WO2016091221A1 - 吡咯并[2,3-d]嘧啶化合物的盐及盐的新晶型 - Google Patents

吡咯并[2,3-d]嘧啶化合物的盐及盐的新晶型 Download PDF

Info

Publication number
WO2016091221A1
WO2016091221A1 PCT/CN2015/097204 CN2015097204W WO2016091221A1 WO 2016091221 A1 WO2016091221 A1 WO 2016091221A1 CN 2015097204 W CN2015097204 W CN 2015097204W WO 2016091221 A1 WO2016091221 A1 WO 2016091221A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
ray powder
powder diffraction
diffraction pattern
Prior art date
Application number
PCT/CN2015/097204
Other languages
English (en)
French (fr)
Inventor
陈敏华
张炎锋
刘凯
李骄洋
张晓宇
Original Assignee
苏州晶云药物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56106749&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016091221(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from CN201510566397.5A external-priority patent/CN105085533B/zh
Application filed by 苏州晶云药物科技有限公司 filed Critical 苏州晶云药物科技有限公司
Priority to US15/535,104 priority Critical patent/US9994579B2/en
Priority to EP15867450.7A priority patent/EP3231805B1/en
Publication of WO2016091221A1 publication Critical patent/WO2016091221A1/zh
Priority to US15/984,900 priority patent/US10138250B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the present invention relates to the field of chemical medicine, and in particular to a novel crystalline form of a salt and a salt of a pyrrolo[2,3-D]pyrimidine compound.
  • Cyclin-dependent kinase 4/6 (CDK4/6) is a type of silk/threonine kinase that binds to cyclin D and regulates cell transition from G1 to S phase.
  • CDK4/6 Cyclin-dependent kinase 4/6
  • cyclinD-CDK4/6-INK4-Rb pathway This pathway change accelerates the G1 phase process and accelerates tumor cell proliferation to obtain a survival advantage. Therefore, its intervention has become a therapeutic strategy, and CDK4/6 has thus become one of the targets for anti-tumor.
  • LEE011 is a small molecule inhibitor of cyclin-dependent kinase 4/6, developed by Novartis Pharmaceuticals for the treatment of drug-resistant breast cancer and melanoma drugs. LEE011 is clinically used in its succinate, in preclinical studies. He has performed well and obtained positive research results and is currently in clinical phase III studies.
  • the chemical name of LEE011 is 7-cyclopentyl-2-(5-piperazin-1-yl-pyridin-2-ylamino)-7H-pyrrolo[2,3-D]pyrimidine-6-carboxylic acid
  • the patent CN103201275A discloses a hydrated form and a non-hydrated form of the monosuccinate of the compound of formula (I).
  • the solubility of the hydrate form is lower, less than 0.5 mg/mL, and the solubility in the non-hydrate form is better.
  • the present inventors found that the existing monosuccinate form has low humidity stability and is easily crystallized under high humidity, which is not conducive to drug development and storage.
  • the present invention provides salts of the compounds of formula (I), novel crystalline forms of the salts and processes for their preparation.
  • the salts provided by the present invention and their novel crystal forms are suitable for pharmaceutical research and industrial production.
  • the present invention provides a compound hemisuccinate of the formula (I), characterized in that the hemisuccinate is in a crystalline form.
  • the crystalline form of the hemisuccinate of the compound of formula (I) provided by the present invention is referred to as crystal form A in the present invention.
  • the crystal form A provided by the present invention is characterized in that the X-ray powder diffraction pattern has a characteristic peak at a 2theta value of 23.9 ° ⁇ 0.2 °, 20.0 ° ⁇ 0.2 °, and 22.1 ° ⁇ 0.2 °.
  • the crystal form A provided by the present invention is further characterized in that the X-ray powder diffraction pattern is one or two of 2theta values of 22.0° ⁇ 0.2°, 21.3° ⁇ 0.2°, and 13.0° ⁇ 0.2°. There are characteristic peaks at or at three locations; preferred crystal form A provided by the present invention is further characterized in that the X-ray powder diffraction pattern has a 2theta value of 22.0° ⁇ 0.2°, 21.3° ⁇ 0.2°, and 13.0° ⁇ 0.2°. There are characteristic peaks.
  • the crystal form A provided by the present invention is further characterized by an X-ray powder diffraction pattern of one or two of 2theta values of 4.7° ⁇ 0.2°, 14.2° ⁇ 0.2°, and 10.6° ⁇ 0.2°. There are characteristic peaks at or at three locations; preferred crystal form A provided by the present invention is further characterized in that the X-ray powder diffraction pattern has a value of 4.7 ° ⁇ 0.2 °, 14.2 ° ⁇ 0.2 °, 10.6 ° ⁇ 0.2 °. There are characteristic peaks.
  • crystal form A provided by the present invention is characterized in that its X-ray powder diffraction pattern is substantially as shown in FIG.
  • Another object of the present invention is to provide a process for the preparation of a crystalline form A of a compound of the formula (I), which comprises preparing a compound of the formula (I) with succinic acid or a compound of the formula (I) monosuccinic acid.
  • the salt is reacted in an alcohol, a ketone, an ether, an ester solvent or a mixed solvent thereof with water, and stirred and crystallized.
  • the alcohol solvent is preferably ethanol
  • the ketone is preferably acetone
  • the ester is preferably ethyl acetate
  • the ether solvent is preferably tetrahydrofuran.
  • the semi-succinate crystal form A provided by the patent has higher physical stability, and the specific performance is stable under different humidity conditions.
  • the single succinate crystal form in the prior art is highly susceptible to crystal form conversion under different solvent conditions, and the reproducibility of process development is poor, which is not conducive to development and application.
  • Another object of the present invention is to provide a pharmaceutical composition
  • a pharmaceutical composition comprising a therapeutically effective amount of a semi-succinate crystal form A and a pharmaceutically acceptable adjuvant.
  • a therapeutically effective amount of the semi-succinate crystal form A is mixed or contacted with one or more pharmaceutical excipients to form a pharmaceutical composition or formulation in a manner well known in the pharmaceutical art. Prepared for preparation.
  • the semi-succinate crystal form A of the compound of formula (I) provided by the present invention can be used for the preparation of a medicament for the treatment of cancer, in particular for the treatment of drug-resistant breast cancer and melanoma drugs.
  • Another object of the present invention is to provide a novel crystalline form of the monosuccinate of the compound of formula (I), referred to herein as Form I, which has good stability, low wettability, and is suitable for storage and industrial production.
  • the crystal form I provided by the present invention is characterized in that the X-ray powder diffraction pattern has a characteristic peak at a 2theta value of 11.9 ° ⁇ 0.2 °, 19.4 ° ⁇ 0.2 °, and 20.6 ° ⁇ 0.2 °.
  • the crystal form I provided by the present invention is further characterized in that the X-ray powder diffraction pattern is in one or two places where the 2theta value is 22.7° ⁇ 0.2°, 24.4° ⁇ 0.2°, 26.3° ⁇ 0.2°. Or three have characteristic peaks; preferably, the crystalline form I provided by the present invention is further characterized by an X-ray powder diffraction pattern having a 2theta value of 22.7° ⁇ 0.2°, 24.4° ⁇ 0.2°, 26.3° ⁇ 0.2°. There are characteristic peaks.
