折れ曲がった棒状又は柔らかい棒状であることを示し、|a|>1のときは、分岐構造をとっていることを示す。|a|の値が大きければ大きいほど、分岐度が高いことを示す。ポリヌクレオチド/シゾフィラン複合体において、qが10-1nmから1nm-1の範囲における傾きaは、好ましくは、-1.5以上-0.5以下である。
aが上記の範囲外である場合にも、細胞表面に存在するシゾフィランの受容体に認識されにくくなるため、細胞への取り込みが起こりにくくなると考えられる。
本発明の第2の実施の形態に係る医薬組成物(以下、「医薬組成物」と略称する。)は、本発明の第1の実施の形態に係るポリヌクレオチド/シゾフィラン複合体を含んでいる。
医薬組成物の製造には、有効成分としてのポリヌクレオチド/シゾフィラン複合体及びポリヌクレオチド/シゾフィラン複合体に加え、任意の公知の成分(医薬用途に許容される任意の担体、賦形剤及び添加物)及び製剤方法を用いることができる。例えば、医薬組成物は、錠剤、座剤、カプセル剤、シロップ剤、ナノゲル等のマイクロカプセル剤、滅菌液剤、懸濁液剤等の注射剤、エアゾール剤、スプレー剤等の形態を取ることができる。
医薬組成物は、ヒト又は温血動物(マウス、ラット、ウサギ、ヒツジ、ブタ、ウシ、ウマ、ニワトリ、ネコ、イヌ、サル等)に対し、経口及び非経口経路のいずれによっても投与可能である。非経口投与経路としては、皮下、皮内及び筋中注射、腹腔内投与、点滴、鼻粘膜や咽頭部への噴霧等が挙げられる。
活性成分であるポリヌクレオチド/シゾフィラン複合体の用量は、活性、治療対象となる疾患、投与対象となる動物の種類、体重、性別、年齢、疾患の重篤度、投与方法等に応じて異なる。体重60kgの成人を例に取ると、経口投与の場合、1日当たりの用量は通常約0.1~約100mg、好ましくは約1.0~約50mg、より好ましくは約1.0~約20mgであり、非経口投与の場合、1日当たりの用量は通常約0.01~約30mg、好ましくは約0.1~約20mg、より好ましくは約0.1~約10mgである。他の動物に投与する場合には、上記用量を単位体重当たりの用量に換算後、投与対象となる動物の体重を乗じて得られた用量を用いる。
医薬組成物は、免疫を活性化することによる細菌、ウィルス等の病原体の感染に起因する感染症、ガン等の腫瘍の治療及び予防のためのワクチン、免疫賦活剤等として用いることができる。
実施例1:分子量の異なるシゾフィランの作製
本実施例において、Schizophyllum commune Friesを培養し、培養液中に産生されたシゾフィランを分離、精製することで高分子量シゾフィランを得た。その高分子シゾフィランを超音波処理することでシゾフィランを物理的に分解させた。また、超音波処理の時間を変えることで得られるシゾフィランの分子量を変化させることができた。
本実施例において、Schizophyllum commune Friesを培養し、培養液中に産生されたシゾフィランを分離、精製することで高分子量シゾフィランを得た。その高分子シゾフィランを超音波処理することでシゾフィランを物理的に分解させた。また、超音波処理の時間を変えることで得られるシゾフィランの分子量を変化させることができた。
さらに低分子量のシゾフィランを得るために、ギ酸で処理した。得られた分子量の異なるシゾフィランは、文献(Norisuyeら、J. Polym. Sci., Polym. Phys. Ed. 1980, 18, 547、Yanakiら、Macromolecules 1980, 13, 1462、Kashiwagiら、Macromolecules 1981, 14, 1220)に記載されているように、水を良溶媒、アセトン又はメタノールを貧溶媒として分別精製した。
得られた試料名と得られた分子量を表1に示す。また、各試料に関して、DMSO中70度で1H NMR測定を行い、β-1,3-グルカン骨格を保持していること、特にケミカルシフト4.1ppmと4.5ppmのピーク比から、β-1,6-グルカン結合の側鎖が主鎖のグルコース10に対して2から5の範囲で保持されていることを確認した。また、化学構造に関しては、梁木利男の学位論文(大阪大学理学部1984年)の87~90ページに記載されている、(1)硫酸で加水分解した後に適切な処理をしてガスクロマトグラムで解析する方法、(2)箱守法(文献:山形大学紀要(農学)第11巻第4号:907~956ページ、別冊平成5年1月)で確認をした。分子量の測定には、光散乱光度計による散乱法、超遠心による遠心平衡法、X線小角散乱による散乱法で決定した。光散乱法は比較的高分子量の試料、遠心平衡法は比較的中程度量から低分子の試料、X線小角散乱は比較的低分子量の試料の分子量決定に適する。水系における分子量決定は誤差が多いので、2つ以上の独立した方法で決定した。また、DMSO中では溶媒の粘度が高く、遠心平衡法では沈降平衡に達する時間が長く、高分子量の試料では、測定が困難であり、X線小角散乱ではX線の透過率が悪く測定が困難であった。
