WO2016098260A1 - イオンクロマトグラフ - Google Patents

イオンクロマトグラフ Download PDF

Info

Publication number
WO2016098260A1
WO2016098260A1 PCT/JP2014/083779 JP2014083779W WO2016098260A1 WO 2016098260 A1 WO2016098260 A1 WO 2016098260A1 JP 2014083779 W JP2014083779 W JP 2014083779W WO 2016098260 A1 WO2016098260 A1 WO 2016098260A1
Authority
WO
WIPO (PCT)
Prior art keywords
eluent
flow path
suppressor
electrode
electrode liquid
Prior art date
Application number
PCT/JP2014/083779
Other languages
English (en)
French (fr)
Inventor
幸夫 老川
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2014/083779 priority Critical patent/WO2016098260A1/ja
Priority to JP2016564559A priority patent/JP6292318B2/ja
Publication of WO2016098260A1 publication Critical patent/WO2016098260A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/32Control of physical parameters of the fluid carrier of pressure or speed

Definitions

  • the present invention relates to an ion chromatograph equipped with an electrodialysis suppressor using an eluent that has passed through a detector as an electrode solution.
  • the suppressor type ion chromatograph includes a suppressor for removing interfering ions in the eluent by an ion exchange reaction at the rear stage of the column (see, for example, Patent Document 1).
  • This suppressor reduces the background level of the electrical conductivity of the eluent.
  • the suppressor system ion chromatograph enables highly sensitive analysis by improving the S / N ratio.
  • FIG. 15 is a schematic configuration diagram for explaining an example of a conventional suppressor type ion chromatograph.
  • the eluent supplied from the eluent container 1 is pressurized by the liquid feed pump 3, merges with the sample injected by the sample introduction unit 5, and is introduced into the separation column 7.
  • the sample injected into the eluent is separated into each component while passing through the separation column 7.
  • the eluent containing the separated sample is sent to the detector 11 through the eluent flow path of the electrodialysis suppressor 9.
  • the eluent that has passed through the detector 11 is supplied to the electrode liquid flow path of the electrodialysis suppressor 9 via the electrode liquid pipe 13 (referred to as a recycle mode).
  • the eluent that has passed through the electrode fluid flow path of the electrodialysis suppressor 9 is discharged.
  • the electrodialysis suppressor 9 removes interfering ions in the eluent by an ion exchange reaction as described above.
  • hydrogen ions in the anode-side electrode liquid flow path are supplied to the eluent flow path through the ion exchange membrane.
  • Interfering ions for example, sodium ions
  • present in the eluent move to the electrode liquid passage on the cathode side through the ion exchange membrane.
  • oxygen gas and hydrogen gas are generated in the electrode liquid flow path of the electrodialysis suppressor.
  • the eluent that has passed through the detector is supplied as an electrode liquid to the electrode liquid flow path of the electrodialysis suppressor.
  • a pulsating flow may occur in the flow path through which the eluent flows due to the gas generated in the electrode liquid flow path. This pulsating flow causes electrochemical noise in the detector.
  • the baseline of the detector drifts, for example, by about 16 nS / cm ⁇ min (nano-Siemens per centimeter ⁇ min).
  • the analysis time is limited to about 5 to 7 minutes.
  • the present invention aims to reduce the influence on the detector of the pulsating flow caused by the gas generated by the electrodialysis suppressor even when the voltage is supplied to the electrodialysis suppressor. To do.
  • the first aspect of the ion chromatograph according to the present invention includes a separation column into which a sample is introduced together with an eluent, an eluent flow path into which the eluent that has passed through the separation column is introduced, and the eluent flow path.
  • An electrodialysis suppressor having at least a pair of electrode liquid channels arranged via an ion exchange membrane, and a pair of electrodes provided for each electrode liquid channel, and the eluent flow of the electrodialysis suppressor
  • a pulsating flow reducing device for reducing pulsating flow caused by bubbles generated in the electrode liquid flow path of the electrodialysis suppressor provided at an intermediate position of the electrode liquid piping.
  • a separation column into which a sample is introduced together with an eluent, an eluent flow path into which the eluent that has passed through the separation column is introduced, and the eluent flow path are provided.
  • the chemical suppressor is disposed through an ion exchange membrane and has at least a regenerative liquid channel into which the regenerative liquid is introduced, and target ions contained in the eluent that has passed through the eluent flow path of the chemical suppressor are detected.
  • a regenerator comprising an electrodialysis suppressor having at least a pair of electrodes provided for each of the electrode liquid channels, and the regenerant liquid regeneration flow of the regenerator
  • a regeneration solution pipe for supplying the regeneration solution that has passed through the chemical suppressor to the regeneration solution channel, and an electrode solution for supplying the eluent that has passed through the detector to the electrode solution channel of the regenerator.
  • a pipe and a pulsating flow reducing device for reducing pulsating flow caused by bubbles generated in the electrode liquid flow path of the regenerator, provided at an intermediate position of the electrode liquid pipe.
  • an example of the pulsating flow reducing device is a damper including at least a part of an elastic body.
  • another example of the pulsating flow reducing device is a deaeration device.
  • the pulsating flow reduction device is not limited to the damper and the deaeration device, and any device can be used as long as it can reduce the pulsating flow caused by bubbles generated in the electrode liquid flow path. It may be a structure.
  • the ion chromatograph of the present invention is an intermediate position of an electrode liquid pipe for supplying an eluent having passed through a detector to an electrode liquid flow path of an electrodialysis suppressor or an electrode liquid flow path of a regenerator composed of an electrodialysis suppressor.
  • a pulsating flow reducing device for reducing pulsating flow caused by bubbles generated in the electrode liquid flow path is provided.
  • FIG. 1 is a schematic configuration diagram for explaining one embodiment of the first aspect of the ion chromatograph of the present invention.
  • An eluent is stored in the eluent container 1.
  • the eluent stored in the eluent container 1 is pressurized by the liquid feed pump 3 and sent to the separation column 9 via the sample introduction unit 5.
  • the sample injector 5 is for injecting a predetermined amount of sample into the eluent sent to the separation column 9. A sample is introduced into the separation column 9 together with the eluent. The sample injected into the eluent is separated into each component while passing through the separation column 7.
  • the eluent discharged from the separation column 41 is sent to the detector 11 through the eluent flow path of the electrodialysis suppressor 9.
  • the detector 11 detects target ions contained in the eluent that has passed through the eluent flow path of the electrodialysis suppressor 9.
  • an electric conductivity detector that detects the ion concentration in the eluent by measuring the electric conductivity of the eluent is mainly used.
  • the eluent that has passed through the detector 11 is sent to an electrode liquid pipe 13 for supplying the eluate to the electrode liquid flow path of the electrodialysis suppressor 9, and a pulsating flow provided at an intermediate position of the electrode liquid pipe 13. It is supplied to the electrode liquid flow path of the electrodialysis suppressor 9 through the reduction device 15 (recycle mode).
  • the pulsating flow reducing device 15 is for reducing pulsating flow caused by bubbles generated in the electrode liquid flow path of the electrodialysis suppressor 9.