  • the crystal form I provided by the present invention is further characterized in that the X-ray powder diffraction pattern has a value of 2theta in 2theta One or two or three of 7.8° ⁇ 0.2°, 15.7° ⁇ 0.2°, and 16.7° ⁇ 0.2° have characteristic peaks; preferably, the crystalline form I provided by the present invention is further characterized by X-rays thereof.
  • the powder diffraction pattern has characteristic peaks at 2theta values of 7.8 ° ⁇ 0.2 °, 15.7 ° ⁇ 0.2 °, and 16.7 ° ⁇ 0.2 °.
  • crystal form I provided by the present invention is characterized in that its X-ray powder diffraction pattern is substantially as shown in FIG.
  • Form I provided by the present invention is an anhydride. It is characterized in that when performing differential scanning calorimetry, an endothermic peak begins to appear near heating at 197 ° C, and the differential scanning calorimetry chart is substantially as shown in FIG. 7 .
  • the crystal form I provided by the present invention is characterized in that, when subjected to thermogravimetric analysis, it has a weight loss gradient of about 2.0% when heated to 178 ° C, and its thermogravimetric analysis chart is substantially as shown in FIG.
  • Another object of the present invention is to provide a process for the preparation of the monosuccinate crystal form I of the compound of the formula (I), wherein the monosuccinate of the compound of the formula (I) is dissolved in an alcohol solvent and one selected from the group consisting of hydrocarbyl nitriles and alkanes.
  • an alcohol solvent and one selected from the group consisting of hydrocarbyl nitriles and alkanes.
  • a mixed solvent of a solvent or a plurality of solvents or dissolved in a mixed solvent of a hydrocarbyl nitrile and water, and stirred and crystallized.
  • the alcohol solvent is methanol, ethanol or a combination of the two; the hydrocarbyl nitrile is acetonitrile; and the alkane is n-heptane. More specifically, the mixed solvent consists of acetonitrile and methanol, or consists of ethanol and n-heptane, or acetonitrile and water.
  • Another object of the present invention is to provide a pharmaceutical composition
  • a pharmaceutical composition comprising a therapeutically effective amount of Form I and a pharmaceutically acceptable adjuvant.
  • the therapeutically effective amount of Form I is typically combined or contacted with one or more pharmaceutical excipients to form a pharmaceutical composition or formulation which is prepared in a manner well known in the art of pharmacy.
  • the monosuccinate crystal form I of the compound of formula (I) provided by the present invention can be used for the preparation of a medicament for the treatment of cancer, in particular for the treatment of drug-resistant breast cancer and melanoma drugs.
  • the monosuccinate crystal form I provided by the patent has higher physical stability, which is embodied in one aspect, in a specific solvent under different temperature conditions, the prior art monosuccinate will Conversion to the crystalline form I of the invention.
  • the crystalline form I of the present invention has good stability under high humidity conditions, and the prior art monosuccinate crystal form is susceptible to crystal transformation.
  • the crystal form I provided by the invention has lower moisture absorption property, and does not require special drying conditions in the preparation process, simplifies the preparation and post-treatment process of the medicine, and is easy to industrialize production. Due to the undemanding storage conditions, material storage and quality control costs are greatly reduced.
  • the present invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising a therapeutically effective amount of a semi-succinate Form A or a monosuccinate Form I or a mixture of both and a pharmaceutical excipient.
  • a therapeutically effective amount of a monosuccinate Form I or a semi-succinate Form A or a mixture of the two is mixed or contacted with one or more pharmaceutical excipients to form a pharmaceutical composition or formulation.
  • the compositions or formulations are prepared in a manner well known in the pharmaceutical art.
  • the semi-succinate crystal form A or the monosuccinate crystal form I of the compound of the formula (I) provided by the present invention or a mixture of the two can be used for the preparation of a medicament for treating cancer, in particular for the treatment of drug-resistant breast cancer and melanoma. Preparation of the drug.
  • Another object of the invention is to provide a salt of a compound of formula (I), including adipate, maleate or glycolate.
  • the present invention provides a adipate salt of a compound of formula (I), characterized in that said adipate salt is Crystalline form.
  • the crystalline form of the adipate salt of the compound of formula (I) provided by the present invention is designated as adipate salt form A in the present invention.
  • the adipate salt form A provided by the present invention is characterized in that the X-ray powder diffraction pattern has a characteristic peak at a 2theta value of 22.2 ° ⁇ 0.2 ° and 19.2 ° ⁇ 0.2 °.
  • the adipate crystal form A provided by the present invention is further characterized in that the X-ray powder diffraction pattern has a 2theta value of 24.9° ⁇ 0.2°, 14.0° ⁇ 0.2°, and 16.1° ⁇ 0.2°. Characteristic peaks.
  • the adipate crystal form A provided by the present invention is further characterized in that the X-ray powder diffraction pattern has a 2theta value of 18.0° ⁇ .2°, 19.8° ⁇ 0.2°, and 4.8° ⁇ 0.2°.
  • the crystalline form I provided by the present invention is further characterized in that the X-ray powder diffraction pattern has a value of 18.0° ⁇ .2° and 19.8° ⁇ 0.2 at 2theta. Characteristic peaks at °, 4.8 ° ⁇ 0.2 °.
  • adipate crystal form A provided by the present invention is characterized in that the X-ray powder diffraction pattern thereof is substantially as shown in FIG.
  • the adipate crystal form A provided by the invention is characterized in that when differential scanning calorimetry is performed, an endothermic peak begins to appear near heating to 177 ° C, and the differential scanning calorimetry diagram is substantially as shown in FIG. 14 . Shown.
  • the adipate salt form A provided by the present invention is characterized in that when subjected to thermogravimetric analysis, when heated to 159 ° C, it has a weight loss gradient of about 2.1%, and the thermogravimetric analysis chart is basically as shown in FIG. .
  • the maleate salt of the compound of the formula (I) provided by the present invention is characterized in that the maleate salt is in a crystalline form.
  • the present invention provides a crystalline form of the maleate salt of a compound of formula (I), which is designated as maleate salt form A in the present invention.
  • the maleate salt form A provided by the present invention is characterized in that its X-ray powder diffraction pattern has a characteristic peak at a 2theta value of 18.6 ° ⁇ 0.2 °, 19.9 ° ⁇ 0.2 °, and 14.9 ° ⁇ 0.2 °.
  • the maleate salt form A provided by the present invention is further characterized in that the X-ray powder diffraction pattern is in the 2theta value of 24.5° ⁇ 0.2°, 17.1° ⁇ 0.2°, and 16.5° ⁇ 0.2°.
  • the crystalline form I provided by the present invention is further characterized by an X-ray powder diffraction pattern having a 2theta value of 24.5° ⁇ 0.2° and 17.1 ° ⁇ 0.2 °, There is a characteristic peak at 16.5 ° ⁇ 0.2 °.