表1に結果を示す。文献(Norisuyeら、J. Polym. Sci., Polym. Phys. Ed. 1980, 18, 547. Yanakiら Macromolecules 1980, 13, 1462、Kashiwagiら、Macromolecules 1981, 14, 1220.)が示すように、シゾフィランはDMSO中では1本の高分子鎖として分子分散している。したがって、DMSO中の分子量と水中の分子量の比が3になっている場合には、シゾフィランは水中で三重螺旋構造を取っていると判断される。表に示した結果から、シゾフィランの1本の高分子鎖として、重量平均分子量が2万以上、好ましくは3万以上であれば、水中ではシゾフィランは大多数が三重螺旋構造を取っている。また、重量平均分子量が1万以下の場合には、水中でも1本の高分子鎖として存在していると判断できる。
注1:LSは光散乱、UCFは超遠心、SAXSはX線小角散乱法を示す。分子量分布は、光散乱ではGPCのクロマトグラムから求めた重量平均分子量と数平均分子量の比、超遠心では遠心平衡時のデータから文献(Fujita, H. Foundations of Ultracentrifugal Analysis; Wiley: New York, 1975)記載の方法にしたがって決定した。
注2:光散乱の測定を精度よくするために、シゾフィランが中性の水中と同じコンホメーションを保っていることが分かっている0.O1N NaOH水溶液中で測定した。
注2:光散乱の測定を精度よくするために、シゾフィランが中性の水中と同じコンホメーションを保っていることが分かっている0.O1N NaOH水溶液中で測定した。
実施例2:分子量の異なるシゾフィランと核酸poly(dA)Xの複合化
公知の核酸固相合成法にて、デオキシアデノシン1リン酸の重合体であるpoly(dA)Xを合成した。ここでXは重合度を示す。すなわち、(dA)Xは、デオキシアデノシンのX量体であることを示す。この類縁体として、ホスホジエステル結合のリン酸の酸素原子の一つがイオウに置換されているホスホロチオエート誘導体であるS-poly(dA)Xと、リン酸の酸素原子の2つがイオウに置換されているホスホロジチオエート誘導体であるD-poly(dA)Xも合成した。いずれもHPLCを用いて精製し、純度99%以上の精製物を得た。
公知の核酸固相合成法にて、デオキシアデノシン1リン酸の重合体であるpoly(dA)Xを合成した。ここでXは重合度を示す。すなわち、(dA)Xは、デオキシアデノシンのX量体であることを示す。この類縁体として、ホスホジエステル結合のリン酸の酸素原子の一つがイオウに置換されているホスホロチオエート誘導体であるS-poly(dA)Xと、リン酸の酸素原子の2つがイオウに置換されているホスホロジチオエート誘導体であるD-poly(dA)Xも合成した。いずれもHPLCを用いて精製し、純度99%以上の精製物を得た。
Bioorganic Chemistry Vol. 38. P260-264 (2010) に記載されている、ゲル電気泳動、ゲル浸透クロマトグラフィー(Gel Permeation Chromatography:GPC)、円偏光2色性スペクトルを用いてシゾフィランとの複合化率が95%以上である場合(○)、50%以上である場合(△)、10%以下である場合(×)を、表1の試料ごとに分類した。その結果を表2から表4に示す。表2はホスホジエステル結合、表3は酸素の一つがイオウに置換されているS-poly(dA)X、表4は酸素の2つがイオウに置換されているD-poly(dA)Xの結果である。
なお、複合体の調製には、シゾフィランを0.25N NaOH溶液に溶解し(15mg/mL)2日以上放置し、完全にシゾフィランを1本鎖に解離させたのち、ポリ(デオキシリボヌクレオチド/シゾフィラン複合体)溶液とリン酸緩衝液(330mM NaH2PO4、pH4.5)とを混合し、pHが6~7の範囲になるよう、かつ、シゾフィランとデオキシリボヌクレオチドの混合比がモル比で3:1となるようシゾフィランの塩基性水溶液を添加し攪拌した。得られた溶液を4℃で一晩静置させた後、各種測定を行った。なお、先行特許には、適当な濃度のシゾフィラン/DMSO溶液をDNA溶液に加える方法が開示されているが、生体実験に用いる際、DMSOが残存して好ましくない。