  • the eluent that has passed through the electrode fluid flow path of the electrodialysis suppressor 9 is discharged.
  • FIG. 2 is a schematic cross-sectional view for explaining an example of the electrodialysis suppressor 9.
  • the electrodialysis suppressor 9 includes an eluent channel 91, ion exchange membranes 93a and 93b, electrode solution channels 95a and 95b, and electrodes 97a and 97b.
  • the electrodialysis suppressor 9 is formed by laminating plate-like members.
  • the eluent that has passed through the separation column 7 is introduced into the eluent flow path 91.
  • the electrode liquid channel 95a is disposed with respect to the eluent channel 91 via an ion exchange membrane 93a.
  • the electrode liquid channel 95b is disposed with respect to the eluent channel 91 via an ion exchange membrane 93b.
  • the eluent from the detector 11 is introduced into the electrode liquid channels 95a and 95b.
  • the anode-side electrode 97a is disposed in contact with the electrode liquid flow path 95a.
  • the cathode side electrode 97b is disposed in contact with the electrode liquid flow path 95b.
  • FIG. 3 is a schematic configuration diagram for explaining an example of the pulsating flow reduction device 15.
  • the pulsating flow reducing device 15 includes a three-way pipe 151, a damper 152 made of an elastic pipe, a leakage pipe 153, and connectors 154a, 154b, 154c, and 154d.
  • the two ends of the three-way pipe 151 are connected to an intermediate position of the eluent flow path 13 by connectors 154a and 154b.
  • the remaining end of the three-way pipe 151 is connected to one end of the damper 152 by a connector 154c.
  • the other end of the damper 152 is connected to one end of the leakage pipe 153 by a connector 154d.
  • the eluent flow channel 13 is a PEEK (polyether ether ketone) tube having an inner diameter of 0.23 mm.
  • the damper 152 is a vinyl chloride tube having an inner diameter of 5 mm and a length of 200 mm.
  • the leakage pipe 153 is a PEEK tube having an inner diameter of 0.13 mm.
  • the damper 152 reduces pulsating flow caused by bubbles generated in the electrode liquid flow paths 95 a and 95 b (see FIG. 2) of the electrodialysis suppressor 9 due to its elasticity.
  • the leakage pipe 153 has a smaller inner diameter than the eluent flow path 13, thereby leaking a part of the eluent from the detector. As a result, the leakage pipe 153 reduces pulsating flow caused by bubbles generated in the electrode liquid flow paths 95a and 95b of the electrodialysis suppressor 9.
  • the pulsating flow reducing device 15 buffers the electrochemical noise in the detector by reducing the pulsating flow caused by bubbles generated in the electrode liquid flow paths 95a and 95b of the electrodialysis suppressor 9.
  • FIG. 4 is a chromatogram showing a result of measuring baseline noise with and without the pulsating flow reduction device shown in FIG. 3 (example) and with a conventional example, and an enlarged view of a part thereof.
  • the vertical axis represents electrical conductivity (unit: nS / cm), and the horizontal axis represents time (unit: minutes).
  • the voltage application to the suppressor was performed continuously.
  • the baseline noise was about 5.6 nS / cm.
  • the baseline noise was about 0.7 nS / cm.
  • the influence of the pulsating flow on the detector 11 due to the gas generated in the electrodialysis suppressor 9 is affected. Can be reduced. Further, by preventing the influence of the pulsating flow of the gas generated by the electrodialysis suppressor 9 on the detector 11, it is possible to perform a high sensitivity analysis with a low noise level even in the electrolytic regeneration.
  • the electrodialysis suppressor 9 since the electrodialysis suppressor 9 is continuously driven, it is possible to perform analysis with a stable baseline in which the baseline drift is small compared to the conventional technique in which noise is reduced by intermittent driving.
  • FIG. 5 is a schematic configuration diagram for explaining another example of the pulsating flow reduction device 15.
  • the pulsating flow reducing device 15 includes a container 155 and a sealing plug 156.
  • the container 155 is sealed with a sealing plug 156.
  • An eluent is accommodated in the lower part of the container 155 to form a liquid layer 157.
  • a gas layer 158 made of, for example, air is formed in the container 155 above the liquid layer 157. Both the end of the eluent flow path 13 from the detector and the end of the electrodialysis suppressor toward the electrode liquid flow path are disposed in the liquid layer 157 in the container 155.
  • the pulsating flow reduction device 15 functions as a deaeration device, and reduces noise by capturing gas generated in the electrode liquid flow paths 95a and 95b of the electrodialysis suppressor 9 by the gas layer 158. Thereby, even if the pulsating flow reducing device 15 is in a state where voltage is supplied to the electrodialysis suppressor 9, the influence of the pulsating flow on the detector 11 due to the gas generated in the electrodialysis suppressor 9. Reduce.
  • the structure of the pulsating flow reducing device 15 is not limited to that shown in FIG. 3 or FIG. 5, and the pulsation caused by bubbles generated in the electrode liquid flow paths 95a and 95b. Any structure may be used as long as the flow can be reduced.
  • FIG. 6 is a schematic configuration diagram for explaining another embodiment of the first aspect of the ion chromatograph of the present invention.
  • FIG. 7 is a schematic cross-sectional view for explaining another example of the electrodialysis suppressor 9.
  • FIG. 7 parts having the same functions as those in FIG.
  • the electrode liquid flow paths 95a and 95b each have an electrode liquid introduction port and a discharge port.
  • a branch valve 17 for branching the electrode liquid pipe 13 is connected between the pulsating flow reducing device 15 and the electrodialysis suppressor 9.
  • the branch valve 17 Of the two electrode liquid pipes 13 branched by the branch valve 17, one electrode liquid pipe 13 is connected to the electrode liquid flow path 95a.
  • the other electrode liquid pipe 13 is connected to the electrode liquid flow path 95b.
  • the flow path through which the electrode solution flows is branched at the front stage of the electrodialysis suppressor 9 (FIGS. 6 and 7), or branched inside the electrodialysis suppressor 9. (FIGS. 1 and 2) are different, but the configuration for reducing the pulsating flow caused by bubbles generated in the electrode liquid flow paths 95a and 95b of the electrodialysis suppressor 9 by the pulsating flow reducing device 15 is the same. is there. Therefore, this embodiment reduces the influence of the pulsating flow on the detector 11 caused by the gas generated in the electrodialysis suppressor 9 even when the voltage is supplied to the electrodialysis suppressor 9. be able to.
  • FIG. 8 is a schematic configuration diagram for explaining one embodiment of the second aspect of the ion chromatograph of the present invention.
  • a chemical suppressor 19 is disposed between the separation column 7 and the detector 11.
  • a chemical suppressor is disclosed in Patent Document 2, for example.
  • FIG. 9 is a schematic cross-sectional view for explaining an example of the chemical suppressor 19.
  • the chemical suppressor 19 includes an eluent channel 191, an ion exchange membrane 193, and a regeneration solution channel 195.
  • the chemical suppressor 19 is formed by laminating plate-like members.
  • the eluent that has passed through the separation column 7 is introduced into the eluent flow path 191.
  • the regenerative liquid channel 195 is arranged with respect to the eluent channel 191 through an ion exchange membrane 193.
  • a regeneration solution is introduced into the regeneration solution channel 195.
  • the eluent is, for example, an alkaline solution (NaOH).
  • the regenerating solution is, for example, an acid solution (H 2 SO 4 ).
