WO2016093162A1 - 積層フィルム及び医療用シート - Google Patents

積層フィルム及び医療用シート Download PDF

Info

Publication number
WO2016093162A1
WO2016093162A1 PCT/JP2015/084108 JP2015084108W WO2016093162A1 WO 2016093162 A1 WO2016093162 A1 WO 2016093162A1 JP 2015084108 W JP2015084108 W JP 2015084108W WO 2016093162 A1 WO2016093162 A1 WO 2016093162A1
Authority
WO
WIPO (PCT)
Prior art keywords
hyaluronic acid
acid
layer
polylactic acid
laminated film
Prior art date
Application number
PCT/JP2015/084108
Other languages
English (en)
French (fr)
Inventor
保地基典
後藤ユキ
齋藤晃広
武岡真司
大坪真也
檜顕成
木下学
Original Assignee
東レ株式会社
ナノシータ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社, ナノシータ株式会社 filed Critical 東レ株式会社
Priority to EP15867856.5A priority Critical patent/EP3231457A4/en
Priority to JP2015562620A priority patent/JP6550340B2/ja
Priority to US15/534,026 priority patent/US10531988B2/en
Publication of WO2016093162A1 publication Critical patent/WO2016093162A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/02Adhesive plasters or dressings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/24Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/26Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/28Polysaccharides or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/042Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/048Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/06Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P41/00Drugs used in surgical methods, e.g. surgery adjuvants for preventing adhesion or for vitreum substitution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B5/00Preparation of cellulose esters of inorganic acids, e.g. phosphates

