WO2016092840A1 - フッ素置換テトラフェニルポルフィリン誘導体およびその利用 - Google Patents

フッ素置換テトラフェニルポルフィリン誘導体およびその利用 Download PDF

Info

Publication number
WO2016092840A1
WO2016092840A1 PCT/JP2015/006131 JP2015006131W WO2016092840A1 WO 2016092840 A1 WO2016092840 A1 WO 2016092840A1 JP 2015006131 W JP2015006131 W JP 2015006131W WO 2016092840 A1 WO2016092840 A1 WO 2016092840A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
tpp
reagent composition
derivative
detecting
Prior art date
Application number
PCT/JP2015/006131
Other languages
English (en)
French (fr)
Inventor
吉田 博
利明 馬場
井上 哲
耕太郎 谷村
Original Assignee
ニプロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニプロ株式会社 filed Critical ニプロ株式会社
Priority to JP2016563516A priority Critical patent/JP6693421B2/ja
Publication of WO2016092840A1 publication Critical patent/WO2016092840A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/84Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving inorganic compounds or pH

Definitions

  • the present invention relates to a fluorine-substituted tetraphenylporphyrin derivative in which 24 hydrogen atoms bonded to carbon are substituted with fluorine contained in tetraphenylporphyrin, and the use of the fluorine-substituted tetraphenylporphyrin derivative.
  • Tetraphenylporphyrin is a kind of porphyrin compound, and is located at positions 5, 10, 15 and 20 (IUPAC nomenclature, Fischer nomenclature ⁇ , ⁇ , ⁇ and ⁇ positions) of the porphyrin skeleton (cyclic tetrapyrrole structure). ) In which a phenyl group is introduced into each carbon.
  • TPP derivative in which at least a part of hydrogen bonded to carbon constituting TPP is substituted with another element or substituent.
  • Patent Document 1 discloses a TPP derivative in which all hydrogens are substituted with fluorine. This TPP derivative is used as a reagent for detecting lithium in an aqueous solution.
  • the TPP derivative disclosed in Patent Document 1 has succeeded in detecting lithium in an aqueous solution by using an organic solvent that can be mixed with water.
  • an improvement in detection sensitivity is expected by improving the water solubility of the TPP derivative as a detection reagent.
  • the present invention has been made to solve such problems, and is capable of realizing good water solubility without greatly impairing the properties thereof, and use thereof of a fluorine-substituted tetraphenylporphyrin derivative, and use thereof It aims to provide a method.
  • a tetraporphyrin derivative according to the present invention is a tetraphenylporphyrin derivative in which 24 hydrogen atoms bonded to carbon are substituted with fluorine, which is contained in tetraphenylporphyrin.
  • R represents an atom or substituent other than a fluorine atom.
  • the tetraporphyrin derivative according to the present invention has a basic skeleton in which all of the hydrogen other than the para-position are substituted with fluorine in the four phenyl groups contained in tetraphenylporphyrin.
  • the conventional TPP derivative which substituted all the hydrogen with the fluorine it can avoid substantially impairing characteristics, such as a lithium detection sensitivity, and can implement
  • when preparing the reagent composition for lithium detection it becomes unnecessary to contain the water-soluble organic solvent as a mixing adjuvant. Therefore, contamination of the water-soluble organic solvent can be avoided even when a test other than lithium detection is performed on the same specimen.
  • a conventional lithium detection reagent composition using a TPP derivative cannot obtain sufficient lithium detection sensitivity unless it contains a water-soluble organic solvent. Sensitivity can be realized. Therefore, when the water-soluble organic solvent is not included or when the water-soluble organic solvent is small, it is possible to improve the lithium detection sensitivity.
  • R in the formula (1) is not particularly limited, and examples thereof include at least one selected from a hydrogen atom, an inorganic functional group, and an organic functional group.
  • the reagent composition for detecting lithium according to the present invention has a configuration containing the tetraphenylporphyrin derivative having the above-described configuration.
  • the lithium detection reagent composition having the above-described configuration may include a stabilizer and / or a masking agent for the tetraphenylporphyrin derivative.
  • the stabilizer is a nonionic surfactant and / or an anionic surfactant
  • the masking agent is a monoamine compound. Also good.
  • the lithium detection reagent composition having the above-described configuration may contain no water-soluble organic solvent.
  • the reagent composition for lithium detection having the above-described configuration is added to and mixed with a subject, the subject after mixing is irradiated with visible light, and the subject after irradiation is irradiated with the subject.
  • This is a configuration for detecting a change in color tone.
  • the lithium detection method having the above configuration may be configured to detect the content of lithium contained in the subject based on the detected change in color tone of the subject.
  • the analyte may be a biological sample or an environmental sample.
  • the present invention may include a lithium detection kit containing the lithium detection reagent composition having the above-described configuration.
  • the present invention provides a tetraphenylporphyrin derivative in which 24 hydrogens are fluorine-substituted, and a method of using the same, which can realize good water solubility without greatly deteriorating the characteristics of the above structure. There is an effect that can be.
  • FIG. 1A is a diagram showing a change in the absorption spectrum (result of Example 1) of a reagent composition for detecting lithium containing a tetraphenylporphyrin derivative according to the present invention
  • FIG. 1B shows a conventional tetraphenylporphyrin derivative. It is a figure which shows the change (result of the comparative example 1) of the absorption spectrum of the reagent composition for a lithium detection to contain.
  • FIG. 2A is a diagram showing a change in the absorption spectrum (result of Example 2) of a reagent composition for detecting lithium containing a tetraphenylporphyrin derivative according to the present invention
  • FIG. 1A is a diagram showing a change in the absorption spectrum (result of Example 2) of a reagent composition for detecting lithium containing a tetraphenylporphyrin derivative according to the present invention
  • FIG. 1A is a diagram showing a
  • FIG. 1B shows a conventional tetraphenylporphyrin derivative. It is a figure which shows the change (result of the comparative example 2) of the absorption spectrum of the reagent composition for a lithium detection to contain.
  • FIG. 3A is a diagram showing a change in the absorption spectrum (result of Example 3) of a reagent composition for detecting lithium containing another tetraphenylporphyrin derivative according to the present invention
  • FIG. It is a figure which shows the change (result of Example 4) of the absorption spectrum of the reagent composition for a lithium detection which contains the tetraphenylporphyrin derivative of and does not contain a water-soluble organic solvent.
  • TPP derivative The tetraphenylporphyrin derivative (TPP derivative) according to the present invention is obtained by substituting 24 hydrogen bonded to carbon contained in tetraphenylporphyrin with fluorine, and has a structure represented by the following formula (1).
  • R in following formula (1) shows atoms or substituents other than a fluorine atom.
  • the TPP derivative according to the present invention is a hydrogen other than the para position in the four phenyl groups contained in tetraphenylporphyrin (TPP) (phenyl groups bonded to the 5, 10, 15, and 20 positions of the porphyrin skeleton, respectively).
  • TPP tetraphenylporphyrin
  • the hydrogen at the para position is not substituted, or has a structure substituted with an atom or substituent other than fluorine.
  • TPP derivative having the structure shown in the formula (1), all the remaining 24 hydrogen atoms except for the para positions of the 4 phenyl groups are substituted with fluorine atoms.
  • the TPP derivative according to the present invention is referred to as “F24-TPP”.
  • R in Formula (1) is not specifically limited, and may be a known atom or substituent that can be introduced at the para position of TPP.
  • the TPP derivative according to the present invention only needs to have a basic skeleton in which all hydrogen other than the para position in the four phenyl groups of TPP are substituted with fluorine, and R at the para position is not particularly limited. .
  • Representative atoms or substituents selected as R include, for example, a hydrogen atom (that is, an unsubstituted state); a sulfone group, a sulfonyl group, a phosphate group, depending on the use conditions of the F24-TTP derivative.
  • Inorganic functional groups such as thiol group, hydroxyl group and amino group; organic functional groups such as carboxyl group, aldehyde group, carboxylic acid ester group, thiocarboxylic acid ester group and phosphoric acid monoester group; be able to.
  • the organic functional group is preferably a lower one (having 1 to 7 carbon atoms), but is not particularly limited.
  • examples of the sulfonyl group include a mesyl group.
  • examples of the carboxylic acid ester group include an acetic acid ester group and a propionic acid ester group.
  • examples of the thiocarboxylic acid group ester group include a thioacetic acid ester group and a thiopropionic acid group.
  • R at the para position in Formula (1) is not strongly involved in solubility. Therefore, in the F24-TPP according to the present invention, the basic skeleton represented by the formula (1), that is, the skeleton in which all the hydrogens other than the para position in the four phenyl groups included in the TPP are substituted with fluorine is important.
  • R at the para position is not particularly limited, and it is judged that a hydrogen atom or a substituent as described above may be used.
  • all the para positions of the four phenyl groups (four Rs in the formula (1)) may be the same substituents or atoms, but they may be different from each other.
  • the production method (synthesis method) of the TPP derivative according to the present invention is not particularly limited, and various methods known in the field of fluorine-substituted TPP derivatives can be suitably used.
  • reference documents: Kenji Koyanagi, Masaaki Tabata, synthesis of F28 tetraphenylporphyrin and application to separation and detection of lithium ions, analytical chemistry (Japan Analytical Chemistry Society), 2002, 51 (9) , Pages 803 to 807 can be used.
  • F28 tetraphenylporphyrin which is a TPP derivative in which all hydrogen atoms bonded to carbon are substituted with fluorine
  • F28-TPP is synthesized by cyclization.
  • pentafluorobenzaldehyde is substituted with 2,3,5,6-tetrafluorobenzaldehyde (R at the 4-position (para-position) is fluorine).
  • R at the 4-position (para-position) is fluorine
  • a condensation reaction with 3,4-difluoropyrrole is
  • the field of use of the TPP derivative (F24-TPP) according to the present invention is not particularly limited, but a typical use method includes a reagent composition for detecting lithium.
  • Lithium salts such as lithium carbonate and lithium citrate are used as therapeutic agents for various mental disorders.
  • the optimum amount of lithium salt as a medicinal product in vivo and the amount of poisoning are close to each other, and the effective blood concentration of lithium salt depends on conditions such as symptom of individual to be administered (patient) or individual differences. It depends on.
  • subjects taking lithium salt should determine the effective dose and use lithium salt in the blood to reduce or avoid side effects or poisoning caused by lithium salt. It is necessary to measure the concentration.
  • the TPP derivative according to the present invention can be used for the purpose of detecting lithium in a biological sample such as human blood.
  • lithium-ion batteries are widely used as large-capacity rechargeable batteries.
  • lithium is unintentionally released into the environment such as forest soil or rivers when the lithium-ion batteries are discarded.
  • the TPP derivative according to the present invention can also be used in applications for detecting lithium in such environmental samples.
  • the reagent composition for detecting lithium according to the present invention only needs to contain at least the TPP derivative (F24-TPP) represented by the above formula (1), but may contain other components.
  • the other components include a stabilizer, a masking agent, a pH adjuster, and a water-soluble organic solvent.
  • the stabilizer is blended to improve the stability or dispersibility of the TPP derivative in the reagent composition for detecting lithium, and various surfactants are preferably used. Specific examples include nonionic surfactants and anionic surfactants.
  • nonionic surfactant examples include sorbitan fatty acid ester, sucrose fatty acid ester, pentaerythritol fatty acid partial ester, propylene glycol mono fatty acid ester, glycerin fatty acid monoester polyoxyethylene fatty acid partial ester, and polyoxyethylene sorbitol fatty acid partial ester.
  • Fatty acid ester types such as polyoxyethylene fatty acid ester, fatty acid diethanolamide, fatty acid monoethanolamide, polyoxyethylene fatty acid amide; polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, polyoxyethylene polyoxypropylene glycol, etc.
  • nonionic surfactants Only one kind of these nonionic surfactants may be used as a stabilizer, or two or more kinds may be appropriately combined and used as a stabilizer. These nonionic surfactants can be used as salts. If the reagent composition for detecting lithium is used for a biological sample, a phenyl ether ester type and / or a polyglycidol type can be mentioned as typical stabilizers.
  • anionic surfactant examples include higher alcohols such as alkyl sulfates and alkyl ether sulfates; normal paraffins such as alkyl sulfonates; alkylbenzene sulfonates such as alkylbenzene sulfonates; polyoxy Examples thereof include, but are not limited to, polyoxyethylenes such as ethylene alkyl ether sulfates and polyoxyethylene phenyl ether sulfates.
  • anionic surfactants Only one kind of these anionic surfactants may be used as a stabilizer, or two or more kinds may be used in combination as appropriate. Further, these anionic surfactants may be used in combination as a stabilizer together with the nonionic surfactant (or a salt thereof) described above.
  • typical examples of stabilizers include higher alcohol sodium dodecyl sulfate, alkylbenzene sulfonic acid sodium dodecyl benzene sulfonate, polyoxyethylene polyoxyethylene. Examples thereof include sodium ethylene alkylphenyl ether sulfate ester.
  • the masking agent is used to suppress or avoid that the TPP derivative is affected by other ions in the sample (in order to mask the TPP derivative from other ions).
  • the masking agent is contained in the reagent composition for detecting lithium, it is possible to suppress oxidation of the reagent composition and obtain stable storage stability.
  • the masking agent examples include monoamine compounds such as diethanolamine and triethanolamine; ethylenediamine, propylenediamine, diethylenetriamine, triethylenetetraamine, N, N, N ′, N′-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN) Polyamine compounds such as pyridine; heterocyclic compounds such as pyridine, 2,2-bipyridine and 1,10-phenanthroline; ethylenediaminetetraacetic acid (EDTA), diethylenetriamine-N, N, N ′, N ′′, N ′′ -pentaacetic acid ( DTPA), triethylenetetramine-N, N, N ′, N ′′, N ′′ ′, N ′′ ′-hexaacetic acid (TTHA), O, O′-bis (2-aminophenyl) ethylene glycol-N, N, N ′, N′-tetraacetic acid (BAPTA), trans-1,2-diaminocyclo
  • masking agents may be used alone or in appropriate combination of two or more. These masking agents can be used as salts. If the reagent composition for detecting lithium is for a biological sample, a typical example of the masking agent is a monoamine compound, and particularly, diethanolamine.
  • the pH adjuster is used to adjust the pH of the reagent composition for detecting lithium to a range suitable for color development in order to make it easier to confirm color development or discoloration (color tone change) when the TPP derivative and lithium ions are bound. Used for.
  • a fluorine-substituted TPP derivative when used for lithium detection, when the fluorine-substituted TPP derivative is added to a subject (biological sample or environmental sample) and mixed, the pH is within the range of 5 to 12, particularly pH 8 to 11. Within the range of Therefore, in order to adjust the pH within such a range, a pH adjusting agent can be added to the lithium detection reagent composition.
  • Examples of the pH regulator include inorganic bases such as sodium hydroxide, potassium hydroxide, and ammonia; inorganic acids such as phosphoric acid, carbonic acid, bicarbonate, boric acid, oxalic acid, hydrochloric acid, and nitric acid; acetic acid, citric acid, and tartaric acid. Lower organic acids such as, and the like. These bases or acids can be used in an appropriate combination of at least one or two or more of these bases or acids, depending on the pH range required for the reagent composition for detecting lithium or the analyte to which it is added.
  • inorganic bases such as sodium hydroxide, potassium hydroxide, and ammonia
  • inorganic acids such as phosphoric acid, carbonic acid, bicarbonate, boric acid, oxalic acid, hydrochloric acid, and nitric acid
  • acetic acid citric acid, and tartaric acid.
  • Lower organic acids such as, and the like.
  • a buffer solution can be used in addition to the above base or acid.
  • the buffer include acid buffers such as acetate buffer, borate buffer, citrate buffer, phosphate buffer, and tartaric acid buffer; Tris-HCl buffer, Tris-EDTA buffer (TE Buffer), Tris-acetic acid-EDTA buffer (TAE buffer), Tris-boric acid-EDTA buffer (TBE buffer) and other tris (trishydroxymethylaminomethane, THAM) buffer solutions; ACES, ADA, Good buffers such as BES, Bicine, Bis-Tris, CAPS, CAPSO, CHES, DIPSO, EPPS, HEPES, HEPPSO, MES, MOPS, MOPSO, PIPES, POPSO, TAPS, TAPSO, TES, Tricine, etc. .