  • the maleate salt form A provided by the present invention is further characterized in that the X-ray powder diffraction pattern is in the 2theta value of 21.9° ⁇ 0.2°, 29.3° ⁇ 0.2°, and 8.5° ⁇ 0.2°.
  • the crystalline form I provided by the present invention is further characterized in that the X-ray powder diffraction pattern has a 2theta value of 21.9° ⁇ 0.2° and 29.3° ⁇ 0.2°, It has a characteristic peak at 8.5 ° ⁇ 0.2 °. .
  • the maleate salt form A provided by the present invention is characterized in that its X-ray powder diffraction pattern is substantially as shown in FIG.
  • the maleate salt crystal form A provided by the present invention is characterized in that when differential scanning calorimetry is performed, an endothermic peak starts to appear near heating at 207 ° C, and the differential scanning calorimetry diagram is basically as shown in FIG. 17 . Shown.
  • the maleate salt crystal form A provided by the present invention is characterized in that, when subjected to thermogravimetric analysis, when heated to 138 ° C, It has a weight loss gradient of about 3.1%, and its thermogravimetric analysis chart is basically as shown in FIG.
  • the present invention provides a glycolate salt of a compound of the formula (I), characterized in that the glycolate salt is in a crystalline form.
  • the crystalline form of the glycolate salt of the compound of formula (I) provided by the present invention is designated as glycolate crystal form A in the present invention.
  • the glycolate crystal form A provided by the present invention is characterized in that its X-ray powder diffraction pattern has characteristic peaks at 2theta values of 21.3 ° ⁇ 0.2 °, 19.5 ° ⁇ 0.2 °, and 23.3 ° ⁇ 0.2 °.
  • the glycolate form A provided by the present invention is further characterized in that the X-ray powder diffraction pattern has a 2theta value of 21.8° ⁇ 0.2°, 12.4° ⁇ 0.2°, and 10.1 ⁇ °°. There are characteristic peaks at two or three places; preferably, the crystal form I provided by the present invention is further characterized in that the X-ray powder diffraction pattern has a value of 21.8° ⁇ 0.2°, 12.4° ⁇ 0.2°, 10.1. Characteristic peak at ° ⁇ 0.2°.
  • the glycolate form A provided by the present invention is further characterized in that the X-ray powder diffraction pattern has a 2theta value of 13.3° ⁇ 0.2°, 16.8° ⁇ 0.2°, and 23.9° ⁇ 0.2°. There are characteristic peaks at two or three places; preferably, the crystal form I provided by the present invention is further characterized in that the X-ray powder diffraction pattern has a value of 13.3 ° ⁇ 0.2 °, 16.8 ° ⁇ 0.2 °, 23.9. Characteristic peak at ° ⁇ 0.2°.
  • glycolate crystal form A provided by the present invention is characterized in that its X-ray powder diffraction pattern is substantially as shown in FIG.
  • the glycolate crystal form A provided by the present invention is characterized in that an endothermic peak begins to appear near heating to 253 ° C, and the differential scanning calorimetry chart is substantially as shown in FIG. 20 .
  • the glycolate crystal form A provided by the present invention is characterized in that it has a weight loss gradient of about 3.5% when heated to 176 ° C, and its thermogravimetric analysis chart is basically as shown in FIG. 21 .
  • Another object of the present invention is to provide a process for the preparation of a compound of the formula (I) adipate, which comprises a process for preparing a compound of the formula (I) with adipic acid in a ketone, an alcohol or a water thereof The reaction is carried out in a mixed solvent and stirred to obtain crystals.
  • the ketone solvent is preferably acetone, and the alcohol solvent is preferably ethanol.
  • the ratio of the ketone or alcohol to the mixed solvent of water is preferably from 10:1 to 20:1 by volume.
  • reaction molar ratio of the compound of the formula (I) to adipic acid is from 1:1 to 1:1.2.
  • Another object of the present invention is to provide a process for the preparation of a maleic acid salt of a compound of the formula (I), which comprises a method of preparing a compound of the formula (I) and a maleic acid in a mixed solvent of a ketone solvent and water. Crystallization is obtained.
  • the ketone solvent is preferably acetone.
  • the ratio of the mixed solvent of the ketone to water is preferably from 10:1 to 20:1 by volume.
  • the ratio of the mixed solvent of the ketone to water is preferably 19:1 by volume.
  • reaction molar ratio of the compound of the formula (I) to maleic acid is from 1:0.9 to 1:1.2.
  • Another object of the present invention is to provide a process for the preparation of a glycolate of a compound of formula (I), characterized in that it is prepared
  • the method comprises reacting a compound of the formula (I) with glycolic acid in a ketone, an ether or a mixed solvent thereof with water, and stirring and crystallization.
  • the ketone solvent is preferably acetone
  • the ether solvent is preferably tetrahydrofuran.
  • the ratio of the ketone or ether to the mixed solvent of water is preferably from 10:1 to 20:1 by volume.
  • reaction molar ratio of the compound of the formula (I) to glycolic acid is from 1:1 to 1:4.5.
  • the crystalline forms of the adipate, maleate and glycolate provided by the invention have lower moisture absorbing property, no special drying conditions are needed in the preparation process, the preparation and post-treatment process of the medicine are simplified, and the industrial production is easy. .
  • the crystal form of the three salts in the present invention substantially remains unchanged under different humidity conditions, facilitating long-term storage of the drug. Due to the undemanding storage conditions, material storage and quality control costs are greatly reduced.
  • the three salts of the present invention have better crystalline form stability, are not easily crystallized during storage, and have strong economic value.
  • the present invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising a therapeutically effective amount of a crystalline form of adipate, maleate or glycolate or a mixture thereof and a pharmaceutically acceptable adjuvant.
  • a therapeutically effective amount of a crystalline form of adipate, maleate or glycolate or a mixture thereof is mixed or contacted with one or more pharmaceutical excipients to form a pharmaceutical composition or formulation.
  • the compositions or formulations are prepared in a manner well known in the pharmaceutical art.
  • the crystalline form of adipate, maleate or glycolate of the compound of formula (I) provided by the present invention or a mixture thereof can be used for the preparation of a medicament for treating cancer, in particular for the treatment of drug-resistant breast cancer and melanoma drugs. Preparation.
  • Figure 1 is an XRPD pattern of the semi-succinate crystal form A.
  • Figure 2 is a 1 H NMR chart of the semi-succinate crystal form A
  • Figure 3 is a DVS diagram of a semi-succinate crystal form A
  • Figure 4 is a comparison of the XRPD of the wettability test of the semi-succinate crystal form A: the figure below shows the XRPD pattern before the experiment, and the above figure shows the XRPD pattern after the experiment (the crystal form is unchanged)
  • Figure 5 is an XRPD pattern of the monosuccinate crystal form I
  • Figure 6 is a 1 H NMR chart of the monosuccinate crystal form I
  • Figure 7 is a DSC diagram of the monosuccinate crystal form I
  • Figure 8 is a TGA diagram of the monosuccinate crystal form I
  • Figure 9 is a DVS diagram of a monosuccinate crystal form I (0-95% relative humidity cycle)
  • Figure 10 is a comparison of the XRPD of the wettability test of the monosuccinate crystal form I: the following figure shows the XRPD pattern before the experiment, and the above figure shows the XRPD pattern after the experiment (0-95% relative humidity cycle, the crystal form is unchanged)
  • Figure 11 is a DVS diagram of the mono-succinate non-hydrate form of the patent CN103201275A (0-95% relative humidity cycle)
  • Figure 12 is a comparison of the XRPD of the wettability test of the single-succinate non-hydrate form of the patent CN103201275A.