Definitions

  • the present invention relates to a laminated film having a polylactic acid-based resin layer and an acetylated hyaluronic acid layer which are most suitable for medical applications such as wound covering films and adhesion preventing films.
  • Organ adhesions are one of the complications after abdominal surgery, gynecology and other open surgery. This is the process of wound healing during surgery, and tissues that may not be in contact with each other may reshape while in contact with each other, which is called adhesion. It is said that adhesions occur with high probability in open surgery, but many are asymptomatic. The frequency is not high, but it can cause serious complications such as pain, intestinal obstruction (ileus) and infertility.
  • adhesions that have been formed can not be treated noninvasively, if there are serious complications such as intestinal obstruction, there is no alternative but to perform a surgical operation to ablate the adhesion site, so the purpose is to prevent adhesions after the first operation. It is extremely important that the treatment of the wound be performed firmly.
  • Natural polymers have high affinity to the skin but have problems such as low strength. Therefore, in the case of natural polymers, it has been necessary to secure strength by wrapping with a crosslinked body with a crosslinking agent, use of a strength reinforcing material, gauze or the like. When a reinforcement is used, the structure is often complicated and not practical.
  • the present invention is an acetylated hyaluronic acid layer which is excellent in biocompatibility and easy to handle, excellent in adhesion property to an organ tissue, excellent in adhesion, and less likely to cause infection. It is an object of the present invention to provide a laminated film in which a polyester and a polylactic acid-based resin layer are laminated.
  • the present invention has the following configuration in order to solve the above-mentioned problems.
  • a laminated film in which one or more acetylated hyaluronic acid layers each having a thickness of 1 ⁇ m to 100 ⁇ m are laminated on one side of a polylactic acid-based resin layer having a thickness of 10 nm to 500 nm.
  • a medical sheet using the laminated film according to any one of (1) to (3).
  • the laminated film provided by the present invention is a laminated film in which one or more acetylated hyaluronic acid layers are laminated on one side of a polylactic acid-based resin layer, is flexible and excellent in handleability, and is attached to an adherend Since the acetylated hyaluronic acid layer can be easily removed from the thin film of polylactic acid-based resin layer by an aqueous solution, it is excellent in the followability to the adherend which is a curved surface, adhesion, and coatability.
  • acetylated hyaluronic acid and polylactic acid resin are biodegradable, they are excellent in compatibility with skin, internal organs such as internal organs, etc., and external materials for external use such as wound covering materials, adhesion preventing materials and skin care products. Best as.
  • acetylated hyaluronic acid is less likely to cause infections when it is used as an adhesion prevention material because bacterial growth is less likely to progress compared to other common water-soluble resins.
  • the polylactic acid-based resin layer after removing acetylated hyaluronic acid by an aqueous solution is transparent, the sticking surface is not noticeable, so that not only surgery but also sticking to the skin is possible, as a plaster It can also be used.
  • polylactic acid-based resin layer and / or the acetylated hyaluronic acid layer can carry and release various drugs, and can also be used as a drug delivery system.
  • film is used to mean a structure having a two-dimensional spread, such as a sheet, a plate, a discontinuous film, and the like.
  • the weight average molecular weight of the polylactic acid-based resin used in the present invention is preferably 50,000 or more, more preferably 80,000 to 1,000,000, and still more preferably 100,000 to 500,000.
  • the weight average molecular weight as used in the field of this invention measures with a chloroform solvent by gel permeation chromatography (GPC), and says the molecular weight calculated by the polystyrene (PS) conversion method.
  • GPC gel permeation chromatography
  • the polylactic acid-based resin used in the present invention may be a mixture of crystalline homopolylactic acid-based resin and non-crystalline homopolylactic acid-based resin for the purpose of improving the solubility in a solvent when forming a coating film coating liquid. Good.
  • the proportion of the amorphous homopolylactic acid-based resin may be determined within the range that does not impair the effects of the present invention.
  • at least one of the polylactic acid-based resins used contains a polylactic acid-based resin having an optical purity of 95% or more.
  • the polylactic acid-based resin used in the present invention preferably contains poly L-lactic acid (L-form) and / or poly D-lactic acid (D-form) as a main component.
  • the main component means that the component derived from lactic acid is 70 mol% or more and 100 mol% or less in 100 mol% of all the monomer components constituting the polylactic acid-based resin, and substantially poly L-lactic acid and / Alternatively, a homopolylactic acid based resin consisting only of poly D-lactic acid is preferably used.
  • the amount of poly D-lactic acid of the polylactic acid based resin used in the present invention is preferably 4 to 50 mol%, more preferably 6 to 13 mol%. If the amount of poly D-lactic acid is less than 4 mol%, the solubility in organic solvents may be reduced and it may be difficult to form a coating agent. If it is more than 50 mol%, individual differences may occur but it may be difficult to metabolize is there.
  • the polylactic acid-based resin used in the present invention may be a copolymerized polylactic acid-based resin obtained by copolymerizing L-lactic acid and D-lactic acid, and other monomer components having an ester forming ability.
  • copolymerizable monomer components include glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 4-hydroxybutyric acid, and hydroxycarboxylic acids such as 6-hydroxycaproic acid, ethylene glycol, propylene glycol and butane Compounds containing a plurality of hydroxyl groups in the molecule such as diol, neopentyl glycol, polyethylene glycol, glycerin and pentaerythritol or derivatives thereof, succinic acid, adipic acid, sebacic acid, fumaric acid, terephthalic acid, isophthalic acid, 2 And 6-naphthalenedicarboxylic acid, 5-sodium sulfoisophthalic acid, 5-tetrabutyl
  • the component which has biodegradability it is preferable to select the component which has biodegradability according to a use among the above-mentioned copolymerization components. It is preferable to contain 30 mol% or less in 100 mol% of all the monomer components which comprise polylactic acid-type resin except copolymer components other than these polylactic acid.
  • the polylactic acid-based resin of the present invention has a carboxyl group terminal concentration of 30 equivalents / 10 3 kg in the polylactic acid-based resin from the viewpoint of suppressing strength reduction due to hydrolysis and imparting good durability (long-term storage property). It is preferable that it is the following, More preferably, it is 20 equivalent / 10 3 kg or less, More preferably, it is 10 equivalent / 10 3 kg or less.
  • the carboxyl group end concentration in the polylactic acid-based resin is 30 equivalents / 10 3 kg or less, since the carboxyl group end concentration which is also an autocatalyst for hydrolysis is sufficiently low, practically good durability can be imparted.
  • the carboxyl group end concentration in the polylactic acid-based resin there is no problem even if it is close to 0 equivalent without limit.
  • a method of setting the carboxyl group terminal concentration in the polylactic acid-based resin to 30 equivalent / 10 3 kg or less for example, a method of controlling by the catalyst at the time of synthesis of the polylactic acid-based resin or heat history, processing at the time of molding
  • the method of reducing a heat history by the fall of temperature, or shortening of heating time, the method of blocking a carboxyl group terminal using a reaction type compound, etc. are mentioned.
  • the method of blocking the carboxyl group terminal using a reactive compound it is preferable that at least a part of the carboxyl group terminal in the polylactic acid resin is blocked, and it is more preferable that the entire amount is blocked.
  • reactive compounds include condensation reaction type compounds such as aliphatic alcohols and amide compounds, and addition reaction type compounds such as carbodiimide compounds, epoxy compounds and oxazoline compounds, but extra by-products are generated during the reaction. Addition reaction type compounds are preferred in view of difficulty, and among them, carbodiimide compounds are preferred in view of reaction efficiency.
  • the impact resistance modifier may be contained in an amount of 2% by mass or more and 20% by mass or less in 100% by mass of the entire polylactic acid-based resin layer for the purpose of improving mechanical strength. Preferably it is 2.5 mass% or more and 15 mass% or less.
  • the effect of improving the impact resistance is improved as the content of the impact modifier is increased, but even if the content exceeds 20% by mass, a significant improvement in the mechanical strength may not be obtained.
  • aliphatic polymers other than polylactic acid-based resins are preferred in that they have suitable dispersibility in polylactic acid-based resins and high effects can be obtained with a small amount. Polyester and aliphatic aromatic polyester are preferred.
  • the aliphatic polyesters and aliphatic aromatic polyesters other than the polylactic acid-based resin are not particularly limited, and specifically, polyglycolic acid, poly 3-hydroxybutyric acid, poly 4-hydroxybutyric acid, poly 4- Examples thereof include hydroxyvaleric acid, poly 3-hydroxyhexanoic acid, polycaprolactone, polyethylene adipate, polyethylene succinate, polybutylene succinate, polybutylene succinate / adipate or polybutylene adipate / butylene terephthalate copolymer.
  • polybutylene succinate-based resin which is an aliphatic polyester other than a polylactic acid-based resin. More preferred are polybutylene succinate and polybutylene succinate / adipate, which are highly effective in improving mechanical strength and compatible with polylactic acid resins.
  • the weight average molecular weight of the polybutylene succinate resin used in the present invention is preferably 100,000 to 300,000.
  • the polybutylene succinate resin is obtained by polycondensation of 1,4 butanediol and succinic acid.
  • the polylactic acid-based resin in the present invention can be obtained, for example, by the following method.
  • a lactic acid component of L-lactic acid or D-lactic acid and a hydroxycarboxylic acid other than the above-mentioned lactic acid component can be used in combination.
  • cyclic ester intermediates of hydroxycarboxylic acids such as lactide and glycolide can be used as raw materials.
  • dicarboxylic acids and glycols can also be used.
  • the polylactic acid-based resin can be obtained by a method of direct dehydration condensation of the above raw material or a method of ring opening polymerization of the above cyclic ester intermediate.
  • lactic acid or lactic acid and hydroxycarboxylic acid are preferably azeotropically condensed in the presence of an organic solvent, particularly a phenyl ether solvent, preferably from a solvent distilled off by azeotropic distillation
  • a polymer having a high molecular weight is obtained by polymerization by the method of returning the substantially anhydrous solvent except water to the reaction system.
  • high molecular weight polymers can also be obtained by ring-opening polymerization of cyclic ester intermediates such as lactide and the like under reduced pressure using a catalyst such as tin octylate.
  • a method of adjusting the conditions for removing water and low molecular weight compounds at the time of heating and refluxing in an organic solvent, a method of deactivating the catalyst after completion of the polymerization reaction, and a heat treatment of the produced polymer By using the above, it is possible to obtain a polymer with a small amount of lactide.
  • the thickness of the polylactic acid-based resin layer in the present invention is preferably 10 nm or more and 500 nm or less, and more preferably 10 nm or more and 100 nm or less, from the viewpoint of shape conformity to the adherend. If the thickness is smaller than 10 nm, it may be difficult to maintain the shape, and if it exceeds 500 nm, wrinkles may be generated when it is attached to an adherend.
  • additives may be contained in an amount of 30% by mass or less based on 100% by mass of the entire polylactic acid-based resin layer, as long as the effects of the present invention are not impaired.
  • antioxidants weathering agents, heat stabilizers, lubricants, crystal nucleating agents, ultraviolet light absorbers, coloring agents and the like can be used.
  • the lower limit of the content of the additive is not particularly limited, and no problem occurs even if it is 0% by mass with respect to 100% by mass of the entire polylactic acid-based resin layer.
  • inorganic or organic particles may be contained in an amount of 20% by mass or less based on 100% by mass of the entire polylactic acid-based resin layer, as long as the transparency is not impaired.
  • the lower limit of the content of the inorganic or organic particles is not particularly limited, and may be 0% by mass with respect to 100% by mass of the entire polylactic acid-based resin layer.
  • a bioabsorbable material layer composed of gelatin, collagen, hyaluronic acid, chitosan, a synthetic polypeptide and the like may be further formed on at least one side of the polylactic acid-based resin layer, as long as the effects of the present invention are not impaired.
  • the method for producing acetylated hyaluronic acid used in the present invention is not particularly limited.
  • a method of dispersing powdery hyaluronic acid in acetic acid, adding trifluoroacetic anhydride as a catalyst, and promoting the acetylation reaction After dispersing powdery hyaluronic acid in acetic acid, p-toluenesulfonic acid is added and acetic anhydride is further added to promote acetylation reaction, or hyaluronic acid is suspended in acetic anhydride solvent, Concentrated sulfuric acid is added to the mixture to produce an acetylation reaction.
  • the purification method is not particularly limited, but pyridine is added and neutralized, then water is added and stirred, the precipitate is completely dissolved, acetone is gradually added while stirring, the product is precipitated, and separated by centrifugation. The precipitate is again dissolved in sodium acetate, precipitated with acetone, and finally completely dehydrated by washing with acetone, followed by drying under reduced pressure to obtain a white powder of acetylated hyaluronic acid.
  • the degree of acetylation of acetylated hyaluronic acid used in the present invention can be measured by NMR.
  • NMR of acetylated hyaluronic acid is measured, and it is determined from the integral value by the following equation.
  • Degree of acetylation (peak integral value of acetyl group / 3) / ⁇ (peak integral value of hydroxyl group) + (peak integral value of acetyl group / 3) ⁇
  • the acetylation degree of the acetylated hyaluronic acid used in the present invention is preferably 0.1 or more and 0.9 or less, more preferably 0.3 or more and less than 0.7, and still more preferably 0.5 or more and less than 0.7 preferable.
  • the degree of acetylation is 0.1 or more, the solubility in aqueous solution and the degradability are in a suitable range, so it becomes easy to maintain the shape during handling, and when it is 0.9 or less, it is soluble in aqueous solution It does not become too slow and the preparation as a solution is more enhanced.
  • the weight average molecular weight of acetylated hyaluronic acid used in the present invention is measured by a liquid chromatography (HPLC) method, and is preferably 100,000 or more and 3,000,000 or less, more preferably 800,000 or more and 1.8 million or less in terms of hyaluronic acid. 800,000 or more and 1,200,000 or less are more preferable. If the weight average molecular weight of acetylated hyaluronic acid is 100,000 or more, the solubility in aqueous solution and the degradability will be in a suitable range, so it becomes easy to maintain the shape during handling, and if it is 3,000,000 or less, The solubility in the aqueous solution is not too slow, and the preparation as a solution is more enhanced.
  • HPLC liquid chromatography
  • hyaluronic acid conversion refers to liquid chromatography using hyaluronic acid of known molecular weight as a standard polymer (a few different ones of different molecular weights) under the same conditions as sample polymer (acetylated hyaluronic acid) and elution It shows that time is determined, a graph (calibration curve) showing the relationship between elution time and molecular weight is prepared, and “standard polymer equivalent molecular weight” of the sample polymer (acetylated hyaluronic acid) is calculated.
  • the acetylated hyaluronic acid used in the present invention may be used by mixing two or more kinds of acetylated hyaluronic acid having different weight average molecular weights, and the low molecular weight having a weight average molecular weight of 100,000 or more and less than 1,000,000. It is preferable to use two or more kinds of acetylated hyaluronic acid and high molecular weight acetylated hyaluronic acid having a weight average molecular weight of 1,000,000 or more and less than 3,000,000 and mixed. In addition to the high mechanical strength as a coating film, and the resolubility to aqueous solution by this, since a coating film with favorable adhesiveness with a polylactic acid-type resin layer is also obtained, it is preferable.
  • additives may be contained in an amount of 30% by mass or less based on 100% by mass of the entire acetylated hyaluronic acid layer, as long as the effects of the present invention are not impaired.
  • the lower limit is not particularly limited, and may be 0% by mass.
  • antioxidants, weathering agents, heat stabilizers, lubricants, crystal nucleating agents, ultraviolet light absorbers, coloring agents and the like can be used.
  • grains may be contained if it is a range which does not impair the effect of this invention.
  • the lower limit is not particularly limited, and may be 0% by mass.
  • calcium carbonate, titanium oxide, silicon oxide, calcium fluoride, lithium fluoride, alumina, barium sulfate, zirconia, calcium phosphate, crosslinked polystyrene particles, metal nanoparticles and the like can be used.
  • the thickness of the acetylated hyaluronic acid layer is preferably 1 ⁇ m or more and 100 ⁇ m or less, and more preferably 1 ⁇ m or more and 60 ⁇ m or less. If the thickness of the acetylated hyaluronic acid layer is less than 1 ⁇ m, the dissolution time may be too short, and if it exceeds 100 ⁇ m, the adhesion to an organ may be reduced.
  • the thickness of acetylated hyaluronic acid layer is 1 ⁇ m or more and 100 ⁇ m or less when the thickness of acetylated hyaluronic acid layer is 2 or more, the thickness of all acetylated hyaluronic acid layers is 1 ⁇ m or more and 100 ⁇ m or less It means that.
  • the acetylated hyaluronic acid layer may be a single layer or two or more layers. Two or more layers are preferable because layers having different degrees of acetylation and molecular weight can be provided, and dissolution time and sticking properties can be easily controlled.