  • the water-soluble organic solvent is added to the lithium detection reagent composition so that the TPP derivative can be easily mixed with the specimen. Therefore, it can be said that the water-soluble organic solvent is a mixing aid for the TPP derivative.
  • the TPP derivative according to the present invention that is, the F24-TPP represented by the above formula (1) has four substituted fluorines in one molecule as compared with the conventional F28-TPP, so that it is more water-soluble than F28-TPP. Has improved. Therefore, the reagent composition for detecting lithium according to the present invention may not contain a water-soluble organic solvent (mixing aid).
  • the water-soluble organic solvent as the mixing aid may be any water-soluble polar organic solvent, but it is desirable that the water-soluble organic solvent can be well mixed with the subject (biological sample, environmental sample). Further, as will be described in the lithium detection method described later, in addition to detecting the presence or absence of lithium in the subject, an absorption spectrum is generally measured when lithium is quantitatively detected. Therefore, it is desirable that the water-soluble organic solvent does not interfere with instrumental analysis such as absorption spectrum even when added to an aqueous solution.
  • water-soluble organic solvent examples include, but are not limited to, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), dimethylacetamide (DMA), and the like. These water-soluble organic solvents may be used alone or in combination of two or more.
  • the reagent composition for detecting lithium can be a composition that does not contain a water-soluble organic solvent or a composition in which the water-soluble organic solvent is reduced as compared with the conventional one.
  • the subject assumed in the present invention may be subjected to a detection test for components other than lithium after performing a lithium detection test regardless of a biological sample or an environmental sample.
  • a detection test for components other than lithium after performing a lithium detection test regardless of a biological sample or an environmental sample.
  • various components contained in the reagent composition for detecting lithium do not affect the detection test of other components as much as possible.
  • a general detection test uses a base material such as a resin cell, there is a possibility that the detection test may be affected by a water-soluble organic solvent.
  • DMSO dimethyl methacrylate
  • DMF dimethyl methacrylate
  • DMA dimethyl methacrylate
  • DMSO dimethyl methacrylate
  • its concentration (content) is 5 to 30% by weight.
  • DMSO is an organic solvent widely used in the biochemical field, but if its concentration is high, the possibility of some influence on the biochemical reaction cannot be denied. Considering these viewpoints, it is more preferable not to include a water-soluble organic solvent such as DMSO.
  • the water solubility of F24-TPP is higher than that of F28-TPP, so that it can be prepared as an aqueous solution not containing a water-soluble organic solvent as a mixing aid. Therefore, the reagent composition for detecting lithium according to the present invention can avoid contamination of the water-soluble organic solvent in other tests after the lithium detection test as compared with the conventional reagent composition. It becomes possible to simplify the subsequent waste liquid treatment.
  • the lithium detection reagent composition according to the present invention can detect lithium as well as the case where it is contained even if it does not contain a water-soluble organic solvent such as DMSO. It can be carried out.
  • a water-soluble organic solvent such as DMSO.
  • the lithium detection system (reaction system including the analyte and the reagent composition for detecting lithium) does not contain a water-soluble organic solvent or there are few water-soluble organic solvents. Even so, the lithium detection sensitivity is improved.
  • the reagent composition for detecting lithium according to the present invention only needs to contain at least the TPP derivative (F24-TPP) represented by the formula (1), and further contains a stabilizer and / or a masking agent. It may be contained, and may contain a pH adjuster and / or a mixing aid (water-soluble organic solvent) as necessary. In addition, the reagent composition for detecting lithium according to the present invention may contain other components (for example, preservatives and the like) as necessary.
  • the reagent composition for detecting lithium according to the present invention is prepared as an aqueous solution containing each component described above, but the concentration thereof is not particularly limited, and the type of analyte, the concentration of lithium ions assumed in the analyte, It can be appropriately set according to various conditions such as the components other than lithium ions contained in the subject and the types of compounds selected as the components.
  • the concentration of F24-TPP represented by the above formula (1) can be in the range of 0.1 to 1.0 g / L, for example. If the concentration of F24-TPP is within this range, a good lithium detection reaction can be realized. On the other hand, when the concentration of F24-TPP is lower than the lower limit value, a good lithium detection reaction is not observed, and when the concentration exceeds the upper limit value, a lithium detection reaction commensurate with the concentration (blending amount) of F24-TPP cannot be obtained. Since the lithium detection sensitivity differs depending on the type of F24-TPP derivative, a lower concentration range or a higher concentration range may be employed.
  • the concentration of the stabilizer can be, for example, in the range of 0.1 to 50 g / L.
  • a stabilizer may not be contained, but if the stabilizer is within this range, F24-TPP can be well dispersed in the reagent composition, and the suspension derived from the analyte can be effectively used during the lithium detection reaction. It becomes possible to suppress.
  • the concentration of the stabilizer falls below the lower limit value, the stability of F24-TPP corresponding to the concentration (blending amount) cannot be obtained, and if the concentration exceeds the upper limit value, the stabilizer becomes excessive, so that F24-TPP Any effect on the lithium detection reaction may occur.
  • the concentration of the masking agent can be in the range of 0.1 to 50 g / L, for example.
  • the masking agent may not be contained in the same manner as the stabilizer, but if the masking agent is within this range, other ions than lithium can be masked well, so that the reproducibility or detection accuracy of the lithium detection reaction is improved. While being able to make it favorable, the preservability of a reagent composition can also be made favorable.
  • the concentration of the masking agent is lower than the lower limit, the masking effect of F24-TPP corresponding to the concentration (blending amount) cannot be obtained. If the upper limit is exceeded, the masking agent is excessive if the upper limit is exceeded. Therefore, some influence may occur on the lithium detection reaction by F24-TPP.
  • the concentration of the pH adjusting agent can be, for example, in the range of 50 to 100 mM, and the concentration of the mixing aid (water-soluble organic solvent) can be in the range of 0 to 300 g / L. Neither of these components nor the masking agent may be contained in the same manner as the stabilizer, but within the above range, the desired effect (pH adjustment or mixing of F24-TPP can be achieved without affecting the lithium detection reaction. Improvement).
  • the reagent composition for detecting lithium according to the present invention is suitably used for detecting lithium contained in a specimen.
  • the lithium detection method according to the present invention may be performed using the lithium detection reagent composition having the above-described configuration, and the specific method thereof is not particularly limited.
  • the above-described lithium detection reagent composition is used as a subject. Any structure may be used as long as it is added to and mixed, and the subject after mixing is irradiated with visible light to detect a change in color tone (coloring reaction or color change reaction) of the subject after irradiation.
  • the analyte to which the reagent composition for detecting lithium is added may be a biological sample or an environmental sample as described above, but may be other samples. Further, the amount of the analyte required at the time of detection and the amount of the reagent composition for detecting lithium added to the analyte are not particularly limited, and the type of analyte and the concentration of lithium ion assumed in the analyte It can be appropriately set according to various conditions such as the specific composition of the reagent composition for detecting lithium.
  • the method for mixing the lithium detection reagent added to the specimen is not particularly limited. For example, when dispensing the specimen into a microtube or the like to detect lithium, pipetting with a micropipette or mixing with a vortex mixer, etc. It may be performed by.
  • the visible light irradiated to the specimen after mixing the reagent composition for detecting lithium is not particularly limited as long as it is at least light enough for the person in charge of the inspection to visually confirm the change in color tone.
  • light from a known light source used in instrumental analysis may be irradiated.
  • F24-TPP according to the present invention reacts with lithium ions, a complex in which lithium ions are trapped by the porphyrin skeleton of F24-TPP is formed.
  • an absorption peak appears in the wavelength range of 500 to 600 nm. Therefore, the visible light emitted from the light source to the subject may be light including at least within the range of 500 to 600 nm, and may be light including within the range of 530 to 650 nm.
  • the method for detecting lithium according to the present invention can detect at least the presence or absence of lithium in the specimen by detecting a change in color tone (coloring reaction or discoloration reaction) due to the lithium ion complex of F24-TPP. Based on the detected change in the color tone of the subject, the content of lithium contained in the subject can also be measured.
  • F24-TPP-H a TPP derivative in which all Rs in F24-TPP represented by the formula (1) are hydrogen atoms
  • F24-TPP-H a standard solution with a known concentration or a color sample (colorimetric gauge) that reproduces the color tone of the standard solution is prepared in advance, and by comparing these with the color tone of the subject, the lithium content is visually determined. Can be measured.
  • the lithium content can also be detected by instrumental analysis using a known absorption analyzer (colorimeter) or spectroscopic analyzer.
  • the reagent composition for detecting lithium according to the present invention can also be used as a component of a kit for performing the method for detecting lithium according to the present invention.
  • the lithium detection kit according to the present invention only needs to include at least the above-described reagent composition for detecting lithium.
  • the lithium detection kit according to the present invention may include a reagent bottle in which the above-described lithium detection reagent composition containing F24-TPP at a concentration in a predetermined range is dispensed, but does not contain F24-TPP.
  • the configuration may include a reagent bottle in which the first reagent composition and the second reagent composition containing F24-TPP at a high concentration are respectively dispensed.
  • the composition and concentration of the first reagent composition and the second reagent composition are the same as the composition and concentration of the lithium detection reagent composition described above except for the concentration of F24-TPP. Therefore, the second reagent composition containing F24-TPP is one embodiment of the reagent composition for detecting lithium according to the present invention.
  • the concentration of F24-TPP in the second reagent composition can be appropriately set according to conditions such as a suitable concentration range of F24-TPP and the amount of dilution or the number of dilutions with the first reagent composition.
  • the lithium detection kit according to the present invention may include various other components in addition to the reagent composition for detecting lithium.
  • the above-described standard solution or color sample may be included in the lithium detection kit.
  • a microtube and / or a micropipette tip may be included in the lithium detection kit.
  • a standard solution of the analyte that serves as a control may be included in the lithium detection kit.
  • a portable colorimeter may be included in the lithium detection kit.
  • reagent composition for lithium detection 0.05 mM or 0.15 mM of various TPP derivatives, 1.0% by weight of Triton X-100 (registered trademark, polyoxyethylene octylphenyl ether) as a stabilizer, 10 mM of a monoamine compound as a masking agent, as necessary
  • Triton X-100 registered trademark, polyoxyethylene octylphenyl ether
  • a monoamine compound as a masking agent
  • Lithium detection method A lithium carbonate aqueous solution having a concentration of 1.5% by weight was prepared as a specimen. To 20 ⁇ L of the specimen, 1200 ⁇ L of a lithium detection reagent composition was added and mixed, and reacted for 10 minutes. Thereafter, the absorption spectrum of the specimen was measured in the range of 450 to 700 nm with a spectrophotometer (trade name: U-3310) manufactured by Hitachi High-Technologies Corporation. Moreover, the absorption spectrum was similarly measured about purified water (lithium concentration 0%) as a blank test substance.
  • F24-TPP-H represented by the following formula (2) (as described above, a TPP derivative in which all Rs in the F24-TPP represented by the formula (1) are hydrogen atoms) was used.
  • a reagent composition for lithium detection was prepared as described above using the F24-TPP-H concentration of 0.15 mM, DMSO as a mixing aid, and diethanolamine as a masking agent.
  • F28-TPP represented by the following formula (3) (conventional TPP derivative in which all hydrogen atoms are substituted with fluorine atoms) was used.
  • a reagent composition for lithium detection was prepared as described above using the F28-TPP concentration of 0.15 mM, DMSO as a mixing aid, and triethanolamine as a masking agent.
  • Example 2 A reagent composition for detecting lithium was prepared in the same manner as in Example 1 except that DMSO was not contained. Using this lithium detection reagent composition, the absorption spectrum of the specimen was measured as described above. The result is shown in FIG. 2A.
  • Comparative Example 2 A reagent composition for lithium detection was prepared in the same manner as in Comparative Example 1 except that DMSO was not contained. Using this lithium detection reagent composition, the absorption spectrum of the specimen was measured as described above. The result is shown in FIG. 2B.
  • Example 3 A thioacetate compound of F24-TPP represented by the following formula (4) (a TPP derivative in which all Rs in the F24-TPP represented by the formula (1) are thioacetate groups.
  • F24-TPP-SAc A reagent composition for lithium detection was prepared as described above using the F24-TPP-SAc concentration of 0.05 mM, DMSO as a mixing aid, and triethanolamine as a masking agent.
  • Example 4 A reagent composition for lithium detection was prepared in the same manner as in Example 3 except that DMSO was not contained. Using this lithium detection reagent composition, the absorption spectrum of the specimen was measured as described above. The result is shown in FIG. 3B.
  • F24-TPP-H is similar to the conventional lithium detection reagent composition using F28-TPP.
  • a good absorption peak is observed around 550 nm. Therefore, F24-TPP-H according to the present invention is a TPP derivative having characteristics similar to those of F28-TPP and capable of improving water solubility compared to F28-TPP.
  • the reagent composition for detecting lithium using F24-TPP according to the present invention does not contain DMSO as a mixing aid. However, a good absorption peak is observed at around 550 nm as much as when DMSO is contained. On the other hand, in the reagent composition for detecting lithium using F28-TPP, as shown in FIG. 2B, the necessary amount of F28-TPP is not dissolved unless DMSO as a mixing aid is contained. Absorption peak is not observed.
  • the thiocarboxylic acid ester group is a hydrophobic group
  • F24-TPP-SAc in which such a hydrophobic group is introduced into R of the formula (1) is used regardless of the presence or absence of a water-soluble organic solvent.
  • the amount required for lithium detection can be dissolved. Therefore, in the TPP derivative according to the present invention, the basic skeleton represented by formula (1) (porphyrin skeleton excluding R at the para position) is important, and R at the para position in formula (1) is strongly involved in solubility. It is suggested that it is not.
  • F20-TPP in which the number of substituted fluorines is further reduced no change in absorption peak due to lithium ion reaction is observed in the range of 500 to 600 nm.
  • F24-TPP-H or F24-TPP-SAc according to the present invention has four more fluorine atoms than F20-TPP, it has good water solubility and good lithium detection reaction. Can be realized. Therefore, it is suggested that simply reducing the fluorine substitution number of F28-TPP impairs the lithium ion reactivity characteristic.
  • the present invention can be suitably used widely in the field of using a fluorine-substituted tetraphenylporphyrin derivative, and can be suitably used, for example, in the field of detecting lithium using a fluorine-substituted tetraphenylporphyrin derivative.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Inorganic Chemistry (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Plasma & Fusion (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