  • the following figure shows the XRPD pattern before the experiment.
  • the above figure shows the XRPD pattern after the experiment (0-95% relative humidity cycle, crystal form change) )
  • Figure 13 is an XRPD pattern of adipate salt form A
  • Figure 14 is a DSC diagram of adipate salt form A
  • Figure 15 is a TGA diagram of adipate salt form A
  • Figure 16 is an XRPD pattern of maleate salt form A
  • Figure 17 is a DSC chart of maleate salt form A
  • Figure 18 is a TGA diagram of maleate salt form A
  • Figure 19 is an XRPD pattern of glycolate crystal form A
  • Figure 20 is a DSC chart of glycolate crystal form A
  • Figure 21 is a TGA diagram of glycolate crystal form A
  • Figure 22 is a 1 H NMR chart of adipate salt form A
  • Figure 23 is a 1 H NMR chart of maleate salt form A
  • Figure 24 is a 1 H NMR chart of glycolate form A
  • Figure 25 is a stability test study of the adipate salt form A XRPD comparison chart: a is the XRPD pattern of the initial crystal form of the adipate crystal form A, and b is the crystal form A placed at 25 ° C / 60% relative humidity XRPD pattern after 30 days, c is the XRPD pattern of Form A placed at 40 ° C / 75% relative humidity for 30 days.
  • Figure 26 is a comparison test of the stability of the maleate salt crystal form A XRPD: a is an XRPD pattern of the maleate salt crystal form A starting form, and b is a crystal form A placed at 25 ° C / 60% relative humidity XRPD pattern after 30 days, c is the XRPD pattern of Form A placed at 40 ° C / 75% relative humidity for 30 days.
  • Figure 27 is a stability test study of glycolate Form A.
  • XRPD comparison chart a is an XRPD pattern of the starting form of glycolate Form A, and b is Form A placed at 25 ° C / 60% relative humidity 30 The XRPD pattern of the day after day, c is the XRPD pattern of Form A placed at 40 ° C / 75% relative humidity for 30 days.
  • Figure 28 is a DVS diagram of the adipate salt form A (0-95% relative humidity cycle)
  • Figure 29 is a comparison chart of the XRPD of the wettability test of the adipate salt form A: a is the XRPD pattern before the experiment, and b is the XRPD pattern after the experiment (the crystal form is unchanged)
  • Figure 30 is a DVS diagram of maleate salt form A (0-95% relative humidity cycle)
  • Figure 31 is a comparison chart of the XRPD of the wettability test of the maleate salt form A: a is the XRPD pattern before the experiment, and b is the XRPD pattern after the experiment (the crystal form is unchanged)
  • Figure 32 is a DVS diagram of glycolate Form A (0-95% relative humidity cycle)
  • Figure 33 is a comparison chart of the XRPD of the wettability test of glycolate crystal form A: a is the XRPD pattern before the experiment, and b is the XRPD pattern after the experiment (the crystal form is unchanged)
  • Figure 34 is a DVS diagram of the mono-succinate non-hydrate form of the patent CN103201275A (0-95% relative humidity cycle)
  • Figure 35 is a comparison of the XRPD of the wettability test of the mono-succinate non-hydrate form of the patent CN103201275A: the figure below shows the XRPD pattern before the experiment, and the figure above shows the XRPD pattern after the experiment (crystal form change)
  • the X-ray powder diffraction pattern of the present invention was collected on a Panalytical Empyrean X-ray powder diffractometer.
  • the method parameters of the X-ray powder diffraction described in the present invention are as follows:
  • Scan range: from 3.0 to 40.0 degrees
  • the differential scanning calorimetry (DSC) map of the present invention was acquired on a TA Q2000.
  • the method parameters of the differential scanning calorimetry (DSC) described in the present invention are as follows:
  • thermogravimetric analysis (TGA) map of the present invention was taken on a TA Q5000.
  • the method parameters of the thermogravimetric analysis (TGA) described in the present invention are as follows:
  • the dynamic moisture adsorption (DVS) pattern of the present invention was collected on an Intrinsic dynamic moisture adsorber manufactured by SMS Corporation (Surface Measurement Systems Ltd.).
  • the method parameters of the dynamic moisture adsorber are as follows:
  • Relative humidity range 0%RH-95%RH
  • the semi-succinate salt of the compound of the formula (I) prepared by the above method has the following 1 H NMR identification data as follows:
  • the wetting weight gain is not less than 15%
  • Humidity Wet weight gain is less than 15% but not less than 2%
  • wetting gain is less than 2% but not less than 0.2%
  • wetting gain is less than 0.2%
  • the monosuccinate non-hydrate form of about 10 mg of the patent CN103201275A is used as the starting crystal form, added to a different solvent or a mixed solvent (volume ratio), and after stirring at 5 to 50 ° C for 48 hours, the final crystal form is converted into the original form.
  • Form A in the invention The solvent used in this example is shown in Table 3.
  • the X-ray powder diffraction data of Form I obtained in this example contained the peaks of Table 4. Its XRPD diagram is shown in Figure 5.
  • a differential scanning calorimetry chart of Form I is shown in Figure 7, indicating that Form I begins to exhibit an endothermic peak near heating to 197 °C.
  • This crystal form I is an anhydride.
  • thermogravimetric analysis of Form I is shown in Figure 8, which shows a weight loss gradient of about 2.0% when heated to 178 °C.
  • the X-ray powder diffraction data of Form I obtained in this example contained the peaks of Table 5.
  • the crystal form is unchanged, indicating that the crystal form I has excellent stability even under high humidity conditions, and according to the patent CN103201275A, the monosuccinate non-hydrate form forms moisture at 25 ° C and 90% relative humidity.
  • Compounds with an adsorption of 2% and 7.35% will be converted from a non-hydrate form to a hydrate form, with 0.52% of the compound being converted from a non-hydrate form to a hydrate form at 25 ° C, 80% relative humidity.
  • the moisture adsorption of Form I at 25 ° C and 95% relative humidity is only 4.0%, and before and after the wettability test.
  • the crystal form is unchanged, and the DVS pattern of the non-hydrate form of the patent CN103201275A as shown in Fig. 11 and the comparison chart of the XRPD before and after the wettability test as shown in Fig. 12, the non-hydrate form of the patent CN103201275A at 25 ° C, 95% relative humidity
  • the moisture adsorption was 18.3%, and the crystal form changed before and after the wettability test.