  • Base material The base material in the term of the manufacturing method of the laminated film mentioned later is demonstrated.
  • the said base material is used in order to form an acetylated hyaluronic acid layer and a polylactic acid-type resin layer in this invention.
  • Examples of the substrate used in the present invention include films made of silicon, glass, metal or polymer, etc. From the viewpoint of smoothness, silicon substrates are preferable, and from the viewpoint of productivity, they are high. It is preferable that it is a base film which consists of molecules.
  • Examples of the material of the base film include polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate, polybutylene terephthalate and polyethylene-2,6-naphthalate, polyamides such as nylon 6 and nylon 12, polyvinyl chloride, ethylene acetate Vinyl copolymer or its saponified product, polystyrene, polycarbonate, polysulfone, polyphenylene oxide, polyphenylene sulfide, aromatic polyamide, polyimide, polyamide imide, cellulose, cellulose acetate, polyvinylidene chloride, polyacrylonitrile, polyvinyl alcohol, and co-weights thereof A combination etc. are mentioned.
  • polyolefins such as polyethylene and polypropylene
  • polyesters such as polyethylene terephthalate, polybutylene terephthalate and polyethylene-2,6-naphthalate
  • polyamides such as nylon 6 and nylon 12
  • polyvinyl chloride ethylene
  • polyester such as polyethylene terephthalate or polyolefin such as polyethylene or polypropylene is used.
  • polyesters such as polyethylene terephthalate are particularly preferred because of their high surface wet tension.
  • the base film Before forming the acetylated hyaluronic acid layer or the polylactic acid-based resin layer as a coating layer, it is more preferable to subject the base film to surface treatment such as corona discharge treatment, flame treatment, plasma treatment, or ultraviolet irradiation treatment.
  • surface treatment such as corona discharge treatment, flame treatment, plasma treatment, or ultraviolet irradiation treatment.
  • a base film may be any of an unstretched film, a uniaxially stretched film, and a biaxially stretched film, a biaxially stretched film is preferable from the viewpoint of dimensional stability and mechanical properties.
  • additives may be contained in the base film.
  • antioxidants weathering agents, heat stabilizers, lubricants, crystal nucleating agents, ultraviolet light absorbers, coloring agents and the like.
  • inorganic or organic particles may be included as long as the surface smoothness is not significantly impaired.
  • talc kaolinite, calcium carbonate, titanium oxide, silicon oxide, calcium fluoride, lithium fluoride, alumina, barium sulfate, zirconia, mica, calcium phosphate, crosslinked polystyrene particles and the like.
  • the average particle size of the inorganic or organic particles contained as an additive is preferably 0.001 to 10 ⁇ m, more preferably 0.003 to 5 ⁇ m.
  • the average particle size is a particle size obtained by taking a photograph of 10,000 to 100,000 times using a transmission electron microscope and calculating the number average.
  • these base films are preferably transparent.
  • the total light transmittance of the base film is preferably 40% or more, more preferably 60% or more, and the upper limit may be as close to 100% as possible.
  • the haze of the substrate film is preferably 20% or less, more preferably 15% or less.
  • the haze is 20% or less, it is preferable because inspection and confirmation by an optical inspection device with respect to impurities contained in the laminated acetylated hyaluronic acid layer and polylactic acid-based resin layer can be easily performed.
  • There is no particular limitation on the lower limit of the haze and there is no problem if it is as close to 0% as possible.
  • the thickness of the substrate film is not particularly limited, but is preferably 2 to 1,000 ⁇ m, and more preferably 10 to 500 ⁇ m from the viewpoint of economy.
  • the lamination method is not particularly limited, spin coating, gravure coating, direct lip coating, slot coating, comma coating, ink jet or silk screen printing and the like can be mentioned.
  • a base material A silicon substrate, a glass plate, a metal plate, a plastic film, etc. are mentioned.
  • the substrate is an adhesion-promoting treatment prior to coating from the viewpoint of improving the wetting property and adhesion of the coating agent, such as corona discharge treatment in air, nitrogen gas, mixed gas of nitrogen / carbon dioxide gas, and other atmospheres, Plasma treatment under reduced pressure, flame treatment, ultraviolet light treatment or the like may be performed.
  • anchor process agents such as a urethane resin, an epoxy resin, or polyethylene imine.
  • a release layer may be provided on the substrate, and as an example of the release layer, a layer having hydrophobicity to the acetylated hyaluronic acid layer (hereinafter referred to as hydrophobic) And a layer having hydrophilicity (hereinafter referred to as a hydrophilic layer).
  • a layer having hydrophobicity to the acetylated hyaluronic acid layer hereinafter referred to as hydrophobic
  • a layer having hydrophilicity hereinafter referred to as a hydrophilic layer.
  • the resin used for a hydrophobic layer and a hydrophilic layer is not specifically limited, For example, polylactic acid resin etc. are mentioned as hydrophobic resin, and polyvinyl alcohol etc. are mentioned as hydrophilic resin.
  • a plastic film may be used as the base film, and in particular, a plastic film having surface smoothness may be used.
  • a biaxially stretched film of polyester such as polyethylene terephthalate or polyolefin such as polypropylene
  • offline coating to be coated after the biaxially stretched film forming step
  • inline coating to be performed within the biaxial stretched film forming step Either method of coating may be used.
  • an in-line coat it is preferred to apply the coating before the film is heat set.
  • the heat setting is to crystallize the film by subjecting the stretched film to a heat treatment while maintaining it at a temperature higher than the stretching temperature and lower than the melting point of the film. Therefore, coating on an unstretched film, a film immediately after uniaxial stretching in the longitudinal direction or transverse direction, or a film immediately after biaxial stretching is preferred. More preferably, the coating is applied to the film immediately after uniaxial stretching, and then the film is further stretched in one or more directions and heat set.
  • a heat roll contact method a heat medium (air, oil etc.) contact method, an infrared heating method, a microwave heating method and the like can be used.
  • the method of forming a coating film on a substrate film by off-line coating is spin coating, gravure coating of a solution in which the components of the coating film are dispersed in various solvents in that thin film coating can be performed at high speed.
  • Reverse coat, spray coat, kiss coat, comma coat, die coat, knife coat, air knife coat or metalling bar coat is preferred.
  • Drying of the coating of acetylated hyaluronic acid is preferably performed in the range of 60 ° C. to 180 ° C. in the case of off-line coating and 80 ° C. to 250 ° C. in the case of in-line coating.
  • the drying time is preferably 1 second to 60 seconds, more preferably 3 seconds to 30 seconds.
  • Drying of the polylactic acid-based resin coating film is preferably performed within the range of 60 ° C. to 110 ° C. in the case of off-line coating and 80 ° C. to 180 ° C. in the case of in-line coating.
  • the drying time is preferably 1 second to 60 seconds, more preferably 3 seconds to 30 seconds.
  • the interface between the substrate and the acetylated hyaluronic acid layer or the interface between the substrate and the polylactic acid resin layer is mechanically peeled off using tweezers or the like, and the acetylated hyaluronic acid layer and the polylactic acid resin layer It is preferable to obtain a laminated film of When peeling is difficult, a method such as forced peeling may be used after adhering and reinforcing an adhesive tape to the outermost layer on the side opposite to the substrate.
  • a release layer hydrophobic layer or hydrophilic layer
  • the interface between the release layer and the acetylated hyaluronic acid layer or the release layer and the polylactic acid resin layer It is preferable to mechanically peel off the interface using tweezers or the like to obtain a laminated film of an acetylated hyaluronic acid layer and a polylactic acid-based resin layer.
  • the coating agent containing acetylated hyaluronic acid is preferably a solution in which the constituents are uniformly dissolved.
  • the solvent water or a mixed solution of water and a lower alcohol is preferably used. It is more preferable to use a mixed solution of water and a lower alcohol.
  • the solid content concentration of the coating agent containing acetylated hyaluronic acid is preferably 0.5% by mass or more, and preferably 15% by mass or less, from the viewpoint of productivity such as viscosity, drying efficiency, and coating property of the coating agent. It is preferable to use a coating agent having a solid content concentration of 15% by mass or less because the solution viscosity does not become too high and the thickness of the acetylated hyaluronic acid layer can be easily controlled.
  • a method of adding a highly volatile low-boiling solvent having affinity with water to the solvent of the coating agent, drying the coating over the boiling point of water is preferable because the method of performing at the temperature of is easy to use.
  • the mixed solvent contains another water-soluble organic compound as the third component.
  • the water-soluble organic compound include alcohols such as methanol, ethanol, n-propanol and isopropanol, glycols such as ethylene glycol and propylene glycol, glycol derivatives such as methyl cellosolve, ethyl cellosolve and n-butyl cellosolve, glycerin, Examples thereof include polyhydric alcohols such as waxes, ethers such as dioxane, esters such as ethyl acetate, and ketones such as methyl ethyl ketone.
  • the pH of the dispersion solution is preferably 2 to 11 from the viewpoint of solution stability.
  • the solvent is not particularly limited, but at least a single solvent or a mixture of two or more selected from the group consisting of butyl alcohol, chloroform, cyclohexane, acetonitrile, dichloromethane, dichloroethane, ethyl acetate, ethyl ether, dipropyl ether and toluene. It is preferred to use a solution. Ethyl acetate is particularly preferred from the viewpoint of productivity and handleability.
  • the solid content concentration of the coating agent containing the polylactic acid-based resin is not particularly limited, but is preferably 1.0% by mass or more, and 10% by mass or less from the viewpoint of productivity such as viscosity of the coating agent, drying efficiency, and coating properties. preferable.
  • another organic compound may be contained as a third component in the solution, as long as the stability of the coating agent containing the polylactic acid-based resin is maintained in order to impart the coatability.
  • the coating agent containing acetylated hyaluronic acid and the method for preparing the coating agent containing a polylactic acid-based resin are not particularly limited, but when adding various additives such as a crosslinking agent and particles within a range that does not impair the effect of the present invention It is preferable that the resin and the additive be uniformly dispersed in the coating agent. If necessary, raise the temperature of the solvent with a heater or the like to raise the solubility of the resin, or use shear, shear stressed homomixer, jet agitator, ball mill, bead mill, kneader, sand mill or triple roll etc. You may use the method of carrying out mechanical forced dispersion processing.
  • the laminated film of the present invention has the flexibility to be attached from a flat surface to a high curvature surface, and remove the acetylated hyaluronic acid layer with water, physiological saline or the like to attach the polylactic acid resin layer to any location it can.
  • adhesion to a living tissue can be prevented by sticking to an organ or the like in a surgical operation.
  • bacterial growth can be suppressed as compared with other general purpose water-soluble resins.
  • the laminated film of the present invention can be suitably used for medical applications such as a wound covering film and an adhesion preventing film which can be used in a living body or under an environment where water is attached. That is, the laminated film of the present invention can be suitably used as a medical sheet such as a scratch covering film or an adhesion preventing film.
  • Thickness of Acetylated Hyaluronic Acid Layer A cross section of the laminated film is cut out without crushing in the thickness direction using a microtome (Retortome REM-710 manufactured by Daiwa Instruments Co., Ltd.), and the cross section is taken by a transmission electron microscope (( Co., Ltd. Hitachi, Ltd., TEM H7100), the thickness of each layer is between 250 times and 5,000 times so that the ratio occupied by the thickness of the acetylated hyaluronic acid layer in the longitudinal direction in the image is 50% or more It observed and changed thickness, changing magnification according to.
  • a microtome Retortome REM-710 manufactured by Daiwa Instruments Co., Ltd.
  • TEM H7100 transmission electron microscope
  • mice intraperitoneally Microbial proliferation induction test and survival rate in mice intraperitoneally, stickability
  • Male mice SLC, C57BL6, body weight 22-25 g, 8 mice
  • a test piece (1.5 cm ⁇ 1.0 cm square) was attached without forming a serosal defect.
  • E. coli was seeded intraperitoneally to 4 ⁇ 10 8 CFU (colony forming unit), and the survival rate within one week after surgery and the number of bacteria within the abdominal cavity after one day after surgery were measured .
  • the ability to cause microbial reproduction was determined according to the following criteria. A judgment: CFU of E.
  • the survival rate was determined based on the following criteria. A determination: 60% or more, 100% or less B determination: 20% or more, less than 60% C determination: less than 20% Furthermore, the sticking property was determined by the following criteria by visual confirmation. A judgment: 70% or more and 100% or less of the test piece area follow and adhere to the organ. B judgment: 50% or more and less than 70% of the area of the test specimen follow and adhere to the organ. C judgment: Only 50% or less of the area of the test strip follows and adheres to the organ.
  • Silicon substrate A P-type silicon wafer (diameter 100 ⁇ 0.5 mm, thickness 525 ⁇ 25 ⁇ m, oxide film 200 nm, crystal plane (100)) manufactured by KST World Ltd. was used after being cut into a size of 40 mm ⁇ 40 mm. Before use, the silicon substrate is immersed for 10 minutes in a solution in which sulfuric acid (98 mass%) and hydrogen peroxide solution (30 mass%) are mixed at a volume ratio of 3: 1, and then deionized water (resistivity: 18 ⁇ cm) Washed with
  • Acetylated hyaluronic acid was prepared using acetic acid and hyaluronic acid (manufactured by Shiseido Co., Ltd.) as follows.
  • (AcHA-1) Acetylated hyaluronic acid (AcHA-2) prepared to have an acetylation degree of 0.6 using HA9N (Shiseido Co., Ltd. hyaluronic acid, weight average molecular weight 99,000)
  • Acetylated hyaluronic acid (AcHA-3) adjusted to an acetylation degree of 0.4 using HA12N (Shiseido Co., Ltd.
  • hyaluronic acid weight average molecular weight 1.35 million
  • Acetylated hyaluronic acid prepared to have an acetylation degree of 0.9 using HA9N hyaluronic acid manufactured by Shiseido Co., Ltd., weight average molecular weight 99,000
  • Polyvinyl alcohol resin used (PVA-1) Polyvinyl alcohol having a saponification degree of 88 mol% and a viscosity of 5 mPa ⁇ s (4 mass% aqueous solution, 20 ° C.)
  • Poly lactic acid resin used (PLA-1): Poly L-lactic acid amount 50 mol%, no melting point (amorphous), PS converted weight average molecular weight 140,000 poly L-lactic acid-D-lactic acid copolymer resin (PURAC's PURASORB (registered trademark) PDL20)
  • Example 2 A laminated film was obtained in the same manner as Example 1, except that the thickness of the acetylated hyaluronic acid layer after drying was 1 ⁇ m. The evaluation results are shown in Table 1.
  • Example 3 A laminated film was obtained in the same manner as in Example 1 except that the thickness of the acetylated hyaluronic acid layer after drying was 100 ⁇ m. The evaluation results are shown in Table 1.
  • Example 4 A laminated film was obtained in the same manner as in Example 1 except that the thickness of the polylactic acid-based resin layer after drying was 10 nm. The evaluation results are shown in Table 1.
  • Example 5 A laminated film was obtained in the same manner as in Example 1 except that the thickness of the polylactic acid-based resin layer after drying was 500 nm. The evaluation results are shown in Table 1.
  • Example 6 A laminated film was obtained in the same manner as in Example 1 except that AcHA-2 was used instead of AcHA-1 in the acetylated hyaluronic acid layer. The evaluation results are shown in Table 1.
  • Example 7 A laminated film was obtained in the same manner as in Example 1 except that AcHA-3 was used instead of AcHA-1 in the acetylated hyaluronic acid layer. The evaluation results are shown in Table 1.
  • Example 8 A laminated film was obtained in the same manner as in Example 1 except that AcHA-4 was used instead of AcHA-1 in the acetylated hyaluronic acid layer. The evaluation results are shown in Table 1.
  • Comparative Example 1 A laminated film was obtained in the same manner as in Example 1 except that the thickness of the acetylated hyaluronic acid layer after drying was 0.1 ⁇ m. The evaluation results are shown in Table 2.
  • Comparative Example 2 A laminated film was obtained in the same manner as Example 1, except that the thickness of the acetylated hyaluronic acid layer after drying was 250 ⁇ m. The evaluation results are shown in Table 2.
  • Comparative Example 3 A laminated film was obtained in the same manner as in Example 3 except that the thickness of the polylactic acid-based resin layer after drying was 5 nm. The evaluation results are shown in Table 2.
  • Comparative Example 4 A laminated film was obtained in the same manner as in Example 1 except that the thickness of the polylactic acid-based resin layer after drying was 5,000 nm. The evaluation results are shown in Table 2.
  • Comparative Example 5 A laminated film was obtained in the same manner as in Example 1 except that hyaluronic acid HA12N was used instead of AcHA-1 in the acetylated hyaluronic acid layer. The evaluation results are shown in Table 3.
  • Comparative Example 6 A single film (thickness 50 ⁇ m) of hyaluronic acid HA12N was obtained without providing the polylactic acid-based resin layer in Example 1.
  • the evaluation results are shown in Table 3.
  • the number of intraperitoneal bacteria after one day after surgery was 16 ⁇ 10 6 CFU (C judgment), and the survival rate within one week after the operation was 18% (C judgment).
  • Application in infection wound was difficult because it provides a scaffold for bacterial infection.
  • the laminated film of the present invention has the flexibility to be attached from a flat surface to a high curvature surface, and remove the acetylated hyaluronic acid layer with water, physiological saline or the like to attach the polylactic acid resin layer to any location it can.
  • adhesion to a living tissue can be prevented by sticking to an organ or the like in a surgical operation.
  • bacterial growth can be suppressed as compared with other general-purpose water-soluble resins.