 テトラフェニルポルフィリンに含まれる、炭素に結合する24個の水素をフッ素に置換したテトラフェニルポルフィリン誘導体であって、次式(1)に示す構造を有する。ただし、式中Rは、フッ素以外の原子または置換基を示す。このテトラフェニルポルフィリン誘導体は、例えば、リチウム検出用試薬組成物、リチウム検出方法、リチウム検出キット等に利用することができる。

Description

フッ素置換テトラフェニルポルフィリン誘導体およびその利用
 本発明は、テトラフェニルポルフィリンに含まれる、炭素に結合する24個の水素をフッ素に置換したフッ素置換テトラフェニルポルフィリン誘導体と、当該フッ素置換テトラフェニルポルフィリン誘導体の利用に関する。
 テトラフェニルポルフィリン(TPP)は、ポルフィリン化合物の1種であり、ポルフィリン骨格(環状テトラピロール構造)の5,10,15および20位(IUPAC命名法、フィッシャー命名法ではα,β,γおよびδ位)の炭素にそれぞれフェニル基が導入された構造を有している。
 また、TPPには種々の誘導体も知られている。代表的なものとして、TPPを構成する炭素に結合する水素の少なくとも一部を、他の元素または置換基に置換した誘導体(TPP誘導体)が挙げられる。例えば、特許文献1には、全ての水素をフッ素に置換したTPP誘導体が開示されている。このTPP誘導体は、水溶液中のリチウムを検出する試薬として用いられている。
特許第5222432号公報
 ところで、特許文献1に開示されるTPP誘導体は、水に混合し得る有機溶剤を用いることにより、水溶液中のリチウムを検出することに成功している。水溶液中のリチウムの検出においては、検出試薬であるTPP誘導体の水溶性を向上することによって検出感度の向上等が期待される。
 本発明はこのような課題を解決するためになされたものであって、その特性を大きく損なうことなく良好な水溶性を実現することが可能な、フッ素置換されたテトラフェニルポルフィリン誘導体と、その利用方法を提供することを目的とする。
 本発明に係るテトラポルフィリン誘導体は、前記の課題を解決するために、テトラフェニルポルフィリンに含まれる、炭素に結合する24個の水素をフッ素に置換したテトラフェニルポルフィリン誘導体であって、次式(1)
Figure JPOXMLDOC01-appb-C000001
 
(ただし、式中Rは、フッ素原子以外の原子または置換基を示す。)
に示す構造を有する構成である。
 前記構成によれば、本発明に係るテトラポルフィリン誘導体は、テトラフェニルポルフィリンに含まれる4個のフェニル基において、パラ位以外の水素が全てフッ素に置換された基本骨格を有している。これにより、全ての水素をフッ素に置換した従来のTPP誘導体に比べて、リチウム検出感度等といった特性を損なうことを実質的に回避して、良好な水溶性を実現することができる。また、前記構成によれば、リチウム検出用試薬組成物を調製する際に、混合助剤としての水溶性有機溶剤を含有させる必要がなくなる。それゆえ、リチウム検出以外の他の試験を同一の被検体に対して行う場合であっても、水溶性有機溶剤のコンタミネーションを回避することができる。
 しかも、従来のTPP誘導体を用いたリチウム検出用試薬組成物では、水溶性有機溶剤を含有していなければ、十分なリチウム検出感度を得ることができないが、前記構成であれば、良好なリチウム検出感度を実現することができる。それゆえ、水溶性有機溶剤を含まない場合あるいは水溶性有機溶剤が少ない場合では、リチウム検出感度を向上することが可能になる。
 前記構成のテトラポルフィリン誘導体においては、前記式(1)におけるRは、特に限定されないが、例えば、水素原子、無機系官能基、有機系官能基から選択される少なくとも1種を挙げることができる。
 また、本発明に係るリチウム検出用試薬組成物は、前記構成のテトラフェニルポルフィリン誘導体を含有する構成である。
 前記構成のリチウム検出用試薬組成物においては、前記テトラフェニルポルフィリン誘導体の安定剤および/またはマスキング剤を含有する構成であってもよい。
 また、前記構成のリチウム検出用試薬組成物においては、前記安定剤は、非イオン性界面活性剤および/または陰イオン性界面活性剤であり、前記マスキング剤は、モノアミン化合物である構成であってもよい。
 また、前記構成のリチウム検出用試薬組成物においては、水溶性有機溶剤を含有しない構成であってもよい。
 また、本発明に係るリチウム検出方法は、前記構成のリチウム検出用試薬組成物を被検体に添加して混合し、混合後の当該被検体に可視光を照射し、照射後の前記被検体の色調の変化を検出する構成である。
 前記構成のリチウム検出方法では、検出した前記被検体の色調の変化に基づいて、当該被検体に含まれるリチウムの含有量を検出する構成であってもよい。
 また、前記構成のリチウム検出方法では、前記被検体は、生体試料または環境試料である構成であってもよい。
 さらに、本発明には、前記構成のリチウム検出用試薬組成物を含むリチウム検出キットが含まれてもよい。
 本発明では、以上の構成により、その特性を大きく損なうことなく良好な水溶性を実現することが可能な、24個の水素がフッ素置換されたテトラフェニルポルフィリン誘導体と、その利用方法を提供することができる、という効果を奏する。
図1Aは、本発明に係るテトラフェニルポルフィリン誘導体を含有するリチウム検出用試薬組成物の吸光スペクトルの変化(実施例1の結果)を示す図であり、図1Bは、従来のテトラフェニルポルフィリン誘導体を含有するリチウム検出用試薬組成物の吸光スペクトルの変化(比較例1の結果)を示す図である。 図2Aは、本発明に係るテトラフェニルポルフィリン誘導体を含有するリチウム検出用試薬組成物の吸光スペクトルの変化(実施例2の結果)を示す図であり、図1Bは、従来のテトラフェニルポルフィリン誘導体を含有するリチウム検出用試薬組成物の吸光スペクトルの変化(比較例2の結果)を示す図である。 図3Aは、本発明に係る他のテトラフェニルポルフィリン誘導体を含有するリチウム検出用試薬組成物の吸光スペクトルの変化(実施例3の結果)を示す図であり、図3Bは、本発明に係る他のテトラフェニルポルフィリン誘導体を含有し、水溶性有機溶剤を含有しないリチウム検出用試薬組成物の吸光スペクトルの変化(実施例4の結果)を示す図である。 従来の他のテトラフェニルポルフィリン誘導体を含有するリチウム検出用試薬組成物の吸光スペクトルの変化(比較例3の結果)を示す図である。
 [テトラフェニルポルフィリン誘導体]
 本発明に係るテトラフェニルポルフィリン誘導体(TPP誘導体)は、テトラフェニルポルフィリンに含まれる、炭素に結合する24個の水素をフッ素に置換したものであって、次式(1)に示す構造を有する。ただし、次式(1)におけるRは、フッ素原子以外の原子または置換基を示す。
Figure JPOXMLDOC01-appb-C000002
 