  • the chemical suppressor 19 supplies hydrogen ions from the regeneration liquid channel 195 to the eluent channel 191 via the ion exchange membrane 193, and causes interfering ions (for example, sodium ions) contained in the eluent from the eluent channel 191. Move to the regenerating solution channel 195. Thereby, the background level of the electrical conductivity of the eluent is lowered.
  • the eluent that has passed through the eluent flow path 191 of the chemical suppressor 19 is sent to the detector 11 for detecting target ions contained in the eluent.
  • the eluent that has passed through the detector 11 is supplied to the electrode liquid flow path of the regenerator 23 via the electrode liquid pipe 13 (recycle mode).
  • a pulsating flow reducing device 15 for reducing pulsating flow caused by bubbles generated in the electrode liquid flow path of the regenerator 23 is provided at an intermediate position of the electrode liquid piping 13.
  • FIG. 10 is a schematic cross-sectional view for explaining an example of the regenerator 23.
  • the regenerator 23 is configured by an electrodialysis suppressor.
  • the regenerator 23 includes a regeneration solution regeneration channel 231, ion exchange membranes 233a and 233b, electrode solution channels 235a and 235b, and electrodes 237a and 237b.
  • the regenerator 23 is formed by laminating plate-like members.
  • the eluent that has passed through the regeneration liquid channel 195 of the chemical suppressor 19 is introduced into the regeneration liquid regeneration channel 231.
  • the electrode solution channel 235a is arranged with respect to the regeneration solution regeneration channel 231 via an ion exchange membrane 233a.
  • the electrode liquid flow path 235b is disposed with respect to the regenerating liquid regeneration flow path 231 via an ion exchange membrane 233b.
  • the eluent from the detector 11 is introduced into the electrode liquid channels 235a and 235b.
  • the anode-side electrode 237a is disposed in contact with the electrode liquid flow path 235a.
  • the cathode side electrode 237b is disposed in contact with the electrode liquid flow path 235b.
  • oxygen is generated in the anode-side electrode liquid flow path 235a and hydrogen is generated in the cathode-side electrode liquid flow path 235b by electrolysis of water.
  • the hydrogen ions generated in the anode-side electrode liquid flow path 235a are supplied to the regenerating liquid regeneration flow path 231 through the ion exchange membrane 233a.
  • Interfering ions for example, sodium ions
  • the regenerated liquid passes through the regenerated liquid regenerated flow path 231 of the regenerator 23. Then, it moves to the electrode liquid channel 235b on the cathode side. In this way, the regenerating liquid (H 2 SO 4 ) is regenerated in the regenerator 23.
  • the regenerated liquid regenerated by the regenerator 23 is supplied to the regenerated liquid flow path 195 of the chemical suppressor 19 through the regenerated liquid piping 25.
  • FIG. 11 is a schematic configuration diagram for explaining another embodiment of the second aspect of the ion chromatograph of the present invention.
  • FIG. 12 is a schematic cross-sectional view for explaining another example of the regenerator 23.
  • parts having the same functions as those in FIG. 7 are schematic cross-sectional view for explaining another example of the regenerator 23.
  • the electrode liquid flow paths 235a and 235b are each provided with an electrode liquid introduction port and a discharge port.
  • a branch valve 27 for branching the electrode liquid pipe 13 is connected between the pulsating flow reducing device 15 and the regenerator 23.
  • one electrode liquid pipe 13 is connected to the electrode liquid flow path 235a.
  • the other electrode solution pipe 13 is connected to the electrode solution channel 235b.
  • the pulsating flow reducing device 15 buffers the pulsating flow caused by the bubbles generated in the electrode liquid flow paths 235 a and 235 b of the regenerator 23 by the pulsating flow reducing device 15. To do. Therefore, this embodiment can reduce the influence of the pulsating flow on the detector 11 caused by the gas generated in the regenerator 23 even when the voltage is supplied to the regenerator 23.
  • FIG. 13 is a schematic configuration diagram for explaining still another embodiment of the second aspect of the ion chromatograph of the present invention.
  • FIG. 14 is a schematic cross-sectional view for explaining another example of the chemical suppressor 19. 14, parts having the same functions as those in FIG. 9 are denoted by the same reference numerals.
  • the chemical suppressor 19 includes a regeneration solution channel 195a disposed with respect to the eluent channel 191 via the ion exchange membrane 193a, and a regeneration solution disposed with respect to the eluent channel 191 via the ion exchange membrane 193b. And a flow path 195b.
  • Each of the regenerating liquid channels 195a and 195b includes a regenerating liquid introduction port and a discharge port.
  • a branch valve 29 for branching the regenerating liquid pipe 25 is connected between the regenerator 23 and the chemical suppressor 19.
  • one regeneration liquid pipe 25 is connected to the regeneration liquid flow path 195a.
  • the other regeneration fluid pipe 25 is connected to the regeneration fluid flow path 195b.
  • the regenerating liquid discharged from the regenerating liquid flow paths 195 a and 195 b is introduced into the regenerating liquid regenerating flow path 231 of the regenerator 23 through the merging valve 31.
  • the regenerator 23 may include a plurality of regenerating liquid channels.
  • the eluent and the electrode solution are flowed in opposite directions, but in the electrodialysis suppressor 9, the eluent and the electrode solution are flowed in the same direction. Good.
  • the regenerator 23 the regenerating solution and the electrode solution may be flowed in the same direction.
  • the chemical suppressor 19 the eluent and the regeneration liquid may be flowed in the same direction.
  • the electrodialysis suppressor includes an eluent flow path into which the eluent that has passed through the separation column is introduced, and a pair of electrode liquid streams that are respectively disposed with respect to the eluent flow path via an ion exchange membrane. Any configuration may be used as long as it has at least a pair of electrodes provided for each channel and electrode solution flow path and can remove interfering ions from the eluent.
  • the detector may have any configuration as long as it can detect target ions contained in the eluent that has passed through the eluent flow path of the electrodialysis suppressor or the chemical suppressor. Good.
  • the pulsating flow reducing device may have any configuration as long as it can reduce pulsating flow caused by bubbles generated in the electrode liquid flow path of the electrodialysis suppressor or the regenerator. Good.
  • the chemical suppressor is disposed via an ion exchange membrane with respect to the eluent flow path into which the eluent that has passed through the separation column is introduced, and the regenerant is introduced into the eluent flow path.
  • Any configuration may be used as long as it has at least a regeneration solution flow path and can remove interfering ions from the eluent.
  • the regenerator is disposed via an ion exchange membrane with respect to the regenerative liquid regeneration channel into which the regenerated liquid that has passed through the regenerant liquid channel of the chemical suppressor is introduced, and the regenerative liquid regeneration channel. It is composed of a pair of electrode solution channels and an electrodialysis suppressor having at least a pair of electrodes provided for each electrode solution channel, and any configuration can be used as long as it can remove interfering ions from the regeneration solution. Also good.
  • Electrode Solution Pipe 91 Eluent Channel 93a, 93b Ion Exchange Membrane 95a, 95b Electrolyte Channel 152 Damper 191 Eluent channel 193, 193a, 193b Ion exchange membrane 195, 195a, 195b Regeneration solution channel 231 Regeneration solution regeneration channel 233a, 233b Ion exchange membrane 235a, 235b Electrode solution channel