Abstract

 本発明は生体適合性に優れているとともに取り扱いが容易であり、臓器組織に対する貼付性、密着性に優れ、かつ感染症を発症しにくい積層フィルムを提供することを目的としている。本発明が提供する積層フィルムは、ポリ乳酸系樹脂層の片側にアセチル化ヒアルロン酸層が1層以上積層された積層フィルムであり、柔軟で取扱い性に優れ、かつ、被着体への貼付時には薄膜のポリ乳酸系樹脂層からアセチル化ヒアルロン酸層を水溶液によって容易に除去できるため、曲面である被着体に対する追随性、密着性、被覆性に優れている。また、アセチル化ヒアルロン酸及びポリ乳酸系樹脂は生分解性を有することから、皮膚、内臓等の臓器などへの適合性にも優れ、創傷被覆材、癒着防止材、スキンケア用品などの皮膚外用材として最適である。

Description

積層フィルム及び医療用シート
 本発明は創傷被覆膜、癒着防止膜等の医療用途に最適なポリ乳酸系樹脂層とアセチル化ヒアルロン酸層とを有する積層フィルムに関するものである。
 腹部外科、婦人科などの開腹手術後の合併症のひとつに臓器の癒着がある。これは手術の創傷治癒過程で、本来は接触してはいけない組織同士が接触したまま再形成することがあり、これを癒着という。開腹手術では高い確率で癒着が発生すると言われているが多くは無症状である。頻度は高くはないが、痛みや、腸閉塞(イレウス)、不妊症などの深刻な合併症を起こすことがある。
 一旦形成された癒着を非侵襲的に治療することはできないため、腸閉塞など重症な合併症を有する場合には、癒着箇所を剥離する外科的手術を行うしかないため、初回手術後に癒着防止を目的とした創部の処置をしっかりと行うことが極めて重要である。
 従来、癒着防止効果を有する材料として、臓器組織を物理的に分離するために、シリコン、“テフロン”(登録商標)、ポリウレタン等を癒着防止材として用いる方法が行われているが、これらの材料は非吸収性材料であるために、生体組織面に残存し、組織の修復を遅らせるばかりではなく、感染症、炎症の発生原因となっている。
 近年、このような問題を解決するため、生体吸収性が期待できるゼラチンやコラーゲンなどの天然高分子を用いた癒着防止材料が報告されている(特許文献1及び2参照)。しかしながら、ゼラチンやコラーゲンは、抗原性を有するテロペプチド部分の除去が困難であるという問題があり、また、プリオン混入など生物由来の感染症の危険性があるため、生体への使用は避けたほうがよい。さらに、強度を得るためや分解性を制御するために加える架橋剤が、生体内での使用に好ましくない場合が多い。
 天然高分子は皮膚への親和性が高いが、強度が低い等の問題があった。そのため、天然高分子では、架橋剤による架橋体や、強度補強材の使用やガーゼ等で包むことで、強度を確保する必要があった。強度補強材を使用した場合には、構造が複雑になることが多く実用的でない。
 また、感染症の危険が低いトレハロースやアルギン酸ナトリウムなどの多糖類を使用した癒着防止材についても報告がある(特許文献3)。しかしながら、多糖類のフィルム材は強度が足りないことによる破断等から創傷部位を確実に被覆できないという問題があることから、実用性は低い。多糖類のうち、ヒアルロン酸を使用した癒着防止材についての報告がある(特許文献4)。ヒアルロン酸は水溶性が高いことから、体内では水分を吸収してゲル化するが、ゲルが時間とともに重力方向へ移動するために、患部に充分な成分が残らないことにより効果が得られないことや、重力方向へ移動して集積したゲル溜まりで細菌増殖をし、感染症を起こすこともあるという課題がある。
 さらに、癒着防止材を臓器等へ強固に密着させるため血液製剤を用いる方法や化学物質を用いた方法もあるが、安全面での高い管理が必要であり取り扱い難いという問題がある。
 加えて、患部との密着性に優れ、重力方向への移動を抑制できる方法として、ポリ乳酸などの生分解性樹脂層と水溶性樹脂層を積層した高分子構造体が提案されているが水溶性樹脂の溶解性と手術時のハンドリング性(べたつき)の制御が充分ではなかった(特許文献5)。
 このように、組織の癒着防止に関する材料に関しての報告は数多いが、癒着防止材料として十分な性能を有する材料は得られていない。すなわち、上記のような問題を生じさせにくく、組織が修復するまでの期間、癒着を防止し、組織が修復するまで強度が維持される材料が求められている。
特開2004-065780号公報 特開2001-192337号公報 特開2003-153999号公報 国際公開第2005/094915号パンフレット 特開2012-187926号公報
 本発明は、かかる従来技術の背景に鑑み、生体適合性に優れているとともに取り扱いが容易であり、臓器組織に対する貼付性、密着性に優れ、かつ感染症を発症しにくい、アセチル化ヒアルロン酸層とポリ乳酸系樹脂層とが積層された積層フィルムを提供せんとするものである。
 本発明は前述の課題を解決するため、以下の構成をとる。
(1)厚みが10nm以上、500nm以下のポリ乳酸系樹脂層の片面に厚みが1μm以上、100μm以下のアセチル化ヒアルロン酸層が1層以上積層された積層フィルム。
(2)上記アセチル化ヒアルロン酸のアセチル化度が、0.1以上、0.9以下である、(1)記載の積層フィルム。
(3)上記アセチル化ヒアルロン酸の重量平均分子量が、ヒアルロン酸換算で10万以上、300万以下である、(1)又は(2)記載の積層フィルム。
(4)(1)~(3)のいずれか記載の積層フィルムを用いた医療用シート。
 本発明が提供する積層フィルムは、ポリ乳酸系樹脂層の片面にアセチル化ヒアルロン酸層が1層以上積層された積層フィルムであり、柔軟で取扱い性に優れ、かつ、被着体への貼付時には薄膜のポリ乳酸系樹脂層からアセチル化ヒアルロン酸層を水溶液によって容易に除去できるため、曲面である被着体に対する追随性、密着性、被覆性に優れている。また、アセチル化ヒアルロン酸及びポリ乳酸系樹脂は生分解性を有することから、皮膚、内臓等の臓器などへの適合性にも優れ、創傷被覆材、癒着防止材、スキンケア用品などの皮膚外用材として最適である。
 さらに、アセチル化ヒアルロン酸のアセチル基の置換数と重量平均分子量を選択することで、手で触った時のベタ付き感、水溶液による溶解性、積層フィルムとしての取扱い性を制御することができる。また、アセチル化ヒアルロン酸は、他の一般的な水溶性樹脂に比べ、細菌の繁殖が進みにくいことから癒着防止材として用いた場合、感染症を発症しにくくなる。
 さらに、アセチル化ヒアルロン酸を水溶液によって除去した後のポリ乳酸系樹脂層は透明であるため、貼付面が目立たないことから、外科手術のみならず、皮膚への貼付も可能であり、絆創膏としての使用もできる。
 さらには、ポリ乳酸系樹脂層及び/又はアセチル化ヒアルロン酸層に様々な薬剤の担持、徐放が可能でありドラッグデリバリーシステムとしても使用できる。
 以下、本発明について説明する。なお、本明細書において「フィルム」とは、二次元的な広がりを有する構造物、例えば、シート、プレート、不連続な膜などを含む意味に用いる。
 <ポリ乳酸系樹脂>
 本発明に用いるポリ乳酸系樹脂の重量平均分子量は、好ましくは5万以上、より好ましくは8万~100万、さらに好ましくは10万~50万である。なお、本発明でいう重量平均分子量とは、ゲルパーミエーションクロマトグラフィー(GPC)でクロロホルム溶媒にて測定を行い、ポリスチレン(PS)換算法により計算した分子量をいう。ポリ乳酸系樹脂の重量平均分子量を5万以上とすることで、本発明のポリ乳酸系樹脂層の機械特性を優れたものとすることができる。
 本発明に用いるポリ乳酸系樹脂は、塗膜塗工液作成時の溶媒への溶解性向上を目的として、結晶性を有するホモポリ乳酸系樹脂と非晶性のホモポリ乳酸系樹脂を混合してもよい。この場合、非晶性のホモポリ乳酸系樹脂の割合は本発明の効果を損ねない範囲で決定すればよい。また、ポリ乳酸系樹脂層に比較的高い耐熱性を付与したい場合は、使用するポリ乳酸系樹脂のうち少なくとも1種の光学純度が95%以上のポリ乳酸系樹脂を含むことが好ましい。
 本発明に用いられるポリ乳酸系樹脂は、ポリL-乳酸(L体)及び/又はポリD-乳酸(D体)を主成分とすることが好ましい。ここで主成分とは、乳酸由来の成分が、ポリ乳酸系樹脂を構成する全ての単量体成分100mol%において70mol%以上、100mol%以下のものをいい、実質的にポリL-乳酸及び/又はポリD-乳酸のみからなるホモポリ乳酸系樹脂が好ましく用いられる。
 また、本発明に用いるポリ乳酸系樹脂のポリD-乳酸量は好ましくは4~50mol%、より好ましくは6~13mol%である。ポリD-乳酸量が4mol%より小さくなると有機溶媒への溶解性が低下し塗剤化することが困難となる場合があり、50mol%より大きくなると、個人差はあるが代謝され難くなる場合がある。
 本発明に用いるポリ乳酸系樹脂は、L-乳酸、D-乳酸のほかにエステル形成能を有するその他の単量体成分を共重合した共重合ポリ乳酸系樹脂であってもよい。共重合可能な単量体成分としては、グリコール酸、3-ヒドロキシ酪酸、4-ヒドロキシ酪酸、4-ヒドロキシ吉草酸、6-ヒドロキシカプロン酸などのヒドロキシカルボン酸類の他、エチレングリコール、プロピレングリコール、ブタンジオール、ネオペンチルグリコール、ポリエチレングリコール、グリセリン、ペンタエリスリトール等の分子内に複数の水酸基を含有する化合物類又はそれらの誘導体、コハク酸、アジピン酸、セバシン酸、フマル酸、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸、5-ナトリウムスルホイソフタル酸、5-テトラブチルホスホニウムスルホイソフタル酸等の分子内に複数のカルボン酸基を含有する化合物類又はそれらの誘導体が挙げられる。なお、上記した共重合成分の中でも、用途に応じて生分解性を有する成分を選択することが好ましい。これらポリ乳酸以外の共重合成分は、ポリ乳酸系樹脂を構成する全ての単量体成分100mol%において30mol%以下含有することが好ましい。
 ポリ乳酸系樹脂の製造方法としては、詳細は後述するが、乳酸からの直接重合法、ラクチドを介する開環重合法などを挙げることができる。
 本発明のポリ乳酸系樹脂は、加水分解による強度低下を抑制し、良好な耐久性(長期保管性)を付与する観点から、ポリ乳酸系樹脂中のカルボキシル基末端濃度が30当量/10kg以下であることが好ましく、より好ましくは20当量/10kg以下、さらに好ましくは10当量/10kg以下である。ポリ乳酸系樹脂中のカルボキシル基末端濃度が30当量/10kg以下であると、加水分解の自己触媒ともなるカルボキシ基末端濃度が十分低いために、実用的に良好な耐久性を付与できるため好ましい。ポリ乳酸系樹脂中のカルボキシル基末端濃度について特に制限はなく、限りなく0当量に近くても問題ない。