表2~4に示した結果より、ホスホジエステル結合では、デオキシアデノシン1リン酸の重合Xが、好ましくは20以上、更に好ましくは40以上、複合体の収率を100%近くにするには60以上が必要である。ホスホロチオエート型のS-poly(dA)Xでは、好ましくは10以上、更に好ましくは20以上、複合体の収率を100%近くにするには40以上が必要である。ホスホロジチオエート型のD-poly(dA)Xでは、好ましくは10以上、複合体の収率を100%近くにするには20以上が必要である。
実施例3:分子量の異なるシゾフィランとpoly(dA)Xテールを付加したCpG DNAとの複合化
CpG DNAは、K-タイプのCpG DNAとして5’-末端にポリdAテール:(dA)40を付加した5’-(dA)40-ATCGACTCTCGAGCGTTCTC-3’(配列番号1;(dA)40-K3と略記)を、及びD-タイプのCpG DNAとして5’-(dA)40-GGTGCATCGATGCAGGGGGG(配列番号1;(dA)40-D35と略記)を使用した。DNAのリン酸バックボーンはいずれもホスホロチオエート型で、両サンプルともHokkaido System Science社の合成品で、高速液体クロマトグラフィーで精製されている。また、3’-末端にポリdAテールを付加したK3-(dA)40とD35-(dA)40も同様にして合成した。これらの試料の複合化を実施例2と同様の方法で評価した。結果を表5に示す。
CpG DNAは、K-タイプのCpG DNAとして5’-末端にポリdAテール:(dA)40を付加した5’-(dA)40-ATCGACTCTCGAGCGTTCTC-3’(配列番号1;(dA)40-K3と略記)を、及びD-タイプのCpG DNAとして5’-(dA)40-GGTGCATCGATGCAGGGGGG(配列番号1;(dA)40-D35と略記)を使用した。DNAのリン酸バックボーンはいずれもホスホロチオエート型で、両サンプルともHokkaido System Science社の合成品で、高速液体クロマトグラフィーで精製されている。また、3’-末端にポリdAテールを付加したK3-(dA)40とD35-(dA)40も同様にして合成した。これらの試料の複合化を実施例2と同様の方法で評価した。結果を表5に示す。
なお、シゾフィランとdAの混合比がモル比で3:1となるようシゾフィランの塩基性水溶液を添加し攪拌した。この結果より、CpGがdAに付加されると、僅かであるが、複合化がされにくいことが分かる。
実施例4:複合体の精製と分子量、拡がりの測定と細胞刺激性
未反応のDNAは複合体に比べて分子量がはるかに小さいために、GPCで分離することができる。複合体のフラクションを確認しながら検出器から流出してくる溶液を分取した。また、未反応のシゾフィランは、特開2011-178707号公報に記載されている陰イオン交換カラムを用いた方法で取り除いた。複合化率50%以下の混合溶液から、これらの方法を用いて複合化率90%以上にすることができた。この精製された複合体は、水溶液として室温で10日放置しても複合化率が変わることはなかった。
未反応のDNAは複合体に比べて分子量がはるかに小さいために、GPCで分離することができる。複合体のフラクションを確認しながら検出器から流出してくる溶液を分取した。また、未反応のシゾフィランは、特開2011-178707号公報に記載されている陰イオン交換カラムを用いた方法で取り除いた。複合化率50%以下の混合溶液から、これらの方法を用いて複合化率90%以上にすることができた。この精製された複合体は、水溶液として室温で10日放置しても複合化率が変わることはなかった。
このようにして得た複合化率90%以上の試料に関して、文献(The Journal of Physical Chemistry B 116 (1), 87-94(2011))に記載されている方法で、重量平均絶対分子量Mwと慣性半径Rgを測定した。慣性半径Rgの測定には、10nm以上のものについては光散乱法を、10nm未満の場合にはX線小角散乱法を用いた。複合体にすると、分子量と慣性半径の分布が大きくなるので、両者の測定値の最小値及び最大値を記録した。
また、以下の方法で、CpG DNAの刺激によるマウス由来腹腔マクロファージからのサイトカインIL-12産生量の増強効果(以下、「生理活性」という。)を調べた。すなわち、マウス由来腹腔マクロファージの単離は、文献記載の定法で行った。すなわち8週齢の雌のBalb/cマウスの頚動脈を切断し脱血死させ、70%エタノールで消毒後に腹部外皮に切れ目を入れ外皮をはいで腹膜を露出させた。冷PBS(リン酸緩衝化生理食塩水)を5mL腹部に注入し、よくマッサージしたのち液を回収した。ポリプロピレン製の遠心管を用いて1,000rpm、10分間、4℃で遠心した。上清を除き、10%仔牛胎児血清を含むRPMI1640培地に懸濁した(日本生化学会編、新生化学実験講座12 分子免疫学I 免疫細胞・サイトカイン、東京化学同人(1989))。