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

電気透析式サプレッサへの電圧供給を行なっている状態であっても、電気透析式サプレッサで発生するガスに起因する脈流の検出器への影響を低減する。分離カラム及び電気透析式サプレッサの溶離液流路を通過した溶離液は検出器に送られる。検出器を通過した溶離液は電極液配管によって電気透析式サプレッサの電極液流路に供給される。電気透析式サプレッサの電極液流路では水の電気分解によって酸素と水素が発生する。電極液配管の中間位置に脈流低減装置が設けられている。脈流低減装置は、電気透析式サプレッサの電極液流路で生じる気泡に起因する脈流を低減する。

Description

イオンクロマトグラフ
 本発明は、検出器を通過した溶離液を電極液として用いる電気透析式サプレッサを備えたイオンクロマトグラフに関する。
 サプレッサ方式イオンクロマトグラフは、溶離液中の妨害イオンをイオン交換反応によって除去するサプレッサをカラムの後段に備えている(例えば特許文献1を参照。)。このサプレッサは、溶離液の電気伝導度のバックグラウンドレベルを低下させる。これにより、サプレッサ方式イオンクロマトグラフは、S/N比を向上させることにより高感度の分析を可能にする。
 図15は、従来のサプレッサ方式イオンクロマトグラフの一例を説明するための概略的な構成図である。
 溶離液容器1から供給される溶離液は、送液ポンプ3で加圧され、試料導入部5で注入された試料と合流して分離カラム7に導入される。溶離液に注入された試料は分離カラム7を通過する間に各成分に分離される。
 分離された試料を含む溶離液は電気透析式サプレッサ9の溶離液流路を介して検出器11に送られる。検出器11を通過した溶離液は電極液配管13を介して電気透析式サプレッサ9の電極液流路に供給される(リサイクルモードと呼ばれる。)。電気透析式サプレッサ9の電極液流路を通過した溶離液は排出される。
 電気透析式サプレッサ9は、前述したように、溶離液中の妨害イオンをイオン交換反応によって除去するものである。電気透析式サプレッサ9において、陽極側の電極液流路中の水素イオンはイオン交換膜を介して溶離液流路に供給される。溶離液中に存在する妨害イオン(例えばナトリウムイオン)はイオン交換膜を介して陰極側の電極液流路に移動する。
 電気透析式サプレッサ9において水の電気分解がおこる。反応は以下の通りである。
   陰極:4H20+4e- → 2H2+40H-
   陽極:40H- → 2H20+02+4e-
   2H20 → 2H2+02
特表平10-507001号公報 特開2006-514279号公報
 サプレッサ方式イオンクロマトグラフにおいて、電気透析式サプレッサの電極液流路で酸素ガス及び水素ガスが発生する。上述のように、リサイクルモードの場合、検出器を通過した溶離液は電極液として電気透析式サプレッサの電極液流路に供給される。この場合、溶離液が流れる流路において、電極液流路で発生するガスに起因して脈流が生じることがある。この脈流は、検出器において電気化学的ノイズの原因となる。
 この不具合を防止するために、イオン種の検出中は電気透析式サプレッサへの電圧の供給を停止して気泡の発生を抑制することが提案されている(例えば特許文献1を参照。)。このように電気透析式サプレッサを間欠的に使用することで、イオン種の検出中の電気化学的ノイズが小さくなる。
 しかしながら、電気透析式サプレッサへの電圧の供給を間欠的に行うと、検出器のベースラインが例えば16nS/cm・min(ナノジーメンス毎センチメートル・分)程度ドリフトする。これにより、分析時間が5~7分程度に限られるという問題があった。
 そこで、本発明は、電気透析式サプレッサへの電圧供給を行なっている状態であっても、電気透析式サプレッサで発生するガスに起因する脈流の検出器への影響を低減することを目的とするものである。
 本発明にかかるイオンクロマトグラフの第1の態様は、溶離液と共に試料が導入される分離カラムと、上記分離カラムを通過した溶離液が導入される溶離液流路、上記溶離液流路に対してそれぞれイオン交換膜を介して配置された一対の電極液流路、及び電極液流路ごとに設けられた一対の電極を少なくとも有する電気透析式サプレッサと、上記電気透析式サプレッサの上記溶離液流路を通過した溶離液に含まれる目的イオンを検出するための検出器と、上記検出器を通過した溶離液を上記電気透析式サプレッサの上記電極液流路に供給するための電極液配管と、上記電極液配管の中間位置に設けられた、上記電気透析式サプレッサの上記電極液流路で生じる気泡に起因する脈流を低減するための脈流低減装置と、を備えている。
 本発明にかかるイオンクロマトグラフの第2の態様は、溶離液と共に試料が導入される分離カラムと、上記分離カラムを通過した溶離液が導入される溶離液流路、及び上記溶離液流路に対してイオン交換膜を介して配置され、再生液が導入される再生液流路を少なくとも有するケミカルサプレッサと、上記ケミカルサプレッサの上記溶離液流路を通過した溶離液に含まれる目的イオンを検出するための検出器と、上記ケミカルサプレッサの上記再生液流路を通過した再生液が導入される再生液再生流路、上記再生液再生流路に対してそれぞれイオン交換膜を介して配置された一対の電極液流路、並びに上記電極液流路ごとに設けられた一対の電極を少なくとも有する電気透析式サプレッサからなる再生器と、上記再生器の上記再生液再生流路を通過した再生液を上記ケミカルサプレッサの上記再生液流路に供給するための再生液配管と、上記検出器を通過した溶離液を上記再生器の上記電極液流路に供給するための電極液配管と、上記電極液配管の中間位置に設けられた、上記再生器の上記電極液流路で生じる気泡に起因する脈流を低減するための脈流低減装置と、を備えている。
 本発明のイオンクロマトグラフの第1の態様及び第2の態様において、上記脈流低減装置の一例は少なくとも弾性体を一部に含んだダンパーである。
 本発明のイオンクロマトグラフの第1の態様及び第2の態様において、上記脈流低減装置の他の例は脱気装置である。
 ただし、本発明のイオンクロマトグラフにおいて、脈流低減装置は、上記ダンパー及び脱気装置に限定されず、電極液流路で生じる気泡に起因する脈流を低減できる構造であれば、どのような構造であってもよい。
 本発明のイオンクロマトグラフは、検出器を通過した溶離液を電気透析式サプレッサの電極液流路又は電気透析式サプレッサからなる再生器の電極液流路に供給するための電極液配管の中間位置に、上記電極液流路で生じる気泡に起因する脈流を低減するための脈流低減装置を備えているようにした。これにより、本発明のイオンクロマトグラフは、電気透析式サプレッサへの電圧供給を行なっている状態であっても、電気透析式サプレッサで発生するガスに起因する脈流の検出器への影響を低減することができる。
本発明のイオンクロマトグラフの第1の態様の一実施例を説明するための概略的な構成図である。 電気透析式サプレッサの一例を説明するための概略的な断面図である。 脈流低減装置の一例を説明するための概略図である。 図3に示した脈流低減装置がある場合(実施例)と無い場合(従来技術)とでベースラインノイズを測定した結果を示すクロマトグラム及びその一部分の拡大図である。 脈流低減装置の他の例を説明するための概略的な構成図である。 本発明のイオンクロマトグラフの第1の態様の他の実施例を説明するための概略的な構成図である。 電気透析式サプレッサの他の例を説明するための概略的な断面図である。 本発明のイオンクロマトグラフの第2の態様の一実施例を説明するための概略的な構成図である。 ケミカルサプレッサの一例を説明するための概略的な断面図である。 再生器の一例を説明するための概略的な断面図である。 本発明のイオンクロマトグラフの第2の態様の他の実施例を説明するための概略的な構成図である。 再生器の他の例を説明するための概略的な断面図である。 本発明のイオンクロマトグラフの第2の態様のさらに他の実施例を説明するための概略的な構成図である。 ケミカルサプレッサの他の例を説明するための概略的な断面図である。 従来のサプレッサ方式イオンクロマトグラフの一例を説明するための概略的な構成図である。