 ポリ乳酸系樹脂中のカルボキシル基末端濃度を30当量/10kg以下とする方法としては、例えば、ポリ乳酸系樹脂の合成時の触媒や熱履歴により制御する方法、層状に成形する際の加工温度の低下あるいは加熱時間の短縮によって熱履歴を低減する方法、反応型化合物を用いカルボキシル基末端を封鎖する方法等が挙げられる。
 反応型化合物を用いカルボキシル基末端を封鎖する方法では、ポリ乳酸系樹脂中のカルボキシル基末端の少なくとも一部が封鎖されていることが好ましく、全量が封鎖されていることがより好ましい。反応型化合物としては、例えば、脂肪族アルコールやアミド化合物等の縮合反応型化合物やカルボジイミド化合物、エポキシ化合物、オキサゾリン化合物等の付加反応型化合物が挙げられるが、反応時に余分な副生成物が発生しにくい点で付加反応型化合物が好ましく、中でも反応効率の点からカルボジイミド化合物が好ましい。
 本発明のポリ乳酸系樹脂層には、機械強度を向上させる目的で、ポリ乳酸系樹脂層全体100質量%において耐衝撃性改良剤を2質量%以上、20質量%以下含有してもよい。好ましくは2.5質量%以上、15質量%以下である。耐衝撃性改良剤の含有量が多くなるほど、耐衝撃性の改良効果は向上するが、20質量%を超えて含有しても機械強度の大幅な向上は得られない場合がある。
 本発明において耐衝撃性の向上に用いる耐衝撃性改良剤としては、ポリ乳酸系樹脂中において好適な分散性を有し少量でより高い効果が得られる点で、ポリ乳酸系樹脂以外の脂肪族ポリエステルや脂肪族芳香族ポリエステルが好ましい。
 ポリ乳酸系樹脂以外の脂肪族ポリエステルや脂肪族芳香族ポリエステルとしては、特に限定されるものではなく、具体的には、ポリグリコール酸、ポリ3-ヒドロキシ酪酸、ポリ4-ヒドロキシ酪酸、ポリ4-ヒドロキシ吉草酸、ポリ3-ヒドロキシヘキサン酸、ポリカプロラクトン、ポリエチレンアジペート、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリブチレンサクシネート・アジペート又はポリブチレンアジペート-ブチレンテレフターレート共重合体などが挙げられる。
 さらに機械強度を向上させ、かつ、生分解性を維持するためには、ポリ乳酸系樹脂以外の脂肪族ポリエステルであるポリブチレンサクシネート系樹脂を用いることが好ましい。より好ましくは、機械強度向上の効果が大きくポリ乳酸系樹脂と相溶性のよいポリブチレンサクシネートやポリブチレンサクシネート・アジペートである。
 本発明に用いるポリブチレンサクシネート系樹脂の重量平均分子量は10~30万であることが好ましい。なお、ポリブチレンサクシネート系樹脂は1,4ブタンジオールとコハク酸を重縮合して得られる。
 本発明におけるポリ乳酸系樹脂は、例えば、次のような方法で得ることができる。原料としては、L-乳酸又はD-乳酸の乳酸成分と、前述した乳酸成分以外のヒドロキシカルボン酸を併用することができる。またヒドロキシカルボン酸の環状エステル中間体、例えば、ラクチド、グリコリド等を原料として使用することもできる。更にジカルボン酸類やグリコール類等も使用することができる。
 ポリ乳酸系樹脂は、上記原料を直接脱水縮合する方法又は上記環状エステル中間体を開環重合する方法によって得ることができる。例えば直接脱水縮合して製造する場合、乳酸類又は乳酸類とヒドロキシカルボン酸類を好ましくは有機溶媒、特にフェニルエーテル系溶媒の存在下で共沸脱水縮合し、好ましくは共沸により留出した溶媒から水を除き実質的に無水の状態にした溶媒を反応系に戻す方法によって重合することにより高分子量のポリマーが得られる。
 また、ラクチド等の環状エステル中間体をオクチル酸錫等の触媒を用い、減圧下開環重合することによっても高分子量のポリマーが得られることも知られている。このとき、有機溶媒中での加熱還流時の水分及び低分子化合物を除去する条件を調整する方法や、重合反応終了後に触媒を失活させ解重合反応を抑える方法、製造したポリマーを熱処理する方法などを用いることにより、ラクチド量の少ないポリマーを得ることができる。
 本発明におけるポリ乳酸系樹脂層の厚みは、被着体への形状追従性の観点から、10nm以上、500nm以下が好ましく、10nm以上、100nm以下がより好ましい。10nmより薄くなると形状の保持が困難となる場合があり、500nmを超えると被着体に貼り付けた際に皺が発生する場合がある。
 本発明の効果を損なわない範囲であれば、各種の添加剤がポリ乳酸系樹脂層全体100質量%に対して30質量%以下含まれていてもよい。該各種の添加剤としては、酸化防止剤、耐候剤、熱安定剤、滑剤、結晶核剤、紫外線吸収剤、着色剤等などが使用できる。添加剤の含有量の下限は特に制限なく、ポリ乳酸系樹脂層全体100質量%に対して0質量%であっても問題ない。また、透明性を損なわない程度であれば、無機又は有機の粒子がポリ乳酸系樹脂層全体100質量%に対して20質量%以下含まれていてもよい。例えば、炭酸カルシウム、酸化チタン、酸化珪素、フッ化カルシウム、フッ化リチウム、アルミナ、硫酸バリウム、ジルコニア、リン酸カルシウム、架橋ポリスチレン系粒子、金属ナノ粒子などである。無機又は有機の粒子の含有量の下限は特に制限なく、ポリ乳酸系樹脂層全体100質量%に対して0質量%であっても問題ない。
 また、本発明の効果を損ねない範囲でポリ乳酸系樹脂層の少なくとも片側に、ゼラチン、コラーゲン、ヒアルロン酸、キトサン及び合成ポリペプチド等からなる生体吸収性材料層をさらに形成してもよい。
 <アセチル化ヒアルロン酸>
 本発明に用いるアセチル化ヒアルロン酸の製造方法は特に限定されないが、例えば、粉末状のヒアルロン酸を酢酸に分散させ、触媒として無水トリフルオロ酢酸を加えて、アセチル化反応を進行させる方法や、同じく、酢酸に粉末状のヒアルロン酸を分散させてから、p-トルエンスルホン酸を加え、さらに無水酢酸を加えて、アセチル化反応を進行させる方法や、無水酢酸溶媒にヒアルロン酸を懸濁させ、これに濃硫酸を加えて、アセチル化反応を進行させる方法等により製造される。
 精製方法は特に限定されないが、ピリジンを加え中和後、水を加え攪拌し、沈殿物を完全に溶解させ、アセトンを攪拌しながら徐々に加え生成物を沈殿させ、遠心分離することにより分取し、沈殿物を再度酢酸ナトリウムに溶解後、アセトン沈殿させ、最後に、アセトン洗浄により完全に脱水させた後、減圧乾燥しアセチル化ヒアルロン酸の白色粉末を得る方法がある。
 本発明に用いるアセチル化ヒアルロン酸のアセチル化度(ヒアルロン酸がアセチル化修飾されている割合)は、NMRによって測定することができる。酢酸を用いて、ヒアルロン酸を化学修飾し、アセチル化ヒアルロン酸を得た場合、アセチル化ヒアルロン酸のNMRを測定し、積分値から、下記式によって求める。
 アセチル化度=(アセチル基のピーク積分値/3)/{(ヒドロキシル基のピーク積分値)+(アセチル基のピーク積分値/3)}
 本発明に用いるアセチル化ヒアルロン酸のアセチル化度は、0.1以上、0.9以下が好ましく、0.3以上、0.7未満がより好ましく、0.5以上、0.7未満がさらに好ましい。アセチル化度が、0.1以上の場合、水溶液への溶解性、分解性が好適な範囲となるため、取扱い時において形状保持がしやすくなり、0.9以下であれば、水溶液への溶解性が遅くなりすぎず、溶解液としての調合性がより高まる。
 本発明に用いるアセチル化ヒアルロン酸の重量平均分子量は、液体クロマトグラフィー(HPLC)法により測定され、ヒアルロン酸換算で10万以上、300万以下が好ましく、80万以上、180万以下がより好ましく、80万以上、120万以下がさらに好ましい。アセチル化ヒアルロン酸の重量平均分子量が、10万以上であれば、水溶液への溶解性、分解性が好適な範囲となるため、取扱い時において形状保持がしやすくなり、300万以下であれば、水溶液への溶解性が遅くなりすぎず、溶解液としての調合性がより高まる。ここで言うヒアルロン酸換算とは、液体クロマトグラフィーを用いて、分子量既知のヒアルロン酸を標準ポリマー(異なる分子量のものを数点)として、試料ポリマー(アセチル化ヒアルロン酸)と同じ条件で分析し溶出時間を求め、溶出時間と分子量との関係を示すグラフ(検量線)を作成し、試料ポリマー(アセチル化ヒアルロン酸)の「標準ポリマー換算分子量」を算出することを示す。
 また、本発明に用いるアセチル化ヒアルロン酸は、重量平均分子量が異なる2種類以上のアセチル化ヒアルロン酸を混合して使用してもよく、重量平均分子量が10万以上、100万未満の低分子量のアセチル化ヒアルロン酸と、重量平均分子量が100万以上、300万未満の高分子量のアセチル化ヒアルロン酸との2種類以上を混合して使用することが好ましい。これにより、塗膜としての高い機械強度と水溶液への再溶解性に加えて、ポリ乳酸系樹脂層との密着性も良好な塗膜が得られるため好ましい。
 本発明の効果を損ねない範囲であれば、各種の添加剤がアセチル化ヒアルロン酸層全体100質量%に対して30質量%以下含まれていてもよい。下限値は特に制限なく、0質量%であっても問題ない。該各種の添加剤としては、酸化防止剤、耐候剤、熱安定剤、滑剤、結晶核剤、紫外線吸収剤、着色剤等などが使用できる。また、本発明の効果を損ねない範囲であれば、無機又は有機の粒子が20質量%以下含まれていてもよい。下限値は特に制限なく、0質量%であっても問題ない。例えば、炭酸カルシウム、酸化チタン、酸化珪素、フッ化カルシウム、フッ化リチウム、アルミナ、硫酸バリウム、ジルコニア、リン酸カルシウム、架橋ポリスチレン系粒子、金属ナノ粒子などが使用できる。
 また、アセチル化ヒアルロン酸層の厚みは1μm以上、100μm以下が好ましく、1μm以上、60μm以下がさらに好ましい。アセチル化ヒアルロン酸層の厚みが1μm未満の場合、溶解時間が短すぎる場合があり、100μmを超えると臓器への貼付性が低下する場合がある。なお、アセチル化ヒアルロン酸層が2層以上の場合においてアセチル化ヒアルロン酸層の厚みが1μm以上、100μm以下であるとは、すべてのアセチル化ヒアルロン酸層の厚みがそれぞれ1μm以上、100μm以下であることをいう。
 さらに、アセチル化ヒアルロン酸層は1層でもよいし、2層以上であってもよい。2層以上であれば、アセチル化度及び分子量の異なる層を設けることができ、溶解時間と貼付性が制御しやすくなるため好ましい。
 <基材>
 後述する積層フィルムの製造方法の項における基材について説明する。当該基材は、本発明において、アセチル化ヒアルロン酸層とポリ乳酸系樹脂層とを形成するために用いられる。
 本発明において用いられる基材としては、シリコン、ガラス、金属又は高分子物質からなるフィルム等が挙げられるが、平滑性の観点からはシリコン基板であることが好ましく、生産性の観点からは、高分子からなる基材フィルムであることが好ましい。