  • the results show that the crystal form I of the present invention is stable under high humidity conditions and does not change.
  • the crystal form of the patent CN103201275A is more likely to undergo crystal transformation under high humidity conditions, and the stability is relatively poor.
  • the monosuccinate non-hydrate form of about 10 mg of the patent CN103201275A is used as the starting crystal form, added to a different solvent or a mixed solvent (volume ratio), and after stirring at 5 to 50 ° C for 48 hours, the final crystal form is converted into the original form.
  • Form I in the invention The solvent and reaction temperature used in this example are shown in Table 6.
  • the obtained adipate salt of the compound of the formula (I) prepared by the above method has the following 1 H NMR identification data as follows:
  • the maleic acid salt of the compound of the formula (I) prepared by the above method has the following 1 H NMR identification data as follows:
  • the resulting solid was maleate salt form A, and its X-ray powder diffraction data included, but was not limited to, the peaks of Table 10.
  • glycolate salt of the compound of the formula (I) prepared by the above method has the following 1 H NMR identification data as follows:
  • the resulting solid was glycolate Form A, and its X-ray powder diffraction data included, but was not limited to, the peaks of Table 12.
  • Example 11 The fresh crystal form samples of the compound of the formula (I) prepared in Example 9, Example 11, and Example 13 were respectively placed at 25 ° C / 60% relative humidity and 40 ° C / 75% relative humidity. The exposure was placed for 30 days and then the XRPD was sampled. The results are shown in Table 13:
  • the results show that the new crystalline form of the salt of the compound of formula (I) remains unchanged at 25 ° C / 60% relative humidity and 40 ° C / 75% relative humidity for 30 days.
  • the above test results show that the novel crystalline form of the salt of the compound of the formula (I) provided by the present invention has good stability.
  • the monosuccinate non-hydrate form of the adipate salt form A, the maleate salt form A, the glycolate form A and the patent CN103201275A of the present invention are each about 10 mg respectively using a dynamic moisture adsorption (DVS) meter.
  • XRPD was detected before and after testing for moisture permeability.
  • the hygroscopicity results of the test crystal form and the XRPD characterization results are shown in Table 14.
  • the DVS pattern of the adipate salt form A in the present invention is shown in Fig. 28, and the comparison chart of XRPD before and after the wettability test is shown in Fig. 29 (the crystal form is unchanged).
  • the DVS pattern of the maleate salt form A is shown in Fig.
  • Fig. 31 the crystal form is unchanged.
  • the DVS pattern of the glycolate crystal form A is shown in Fig. 32
  • the comparison chart of XRPD before and after the wettability test is shown in Fig. 33 (the crystal form is unchanged).
  • the DVS pattern of the monosuccinate non-hydrate form of the patent CN103201275A is shown in Figure 34.
  • the comparison of XRPD before and after the wettability test is shown in Figure 35. The figure below shows the non-hydrate.