 図1は、本発明のイオンクロマトグラフの第1の態様の一実施例を説明するための概略的な構成図である。
 溶離液容器1に溶離液が収容されている。溶離液容器1に収容された溶離液は、送液ポンプ3で加圧され、試料導入部5を介して分離カラム9に送られる。
 試料注入器5は分離カラム9に送られる溶離液に所定量の試料を注入するためのものである。分離カラム9には溶離液と共に試料が導入される。溶離液に注入された試料は分離カラム7を通過する間に各成分に分離される。
 分離カラム41から排出された溶離液は、電気透析式サプレッサ9の溶離液流路を介して検出器11に送られる。検出器11は、電気透析式サプレッサ9の溶離液流路を通過した溶離液に含まれる目的イオンを検出する。検出器11としては、溶離液の電気伝導度を測定することで溶離液中のイオン濃度を検出する電気伝導度検出器が主として用いられる。
 検出器11を通過した溶離液は、その溶離液を電気透析式サプレッサ9の電極液流路に供給するための電極液配管13に送られ、電極液配管13の中間位置に設けられた脈流低減装置15を介して電気透析式サプレッサ9の電極液流路に供給される(リサイクルモード)。脈流低減装置15は、電気透析式サプレッサ9の電極液流路で生じる気泡に起因する脈流を低減するためのものである。電気透析式サプレッサ9の電極液流路を通過した溶離液は排出される。
 図2は、電気透析式サプレッサ9の一例を説明するための概略的な断面図である。
 電気透析式サプレッサ9は、溶離液流路91、イオン交換膜93a,93b、電極液流路95a,95b及び電極97a,97bを備えている。電気透析式サプレッサ9は、板状の部材が積層されて形成されている。
 溶離液流路91には分離カラム7(図1を参照。)を通過した溶離液が導入される。電極液流路95aは溶離液流路91に対してイオン交換膜93aを介して配置されている。電極液流路95bは溶離液流路91に対してイオン交換膜93bを介して配置されている。
 電極液流路95a,95bには検出器11(図1を参照。)からの溶離液が導入される。
 陽極側の電極97aは電極液流路95aに接して配置されている。陰極側の電極97bは電極液流路95bに接して配置されている。
 図3は、脈流低減装置15の一例を説明するための概略的な構成図である。
 脈流低減装置15は、三方管151、弾性管からなるダンパー152、漏出用管153、コネクター154a,154b,154c,154dを備えている。
 三方管151の2つの端部は、コネクター154a,154bによって溶離液流路13の中間位置に接続されている。三方管151の残りの端部はコネクター154cによってダンパー152の一端に接続されている。ダンパー152の他端はコネクター154dによって漏出用配管153の一端に接続されている。
 例えば、溶離液流路13は、内径が0.23mmのPEEK(polyether ether ketone)チューブである。ダンパー152は、内径が5mm、長さが200mmの塩化ビニル製チューブである。漏出用配管153は、内径が0.13mmのPEEKチューブである。
 脈流低減装置15において、ダンパー152は、その弾性によって、電気透析式サプレッサ9の電極液流路95a,95b(図2を参照。)で生じる気泡に起因する脈流を低減する。
 さらに、漏出用配管153は、溶離液流路13よりも小さい内径を備えていることにより、検出器からの溶離液の一部を漏出する。これにより、漏出用配管153は、電気透析式サプレッサ9の電極液流路95a,95bで生じる気泡に起因する脈流を低減する。
 このように、脈流低減装置15は、電気透析式サプレッサ9の電極液流路95a,95bで生じる気泡に起因する脈流を低減することにより、検出器における電気化学的ノイズを緩衝する。
 図4は、図3に示した脈流低減装置がある場合(実施例)と無い場合(従来技術)とでベースラインノイズを測定した結果を示すクロマトグラム及びその一部分の拡大図である。図4において、縦軸は電気伝導度(単位はnS/cm)、横軸は時間(単位は分)を示す。
 サプレッサへの電圧印加は連続して行なわれた。
 脈流低減装置が無い場合(従来技術)、ベースラインノイズは5.6nS/cm程度であった。脈流低減装置がある場合(実施例)、ベースラインノイズは0.7nS/cm程度であった。
 このように、上記実施例は、電気透析式サプレッサ9への電圧供給を行なっている状態であっても、電気透析式サプレッサ9で発生するガスに起因する検出器11への脈流の影響を低減することができる。そして、電気透析式サプレッサ9で発生するガスの検出器11への脈流の影響を防ぐことで、電解連続再生においてもノイズレベルの低い高感度分析が可能となった。
 さらに、上記実施例は、電気透析式サプレッサ9を連続で駆動させているので、間欠駆動でノイズを低減する従来技術に比べてベースラインのドリフトが小さい安定したベースラインで分析可能となる。
 図5は、脈流低減装置15の他の例を説明するための概略的な構成図である。
 脈流低減装置15は、容器155及び密栓156を備えている。容器155は密栓156によって封止されている。容器155内の下部に溶離液が収容されて液体層157が形成されている。容器155内で液体層157の上方に例えば空気からなる気体層158が形成されている。
 検出器からの溶離液流路13の端部、及び電気透析式サプレッサの電極液流路へ向かう端部は、両方とも、容器155内の液体層157に配置されている。
 脈流低減装置15は、脱気装置として機能し、電気透析式サプレッサ9の電極液流路95a,95bで発生するガスを気体層158で捕捉することでノイズの軽減を行う。これにより、脈流低減装置15は、電気透析式サプレッサ9への電圧供給を行なっている状態であっても、電気透析式サプレッサ9で発生するガスに起因する検出器11への脈流の影響を低減する。
 なお、図1に示された実施例において、脈流低減装置15の構造は、図3又は図5に示されたものに限定されず、電極液流路95a,95bで生じる気泡に起因する脈流を低減できる構造であれば、どのような構造であってもよい。
 図6は、本発明のイオンクロマトグラフの第1の態様の他の実施例を説明するための概略的な構成図である。図6において図1と同じ機能を果たす部分には同じ符号が付される。
 図7は、電気透析式サプレッサ9の他の例を説明するための概略的な断面図である。図7において図2と同じ機能を果たす部分には同じ符号が付される。
 この実施例で用いられる電気透析式サプレッサ9は、図7に示されるように、電極液流路95a,95bはそれぞれ電極液導入口及び排出口を備えている。
 電極液配管13において、脈流低減装置15と電気透析式サプレッサ9の間に、電極液配管13を分岐するための分岐バルブ17が接続されている。分岐バルブ17によって分岐された2本の電極液配管13のうち、一方の電極液配管13は電極液流路95aに接続されている。他方の電極液配管13は電極液流路95bに接続されている。
 この実施例と図1に示された実施例は、電極液の流れる流路が電気透析式サプレッサ9の前段で分岐されているか(図6及び図7)、電気透析式サプレッサ9の内部で分岐されているか(図1及び図2)の違いがあるが、脈流低減装置15によって電気透析式サプレッサ9の電極液流路95a,95bで生じる気泡に起因する脈流を低減する構成は同じである。したがって、この実施例は、電気透析式サプレッサ9への電圧供給を行なっている状態であっても、電気透析式サプレッサ9で発生するガスに起因する検出器11への脈流の影響を低減することができる。
 図8は、本発明のイオンクロマトグラフの第2の態様の一実施例を説明するための概略的な構成図である。図8において、図1と同じ機能を果たす部分には同じ符号が付される。
 この実施例では、分離カラム7と検出器11との間にケミカルサプレッサ19が配置されている。ケミカルサプレッサは例えば特許文献2に開示されている。
 図9は、ケミカルサプレッサ19の一例を説明するための概略的な断面図である。
 ケミカルサプレッサ19は、溶離液流路191、イオン交換膜193及び再生液流路195を備えている。ケミカルサプレッサ19は、板状の部材が積層されて形成されている。