 基材フィルムの材料としては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレート等のポリエステル、ナイロン6、ナイロン12などのポリアミド、ポリ塩化ビニル、エチレン酢酸ビニル共重合体又はその鹸化物、ポリスチレン、ポリカーボネート、ポリスルホン、ポリフェニレンオキサイド、ポリフェニレンサルファイド、芳香族ポリアミド、ポリイミド、ポリアミドイミド、セルロース、酢酸セルロース、ポリ塩化ビニリデン、ポリアクリロニトリル、ポリビニルアルコール、及びこれらの共重合体などが挙げられる。アセチル化ヒアルロン酸層及び、ポリ乳酸系樹脂層との密着性と積層膜として均一な厚みを確保する観点から、基材フィルムの材料としては、ポリエチレンテレフタレートなどのポリエステル又はポリエチレン、ポリプロピレンなどのポリオレフィンが好ましい。表面の濡れ張力が高いことから、ポリエチレンテレフタレートなどのポリエステルが特に好ましい。
 アセチル化ヒアルロン酸層又はポリ乳酸系樹脂層を塗膜層として形成する前に、基材フィルムにコロナ放電処理、火炎処理、プラズマ処理、あるいは紫外線照射処理などの表面処理を施すことがより好ましい。
 基材フィルムは、未延伸フィルム、一軸延伸フィルム、二軸延伸フィルムのいずれでもよいが、寸法安定性及び機械特性の観点から、二軸延伸フィルムが好ましい。
 また、基材フィルムには、各種の添加剤が含まれていてもよい。例えば、酸化防止剤、耐候剤、熱安定剤、滑剤、結晶核剤、紫外線吸収剤、着色剤等である。また、著しく表面平滑性を損なわない程度であれば、無機又は有機の粒子を含んでいてもよい。例えば、タルク、カオリナイト、炭酸カルシウム、酸化チタン、酸化珪素、フッ化カルシウム、フッ化リチウム、アルミナ、硫酸バリウム、ジルコニア、マイカ、リン酸カルシウム、架橋ポリスチレン系粒子などである。
 添加剤として含まれる無機又は有機の粒子の平均粒子径は、好ましくは0.001~10μm、より好ましくは0.003~5μmである。なお、ここで平均粒子径とは、透過型電子顕微鏡を用いて10,000~100,000倍の写真を撮影し、数平均により求めた粒子径である。さらに、これらの基材フィルムは、透明であることが好ましい。基材フィルムの全光線透過率は、40%以上が好ましく、60%以上がさらに好ましく、上限は限りなく100%に近くても問題ない。基材フィルムのヘイズは20%以下であることが好ましく、15%以下がより好ましい。ヘイズが20%以下であれば、積層されたアセチル化ヒアルロン酸層及びポリ乳酸系樹脂層に含まれる不純物に対する光学検査機による検査確認が行いやすくなるため好ましい。ヘイズの下限に特に制限はなく、限りなく0%に近くても問題ない。
 基材フィルムの厚みは、特に限定されないが、2~1,000μmが好ましく、経済性の観点から10~500μmがより好ましい。
 <製造方法>
 次に、本発明の積層フィルムの代表的製造方法について述べる。
 [積層フィルムを製造する方法]
 基材の片面に積層フィルムを設ける方法の一例としては以下の方法を挙げることができる。
(i)基材上にアセチル化ヒアルロン酸層を1層積層した後、アセチル化ヒアルロン酸層の上にポリ乳酸系樹脂層を1層積層する方法
(ii)基材上にアセチル化ヒアルロン酸層を2層以上積層した後、アセチル化ヒアルロン酸層の上にポリ乳酸系樹脂層を1層積層する方法
(iii)基材上にポリ乳酸系樹脂層を1層積層した後、ポリ乳酸系樹脂層の上にアセチル化ヒアルロン酸層を1層積層する方法
(iv)基材上にポリ乳酸系樹脂層を1層積層した後、ポリ乳酸系樹脂層の上にアセチル化ヒアルロン酸層を2層以上積層する方法
 積層方法は特に限定しないが、スピンコーティング、グラビアコーティング、ダイレクトリップコーティング、スロットコーティング、コンマコーティング、インクジェット又はシルクスクリーン印刷などが挙げられる。基材としては特に限定しないがシリコン基板、硝子板、金属板又はプラスチックフィルムなどが挙げられる。基材は、塗剤のヌレ性、密着性を向上させる観点から塗布前に接着促進処理、例えば空気中、窒素ガス中、窒素/炭酸ガスの混合ガス、その他の雰囲気下でのコロナ放電処理、減圧下でのプラズマ処理、火炎処理、紫外線処理等を施してよい。さらに、ウレタン樹脂、エポキシ樹脂又はポリエチレンイミンなどのアンカー処理剤を用いてアンカー処理を施してもよい。
 また、反対に密着性が強すぎる場合は、基材に離型層を設けてもよく、離型層の例としては、アセチル化ヒアルロン酸層に対しては疎水性を有する層(以下、疎水性層という)が挙げられ、ポリ乳酸系樹脂層に対しては親水性を有する層(以下、親水性層という)が挙げられる。疎水性層及び親水性層に用いる樹脂は特に限定しないが、例えば疎水性樹脂としてはポリ乳酸樹脂などが、親水性樹脂としては、ポリビニルアルコールなどが挙げられる。
 基材に離型層を設ける場合における積層フィルムを製造する方法の一例としては以下の方法が挙げられる。
(v)基材上に疎水性層を設けた後、疎水性層の上にアセチル化ヒアルロン酸層を1層積層し、その後、アセチル化ヒアルロン酸層の上にポリ乳酸系樹脂層を1層積層する方法
(vi)基材上に疎水性層を設けた後、疎水性層の上にアセチル化ヒアルロン酸層を2層以上積層し、その後、アセチル化ヒアルロン酸層の上にポリ乳酸系樹脂層を1層積層する方法
(vii)基材上に親水性層を設けた後、親水性層の上にポリ乳酸系樹脂層を1層積層し、その後、ポリ乳酸系樹脂層の上にアセチル化ヒアルロン酸層を1層積層する方法
(viii)基材上に親水性層を設けた後、親水性層の上にポリ乳酸系樹脂層を1層積層し、その後、ポリ乳酸系樹脂層の上にアセチル化ヒアルロン酸層を2層以上積層する方法
 経済性の観点から、プラスチックフィルムを基材フィルムとして用いてもよく、特に表面平滑性を有するプラスチックフィルムを用いてもよい。基材として、ポリエチレンテレフタレートなどのポリエステル又はポリプロピレンなどのポリオレフィンの二軸延伸フィルムを用いる場合には、二軸延伸フィルム製膜工程後にコートするオフラインコート、二軸延伸フィルム製膜工程内でコートするインラインコートのどちらの方法を用いてもよい。
 インラインコートが用いられる場合には、フィルムが熱固定される前にコーティングを行うことが好ましい。熱固定とは、延伸されたフィルムを延伸温度より高く、またフィルムの融点より低い温度で保持したまま熱処理することによって、フィルムを結晶化させることである。したがって、未延伸フィルム、長手方向又は横手方向への一軸延伸直後のフィルムあるいは二軸延伸直後のフィルムへのコーティングが好ましい。より好ましくは一軸延伸直後のフィルムへのコーティングであり、その後フィルムをさらに一軸以上に延伸、熱固定することがさらに好ましい。塗膜の乾燥方法は、熱ロール接触法、熱媒(空気、オイル等)接触法、赤外線加熱法、マイクロ波加熱法等が利用できる。
 基材フィルムの上にオフラインコートで塗膜を形成する方法は、高速で薄膜コートすることが可能である点で、塗膜の構成成分を各種溶媒に分散させた溶液を、スピンコート、グラビアコート、リバースコート、スプレーコート、キッスコート、コンマコート、ダイコート、ナイフコート、エアーナイフコートあるいはメタリングバーコートするのが好適である。アセチル化ヒアルロン酸の塗膜の乾燥は、オフラインコートの場合には60℃~180℃、インラインコートの場合には80℃~250℃の範囲内で行われることが好ましい。乾燥時間は、好ましくは1秒~60秒、より好ましくは3秒~30秒である。
 ポリ乳酸系樹脂塗膜の乾燥は、オフラインコートの場合には60℃~110℃、インラインコートの場合には80℃~180℃の範囲内で行われることが好ましい。乾燥時間は、好ましくは1秒~60秒、より好ましくは3秒~30秒である。
 次に、基材とアセチル化ヒアルロン酸層との界面又は基材とポリ乳酸系樹脂層との界面をピンセットなどを用いて機械的に剥離し、アセチル化ヒアルロン酸層とポリ乳酸系樹脂層との積層フィルムを得ることが好ましい。剥離が難しいときは、基材とは反対側の最表層に粘着テープを貼り補強した後、強制剥離するなどの方法を用いてもよい。
 また、基材上に離型層(疎水性層又は親水性層)が設けられている場合は、離型層とアセチル化ヒアルロン酸層との界面又は離型層とポリ乳酸系樹脂層との界面をピンセットなどを用いて機械的に剥離し、アセチル化ヒアルロン酸層とポリ乳酸系樹脂層との積層フィルムを得ることが好ましい。
 [アセチル化ヒアルロン酸を含む塗剤]
 アセチル化ヒアルロン酸を含む塗剤は構成成分が、均一に溶解した溶液が好ましい。溶媒としては、水又は水及び低級アルコール混合溶液が好ましく用いられる。水及び低級アルコール混合溶液を用いることがより好ましい。
 アセチル化ヒアルロン酸を含む塗剤の固形分濃度は、塗剤の粘度、乾燥効率、塗工性等の生産性の観点から0.5質量%以上が好ましく、15質量%以下が好ましい。固形分濃度が15質量%以下の塗剤を用いると溶液粘度が高くなりすぎず、アセチル化ヒアルロン酸層の厚みを制御しやすいため好ましい。固形分濃度が0.5質量%以上の塗剤を用いる場合は、塗剤の溶媒に水との親和性のある揮発性の高い低沸点溶媒を加える方法、塗膜の乾燥を水の沸点以上の温度で行う方法等が用いやすいため好ましい。
 また、塗布性を付与するために、アセチル化ヒアルロン酸を含む塗剤の安定性が維持される範囲内であれば、混合溶媒中に第3成分として他の水溶性有機化合物が含まれていてもよい。上記水溶性有機化合物としては、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール等のアルコール類、エチレングリコール、プロピレングリコール等のグリコール類、メチルセロソルブ、エチルセロソルブ、n-ブチルセロソルブ等のグリコール誘導体、グリセリン、ワックス類等の多価アルコール類、ジオキサン等のエーテル類、酢酸エチル等のエステル類、メチルエチルケトン等のケトン類が挙げられる。また、分散溶液のpHは溶液の安定性の点から2~11が好ましい。
 [ポリ乳酸系樹脂を含む塗剤]
 ポリ乳酸系樹脂を含む塗剤としては、構成成分が均一に溶解した溶液が好ましい。溶媒としては、特に限定しないが、ブチルアルコール、クロロホルム、シクロヘキサン、アセトニトリル、ジクロロメタン、ジクロロエタン、酢酸エチル、エチルエーテル、ジプロピルエーテル及びトルエンからなる群から選択される少なくとも単一溶媒もしくは2種類以上の混合溶液を用いることが好ましい。生産性、取扱い性の観点から、酢酸エチルが特に好ましい。
 ポリ乳酸系樹脂を含む塗剤の固形分濃度は、特に限定しないが塗剤の粘度、乾燥効率、塗工性等の生産性の観点から1.0質量%以上が好ましく、10質量%以下が好ましい。
 また、塗布性を付与するために、ポリ乳酸系樹脂を含む塗剤の安定性が維持される範囲内であれば、溶液中に第3成分として他の有機化合物が含まれていてもよい。
 [塗剤の調製方法]
 アセチル化ヒアルロン酸を含む塗剤及びポリ乳酸系樹脂を含む塗剤の調製方法は、特に限定されないが、本発明の効果を損ねない範囲で架橋剤、粒子等の各種の添加剤を加える場合は、塗剤中で樹脂と該添加剤が均一に分散していることが好ましい。必要に応じて、ヒーター等で溶媒の温度を上げて樹脂の溶解度を上げたり、せん断力、ずり応力のかかるホモミキサー、ジェットアジター、ボールミル、ビーズミル、ニーダー、サンドミル又は3本ロール等の装置を用いて、機械的な強制分散処理をしたりする方法を用いてもよい。