  • the initial XRPD pattern of the form, the upper picture is the XRPD pattern after DVS (crystal form change).

Abstract

本发明涉及吡咯并[2,3-D]嘧啶化合物的盐及盐的新晶型,具体涉及式(I)化合物的盐和盐的新晶型,以及制备方法。本发明的式(I)化合物的盐和盐的新晶型,具有良好的稳定性、较低的引湿性、工艺可开发和易处理性等有利性能,且制备方法简单,成本低廉,对未来该药物的优化和开发具有重要价值。

Description

吡咯并[2,3-D]嘧啶化合物的盐及盐的新晶型 技术领域
本发明涉及化学医药领域,特别是涉及吡咯并[2,3-D]嘧啶化合物的盐及盐的新晶型。
背景技术
周期蛋白依赖性激酶4/6(cyclin-dependent kinase4/6,CDK4/6)是一类丝/苏氨酸激酶,与细胞周期素D(cyclinD)结合,调节细胞由G1期向S期转换.在很多肿瘤中,都存在“cyclinD-CDK4/6-INK4-Rb通路”异常.这条通路的改变,加速了G1期进程,使得肿瘤细胞增殖加快而获得生存优势。因此,对其的干预成为一种治疗策略,CDK4/6因此成为抗肿瘤的靶点之一。
LEE011是一种周期蛋白依赖性激酶4/6的小分子抑制物,由诺华制药公司研发用于治疗抗药性乳腺癌和黑色素瘤药物,LEE011临床使用的是其琥珀酸盐,在临床前研究中表现良好,获得了积极的研究成果,目前处于临床III期研究中。LEE011的化学名称为7-环戊基-2-(5-哌嗪-1-基-吡啶-2-基氨基)-7H-吡咯并[2,3-D]嘧啶-6-羧酸二甲酰胺,其结构如式(I)所示:
Figure PCTCN2015097204-appb-000001
目前,专利CN103201275A公开了式(I)化合物单琥珀酸盐的一个水合物形式和一个非水合物形式。水合物形式的溶解度较低,低于0.5mg/mL,非水合物形式溶解度较好。本发明人在研究过程中发现现有单琥珀酸盐形式湿度稳定性低,在高湿度下易转晶,不利于药物的开发与储存。尚无其他制药公司公开式(I)化合物的多晶型或其盐的多晶型。
基于此,有必要进一步开发出稳定性好、引湿性低、适合储存和工业化生产的新晶型,从而满足药物的后续开发需要。
发明内容
本发明提供了式(I)化合物的盐,盐的新晶型及其制备方法。本发明提供的盐及其新晶型适于药物研究和工业化生产。
本发明的一个目的是提供式(I)化合物半琥珀酸盐。
更进一步地,本发明提供的式(I)化合物半琥珀酸盐,其特征在于,所述的半琥珀酸盐为结晶形式。具体地,本发明提供的式(I)化合物半琥珀酸盐的结晶形式,本发明中简称晶型A。
具体的,本发明提供的晶型A,其特征在于,其X射线粉末衍射图在2theta值为23.9°±0.2°、20.0°±0.2°、22.1°±0.2°处具有特征峰。
更进一步的,本发明提供的晶型A,其特征还在于,其X射线粉末衍射图在2theta值为22.0°±0.2°、21.3°±0.2°、13.0°±0.2°中的一处或两处或三处具有特征峰;优选的本发明提供的晶型A,其特征还在于,其X射线粉末衍射图在2theta值为22.0°±0.2°、21.3°±0.2°、13.0°±0.2°处具有特征峰。
更进一步的,本发明提供的晶型A,其特征还在于,其X射线粉末衍射图在2theta值为4.7°±0.2°、14.2°±0.2°、10.6°±0.2°中的一处或两处或三处具有特征峰;优选的本发明提供的晶型A,其特征还在于,其X射线粉末衍射图在2theta值为4.7°±0.2°、14.2°±0.2°、10.6°±0.2°处具有特征峰。
更进一步的,本发明提供的晶型A,其特征在于,其X射线粉末衍射图基本如图1所示。
本发明的另一个目的是提供式(I)化合物半琥珀酸盐晶型A的制备方法,其特征在于,其制备方法包括使式(I)化合物与琥珀酸或式(I)化合物单琥珀酸盐在醇类、酮类、醚类、酯类溶剂或其与水的混合溶剂中反应,搅拌析晶得到。
更进一步的,所述醇类溶剂优选乙醇,所述酮类优选丙酮,所述酯类优选乙酸乙酯,所述醚类溶剂优选四氢呋喃。
与现有技术相比,一方面,本专利提供的半琥珀酸盐晶型A具有更高的物理稳定性,具体表现为在不同湿度条件下可以稳定存在。另一方面,现有技术中的单琥珀酸盐晶型在不同溶剂条件下极易发生晶型转化,工艺开发的重现性差,不利于开发应用。
本发明的另一个目的是提供一种包含有效治疗量的半琥珀酸盐晶型A和药用辅料的药用组合物。一般是将治疗有效量的半琥珀酸盐晶型A与一种或多种药用辅料混合或接触制成药用组合物或制剂,该药用组合物或制剂是以制药领域中熟知的方式进行制备的。
本发明提供的式(I)化合物的半琥珀酸盐晶型A可用于治疗癌症药物的制备,特别是用于治疗抗药性乳腺癌和黑色素瘤药物的制备。
本发明的另一个目的是提供一种式(I)化合物单琥珀酸盐的新晶型,本发明中简称晶型I,该晶型I稳定性好、引湿性低、适合储存和工业化生产。
本发明提供的晶型I,其特征在于,其X射线粉末衍射图在2theta值为11.9°±0.2°、19.4°±0.2°、20.6°±0.2°处具有特征峰。
进一步的,本发明提供的晶型I,其特征还在于,其X射线粉末衍射图在2theta值为22.7°±0.2°、24.4°±0.2°、26.3°±0.2°中的一处或两处或三处具有特征峰;优选的,本发明提供的晶型I,其特征还在于,其X射线粉末衍射图在2theta值为22.7°±0.2°、24.4°±0.2°、26.3°±0.2°处具有特征峰。
更进一步的,本发明提供的晶型I,其特征还在于,其X射线粉末衍射图在2theta值为 7.8°±0.2°、15.7°±0.2°、16.7°±0.2°中的一处或两处或三处具有特征峰;优选的,本发明提供的晶型I,其特征还在于,其X射线粉末衍射图在2theta值为7.8°±0.2°、15.7°±0.2°、16.7°±0.2°处具有特征峰。
更进一步的,本发明提供的晶型I,其特征在于,其X射线粉末衍射图基本如图5所示。
本发明提供的晶型I为无水物。其特征在于,当进行差示扫描量热分析时,在加热至197℃附近开始出现吸热峰,其差示扫描量热分析图基本如图7所示。
本发明提供的晶型I,其特征在于,当进行热重分析时,在加热至178℃时,具有约2.0%的重量损失梯度,其热重分析图基本如图8所示。
本发明的另一个目的是提供式(I)化合物单琥珀酸盐晶型I的制备方法,将式(I)化合物的单琥珀酸盐溶解于醇类溶剂与选自烃基腈、烷烃中的一种或多种溶剂组成的混合溶剂中或溶解于烃基腈和水的混合溶剂中,搅拌析晶得到。
优选地,所述醇类溶剂为甲醇、乙醇或二者的组合;所述烃基腈为乙腈;所述烷烃为正庚烷。更具体地,所述的混合溶剂由乙腈与甲醇组成,或者由乙醇与正庚烷组成,或者乙腈和水组成。
本发明的另一个目的是提供一种包含有效治疗量的晶型I和药用辅料的药用组合物。一般是将治疗有效量的晶型I与一种或多种药用辅料混合或接触制成药用组合物或制剂,该药用组合物或制剂是以制药领域中熟知的方式进行制备的。
本发明提供的式(I)化合物的单琥珀酸盐晶型I可用于治疗癌症药物的制备,特别是用于治疗抗药性乳腺癌和黑色素瘤药物的制备。
与现有技术相比,本专利提供的单琥珀酸盐晶型I具有更高的物理稳定性,具体表现为一方面,不同温度条件下在特定溶剂中,现有技术的单琥珀酸盐会转化成本发明的晶型I。另一方面,在高湿度条件下,本发明的晶型I具有良好的稳定性,而现有技术的单琥珀酸盐晶型易发生转晶。