96穴プレートに100μLの10%仔牛胎児血清を含むRPMI1640培地に懸濁した2×105個のマウス由来腹腔マクロファージを播種し、37℃、5%CO2下で2時間培養してプレートに細胞を接着後に、CpG DNA及びCpG DNAとシゾフィランの複合体を添加し、37℃、5%CO2下で24時間培養後に培養上清を回収した。培養上清中に含まれるマウスの全IL-12量の測定は、Mouse Interleukin-12 Total ELISA(ENDOGEN社製)を利用し、付属のプロトコールにしたがって測定した。培養上清に含まれる全IL-12量は、CpG DNA単独投与よりも複合体である本発明の免疫刺激剤の方が、多く含まれていた。この差が2倍以上の系を生理活性ありとして○、同程度の場合を×として結果を示す。表には、DタイプのCpG DNAを含む複合体の結果を示すが、KタイプのCpG DNAを含む複合体でも結果は同様であった。
S1、S2、S3を用いたS-d(A)40-D35の複合体において、多角度光散乱測定から算出した分子量を慣性半径に対してプロットしたグラフを図1に示す。シゾフィランの分子量の増加に伴い形成される複合体の分子量及び慣性半径が大きくなっていることがわかった。作製した複合体の生理活性を評価したところ、分子量、慣性半径が大きい複合体は高い活性を示したが、慣性半径の小さい複合体の活性は非常に小さかった。これは分子量の小さいシゾフィランでは複合化率が低く複合体の存在比が少ないため、さらに小さい分子ほど細胞へ取り込まれにくい(シゾフィランの受容体に認識されにくい)ためと考えられる(表6及び7参照)。
実施例5:ポリヌクレオチド/シゾフィラン複合体の調製濃度及び分岐度と生理活性との関係
S3を用いた、S-d(A)40-D35の複合体において、実施例2では、複合体の調製には、シゾフィランを0.25N NaOH溶液で、濃度15mg/mLに溶解して、シゾフィランを1本鎖に解離させたのち、ポリ(デオキシリボヌクレオチド/シゾフィラン複合体)溶液とリン酸緩衝液(330mM NaH2PO4、pH4.5)とを混合した。シゾフィランとポリ(デオキシリボヌクレオチド/シゾフィラン複合体)の濃度を5倍、10倍、30倍と濃くしていくと、複合体の分子量が増加するとともに、X線小角散乱で測定した散乱強度の散乱角度依存性(I∝qaと表す。ここでqは散乱ベクトルの絶対値)が、qが10-1から1nm-1の範囲で、ポリヌクレオチド/シゾフィラン複合体の濃度が低い場合には、a=-1であったが、濃度が増加するにつれて符号は常に負であるものの、aの絶対値|a|が増加していった。また、同様の測定を、S4を用いたS-d(A)40-D35の複合体においても実施した。S4の場合は濃度を基準の1/100から調製した。
S3を用いた、S-d(A)40-D35の複合体において、実施例2では、複合体の調製には、シゾフィランを0.25N NaOH溶液で、濃度15mg/mLに溶解して、シゾフィランを1本鎖に解離させたのち、ポリ(デオキシリボヌクレオチド/シゾフィラン複合体)溶液とリン酸緩衝液(330mM NaH2PO4、pH4.5)とを混合した。シゾフィランとポリ(デオキシリボヌクレオチド/シゾフィラン複合体)の濃度を5倍、10倍、30倍と濃くしていくと、複合体の分子量が増加するとともに、X線小角散乱で測定した散乱強度の散乱角度依存性(I∝qaと表す。ここでqは散乱ベクトルの絶対値)が、qが10-1から1nm-1の範囲で、ポリヌクレオチド/シゾフィラン複合体の濃度が低い場合には、a=-1であったが、濃度が増加するにつれて符号は常に負であるものの、aの絶対値|a|が増加していった。また、同様の測定を、S4を用いたS-d(A)40-D35の複合体においても実施した。S4の場合は濃度を基準の1/100から調製した。
S3を用いた、S-d(A)20-D35及びS D35-d(A)40の複合体においてシゾフィランの濃度を高くするにつれ枝分かれ構造を有する複合体(|a|>1)が生成されるようになり、生理活性が低下することがわかった。複合体の枝分かれ構造が細胞への取り込みに影響、つまり受容体への被認識能が低下していることが考えられる。S4を用いた複合体においても、やはり同様に枝分かれ構造を有することで生理活性が無くなっていることがわかる。さらにシゾフィランの分子量の低下に伴う慣性半径の低下によりS3と比較すると生理活性も大きく低下したと考えられる(表8参照)。