 <積層フィルムの使用方法>
 本発明の積層フィルムは平面から高曲率面まで貼付可能な柔軟性を持ち、また、アセチル化ヒアルロン酸層を水、生理食塩水などで除去することでポリ乳酸系樹脂層を任意の箇所に貼付できる。特に、外科手術において臓器等へ貼付することで、生体組織の癒着を防止することができる。また、アセチル化ヒアルロン酸であることから、他の汎用水溶性樹脂に比べ細菌増殖を抑制することができる。
 <用途>
 本発明の積層フィルムは、生体内や水分が付着する環境下でも使用可能な創傷被覆膜、癒着防止膜等の医療用途に好適に使用できる。すなわち、本発明の積層フィルムは、傷被覆膜、癒着防止膜等の医療用シートとして好適に用いることができる。
 <特性の評価方法>
 (1)アセチル化度
 NMRによって測定したアセチル基及びヒドロキシル基の積分値を下記算出式に当てはめ、アセチル化度を求めた。
 アセチル化度=(アセチル基のピーク積分値/3)/{(ヒドロキシル基のピーク積分値)+(アセチル基のピーク積分値/3)}
 (2)アセチル化ヒアルロン酸の重量平均分子量
 液体クロマトグラフィー(HPLC)法により下記条件にて重量平均分子量を測定し、ヒアルロン酸換算した。
装置:ACQUITY UPLCシステム(日本ウォーターズ株式会社製)
カラム:Shodex Ionpak KS806(株式会社 島津製作所製)
移動相:0.2mol/L 塩化ナトリウム水溶液
流速:1.0ml/min
検出器:ACQUITY UPLC RID検出器(日本ウォーターズ株式会社製)
 (3)ポリ乳酸系樹脂層の厚み
 水を用いてアセチル化ヒアルロン酸層を溶解しシリコン基板に転写した。原子間力顕微鏡(NanoScale Hybrid Microscope Keyence社製、“VN-8000”、タッピングモード)にて層厚みを測定した。
 (4)アセチル化ヒアルロン酸層の厚み
 ミクロトーム(大和光機工業(株)製 リトラトーム REM-710)を用いて積層フィルムの断面を厚み方向に潰すことなく切り出し、その断面を透過型電子顕微鏡((株)社日立製作所製、TEM H7100)を用いて、画像中の縦方向においてアセチル化ヒアルロン酸層の厚みが占める割合が50%以上になるよう、250倍~5,000倍の間で各層厚みに応じて倍率を変更しながら観察し厚みを測定した。
 (5)アセチル化ヒアルロン酸層の溶解性評価
 試験片(1.5cm×1.0cm角)の表面からビュレットの先端までが10mmの高さになるように調整した。ビュレットから生理食塩水(1mL)を試験片のアセチル化ヒアルロン酸層面に滴下させたときを開始時間として溶解終了時間を測定した。ここでいう溶解とは初期面積(1.5cm×1.0cm角)の50%以上の面積に相当する部分の形状が維持できずに崩れることとし、多方面から目視確認して判断する。
A判定:溶解終了までに要した時間が10秒以上、5分未満
B判定:5分以上
C判定:10秒未満
 (6)マウス腹腔内での微生物繁殖惹起能試験と生存率、貼付性
 週齢8週以上、9週以下の雄性マウス(SLC社製、C57BL6、体重22~25g、8匹)をエーテル麻酔下にて開腹し、空腸部を露出させた。漿膜欠損創を形成せずに、試験片(1.5cm×1.0cm角)を貼付した。貼付処置後、大腸菌を4×10CFU(コロニーフォーミングユニット)となるように腹腔内に播種し、術後1週間以内の生存率、及び、術後1日経過後の腹腔内細菌数を計測した。
 なお、微生物繁殖惹起能は以下の基準で判定した。
A判定:大腸菌のCFUが参考例の値に対し、1.5倍未満
B判定:大腸菌のCFUが参考例の値に対し、1.5倍以上、10倍未満
C判定:大腸菌のCFUが参考例の値に対し、10倍以上
 また、生存率は、以下の基準で判定した。
A判定:60%以上、100%以下
B判定:20%以上、60%未満
C判定:20%未満
 さらに、貼付性は、目視確認にて以下の基準で判定した。
A判定:試験片面積の70%以上、100%以下が臓器に対して追従し密着している。
B判定:試験片面積の50%以上、70%未満が臓器に対して追従し密着している。
C判定:試験片面積の50%未満しか臓器に対して追従し密着していない。
 [使用したスピンコーター]
 ミサカ(株)製 Opticoat MS-A150
 [使用した基材]
 (シリコン基板):
 KST World社製のP型シリコンウェーハ(直径100±0.5mm、厚み525±25μm、酸化膜200nm、結晶面(100))を、40mm×40mmのサイズにカットして使用した。使用の前に、硫酸(98質量%)と過酸化水素水(30質量%)を体積比3:1で混合した液にシリコン基板を10分間浸漬した後、脱イオン水(抵抗率:18Ωcm)にて洗浄した。
 [使用したアセチル化ヒアルロン酸]
 酢酸とヒアルロン酸(資生堂(株)製)を用いて下記の通りアセチル化ヒアルロン酸を調製した。
 (AcHA-1)
 HA9N(資生堂(株)製ヒアルロン酸、重量平均分子量99万)を用いてアセチル化度0.6に調製したアセチル化ヒアルロン酸
 (AcHA-2)
 HA12N(資生堂(株)製ヒアルロン酸、重量平均分子量135万)を用いてアセチル化度0.4に調製したアセチル化ヒアルロン酸
 (AcHA-3)
 HA20N(資生堂(株)製ヒアルロン酸、重量平均分子量230万)を用いてアセチル化度0.2のアセチル化ヒアルロン酸
 (AcHA-4)
 HA9N(資生堂(株)製ヒアルロン酸、重量平均分子量99万)を用いてアセチル化度0.9に調製したアセチル化ヒアルロン酸
 [使用したポリビニルアルコール樹脂]
 (PVA-1)
 鹸化度88mol%、粘度5mPa・s(4質量%水溶液、20℃)のポリビニルアルコール
 [使用したポリ乳酸系樹脂]
 (PLA-1):
 ポリD-乳酸量50mol%、融点なし(非晶質)、PS換算の重量平均分子量14万のポリL-乳酸-D-乳酸共重合系樹脂(PURAC社製 PURASORB(登録商標) PDL20)
 [実施例1]
 PLA-1の酢酸エチル溶液を乾燥後の厚みが100nmとなるように、シリコン基板上にスピンコート(4,000rpm、20秒)し、加熱乾燥(60℃、30秒)し、シリコン基板表面に疎水性層1を設けた。
 次に、AcHA-1を、質量比が水:エタノール=30:70の溶媒に溶解させたアセチル化ヒアルロン酸溶液1を、乾燥後の厚みが50μmとなるように、疎水性層1上にスピンコート(4,000rpm)及び加熱乾燥(60℃、30秒)し、アセチル化ヒアルロン酸層1を形成した。
 次に、PLA-1の酢酸エチル溶液を乾燥後の厚みが100nmとなるように、アセチル化ヒアルロン酸層1の上にスピンコート(4,000rpm)及び加熱乾燥(60℃、30秒)し、ポリ乳酸系樹脂層1を得た。
 アセチル化ヒアルロン酸層1/ポリ乳酸系樹脂層1を、疎水性層1から機械的に剥離して、本発明の積層フィルムを得た。
 評価結果を表1に示した。なお、上述の溶解性評価を実施したところ、1mLの生理食塩水にて充分に溶解された。
 また、術後1日経過後の腹腔内細菌数は1.5×10CFU、術後1週間以内の生存率は67%であり、参考例と同等のため細菌感染を助長しなかった。
 [実施例2]
 アセチル化ヒアルロン酸層の乾燥後の厚みを1μmにしたこと以外は実施例1と同様にして積層フィルムを得た。評価結果を表1に示した。
 [実施例3]
 アセチル化ヒアルロン酸層の乾燥後の厚みを100μmにしたこと以外は実施例1と同様にして積層フィルムを得た。評価結果を表1に示した。
 [実施例4]
 ポリ乳酸系樹脂層の乾燥後の厚みを10nmにしたこと以外は実施例1と同様にして積層フィルムを得た。評価結果を表1に示した。
 [実施例5]
 ポリ乳酸系樹脂層の乾燥後の厚みを500nmにしたこと以外は実施例1と同様にして積層フィルムを得た。評価結果を表1に示した。
 [実施例6]
 アセチル化ヒアルロン酸層に、AcHA-1の代わりにAcHA-2を用いたこと以外は実施例1と同様にして積層フィルムを得た。評価結果を表1に示した。
 [実施例7]
 アセチル化ヒアルロン酸層に、AcHA-1の代わりにAcHA-3を用いたこと以外は実施例1と同様にして積層フィルムを得た。評価結果を表1に示した。
 [実施例8]
 アセチル化ヒアルロン酸層に、AcHA-1の代わりにAcHA-4を用いたこと以外は実施例1と同様にして積層フィルムを得た。評価結果を表1に示した。
 [比較例1]
 アセチル化ヒアルロン酸層の乾燥後の厚みを0.1μmにしたこと以外は実施例1と同様にして積層フィルムを得た。評価結果を表2に示した。
 [比較例2]
 アセチル化ヒアルロン酸層の乾燥後の厚みを250μmにしたこと以外は実施例1と同様にして積層フィルムを得た。評価結果を表2に示した。
 [比較例3]
 ポリ乳酸系樹脂層の乾燥後の厚みを5nmにしたこと以外は実施例3と同様にして積層フィルムを得た。評価結果を表2に示した。
 [比較例4]
 ポリ乳酸系樹脂層の乾燥後の厚みを5,000nmにしたこと以外は実施例1と同様にして積層フィルムを得た。評価結果を表2に示した。
 [比較例5]
 アセチル化ヒアルロン酸層に、AcHA-1の代わりにヒアルロン酸HA12Nを用いたこと以外は実施例1と同様にして積層フィルムを得た。評価結果を表3に示した。
 [比較例6]
 実施例1でポリ乳酸系樹脂層を設けずに、ヒアルロン酸HA12Nの単体フィルム(厚み50μm)を得た。評価結果を表3に示した。術後1日経過後の腹腔内細菌数は16×10CFU(C判定)、術後1週間以内の生存率は18%(C判定)であった。細菌感染の足場となるため感染創での適用は困難であった。
 [参考例]
<マウス腹腔内での微生物繁殖惹起能試験と生存率>
 週齢8週以上、9週以下の雄性マウス(SLC社製、C57BL6、体重22~25g、8匹)をエーテル麻酔下にて開腹し、空腸部を露出させ、大腸菌を4×10CFU(コロニーフォーミングユニット)となるように腹腔内に播種し、術後1週間以内の生存率及び術後1日経過後の腹腔内細菌数を計測した。術後1日経過後の腹腔内細菌数は1.5×10CFU(基準値)、術後1週間以内の生存率は57%(B判定)であった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明の積層フィルムは平面から高曲率面まで貼付可能な柔軟性を持ち、また、アセチル化ヒアルロン酸層を水、生理食塩水などで除去することでポリ乳酸系樹脂層を任意の箇所に貼付できる。特に、外科手術において臓器等へ貼付することで、生体組織の癒着を防止することができる。また、アセチル化ヒアルロン酸であることから、他の汎用の水溶性樹脂に比べ細菌増殖を抑制することができる。