 溶離液流路191には分離カラム7(図8を参照。)を通過した溶離液が導入される。再生液流路195は溶離液流路191に対してイオン交換膜193を介して配置されている。再生液流路195には再生液が導入される。
 溶離液は例えばアルカリ溶液(NaOH)である。再生液は例えば酸溶液(H2SO4)である。ケミカルサプレッサ19は、イオン交換膜193を介して、再生液流路195から溶離液流路191へ水素イオンを供給し、溶離液に含まれる妨害イオン(例えばナトリウムイオン)を溶離液流路191から再生液流路195へ移動させる。これにより、溶離液の電気伝導度のバックグラウンドレベルが低下される。
 ケミカルサプレッサ19の溶離液流路191を通過した溶離液は、溶離液に含まれる目的イオンを検出するための検出器11に送られる。検出器11を通過した溶離液は電極液配管13を介して再生器23の電極液流路に供給される(リサイクルモード)。
 電極液配管13の中間位置に再生器23の電極液流路で生じる気泡に起因する脈流を低減するための脈流低減装置15が設けられている。
 図10は、再生器23の一例を説明するための概略的な断面図である。
 再生器23は電気透析式サプレッサによって構成されている。
 再生器23は、再生液再生流路231、イオン交換膜233a,233b、電極液流路235a,235b及び電極237a,237bを備えている。再生器23は、板状の部材が積層されて形成されている。
 再生液再生流路231にはケミカルサプレッサ19の再生液流路195を通過した溶離液が導入される。電極液流路235aは再生液再生流路231に対してイオン交換膜233aを介して配置されている。電極液流路235bは再生液再生流路231に対してイオン交換膜233bを介して配置されている。
 電極液流路235a,235bには検出器11(図8を参照。)からの溶離液が導入される。
 陽極側の電極237aは電極液流路235aに接して配置されている。陰極側の電極237bは電極液流路235bに接して配置されている。
 再生器23において、水の電気分解によって、陽極側の電極液流路235aで酸素が発生し、陰極側の電極液流路235bで水素が発生する。
 陽極側の電極液流路235aで生成された水素イオンはイオン交換膜233aを介して再生液再生流路231に供給される。ケミカルサプレッサ19の再生液流路195からの再生液に含まれる妨害イオン(例えばナトリウムイオン)は、再生液が再生器23の再生液再生流路231を通過する間に、イオン交換膜233bを介して陰極側の電極液流路235bに移動する。このようにして、再生器23で再生液(H2SO4)が再生される。
 再生器23で再生された再生液は、再生液配管25を介して、ケミカルサプレッサ19の再生液流路195に供給される。
 上述のように再生器23の電極液流路235a,235bにおいて気泡が発生する。しかし、その気泡に起因する脈流は、電極液流路13に設けられた脈流低減装置15によって緩衝される。これにより、再生器23(電気透析式サプレッサ)への電圧供給を行なっている状態であっても、再生器23で発生するガスに起因する検出器11への脈流の影響は低減されている。
 図11は、本発明のイオンクロマトグラフの第2の態様の他の実施例を説明するための概略的な構成図である。図12において、図8と同じ機能を果たす部分には同じ符号が付される。
 図12は、再生器23の他の例を説明するための概略的な断面図である。図7において図2と同じ機能を果たす部分には同じ符号が付される。
 この実施例で用いられる再生器23は、図12に示されるように、電極液流路235a,235bはそれぞれ電極液導入口及び排出口を備えている。
 電極液配管13において、脈流低減装置15と再生器23の間に、電極液配管13を分岐するための分岐バルブ27が接続されている。分岐バルブ27によって分岐された2本の電極液配管13のうち、一方の電極液配管13は電極液流路235aに接続されている。他方の電極液配管13は電極液流路235bに接続されている。
 この実施例は、図8に示された実施例と同様に、脈流低減装置15によって再生器23の電極液流路235a,235bで生じる気泡に起因する脈流を脈流低減装置15によって緩衝する。したがって、この実施例は、再生器23への電圧供給を行なっている状態であっても、再生器23で発生するガスに起因する検出器11への脈流の影響を低減することができる。
 図13は、本発明のイオンクロマトグラフの第2の態様のさらに他の実施例を説明するための概略的な構成図である。図13において、図11と同じ機能を果たす部分には同じ符号が付される。
 図14は、ケミカルサプレッサ19の他の例を説明するための概略的な断面図である。図14において図9と同じ機能を果たす部分には同じ符号が付される。
 ケミカルサプレッサ19は、溶離液流路191に対してイオン交換膜193aを介して配置された再生液流路195aと、溶離液流路191に対してイオン交換膜193bを介して配置された再生液流路195bとを備えている。再生液流路195a,195bはそれぞれ再生液導入口及び排出口を備えている。
 再生液配管25において、再生器23とケミカルサプレッサ19の間に、再生液配管25を分岐するための分岐バルブ29が接続されている。分岐バルブ29によって分岐された2本の再生液配管25のうち、一方の再生液配管25は再生液流路195aに接続されている。他方の再生液配管25は再生液流路195bに接続されている。
 再生液流路195a,195bから排出された再生液は、合流バルブ31を介して、再生器23の再生液再生流路231に導入される。
 このように、再生器23は複数の再生液流路を備えていてもよい。
 以上、本発明の実施例を説明したが、実施例における材料、寸法、配置等は一例であり、本発明はこれに限定されるものではなく、特許請求の範囲に記載された本発明の範囲内で種々の変更が可能である。
 例えば、上記実施例において、電気透析式サプレッサ9では、溶離液と電極液は互いに逆方向に流されているが、電気透析式サプレッサ9において、溶離液と電極液は同じ方向に流されてもよい。同様に、再生器23において、再生液と電極液は同じ方向に流されてもよい。また、ケミカルサプレッサ19において、溶離液と再生液は同じ方向に流されてもよい。
 また、本発明において、電気透析式サプレッサは、分離カラムを通過した溶離液が導入される溶離液流路、溶離液流路に対してそれぞれイオン交換膜を介して配置された一対の電極液流路、及び電極液流路ごとに設けられた一対の電極を少なくとも有し、溶離液から妨害イオンを除去できる構成であれば、どのような構成であってもよい。
 また、本発明において、検出器は、電気透析式サプレッサ又はケミカルサプレッサの溶離液流路を通過した溶離液に含まれる目的イオンを検出できるものであれば、どのような構成のものであってもよい。
 また、本発明において、脈流低減装置は、電気透析式サプレッサ又は再生器の電極液流路で生じる気泡に起因する脈流を低減できるものであれば、どのような構成のものであってもよい。
 また、本発明において、ケミカルサプレッサは、分離カラムを通過した溶離液が導入される溶離液流路、及び前記溶離液流路に対してイオン交換膜を介して配置され、再生液が導入される再生液流路を少なくとも有し、溶離液から妨害イオンを除去できる構成であれば、どのような構成であってもよい。
 また、本発明において、再生器は、ケミカルサプレッサの再生液流路を通過した再生液が導入される再生液再生流路、再生液再生流路に対してそれぞれイオン交換膜を介して配置された一対の電極液流路、並びに電極液流路ごとに設けられた一対の電極を少なくとも有する電気透析式サプレッサからなり、再生液から妨害イオンを除去できる構成であれば、どのような構成であってもよい。
7 分離カラム
9 電気透析式サプレッサ
11 検出器
13 電極液配管
15 脈流低減装置
19 ケミカルサプレッサ
23 再生器
25 再生液配管
91 溶離液流路
93a,93b イオン交換膜
95a,95b 電極液流路
152 ダンパー
191 溶離液流路
193,193a,193b イオン交換膜
195,195a,195b 再生液流路
231 再生液再生流路
233a,233b イオン交換膜
235a,235b 電極液流路