なお、本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。本出願は、2014年12月16日に出願された日本国特許出願2014-253763号に基づくものであり、その明細書、特許請求の範囲、図面および要約書を含むものである。上記日本国特許出願における開示は、その全体が本明細書中に参照として含まれる。
Claims (11)
- シゾフィランと、
前記シゾフィランと水素結合を介して結合し、CpG配列を有するポリヌクレオチド又はポリヌクレオチド誘導体とを含み、
前記ポリヌクレオチド又はポリヌクレオチド誘導体の分子鎖1本と前記シゾフィランの分子鎖2本とからなる三重螺旋構造を有する複合体を形成していることを特徴とするポリヌクレオチド/シゾフィラン複合体。 - 分子量が1×105以上3×106以下であることを特徴とする請求項1記載のポリヌクレオチド/シゾフィラン複合体。
- 多角度光散乱測定又はX線小角散乱による慣性半径の測定値が20nm以上200nm以下であることを特徴とする請求項1又は2記載のポリヌクレオチド/シゾフィラン複合体。
- 前記ポリヌクレオチド又はポリヌクレオチド誘導体が、ホスホジエステル結合の一部又は全部がホスホロチオエート結合もしくはホスホロジチオエート結合で置換されたポリヌクレオチド誘導体であることを特徴とする請求項1から4のいずれか1項記載のポリヌクレオチド/シゾフィラン複合体。
- 前記ポリヌクレオチド又はポリヌクレオチド誘導体が、デオキシリボヌクレオチド又はその誘導体であることを特徴とする請求項1から5のいずれか1項記載のポリヌクレオチド/シゾフィラン複合体。
- デオキシリボヌクレオチド又はその誘導体のうち、前記シゾフィランと水素結合を介して結合する部分の重合度が10以上であることを特徴とする請求項6記載のポリヌクレオチド/シゾフィラン複合体。
- 前記シゾフィランと水素結合を介して結合する部分がデオキシリボヌクレオチドであり、その重合度が60以上であることを特徴とする請求項7記載のポリヌクレオチド/シゾフィラン複合体。
- 前記シゾフィランと水素結合を介して結合する部分が、デオキシリボヌクレオチドにおいてホスホジエステル結合がホスホロチオエート結合に置換されたデオキシリボヌクレオチドの誘導体であり、その重合度が20以上であることを特徴とする請求項7記載のポリヌクレオチド/シゾフィラン複合体。
- 前記シゾフィランと水素結合を介して結合する部分が、デオキシリボヌクレオチドにおいてホスホジエステル結合がホスホロジチオエート結合に置換されたデオキシリボヌクレオチドの誘導体であることを特徴とする請求項7記載のポリヌクレオチド/シゾフィラン複合体。
- 請求項1から10のいずれか1項記載のポリヌクレオチド/シゾフィラン複合体を含む医薬組成物。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-253763 | 2014-12-16 | ||
JP2014253763A JP6501247B2 (ja) | 2014-12-16 | 2014-12-16 | 免疫賦活用ポリヌクレオチド/シゾフィラン複合体及びそれを含む医薬組成物 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016098832A1 true WO2016098832A1 (ja) | 2016-06-23 |
Family
ID=56126716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/085276 WO2016098832A1 (ja) | 2014-12-16 | 2015-12-16 | ポリヌクレオチド/シゾフィラン複合体及びそれを含む医薬組成物 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6501247B2 (ja) |
WO (1) | WO2016098832A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170362591A1 (en) * | 2014-12-25 | 2017-12-21 | National Institutes Of Biomedical Innovation, Health And Nutrition | Non-aggregating immunostimulatory oligonucleotides |
US10195270B2 (en) * | 2014-02-06 | 2019-02-05 | Japan Science And Technology Agency | Peptide/β-1,3-glucan complex and production method thereof and pharmaceutical composition containing peptide/β-1,3-glucan complex |