 つまり、本発明に係るTPP誘導体は、テトラフェニルポルフィリン(TPP)に含まれる4個のフェニル基(ポルフィリン骨格の5,10,15および20位にそれぞれ結合するフェニル基)において、パラ位以外の水素が全てフッ素に置換されているとともに、パラ位の水素は、置換されずにそのままであるか、または、フッ素以外の原子または置換基によって置換されている構造を有している。
 なお、前記式(1)に示す構造のTPP誘導体は、4個のフェニル基の各パラ位を除いた、残りの24個の全ての水素原子がフッ素原子に置換されているので、説明の便宜上、本発明に係るTPP誘導体を「F24-TPP」と称する。
 式(1)におけるRの具体的な種類は具体的には特に限定されるものではなく、TPPのパラ位に導入することが可能な公知の原子または置換基であればよい。言い換えれば、本発明に係るTPP誘導体は、TPPの4個のフェニル基におけるパラ位以外の全ての水素をフッ素に置換した基本骨格を有していればよく、パラ位のRについては特に限定されない。
 Rとして選択される代表的な原子または置換基としては、F24-TTP誘導体の使用条件等にもよるが、例えば、水素原子(すなわち置換されていない状態);スルホン基、スルホニル基、リン酸基、チオール基、ヒドロキシル基、アミノ基等の無機系官能基;カルボキシル基、アルデヒド基、カルボン酸エステル基、チオカルボン酸エステル基、リン酸モノエステル基等の有機系官能基;等の置換基を挙げることができる。有機系官能基としては、好ましくは低級(炭素数が1から7個)のものを挙げることができるが、特に限定されない。また、前記無機系官能基のうち、スルホニル基としては、例えばメシル基を挙げることができる。また、前記有機系官能基のうち、カルボン酸エステル基としては、例えば、酢酸エステル基、プロピオン酸エステル基等を挙げることができ、チオカルボン酸基エステル基としては、チオ酢酸エステル基、チオプロピオン酸エステル基等を挙げることができるが、特に限定されない。
 なお、後述する実施例3および4の結果から、本発明に係るTPP誘導体においては、式(1)におけるパラ位のRは溶解性に強く関与していないことが示唆される。そのため、本発明に係るF24-TPPにおいては、式(1)に示す基本骨格、すなわち、TPPに含まれる4個のフェニル基において、パラ位以外の水素が全てフッ素に置換された骨格が重要であって、パラ位のRについては特に限定されず、水素原子でも前述したような置換基であってもよいと判断される。また、本発明に係るTPP誘導体においては、4つのフェニル基のパラ位(式(1)の4つのR)が全て同じ置換基または原子であればよいが、それぞれ異なっていてもよい。
 本発明に係るTPP誘導体の製造方法(合成方法)は特に限定されず、フッ素置換TPP誘導体の分野で公知の種々の方法を好適に用いることができる。具体的には、例えば、参考文献:小柳健治、田端正明 F28テトラフェニルポルフィリンの合成とリチウムイオンの分離・検出への応用 分析化学(公益社団法人日本分析化学会),2002年,51(9),803~807ページに開示されている合成方法を利用することができる。
 この参考文献では、炭素に結合している全ての水素原子をフッ素に置換したTPP誘導体であるF28テトラフェニルポルフィリン(F28-TPP)を、ペンタフルオロベンズアルデヒドおよび3,4-ジフルオロピロールとの縮合反応により環化させてF28-TPPを合成している。本発明に係るF24-TPPを合成する場合には、下記の反応式に示すように、ペンタフルオロベンズアルデヒドを、2,3,5,6-テトラフルオロベンズアルデヒド(4位(パラ位)のRはフッ素以外の原子または置換基)に置き換えて、これを3,4-ジフルオロピロールと縮合反応させればよい。
Figure JPOXMLDOC01-appb-C000003
 