Claims (4)

  1.  溶離液と共に試料が導入される分離カラムと、
     前記分離カラムを通過した溶離液が導入される溶離液流路、前記溶離液流路に対してそれぞれイオン交換膜を介して配置された一対の電極液流路、及び電極液流路ごとに設けられた一対の電極を少なくとも有する電気透析式サプレッサと、
     前記電気透析式サプレッサの前記溶離液流路を通過した溶離液に含まれる目的イオンを検出するための検出器と、
     前記検出器を通過した溶離液を前記電気透析式サプレッサの前記電極液流路に供給するための電極液配管と、
     前記電極液配管の中間位置に設けられた、前記電気透析式サプレッサの前記電極液流路で生じる気泡に起因する脈流を低減するための脈流低減装置と、を備えたイオンクロマトグラフ。
  2.  溶離液と共に試料が導入される分離カラムと、
     前記分離カラムを通過した溶離液が導入される溶離液流路、及び前記溶離液流路に対してイオン交換膜を介して配置され、再生液が導入される再生液流路を少なくとも有するケミカルサプレッサと、
     前記ケミカルサプレッサの前記溶離液流路を通過した溶離液に含まれる目的イオンを検出するための検出器と、
     前記ケミカルサプレッサの前記再生液流路を通過した再生液が導入される再生液再生流路、前記再生液再生流路に対してそれぞれイオン交換膜を介して配置された一対の電極液流路、並びに前記電極液流路ごとに設けられた一対の電極を少なくとも有する電気透析式サプレッサからなる再生器と、
     前記再生器の前記再生液再生流路を通過した再生液を前記ケミカルサプレッサの前記再生液流路に供給するための再生液配管と、
     前記検出器を通過した溶離液を前記再生器の前記電極液流路に供給するための電極液配管と、
     前記電極液配管の中間位置に設けられた、前記再生器の前記電極液流路で生じる気泡に起因する脈流を低減するための脈流低減装置と、を備えたイオンクロマトグラフ。
  3.  前記脈流低減装置は少なくとも弾性体を一部に含んだダンパーである請求項1又は2に記載のイオンクロマトグラフ。
  4.  前記脈流低減装置は脱気装置である請求項1又は2に記載のイオンクロマトグラフ。
PCT/JP2014/083779 2014-12-19 2014-12-19 イオンクロマトグラフ WO2016098260A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/083779 WO2016098260A1 (ja) 2014-12-19 2014-12-19 イオンクロマトグラフ
JP2016564559A JP6292318B2 (ja) 2014-12-19 2014-12-19 イオンクロマトグラフ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/083779 WO2016098260A1 (ja) 2014-12-19 2014-12-19 イオンクロマトグラフ