WO2022075460A1 (ja) * | 2020-10-09 | 2022-04-14 | ナパジェン ファーマ,インコーポレテッド | 均質なβ-1,3-グルカン/核酸複合体、及びその用途 |
WO2022102694A1 (ja) | 2020-11-12 | 2022-05-19 | 第一三共株式会社 | 粒子径が制御された、ベータグルカンと核酸との複合体 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004100965A1 (ja) * | 2003-05-15 | 2004-11-25 | Japan Science And Technology Agency | 免疫刺激剤 |
JP2008100919A (ja) * | 2006-10-17 | 2008-05-01 | Japan Science & Technology Agency | Th2細胞関連疾患の予防等に用いられる核酸/多糖複合体 |
-
2014
- 2014-12-16 JP JP2014253763A patent/JP6501247B2/ja active Active
-
2015
- 2015-12-16 WO PCT/JP2015/085276 patent/WO2016098832A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004100965A1 (ja) * | 2003-05-15 | 2004-11-25 | Japan Science And Technology Agency | 免疫刺激剤 |
JP2008100919A (ja) * | 2006-10-17 | 2008-05-01 | Japan Science & Technology Agency | Th2細胞関連疾患の予防等に用いられる核酸/多糖複合体 |
Non-Patent Citations (5)
Title |
---|
MIZU,M. ET AL.: "A polysaccharide carrier for immunostimulatory CpG DNA to enhance cytokine secretion", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 126, no. 27, 2004, pages 8372 - 8373, XP055146435, ISSN: 0002-7863, DOI: doi:10.1021/ja031978+ * |
MIZU,M. ET AL.: "Protection of polynucleotides against nuclease-mediated hydrolysis by complexation with schizophyllan", BIOMATERIALS, vol. 25, no. 15, 2004, pages 3109 - 3116, XP004489064, ISSN: 0142-9612, DOI: doi:10.1016/j.biomaterials.2003.09.079 * |
MOCHIZUKI,S. ET AL.: "Dectin-1 targeting delivery of TNF-alpha antisense ODNs complexed with beta-1,3- glucan protects mice from LPS-induced hepatitis", JOURNAL OF CONTROLLED RELEASE, vol. 151, no. 2, 2011, pages 155 - 161, XP055197019, ISSN: 0168-3659, DOI: doi:10.1016/j.jconrel.2011.01.026 * |
SHIMADA,N. ET AL.: "Synthesis and in Vitro Characterization of Antigen-Conjugated Polysaccharide as a CpG DNA Carrier", BIOCONJUGATE CHEMISTRY, vol. 17, no. 5, 2006, pages 1136 - 1140, XP055218957, ISSN: 1043-1802, DOI: doi:10.1021/bc060070g * |