 [リチウム検出用試薬組成物]
 本発明に係るTPP誘導体(F24-TPP)の利用分野は特に限定されないが、代表的な利用方法としては、リチウム検出用試薬組成物を挙げることができる。
 炭酸リチウム、クエン酸リチウム等のリチウム塩は、さまざまな精神疾患の治療薬に用いられている。ただし、リチウム塩は、生体内での医薬品としての最適量と中毒量とが近接しており、また、リチウム塩の有効血中濃度は、投薬対象者(患者)の症状または個人差等の条件によって異なる。このような理由から、リチウム塩を服用している投薬対象者は、特に有効な服薬量を決定するとともに、リチウム塩による副作用または中毒を抑制したり回避したりするために、血中のリチウム塩の濃度を測定する必要がある。本発明に係るTPP誘導体は、このようなヒト血液等といった生体試料中のリチウムを検出する用途に用いることができる。
 また、近年では、大容量の充電池としてリチウムイオン電池が広く用いられているが、例えばリチウムイオン電池の廃棄等に伴って、森林土壌または河川等の環境中にリチウムが意図せずに放出される可能性が考えられる。本発明に係るTPP誘導体は、このような環境試料中のリチウムを検出する用途にも用いることができる。
 本発明に係るリチウム検出用試薬組成物は、前述した式(1)に示すTPP誘導体(F24-TPP)を少なくとも含有していればよいが、他の成分を含有してもよい。他の成分としては、具体的には、例えば、安定剤、マスキング剤、pH調節剤、水溶性有機溶剤等を挙げることができる。
 安定剤は、リチウム検出用試薬組成物中でのTPP誘導体の安定性または分散性を向上するために配合されるものであり、種々の界面活性剤が好適に用いられる。具体的には、非イオン性界面活性剤、陰イオン性界面活性剤が挙げられる。
 非イオン性界面活性剤としては、例えば、ソルビタン脂肪酸エステル、ショ糖脂肪酸エステル、ペンタエリスリトール脂肪酸部分エステル、プロピレングリコールモノ脂肪酸エステル、グリセリン脂肪酸モノエステルポリオキシエチレン脂肪酸部分エステル、ポリオキシエチレンソルビトール脂肪酸部分エステル、ポリオキシエチレン脂肪酸エステル、脂肪酸ジエタノールアミド、脂肪酸モノエタノールアミド、ポリオキシエチレン脂肪酸アミド等の脂肪酸系エステル型;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンポリオキシプロピレングリコール等の高級アルコール系エステル型;ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルエーテル、ポリオキシエチレンイソオクチルフェニルエーテル、ポリエチレングリコールモノ-4-オクチルフェニルエーテル等のフェニルエーテル系エステル型;p-ノニルフェノキシポリグリシドール等のポリグリシドール型等が挙げられるが特に限定されない。
 これら非イオン性界面活性剤は、1種類のみを安定剤として用いてもよいし、2種類以上を適宜組み合わせて安定剤として用いてもよい。また、これら非イオン性界面活性剤は塩類として用いることができる。リチウム検出用試薬組成物が生体試料用であれば、安定剤として特に代表的なものとして、フェニルエーテル系エステル型および/またはポリグリシドール型を挙げることができる。
 陰イオン性界面活性剤としては、例えば、アルキル硫酸エステル塩、アルキルエーテル硫酸エステル塩等の高級アルコール系;アルキルスルホン酸塩等のノルマルパラフィン系;アルキルベンゼンスルホン酸塩等のアルキルベンゼンスルホン酸系;ポリオキシエチレンアルキルエーテル硫酸エステル塩、ポリオキシエチレンフェニルエーテル硫酸エステル塩等のポリオキシエチレン系;等が挙げられるが特に限定されない。
 これら陰イオン性界面活性剤は、1種類のみを安定剤として用いてもよいし、2種類以上を適宜組み合わせて安定剤として用いてもよい。また、これら陰イオン性界面活性剤は、前述した非イオン性界面活性剤(またはその塩)とともに安定剤として併用されてもよい。リチウム検出用試薬組成物が生体試料用であれば、安定剤として特に代表的なものとして、高級アルコール系のドデシル硫酸ナトリウム、アルキルベンゼンスルホン酸系のドデシルベンゼンスルホン酸ナトリウム、ポリオキシエチレン系のポリオキシエチレンアルキルフェニルエーテル硫酸エステルナトリウム等を挙げることができる。
 マスキング剤は、TPP誘導体が、試料中の他のイオンにより影響を受けることを抑制または回避するために(TPP誘導体を他のイオンからマスクするために)用いられる。また、リチウム検出用試薬組成物中にマスキング剤が含まれていることにより、当該試薬組成物の酸化を抑制し、安定した保存性を得ることも可能となる。
 マスキング剤としては、例えば、ジエタノールアミン、トリエタノールアミン等のモノアミン化合物;エチレンジアミン、プロピレンジアミン、ジエチレントリアミン、トリエチレンテトラアミン、N,N,N’、N’-テトラキス(2-ピリジルメチル)エチレンジアミン(TPEN)等のポリアミン化合物;ピリジン、2,2-ビピリジン、1,10-フェナントロリン等の複素環系化合物;エチレンジアミン四酢酸(EDTA)、ジエチレントリアミン-N,N,N’,N”,N”-五酢酸(DTPA)、トリエチレンテトラミン-N,N,N’,N”,N”’,N”’-六酢酸(TTHA)、O,O’-ビス(2-アミノフェニル)エチレングリコール-N,N,N’,N’-四酢酸(BAPTA)、トランス-1,2-ジアミノシクロヘキサンN,N,N’,N’-四酢酸(CyDTA)、O,O’-ビス(2-アミノエチル)エチレングリコール-N,N,N’,N’-四酢酸(EGTA)、イミノ二酢酸(IDA)、N-(2-ハイドロキシル)イミノ二酢酸(HIDA)、N,N-ビス(2-ハイドロキシエチル)グリシン(Bicine)、N,N-ビス(カルボキシメチル)グリシン(ニトリロ三酢酸,NTA)等のアミノポリ酢酸化合物;ニトリロトリスメチレントリスホスホン酸(NTPO)等のアミノポリリン酸化合物;等が挙げられるが特に限定されない。
 これらマスキング剤は、1種類のみを用いてもよいし、2種類以上を適宜組み合わせて用いてもよい。また、これらマスキング剤は塩類として用いることができる。リチウム検出用試薬組成物が生体試料用であれば、マスキング剤として特に代表的なものとして、モノアミン化合物を挙げることができ、特に、ジエタノールアミンを挙げることができる。
 pH調節剤は、TPP誘導体とリチウムイオンとが結合したときの発色または変色(色調変化)をより確認しやすくするために、リチウム検出用試薬組成物のpHを発色に適した範囲に調節するために用いられる。一般に、リチウム検出にフッ素置換TPP誘導体を用いる場合には、当該フッ素置換TPP誘導体を被検体(生体試料または環境試料)に添加して混合したときに、pH5~12の範囲内、特にpH8~11の範囲内が望ましいとされている。それゆえ、pHをこのような範囲内に調節するために、リチウム検出用試薬組成物にpH調節剤を添加することができる。
 pH調節剤としては、例えば、水酸化ナトリウム、水酸化カリウム、アンモニア等の無機塩基;リン酸、炭酸、重炭酸、ホウ酸、しゅう酸、塩酸、硝酸等の無機酸;酢酸、クエン酸、酒石酸等の低級有機酸;等を挙げることができる。リチウム検出用試薬組成物またはこれを添加した被検体に要求されるpHの範囲に応じて、これら塩基または酸を少なくとも1種類もしくは2種類以上を適宜組み合わせて用いることができる。
 また、pH調節剤としては、前記の塩基または酸以外に緩衝液を用いることができる。具体的な緩衝液としては、酢酸緩衝液、ホウ酸緩衝液、クエン酸緩衝液、リン酸緩衝液、酒石酸緩衝液等の酸系緩衝液;トリス-塩酸緩衝液、トリス-EDTA緩衝液(TE緩衝液)、トリス-酢酸-EDTA緩衝液(TAE緩衝液)、トリス-ホウ酸-EDTA緩衝液(TBE緩衝液)等のトリス(トリスヒドロキシメチルアミノメタン、THAM)系緩衝液;ACES,ADA,BES,Bicine,Bis-Tris,CAPS,CAPSO,CHES,DIPSO,EPPS,HEPES,HEPPSO,MES,MOPS,MOPSO,PIPES,POPSO,TAPS,TAPSO,TES,Tricine等のグッドバッファー;等を挙げることができる。
 水溶性有機溶剤は、TPP誘導体を被検体に混合しやすくするためにリチウム検出用試薬組成物に添加される。したがって、水溶性有機溶剤はTPP誘導体の混合助剤ということができる。ここで、本発明に係るTPP誘導体すなわち前記式(1)に示すF24-TPPは、従来のF28-TPPに比べて1分子中の置換フッ素が4個少ないため、F28-TPPに比べて水溶性が向上している。そのため、本発明に係るリチウム検出用試薬組成物は、水溶性有機溶剤(混合助剤)を含有しなくてもよい。
 混合助剤としての水溶性有機溶剤としては、水溶性の極性有機溶剤であればよいが、被検体(生体試料、環境試料)に良好に混合できるものであることが望ましい。また、後述するリチウム検出方法においても説明するように、被検体中のリチウムの有無を検出するだけでなく、リチウムを定量的に検出する場合には、一般に吸光スペクトルを測定することになる。そのため、水溶性有機溶剤は、水溶液に添加しても吸光スペクトル等の機器分析を妨げないものであることが望ましい。
 具体的な水溶性有機溶剤としては、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMA)等が挙げられるが特に限定されない。これら水溶性有機溶剤は、1種類のみを用いてもよいし、2種類以上を適宜組み合わせて用いてもよい。
 なお、後述する比較例3に示すように、F28-TPPの置換フッ素を単純に減少させたTPP誘導体(1分子中の置換フッ素を8個少なくしたF20テトラフェニルポルフィリン、便宜上、F20-TPPと称する。)では、F28-TPPが有するリチウム検出反応(発色反応、変色反応)という特性が得られなくなる。これに対して、本発明に係るF24-TPPは、後述する実施例1~3に示すように、F20-TPPに比べてフッ素数が4個も多いにも関わらず、良好なリチウム検出反応を実現できるとともに、F28-TPPよりも優れた水溶性を示す。それゆえ、リチウム検出用試薬組成物を、水溶性有機溶剤を含有しない組成もしくは水溶性有機溶剤を従来よりも低減させた組成とすることができる。
 本発明において想定される被検体は、生体試料または環境試料に関わらず、リチウム検出試験を行った後に、リチウム以外の他の成分の検出試験を行う可能性が考えられる。この場合、リチウム検出用試薬組成物に含まれる各種成分が、可能な限り他の成分の検出試験に影響しないことが求められる。一般的な検出試験は、樹脂製のセル等の基材を用いるため、水溶性有機溶剤により何らかの影響を受ける可能性がある。
 例えば、特許文献1に記載されているように、従来のF28-TPPはリチウム検出に用いる場合、水溶性有機溶剤としてDMSO、DMF、またはDMAが必須となっている。これは、本発明に係るF24-TPPに比べてF28-TPPの水溶性が低いためである。特許文献1では、水溶性有機溶剤としてDMSOを用いた場合に、その濃度(含有量)が5~30重量%となっている。DMSOは、生化学分野で広く用いられる有機溶剤であるが、その濃度が高いと生化学反応に何らかの影響を及ぼす可能性は否定できない。これらの観点を考慮すれば、DMSO等の水溶性有機溶剤は含まれない方がより好ましい。