Claims (4)

  1.  厚みが10nm以上、500nm以下のポリ乳酸系樹脂層の片面に厚みが1μm以上、100μm以下のアセチル化ヒアルロン酸層が1層以上積層された積層フィルム。
  2.  前記アセチル化ヒアルロン酸のアセチル化度が、0.1以上、0.9以下である、請求項1記載の積層フィルム。
  3.  前記アセチル化ヒアルロン酸の重量平均分子量が、ヒアルロン酸換算で10万以上、300万以下である、請求項1又は2記載の積層フィルム。
  4.  請求項1~3のいずれか一項記載の積層フィルムを用いた医療用シート。
PCT/JP2015/084108 2014-12-10 2015-12-04 積層フィルム及び医療用シート WO2016093162A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15867856.5A EP3231457A4 (en) 2014-12-10 2015-12-04 Laminated film and sheet for medical use
JP2015562620A JP6550340B2 (ja) 2014-12-10 2015-12-04 積層フィルム及び医療用シート
US15/534,026 US10531988B2 (en) 2014-12-10 2015-12-04 Laminated film and medical sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-249785 2014-12-10
JP2014249785 2014-12-10

Publications (1)

Publication Number Publication Date
WO2016093162A1 true WO2016093162A1 (ja) 2016-06-16

Family

ID=56107348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084108 WO2016093162A1 (ja) 2014-12-10 2015-12-04 積層フィルム及び医療用シート

Country Status (4)

Country Link
US (1) US10531988B2 (ja)
EP (1) EP3231457A4 (ja)
JP (1) JP6550340B2 (ja)
WO (1) WO2016093162A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102621083B1 (ko) * 2023-09-08 2024-01-08 주식회사 모이스텐 피부 재생 기능을 갖는 생분해성 필름 및 이의 제조방법
KR102637766B1 (ko) * 2023-09-08 2024-02-16 주식회사 모이스텐 피부 기능 개선 효과를 갖는 생분해성 필름 및 이의 제조방법

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210038426A (ko) * 2018-07-25 2021-04-07 도판 인사츠 가부시키가이샤 피부 첩부용 필름, 및 전사 시트
EP3827808A4 (en) * 2018-07-25 2022-02-16 Toppan Printing Co., Ltd. SKIN ADHESIVE FILM AND TRANSFER SHEET

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014180A1 (en) * 2010-07-30 2012-02-02 Novagenit S.R.L. Hyaluronic acid based hydrogel and use thereof in surgery
WO2012173198A1 (ja) * 2011-06-14 2012-12-20 株式会社 資生堂 ヒアルロン酸またはその誘導体の担持薄膜および薄膜化粧料

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4378442B2 (ja) 2000-01-11 2009-12-09 独立行政法人物質・材料研究機構 癒着防止材料
JP3796165B2 (ja) 2001-11-20 2006-07-12 株式会社クラレ 癒着防止材
JP4295482B2 (ja) 2002-08-08 2009-07-15 グンゼ株式会社 癒着防止材
JP4840136B2 (ja) 2004-03-31 2011-12-21 ニプロ株式会社 癒着防止用キット、癒着防止用キットの製造方法および癒着防止方法
WO2008050913A1 (fr) 2006-10-27 2008-05-02 Shinji Takeoka Structure polymère de type film et son procédé de préparation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014180A1 (en) * 2010-07-30 2012-02-02 Novagenit S.R.L. Hyaluronic acid based hydrogel and use thereof in surgery
WO2012173198A1 (ja) * 2011-06-14 2012-12-20 株式会社 資生堂 ヒアルロン酸またはその誘導体の担持薄膜および薄膜化粧料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3231457A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102621083B1 (ko) * 2023-09-08 2024-01-08 주식회사 모이스텐 피부 재생 기능을 갖는 생분해성 필름 및 이의 제조방법
KR102637766B1 (ko) * 2023-09-08 2024-02-16 주식회사 모이스텐 피부 기능 개선 효과를 갖는 생분해성 필름 및 이의 제조방법

Also Published As

Publication number Publication date
JP6550340B2 (ja) 2019-07-24
EP3231457A1 (en) 2017-10-18
US10531988B2 (en) 2020-01-14
JPWO2016093162A1 (ja) 2017-09-28
US20180338865A1 (en) 2018-11-29
EP3231457A4 (en) 2018-08-15

Similar Documents

Publication Publication Date Title
JP6119863B2 (ja) 積層体及びその製造方法
JP6422341B2 (ja) ポリ乳酸系樹脂を用いた積層フィルム
JP6550340B2 (ja) 積層フィルム及び医療用シート
JP7077621B2 (ja) 積層体
JP7025930B2 (ja) 癒着防止材
WO2015163289A1 (ja) 高分子積層体
WO2016204266A1 (ja) 高分子フィルム及びそれを用いた癒着防止材
JP2018171725A (ja) 積層体及びこれを用いた癒着防止材
Rodríguez-Contreras et al. PHAs as matrices for drug delivery

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015562620

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15867856

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15534026

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015867856

Country of ref document: EP