Publications (1)

Publication Number Publication Date
WO2016098260A1 true WO2016098260A1 (ja) 2016-06-23

Family

ID=56126177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083779 WO2016098260A1 (ja) 2014-12-19 2014-12-19 イオンクロマトグラフ

Country Status (2)

Country Link
JP (1) JP6292318B2 (ja)
WO (1) WO2016098260A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021352A1 (ja) * 2017-07-24 2019-01-31 株式会社島津製作所 イオンサプレッサーおよびイオンクロマトグラフ
CN113631919A (zh) * 2019-04-01 2021-11-09 株式会社岛津制作所 离子色谱仪及离子成分分析方法
CN113646629A (zh) * 2019-03-27 2021-11-12 株式会社岛津制作所 离子色谱仪
CN114930169A (zh) * 2020-01-08 2022-08-19 株式会社岛津制作所 离子色谱仪用抑制器装置
US11534700B2 (en) * 2017-07-24 2022-12-27 Shimadzu Corporation Ion suppressor and ion chromatograph

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120445A (ja) * 1993-10-27 1995-05-12 Yokogawa Analytical Syst Kk イオン分析装置
JPH10507001A (ja) * 1995-03-03 1998-07-07 ダイオネックス コーポレイション イオンクロマトグラフィーのための、間欠電解膜サプレッサー再生
JP2003526782A (ja) * 2000-03-08 2003-09-09 ダイオネックス コーポレイション 置換化学的再生方法及び装置
JP2004230373A (ja) * 2003-01-31 2004-08-19 Systec Inc 複数の移動相流を脱気および混合するための統合装置
JP2007315816A (ja) * 2006-05-23 2007-12-06 Sekisui Chem Co Ltd ヘモグロビン類の測定方法
JP2011513707A (ja) * 2008-02-22 2011-04-28 ダイオネックス コーポレイション 流動−遅延溶離剤リサイクルを伴うイオンクロマトグラフィーシステム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7473354B2 (en) * 2005-09-16 2009-01-06 Dionex Corporation Recycled suppressor regenerants

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120445A (ja) * 1993-10-27 1995-05-12 Yokogawa Analytical Syst Kk イオン分析装置
JPH10507001A (ja) * 1995-03-03 1998-07-07 ダイオネックス コーポレイション イオンクロマトグラフィーのための、間欠電解膜サプレッサー再生
JP2003526782A (ja) * 2000-03-08 2003-09-09 ダイオネックス コーポレイション 置換化学的再生方法及び装置
JP2004230373A (ja) * 2003-01-31 2004-08-19 Systec Inc 複数の移動相流を脱気および混合するための統合装置
JP2007315816A (ja) * 2006-05-23 2007-12-06 Sekisui Chem Co Ltd ヘモグロビン類の測定方法
JP2011513707A (ja) * 2008-02-22 2011-04-28 ダイオネックス コーポレイション 流動−遅延溶離剤リサイクルを伴うイオンクロマトグラフィーシステム

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021352A1 (ja) * 2017-07-24 2019-01-31 株式会社島津製作所 イオンサプレッサーおよびイオンクロマトグラフ
JPWO2019021352A1 (ja) * 2017-07-24 2020-04-23 株式会社島津製作所 イオンサプレッサーおよびイオンクロマトグラフ
US11531010B2 (en) 2017-07-24 2022-12-20 Shimadzu Corporation Ion suppressor and ion chromatograph
US11534700B2 (en) * 2017-07-24 2022-12-27 Shimadzu Corporation Ion suppressor and ion chromatograph
CN113646629A (zh) * 2019-03-27 2021-11-12 株式会社岛津制作所 离子色谱仪
CN113646629B (zh) * 2019-03-27 2024-03-26 株式会社岛津制作所 离子色谱仪
CN113631919A (zh) * 2019-04-01 2021-11-09 株式会社岛津制作所 离子色谱仪及离子成分分析方法
US20220155265A1 (en) * 2019-04-01 2022-05-19 Shimadzu Corporation Ion chromatograph and ion component analysis method
CN113631919B (zh) * 2019-04-01 2023-12-29 株式会社岛津制作所 离子色谱仪及离子成分分析方法
US11982653B2 (en) 2019-04-01 2024-05-14 Shimadzu Corporation Ion chromatograph and ion component analysis method
CN114930169A (zh) * 2020-01-08 2022-08-19 株式会社岛津制作所 离子色谱仪用抑制器装置

Also Published As

Publication number Publication date
JPWO2016098260A1 (ja) 2017-07-20
JP6292318B2 (ja) 2018-03-14

Similar Documents

Publication Publication Date Title
JP6292318B2 (ja) イオンクロマトグラフ
JP5947367B2 (ja) Co2除去装置及び方法
KR101433776B1 (ko) 서프레서 재생제의 재순환
CN101910835B (zh) 抑制器及采用该抑制器的离子色谱仪
US11531010B2 (en) Ion suppressor and ion chromatograph
US9580822B2 (en) Three-electrode buffer generator and method
EP2246696B1 (en) Suppressor utilizing micro ion exchange tube and ion chromatograph utilizing the same
EP1536879A1 (en) Electrolytic eluent generator and method of use
JP6066087B2 (ja) クロマトグラフシステム及び方法のための高圧脱ガス組立体
JP6897772B2 (ja) イオンサプレッサーおよびイオンクロマトグラフ
US20240091716A1 (en) Electrolytic eluent generators with stabilized operating voltages
US20160175778A1 (en) Ion processing device, ion chromatograph provided with the ion processing device, and eluent generator provided with the ion processing device
WO2011132518A1 (ja) 高純度電解質溶液生成装置
CN102253163A (zh) 电化学连续再生co2抑制器
CA2402141A1 (en) Method and apparatus for gas-assisted suppressed chromatography
JP2009236739A (ja) 電気伝導度検出装置
US9931585B2 (en) Electrolytic device for contaminant removal and method
WO2020194608A1 (ja) イオンクロマトグラフ
CN219449884U (zh) 一种洗脱液生成盒和一种电解洗脱液发生器
CN219320188U (zh) 捕获柱及离子色谱仪
RU2229326C1 (ru) Электродиализный подавитель для ионной хроматографии (варианты)
CN114384195A (zh) 电解远程离子源和离子再循环(isir)模块
JP2018173393A (ja) 電気再生式イオン生成除去一体型装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908470

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016564559

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14908470

Country of ref document: EP

Kind code of ref document: A1