本发明提供的晶型I具有较低的引湿性,在制备过程中无需特殊的干燥条件,简化了药品的制备与后处理工艺,易于工业化生产。由于对储存条件要求不苛刻,大大降低了物料储存以及质量控制成本。
本发明提供一种包含有效治疗量的半琥珀酸盐晶型A或单琥珀酸盐晶型I或二者的混合物与药用辅料的药用组合物。一般是将治疗有效量的单琥珀酸盐晶型I或半琥珀酸盐晶型A或二者的混合物与一种或多种药用辅料混合或接触制成药用组合物或制剂,该药用组合物或制剂是以制药领域中熟知的方式进行制备的。
本发明提供的式(I)化合物的半琥珀酸盐晶型A或单琥珀酸盐晶型I或二者的混合物可用于治疗癌症药物的制备,特别是用于治疗抗药性乳腺癌和黑色素瘤药物的制备。
本发明的另一个目的是提供式(I)化合物的盐,包括己二酸盐、马来酸盐或乙醇酸盐。
更进一步的,本发明提供式(I)化合物的己二酸盐,其特征在于,所述的己二酸盐为 结晶形式。具体地,本发明提供的式(I)化合物己二酸盐的结晶形式,本发明中命名为己二酸盐晶型A。
本发明提供的己二酸盐晶型A,其特征在于,其X射线粉末衍射图在2theta值为22.2°±0.2°、19.2°±0.2°处具有特征峰。
更进一步的,本发明提供的己二酸盐晶型A,其特征还在于,其X射线粉末衍射图在2theta值为24.9°±0.2°、14.0°±0.2°、16.1°±0.2°处具有特征峰。
更进一步的,本发明提供的己二酸盐晶型A,其特征还在于,其X射线粉末衍射图在2theta值为18.0°±.2°、19.8°±0.2°、4.8°±0.2°中的一处或两处或三处具有特征峰;优选的,本发明提供的晶型I,其特征还在于,其X射线粉末衍射图在2theta值为18.0°±.2°、19.8°±0.2°、4.8°±0.2°处具有特征峰。
更进一步的,本发明提供的己二酸盐晶型A,其特征在于,其X射线粉末衍射图基本如图13所示。
本发明提供的己二酸盐晶型A,其特征在于,当进行差示扫描量热分析时,在加热至177℃附近开始出现吸热峰,其差示扫描量热分析图基本如图14所示。
本发明提供的己二酸盐晶型A,其特征在于,当进行热重分析时,在加热至159℃时,具有约2.1%的重量损失梯度,其热重分析图基本如图15所示。
进一步的,本发明提供的式(I)化合物的马来酸盐,其特征在于,所述的马来酸盐为结晶形式。具体的,本发明提供一种式(I)化合物的马来酸盐结晶形式,本发明中命名为马来酸盐晶型A。
本发明提供的马来酸盐晶型A,其特征在于,其X射线粉末衍射图在2theta值为18.6°±0.2°、19.9°±0.2°、14.9°±0.2°处具有特征峰。
更进一步的,本发明提供的马来酸盐晶型A,其特征还在于,其X射线粉末衍射图在2theta值为24.5°±0.2°、17.1°±0.2°、16.5°±0.2°中的一处或两处或三处具有特征峰;优选的,本发明提供的晶型I,其特征还在于,其X射线粉末衍射图在2theta值为24.5°±0.2°、17.1°±0.2°、16.5°±0.2°处具有特征峰。
更进一步的,本发明提供的马来酸盐晶型A,其特征还在于,其X射线粉末衍射图在2theta值为21.9°±0.2°、29.3°±0.2°、8.5°±0.2°中的一处或两处或三处具有特征峰;优选的,本发明提供的晶型I,其特征还在于,其X射线粉末衍射图在2theta值为21.9°±0.2°、29.3°±0.2°、8.5°±0.2°处具有特征峰。。
更进一步的,本发明提供的马来酸盐晶型A,其特征在于,其X射线粉末衍射图基本如图16所示。
本发明提供的马来酸盐晶型A,其特征在于,当进行差示扫描量热分析时,在加热至207℃附近开始出现吸热峰,其差示扫描量热分析图基本如图17所示。
本发明提供的马来酸盐晶型A,其特征在于,当进行热重分析时,在加热至138℃时, 具有约3.1%的重量损失梯度,其热重分析图基本如图18所示。
更进一步的,本发明提供的式(I)化合物的乙醇酸盐,其特征在于,所述的乙醇酸盐为结晶形式。具体地,本发明提供的式(I)化合物乙醇酸盐的结晶形式,本发明中命名为乙醇酸盐晶型A。
本发明提供的乙醇酸盐晶型A,其特征在于,其X射线粉末衍射图在2theta值为21.3°±0.2°、19.5°±0.2°、23.3°±0.2°处具有特征峰。
更进一步的,本发明提供的乙醇酸盐晶型A,其特征还在于,其X射线粉末衍射图在2theta值为21.8°±0.2°、12.4°±0.2°、10.1°±0.2°中的一处或两处或三处具有特征峰;优选的,本发明提供的晶型I,其特征还在于,其X射线粉末衍射图在2theta值为21.8°±0.2°、12.4°±0.2°、10.1°±0.2°处具有特征峰。
更进一步的,本发明提供的乙醇酸盐晶型A,其特征还在于,其X射线粉末衍射图在2theta值为13.3°±0.2°、16.8°±0.2°、23.9°±0.2°中的一处或两处或三处具有特征峰;优选的,本发明提供的晶型I,其特征还在于,其X射线粉末衍射图在2theta值为13.3°±0.2°、16.8°±0.2°、23.9°±0.2°处具有特征峰。
更进一步的,本发明提供的乙醇酸盐晶型A,其特征在于,其X射线粉末衍射图基本如图19所示。
本发明提供的乙醇酸盐晶型A,其特征在于,在加热至253℃附近开始出现吸热峰,其差示扫描量热分析图基本如图20所示。
本发明提供的乙醇酸盐晶型A,其特征在于,在加热至176℃时,具有约3.5%的重量损失梯度,其热重分析图基本如图21所示。
本发明的另一个目的是提供式(I)化合物己二酸盐的制备方法,其特征在于,其制备方法包括使式(I)化合物与己二酸在酮类、醇类或其分别与水的混合溶剂中反应,搅拌析晶得到。
更进一步的,所述酮类溶剂优选丙酮,所述醇类溶剂优选乙醇。
更进一步的,所述酮类或醇类分别与水的混合溶剂的比例优选体积比10:1至20:1。
更进一步的,所述式(I)化合物与己二酸的反应摩尔比介于1:1到1:1.2。
本发明的另一个目的是提供式(I)化合物马来酸盐的制备方法,其特征在于,其制备方法包括使式(I)化合物与马来酸在酮类溶剂和水的混合溶剂中搅拌析晶得到。
更进一步的,所述酮类溶剂优选丙酮。
更进一步的,所述酮类与水的混合溶剂的比例优选体积比10:1至20:1。
更进一步的,所述酮类与水的混合溶剂的比例优选体积比19:1。
更进一步的,所述式(I)化合物与马来酸的反应摩尔比介于1:0.9到1:1.2。
本发明的另一个目的是提供式(I)化合物乙醇酸盐的制备方法,其特征在于,其制备 方法包括使式(I)化合物与乙醇酸在酮类、醚类或其分别与水的混合溶剂中反应,搅拌析晶得到。
更进一步的,所述酮类溶剂优选丙酮,所述醚类溶剂优选四氢呋喃。
更进一步的,所述酮类或醚类分别与水的混合溶剂的比例优选体积比10:1至20:1。
更进一步的,所述式(I)化合物与乙醇酸的反应摩尔比介于1:1到1:4.5。
本发明提供的己二酸盐、马来酸盐和乙醇酸盐的结晶形式具有较低的引湿性,在制备过程中无需特殊的干燥条件,简化了药品的制备与后处理工艺,易于工业化生产。并且,本发明中的三种盐的结晶形式在不同湿度条件下水分含量基本保持不变,便于药品的长期贮存。由于对储存条件要求不苛刻,大大降低了物料储存以及质量控制成本。与专利CN103201275A单琥珀酸盐非水合物形式相比,本发明中的三种盐的结晶形式稳定性更好,在储存过程中不易转晶,具有很强的经济价值。
本发明提供一种包含有效治疗量的己二酸盐、马来酸盐或乙醇酸盐的结晶形式或其混合物与药用辅料的药用组合物。一般是将治疗有效量的己二酸盐、马来酸盐或乙醇酸盐的结晶形式或其混合物与一种或多种药用辅料混合或接触制成药用组合物或制剂,该药用组合物或制剂是以制药领域中熟知的方式进行制备的。