 本発明に係るリチウム検出用試薬組成物では、F24-TPPの水溶性がF28-TPPよりも高いため、混合助剤としての水溶性有機溶剤を含有させない水溶液として調製することができる。したがって、本発明に係るリチウム検出用試薬組成物は、従来の試薬組成物に比較して、リチウム検出試験の後の他の試験において、水溶性有機溶剤がコンタミネーションすることを回避できるとともに、試験後の廃液処理を簡素化することが可能になる。
 また、後述する実施例2に示すように、本発明に係るリチウム検出用試薬組成物では、DMSO等の水溶性有機溶剤を含有しなくても、含有する場合と同程度の良好なリチウム検出を行うことができる。一方、従来のF28-TPPを用いたリチウム検出用試薬組成物では、後述する比較例2に示すように、水溶性有機溶剤が存在しないと、F28-TPPを必要量溶解させることができないため、リチウム検出はほぼ不可能であることが明らかとなっている。したがって、本発明に係るF24-TPPを用いれば、リチウム検出系(被検体およびリチウム検出用試薬組成物を含む反応系)が水溶性有機溶剤を含まないか、あるいは水溶性有機溶剤が少ない場合であっても、リチウム検出感度が向上していることになる。
 このように、本発明に係るリチウム検出用試薬組成物は、前記式(1)に示されるTPP誘導体(F24-TPP)を少なくとも含有していればよいが、さらに安定剤および/またはマスキング剤を含有していればよく、必要に応じてpH調節剤および/または混合助剤(水溶性有機溶剤)を含有してもよい。加えて、本発明に係るリチウム検出用試薬組成物は、必要に応じて、これら以外の成分(例えば、防腐剤等)を含有してもよい。
 本発明に係るリチウム検出用試薬組成物は、前述した各成分を含む水溶液として調製されるが、その濃度は特に限定されず、被検体の種類、被検体中に想定されるリチウムイオンの濃度、被検体中に含まれるリチウムイオン以外の成分、各成分として選択される化合物等の種類といった諸条件に応じて適宜設定することができる。
 前記式(1)に示されるF24-TPPの濃度は、例えば、0.1~1.0g/Lの範囲内を挙げることができる。F24-TPPの濃度がこの範囲内であれば、良好なリチウム検出反応を実現することができる。一方、F24-TPPの濃度が下限値を下回ると良好なリチウム検出反応が見られず、上限値を超えるとF24-TPPの濃度(配合量)に見合ったリチウム検出反応が得られない。F24-TPP誘導体の種類別にリチウム検出感度が異なるため、より低濃度の範囲またはより高濃度の範囲を採用する場合もある。
 安定剤の濃度は、例えば、0.1~50g/Lの範囲内を挙げることができる。安定剤は含有されなくてもよいが、安定剤がこの範囲内であれば、試薬組成物中でF24-TPPを良好に分散できるとともに、リチウム検出反応時に被検体由来の懸濁等を有効に抑制することが可能となる。一方、安定剤の濃度が下限値を下回ると、その濃度(配合量)に見合ったF24-TPPの安定性が得られず、上限値を超えると、安定剤が過剰となるためF24-TPPによるリチウム検出反応に何らかの影響が生じる可能性がある。
 マスキング剤の濃度は、例えば、0.1~50g/Lの範囲内を挙げることができる。マスキング剤も安定剤と同様に含有されなくてもよいが、マスキング剤がこの範囲内であれば、リチウム以外の他のイオンを良好にマスキングできるので、リチウム検出反応の再現性または検出精度等を良好なものにできるとともに、試薬組成物の保存性も良好なものにできる。一方、マスキング剤の濃度が下限値を下回ると、その濃度(配合量)に見合ったF24-TPPのマスキング効果が得られず、上限値を超えると、上限値を超えると、マスキング剤が過剰となるためF24-TPPによるリチウム検出反応に何らかの影響が生じる可能性がある。
 pH調節剤の濃度は、例えば、50~100mMの範囲内を挙げることができ、混合助剤(水溶性有機溶剤)の濃度は、0~300g/Lの範囲内を挙げることができる。これら各成分もマスキング剤も安定剤と同様に含有されなくてもよいが、前記の範囲内であれば、リチウム検出反応に影響を及ぼさずに、所望の効果(pH調節またはF24-TPPの混合性の向上)を得ることができる。
 [リチウム検出方法、リチウム検出キット]
 本発明に係るリチウム検出用試薬組成物は、前述したように、被検体中に含まれるリチウムの検出に好適に用いられる。本発明に係るリチウム検出方法は、前記構成のリチウム検出用試薬組成物を用いればよく、その具体的な方法は特に限定されないが、基本的には、前述したリチウム検出用試薬組成物を被検体に添加して混合し、混合後の被検体に可視光を照射し、照射後の被検体の色調の変化(発色反応または変色反応)を検出する構成であればよい。
 リチウム検出用試薬組成物が添加される被検体は、前述したように、生体試料または環境試料であればよいが、それ以外の試料であってもよい。また、検出時に必要な被検体の量、並びに、当該被検体に添加されるリチウム検出用試薬組成物の量も特に限定されず、被検体の種類、被検体中に想定されるリチウムイオンの濃度、リチウム検出用試薬組成物の具体的な組成等といった諸条件に応じて適宜設定することができる。被検体に添加したリチウム検出用試薬の混合方法も特に限定されず、例えば、マイクロチューブ等に被検体を分注してリチウムを検出する場合には、マイクロピペットによるピペッティングまたはボルテックスミキサーによる混合等により行えばよい。
 リチウム検出用試薬組成物を混合した後の被検体に照射される可視光についても特に限定されず、少なくとも検査担当者が目視で色調の変化を確認できる程度の光であればよく、機器分析(吸光分析または分光分析)を行う場合には、機器分析で用いられる公知の光源からの光を照射すればよい。本発明に係るF24-TPPがリチウムイオンに反応すると、F24-TPPのポルフィリン骨格でリチウムイオンがトラップされた錯体が形成される。このリチウム錯体は、波長500~600nmの範囲内に吸収のピークが現れる。そのため、光源から被検体に照射される可視光は、少なくとも500~600nmの範囲内を含む光であればよく、530~650nmの範囲内を含む光であってもよい。
 本発明に係るリチウム検出方法では、F24-TPPのリチウムイオン錯体による色調の変化(発色反応または変色反応)が検出されることにより、被検体中のリチウムの有無を少なくとも検出することができるが、検出した被検体の色調の変化に基づいて、当該被検体に含まれるリチウムの含有量を測定することもできる。
 例えば、前記式(1)に示されるF24-TPPにおけるRが全て水素原子であるTPP誘導体を、説明の便宜上「F24-TPP-H」とすると、このF24-TPP-Hによるリチウム検出反応では、被検体の色調が茶褐色から赤に変化する。そのため、既知濃度の標準溶液または当該標準溶液の色調を再現した色見本(比色ゲージ)を予め準備しておき、これらと被検体の色調とを比較することで、目視によりリチウムの含有量を測定することができる。また、公知の吸光分析機(比色計)または分光分析機等を用いて機器分析によりリチウムの含有量を検出することもできる。
 また、本発明に係るリチウム検出用試薬組成物は、本発明に係るリチウム検出方法を行うためのキットの構成要素として用いることもできる。言い換えれば、本発明に係るリチウム検出キットは、前述したリチウム検出用試薬組成物を少なくとも含む構成であればよい。
 本発明に係るリチウム検出キットは、所定範囲の濃度でF24-TPPを含有する前述したリチウム検出用試薬組成物を分注した試薬ボトルを含む構成であってもよいが、F24-TPPを含有しない第一試薬組成物と、F24-TPPを高濃度で含有する第二試薬組成物とをそれぞれ分注した試薬ボトルを含む構成であってもよい。このように、2種類の試薬組成物を準備しておくことで、被検体の種類、被検体中に想定されるリチウムイオンの濃度、被検体中に含まれるリチウムイオン以外の成分等といった諸条件に応じて、好適なF24-TPP濃度を実現するリチウム検出用試薬組成物を適宜調製することができる。
 なお、第一試薬組成物および第二試薬組成物の組成および濃度は、F24-TPPの濃度を除いて前述したリチウム検出用試薬組成物の組成および濃度と同様である。したがって、F24-TPPを含む第二試薬組成物も本発明に係るリチウム検出用試薬組成物の実施形態の一つである。また、第二試薬組成物におけるF24-TPPの濃度は、好適なF24-TPPの濃度範囲と、第一試薬組成物による希釈量または希釈回数等の条件に応じて適宜設定することができる。
 また、本発明に係るリチウム検出キットは、リチウム検出用試薬組成物以外に、他の種々の構成要素を含んでもよい。例えば、簡易的な手法でリチウム検出を行う場合には、前述した標準溶液または色見本をリチウム検出キットに含めてもよい。また、環境試料等を現場で検査するような場合には、マイクロチューブおよび/またはマイクロピペット用チップ等をリチウム検出キットに含めてもよい。あるいは、被検体の種類が限定されるような場合には、コントロールとなる被検体の標準溶液をリチウム検出キットに含めてもよい。さらに、携帯型の比色計をリチウム検出キットに含めてもよい。
 本発明について、実施例および比較例に基づいてより具体的に説明するが、本発明はこれに限定されるものではない。当業者は本発明の範囲を逸脱することなく、種々の変更、修正、および改変を行うことができる。なお、以下の実施例および比較例におけるリチウム検出用試薬組成物の調製、並びに、これらを用いたリチウム検出方法は次に示すようにして行った。
 (リチウム検出用試薬組成物の調製)
 各種TPP誘導体が0.05mMまたは0.15mM、安定剤であるTriton X-100(登録商標、ポリオキシエチレンオクチルフェニルエーテル)が1.0重量%、マスキング剤であるモノアミン化合物が10mM、必要に応じて添加される混合助剤(水溶性有機溶剤)が20重量%となるように、実施例または比較例のリチウム検出用試薬組成物を調製した。なお、必要に応じてpH調節剤(グッドバッファー)等を適宜添加した。
 (リチウム検出方法)
 濃度1.5重量%の炭酸リチウム水溶液を調製して被検体とした。この被検体20μLに1200μLのリチウム検出用試薬組成物を添加して混合し、10分間反応した。その後、被検体を(株)日立ハイテクノロジーズ製分光光度計(商品名:U-3310)で450~700nmの範囲で被検体の吸光スペクトルを測定した。また、ブランク検体として、精製水(リチウム濃度0%)についても同様に吸光スペクトルを測定した。
 (実施例1)
 下記式(2)に示されるF24-TPP-H(前述したように、前記式(1)に示されるF24-TPPにおけるRが全て水素原子であるTPP誘導体。)を用いた。このF24-TPP-Hの濃度を0.15mMとし、混合助剤としてDMSOを含有させ、マスキング剤としてジエタノールアミンを用いて、前記の通りリチウム検出用試薬組成物を調製した。
Figure JPOXMLDOC01-appb-C000004
 