SHIN'ICHI MOCHIZUKI ET AL.: "Selective delivery of oligonucletide using a beta-1,3-glucan receptor", DRUG DELIVERY SYSTEM, vol. 25, no. 6, 2010, pages 565 - 572, ISSN: 0913-5006 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10195270B2 (en) * | 2014-02-06 | 2019-02-05 | Japan Science And Technology Agency | Peptide/β-1,3-glucan complex and production method thereof and pharmaceutical composition containing peptide/β-1,3-glucan complex |
US20170362591A1 (en) * | 2014-12-25 | 2017-12-21 | National Institutes Of Biomedical Innovation, Health And Nutrition | Non-aggregating immunostimulatory oligonucleotides |
US11268098B2 (en) * | 2014-12-25 | 2022-03-08 | National Institutes Of Biomedical Innovation, Health And Nutrition | Non-aggregating immunostimulatory oligonucleotides |
WO2022075460A1 (ja) * | 2020-10-09 | 2022-04-14 | ナパジェン ファーマ,インコーポレテッド | 均質なβ-1,3-グルカン/核酸複合体、及びその用途 |
WO2022102694A1 (ja) | 2020-11-12 | 2022-05-19 | 第一三共株式会社 | 粒子径が制御された、ベータグルカンと核酸との複合体 |
KR20230107833A (ko) | 2020-11-12 | 2023-07-18 | 다이이찌 산쿄 가부시키가이샤 | 입자 지름이 제어된 베타글루칸과 핵산과의 복합체 |
CN116615206A (zh) * | 2020-11-12 | 2023-08-18 | 第一三共株式会社 | 粒径受控的β-葡聚糖与核酸的复合物 |
Also Published As
Publication number | Publication date |
---|---|
JP6501247B2 (ja) | 2019-04-17 |
JP2016113404A (ja) | 2016-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6993649B2 (ja) | 免疫賦活活性を有するオリゴヌクレオチド含有複合体及びその用途 | |
JP4850512B2 (ja) | 免疫刺激剤 | |
JP6383740B2 (ja) | ペプチド/β−1,3−グルカン複合体及びそれを含む医薬組成物 | |
WO2016098832A1 (ja) | ポリヌクレオチド/シゾフィラン複合体及びそれを含む医薬組成物 | |
US12220460B2 (en) | Immunity-inducing agent and pharmaceutical composition containing same | |
JP6698069B2 (ja) | 免疫賦活活性を有するCpGスペーサーオリゴヌクレオチド含有複合体及びその用途 | |
CN112839674B (zh) | 包含抗原肽-佐剂核苷酸缀合体的免疫诱导剂及包含其的药物组合物 | |
WO2021132528A1 (ja) | ポリデオキシアデニル酸が連結した短鎖CpG含有オリゴデオキシヌクレオチド、該オリゴデオキシヌクレオチドを含有する複合体、及びその用途 | |
WO2022094102A1 (en) | Immunostimulatory oligonucleotides for the prevention and treatment of covid-19 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15870034 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15870034 Country of ref document: EP Kind code of ref document: A1 |