 このリチウム検出用試薬組成物を用いて、前記の通り被検体の吸光スペクトルを測定した。その結果を図1Aに示す。
 (比較例1)
 下記式(3)に示されるF28-TPP(全ての水素原子をフッ素原子に置換した従来のTPP誘導体)を用いた。このF28-TPPの濃度を0.15mMとし、混合助剤としてDMSOを含有させ、マスキング剤としてトリエタノールアミンを用いて、前記の通りリチウム検出用試薬組成物を調製した。
Figure JPOXMLDOC01-appb-C000005
 
 このリチウム検出用試薬組成物を用いて、前記の通り被検体の吸光スペクトルを測定した。その結果を図1Bに示す。
 (実施例2)
 DMSOを含有させない以外は、前記実施例1と同様にしてリチウム検出用試薬組成物を調製した。このリチウム検出用試薬組成物を用いて、前記の通り被検体の吸光スペクトルを測定した。その結果を図2Aに示す。
 (比較例2)
 DMSOを含有させない以外は、前記比較例1と同様にしてリチウム検出用試薬組成物を調製した。このリチウム検出用試薬組成物を用いて、前記の通り被検体の吸光スペクトルを測定した。その結果を図2Bに示す。
 (実施例3)
 下記式(4)に示されるF24-TPPのチオ酢酸エステル化合物(前記式(1)に示されるF24-TPPにおけるRが全てチオ酢酸エステル基であるTPP誘導体。説明の便宜上「F24-TPP-SAc」と称する。)を用いた。このF24-TPP-SAcの濃度を0.05mMとし、混合助剤としてDMSOを含有させ、マスキング剤としてトリエタノールアミンを用いて、前記の通りリチウム検出用試薬組成物を調製した。
Figure JPOXMLDOC01-appb-C000006
 
 このリチウム検出用試薬組成物を用いて、前記の通り被検体の吸光スペクトルを測定した。その結果を図3Aに示す。
 (実施例4)
 DMSOを含有させない以外は、前記実施例3と同様にしてリチウム検出用試薬組成物を調製した。このリチウム検出用試薬組成物を用いて、前記の通り被検体の吸光スペクトルを測定した。その結果を図3Bに示す。
 (比較例3)
 下記式(5)に示されるF20-TPP(4個のフェニル基全ての水素原子がフッ素原子に置換されているが、ポルフィリン骨格の水素原子が置換されていない市販(東京化成工業(株)製)のTPP誘導体)を用いた。このF20-TPPの濃度を0.15mMとし、混合助剤としてDMSOを含有させ、マスキング剤としてトリエタノールアミンを用いて、前記の通りリチウム検出用試薬組成物を調製した。
Figure JPOXMLDOC01-appb-C000007
 
 このリチウム検出用試薬組成物を用いて、前記の通り被検体の吸光スペクトルを測定した。その結果を図4に示す。
 (実施例および比較例の対比)
 図1Aおよび図1Bの結果から明らかなように、本発明に係るF24-TPP-Hを用いたリチウム検出用試薬組成物は、従来のF28-TPPを用いたリチウム検出用試薬組成物と同様に、550nm付近で良好な吸収ピークが観察される。したがって、本発明に係るF24-TPP-Hは、F28-TPPと同程度の特性を有し、F28-TPPよりも水溶性を向上することが可能なTPP誘導体となっている。
 次に、図2Aおよび図2Bの結果、並びに図1Aの結果から明らかなように、本発明に係るF24-TPPを用いたリチウム検出用試薬組成物は、混合助剤としてのDMSOを含有しなくても、DMSOを含有する場合と同程度に550nm付近で良好な吸収ピークが見られる。一方、F28-TPPを用いたリチウム検出用試薬組成物では、図2Bに示すように、混合助剤としてのDMSOを含有しなければ必要量のF28-TPPが溶解しないため、550nm付近に十分な吸収ピークが観察されない。
 次に、図3Aおよび図3Bの結果から明らかなように、F24-TPP-SAcでも、F24-TPP-Hと同様に、560nm付近に明確な吸収ピークが観察される。つまり、式(1)のRが水素原子以外の置換基(チオカルボン酸エステル基)であっても、Rが水素原子の場合(F24-TPP-H)であっても、テトラフェニルポルフィリンに含まれる、炭素に結合する24個の水素をフッ素に置換したテトラフェニルポルフィリン誘導体であれば、水溶性有機溶剤の有無に関わらず、良好なリチウム検出反応を実現することができる。
 さらに、チオカルボン酸エステル基は疎水性基であるが、式(1)のRにこのような疎水性基が導入されたF24-TPP-SAcであっても、水溶性有機溶剤の有無に関わらず、リチウムの検出に必要な量を溶解させることができる。そのため、本発明に係るTPP誘導体においては、式(1)に示す基本骨格(パラ位のRを除くポルフィリン骨格)が重要であって、式(1)におけるパラ位のRは溶解性に強く関与していないことが示唆される。
 また、図4の結果から明らかなように、置換されたフッ素の数をさらに減少させたF20-TPPでは、500~600nmの範囲内でリチウムイオン反応による吸収ピークの変化が見られない。このように、本発明に係るF24-TPP-HまたはF24-TPP-SAcは、F20-TPPに比べてフッ素数が4個も多いにも関わらず、良好な水溶性と良好なリチウム検出反応とを実現することができる。それゆえ、単にF28-TPPのフッ素置換数を減らしただけでは、リチウムイオン反応性という特性が損なわれることが示唆される。
 このように、本発明では、その特性を大きく損なうことなく、水溶性を向上することが可能なフッ素置換TPP誘導体と、これを用いたリチウム検出用試薬組成物等の利用方法を得ることができる。
 なお、本発明は前記実施の形態の記載に限定されるものではなく、特許請求の範囲に示した範囲内で種々の変更が可能であり、異なる実施の形態や複数の変形例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施の形態についても本発明の技術的範囲に含まれる。
 本発明は、フッ素置換テトラフェニルポルフィリン誘導体を用いる分野に広く好適に用いることができ、例えば、フッ素置換テトラフェニルポルフィリン誘導体を用いたリチウムの検出分野等に好適に用いることができる。
 

Claims (10)

  1.  テトラフェニルポルフィリンに含まれる、炭素に結合する24個の水素をフッ素に置換したテトラフェニルポルフィリン誘導体であって、
     次式(1)
    Figure JPOXMLDOC01-appb-C000008
     
    (ただし、式中Rは、フッ素原子以外の原子または置換基を示す。)
    に示す構造を有することを特徴とする、
    テトラフェニルポルフィリン誘導体。
  2.  前記式(1)におけるRは、水素原子、無機系官能基、有機系官能基から選択される少なくとも1種であることを特徴とする、請求項1に記載のテトラフェニルポルフィリン誘導体。
  3.  請求項1または2に記載のテトラフェニルポルフィリン誘導体を含有することを特徴とする、
    リチウム検出用試薬組成物。
  4.  前記テトラフェニルポルフィリン誘導体の安定剤および/またはマスキング剤を含有することを特徴とする、
    請求項3に記載のリチウム検出用試薬組成物。
  5.  前記安定剤は、非イオン性界面活性剤および/または陰イオン性界面活性剤であり、前記マスキング剤は、モノアミン化合物であることを特徴とする、
    請求項4に記載のリチウム検出用試薬組成物。
  6.  水溶性有機溶剤を含有しないことを特徴とする、
    請求項3から5のいずれか1項に記載のリチウム検出用試薬組成物。
  7.  請求項3から6のいずれか1項に記載のリチウム検出用試薬組成物を被検体に添加して混合し、
     混合後の当該被検体に可視光を照射し、
     照射後の前記被検体の色調の変化を検出することを特徴とする、
    リチウム検出方法。
  8.  検出した前記被検体の色調の変化に基づいて、当該被検体に含まれるリチウムの含有量を検出することを特徴とする、
    請求項7に記載のリチウム検出方法。
  9.  前記被検体は、生体試料または環境試料であることを特徴とする、
    請求項7または8に記載のリチウム検出方法。
  10.  請求項3から6のいずれか1項に記載のリチウム検出用試薬組成物を含むことを特徴とする、
    リチウム検出キット。
     
PCT/JP2015/006131 2014-12-09 2015-12-09 フッ素置換テトラフェニルポルフィリン誘導体およびその利用 WO2016092840A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016563516A JP6693421B2 (ja) 2014-12-09 2015-12-09 フッ素置換テトラフェニルポルフィリン誘導体およびその利用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-248855 2014-12-09
JP2014248855 2014-12-09

Publications (1)

Publication Number Publication Date
WO2016092840A1 true WO2016092840A1 (ja) 2016-06-16

Family

ID=56107052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/006131 WO2016092840A1 (ja) 2014-12-09 2015-12-09 フッ素置換テトラフェニルポルフィリン誘導体およびその利用

Country Status (2)

Country Link
JP (1) JP6693421B2 (ja)
WO (1) WO2016092840A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01275583A (ja) * 1988-03-18 1989-11-06 Schering Ag Nmr診断、レントゲン診断、超音波診断、放射線診断及び光診断並びに放射線治療及び光治療用薬剤、その製法、メソ‐テトラフエニルポルフイリン配位子を含有する錯化合物及びその製法
JPH09249815A (ja) * 1996-03-14 1997-09-22 Ebara Corp ガス反応性色素を用いるガス検知材、該検知材を用いた検知方法および検知装置
US6124452A (en) * 1997-12-19 2000-09-26 University Of Nebraska-Lincoln Octafluoro-meso-tetraarylporphyrins and methods for making these compounds
WO2009013884A1 (ja) * 2007-07-20 2009-01-29 Kowa Co., Ltd. 鉛濃度測定用試薬及び鉛濃度測定方法
JP2010276567A (ja) * 2009-06-01 2010-12-09 Kowa Co 有害金属測定試薬及び測定方法
JP2013217746A (ja) * 2012-04-06 2013-10-24 Metallogenics Co Ltd リチウム試薬組成物、それを用いたリチウムイオン測定方法及び測定装置
JP2014095567A (ja) * 2012-11-07 2014-05-22 Metallogenics Co Ltd リチウム測定方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01275583A (ja) * 1988-03-18 1989-11-06 Schering Ag Nmr診断、レントゲン診断、超音波診断、放射線診断及び光診断並びに放射線治療及び光治療用薬剤、その製法、メソ‐テトラフエニルポルフイリン配位子を含有する錯化合物及びその製法
JPH09249815A (ja) * 1996-03-14 1997-09-22 Ebara Corp ガス反応性色素を用いるガス検知材、該検知材を用いた検知方法および検知装置
US6124452A (en) * 1997-12-19 2000-09-26 University Of Nebraska-Lincoln Octafluoro-meso-tetraarylporphyrins and methods for making these compounds
WO2009013884A1 (ja) * 2007-07-20 2009-01-29 Kowa Co., Ltd. 鉛濃度測定用試薬及び鉛濃度測定方法
JP2010276567A (ja) * 2009-06-01 2010-12-09 Kowa Co 有害金属測定試薬及び測定方法
JP2013217746A (ja) * 2012-04-06 2013-10-24 Metallogenics Co Ltd リチウム試薬組成物、それを用いたリチウムイオン測定方法及び測定装置
JP2014095567A (ja) * 2012-11-07 2014-05-22 Metallogenics Co Ltd リチウム測定方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AWAWDEH, A. M. ET AL.: "Spectrophotometric detection of pentachlorophenol (PCP) in water using water soluble porphyrins", SENSORS AND ACTUATORS B, vol. 106, no. 1, 2005, pages 234 - 242 *
KENJI KOYANAGI ET AL.: "Synthesis of F28 tetraphenylporphyrin and its application to the separation and detection of lithium(I", BUNSEKI KAGAKU, vol. 51, no. 9, 2002, pages 803 - 807, XP055165722 *
SUN, H. ET AL.: "Separation and transport of lithium of 10-5 M in the presence of sodium chloride higher than 0.1 M by 2,3,7,8,12,13,17, 18-octabromo-5,10,15,20-tetrakis (4-sulfonatophenyl)porphyrin", TALANTA, vol. 49, 1999, pages 603 - 610, XP002969389, DOI: doi:10.1016/S0039-9140(99)00053-3 *

Also Published As

Publication number Publication date
JPWO2016092840A1 (ja) 2017-09-14
JP6693421B2 (ja) 2020-05-13

Similar Documents

Publication Publication Date Title
US10690648B2 (en) Lithium reagent composition, and method and device for determining lithium ion amount using same
CN103069003B (zh) 糖化血红蛋白的测定方法
US20090317561A1 (en) Color change cyanoacrylate adhesives
JP5222432B1 (ja) リチウム測定方法
ES2627276T3 (es) Método y aparato para la determinación de la concentración de iones de hierro en composiciones hidrocarbonadas
WO2016092840A1 (ja) フッ素置換テトラフェニルポルフィリン誘導体およびその利用
JP6548865B2 (ja) リチウム試薬組成物、それを用いたリチウムイオン測定方法及び測定装置
JP2018158317A (ja) 難水溶性物質の可溶化剤
JP2018173413A (ja) リチウム試薬組成物、それを用いたリチウムイオン測定方法及び測定装置
JP6008395B2 (ja) リチウム試薬組成物、リチウム試薬キット、及びリチウムイオン測定方法。
CN103261331B (zh) 含有无色型色原体的水溶液的保存方法
JP6038685B2 (ja) リチウム測定方法
JP2013217895A (ja) リチウム試薬組成物を用いたリチウムイオン測定方法及び測定装置
EP3492529A1 (en) Method for preserving leuco chromogen-containing aqueous solution
JPH0599928A (ja) 尿中銅イオン検出用試薬組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15868252

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016563516

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15868252

Country of ref document: EP

Kind code of ref document: A1