本发明提供的式(I)化合物的己二酸盐、马来酸盐或乙醇酸盐的结晶形式或其混合物可用于治疗癌症药物的制备,特别是用于治疗抗药性乳腺癌和黑色素瘤药物的制备。
附图说明
图1为半琥珀酸盐晶型A的XRPD图
图2为半琥珀酸盐晶型A的1H NMR图
图3为半琥珀酸盐晶型A的DVS图
图4为半琥珀酸盐晶型A的引湿性实验XRPD对比图:下图为实验前的XRPD图,上图为实验后的XRPD图(晶型不变)
图5为单琥珀酸盐晶型I的XRPD图
图6为单琥珀酸盐晶型I的1H NMR图
图7为单琥珀酸盐晶型I的DSC图
图8为单琥珀酸盐晶型I的TGA图
图9为单琥珀酸盐晶型I的DVS图(0-95%相对湿度循环)
图10为单琥珀酸盐晶型I的引湿性实验XRPD对比图:下图为实验前的XRPD图,上图为实验后的XRPD图(0-95%相对湿度循环,晶型不变)
图11为专利CN103201275A单琥珀酸盐非水合物形式的DVS图(0-95%相对湿度循环)
图12为专利CN103201275A单琥珀酸盐非水合物形式的引湿性实验XRPD对比图:下图为实验前的XRPD图,上图为实验后的XRPD图(0-95%相对湿度循环,晶型改变)
图13为己二酸盐晶型A的XRPD图
图14为己二酸盐晶型A的DSC图
图15为己二酸盐晶型A的TGA图
图16为马来酸盐晶型A的XRPD图
图17为马来酸盐晶型A的DSC图
图18为马来酸盐晶型A的TGA图
图19为乙醇酸盐晶型A的XRPD图
图20为乙醇酸盐晶型A的DSC图
图21为乙醇酸盐晶型A的TGA图
图22为己二酸盐晶型A的1H NMR图
图23为马来酸盐晶型A的1H NMR图
图24为乙醇酸盐晶型A的1H NMR图
图25为己二酸盐晶型A的稳定性试验研究XRPD对比图:a为己二酸盐晶型A起始晶型的XRPD图,b为晶型A放置在25℃/60%相对湿度下30天后的XRPD图,c为晶型A放置在40℃/75%相对湿度下30天后的XRPD图
图26为马来酸盐晶型A的稳定性试验研究XRPD对比图:a为马来酸盐晶型A起始晶型的XRPD图,b为晶型A放置在25℃/60%相对湿度下30天后的XRPD图,c为晶型A放置在40℃/75%相对湿度下30天后的XRPD图
图27为乙醇酸盐晶型A的稳定性试验研究XRPD对比图:a为乙醇酸盐晶型A起始晶型的XRPD图,b为晶型A放置在25℃/60%相对湿度下30天后的XRPD图,c为晶型A放置在40℃/75%相对湿度下30天后的XRPD图
图28为己二酸盐晶型A的DVS图(0-95%相对湿度循环)
图29为己二酸盐晶型A的引湿性实验XRPD对比图:a为实验前的XRPD图,b为实验后的XRPD图(晶型不变)
图30为马来酸盐晶型A的DVS图(0-95%相对湿度循环)
图31为马来酸盐晶型A的引湿性实验XRPD对比图:a为实验前的XRPD图,b为实验后的XRPD图(晶型不变)
图32为乙醇酸盐晶型A的DVS图(0-95%相对湿度循环)
图33为乙醇酸盐晶型A的引湿性实验XRPD对比图:a为实验前的XRPD图,b为实验后的XRPD图(晶型不变)
图34为专利CN103201275A单琥珀酸盐非水合物形式的DVS图(0-95%相对湿度循环)
图35为专利CN103201275A单琥珀酸盐非水合物形式的引湿性实验XRPD对比图:下图为实验前的XRPD图,上图为实验后的XRPD图(晶型改变)
具体实施方式
以下将通过具体实施例进一步阐述本发明,但并不用于限制本发明的保护范围。本领域技术人员可在权利要求范围内对制备方法和使用仪器作出改进,这些改进也应视为本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
本发明中所用到的缩写的解释如下:
XRPD:X射线粉末衍射
DSC:差示扫描量热分析
TGA:热重分析
DVS:动态水分吸附
1H NMR:核磁共振氢谱
本发明所述的X射线粉末衍射图在Panalytical Empyrean X射线粉末衍射仪上采集。本发明所述的X射线粉末衍射的方法参数如下:
X射线反射参数:Cu,Kα
Figure PCTCN2015097204-appb-000002
1.540598;
Figure PCTCN2015097204-appb-000003
1.544426
Kα2/Kα1强度比例:0.50
电压:45仟伏特(kV)
电流:40毫安培(mA)
扫描范围:自3.0至40.0度
本发明所述的差示扫描量热分析(DSC)图在TA Q2000上采集。本发明所述的差示扫描量热分析(DSC)的方法参数如下:
扫描速率:10℃/min
保护气体:氮气
本发明所述的热重分析(TGA)图在TA Q5000上采集。本发明所述的热重分析(TGA)的方法参数如下:
扫描速率:10℃/min
保护气体:氮气
本发明所述动态水分吸附(DVS)图在由SMS公司(Surface Measurement Systems Ltd.)生产的Intrinsic动态水分吸附仪上采集。所述的动态水分吸附仪的方法参数如下:
温度:25℃
载气,流速:N2,200毫升/分钟
单位时间质量变化:0.002%/分钟
相对湿度范围:0%RH-95%RH
实施例1
半琥珀酸盐晶型A的制备方法:
取10.5mg式(I)化合物游离碱溶于乙醇中,加入3.0mg的琥珀酸室温下搅拌12小时,析晶得到。本实施例得到的晶型A通过XRPD、DSC、TGA和1H NMR检测。其X射线粉末衍射数据包含表1的峰值。DSC数据显示,加热至180℃时出现吸热峰,TGA数据显示从室温加热至118℃有12.5%的失重。其1H NMR图如图2。
上述方法制备得到的式(I)化合物半琥珀酸盐,其1H NMR鉴定数据如下:
1H NMR(400MHz,DMSO)δ9.29(s,1H),8.76(s,1H),8.16(d,J=9.0Hz,1H),8.00(d,J=2.9Hz,1H),7.44(dd,J=9.2,3.0Hz,1H),6.60(s,1H),3.15–2.93(m,14H),2.32(s,2H),1.98(s,4H),1.65(s,2H).
表1
Figure PCTCN2015097204-appb-000004
Figure PCTCN2015097204-appb-000005
实施例2
半琥珀酸盐晶型A的制备方法:
取10.2mg式(I)化合物游离碱溶于四氢呋喃中,加入2.8mg的琥珀酸,室温下搅拌12小时,析晶得到。本实施例得到的晶型A的X射线粉末衍射数据包含表2的峰值,其XRPD图如图1。
表2
Figure PCTCN2015097204-appb-000006
Figure PCTCN2015097204-appb-000007
实施例3
半琥珀酸盐晶型A高湿度条件下的稳定性研究:
取本发明的晶型A约10mg采用动态水分吸附(DVS)仪进行动态水分吸附测试,并在测试前后分别检测XRPD。结果显示,本发明的晶型A在80%相对湿度的增重为3.5%,引湿性较低,其DVS图如图3所示。在动态水分吸附测试前后晶型不变,其XRPD对比图如图4所示。
关于引湿性特征描述与引湿性增重的界定(中国药典2010年版附录XIX J药物引湿性试验指导原则,实验条件:25℃±1℃,80%相对湿度):
潮解:吸收足量水分形成液体
极具引湿性:引湿增重不小于15%
有引湿性:引湿增重小于15%但不小于2%
略有引湿性:引湿增重小于2%但不小于0.2%
无或几乎无引湿性:引湿增重小于0.2%
实施例4
本发明的半琥珀酸盐晶型A和专利CN103201275A中单琥珀酸盐非水合物形式的转变关系研究:
将约10mg专利CN103201275A中单琥珀酸盐非水合物形式作为起始晶型,加入不同的溶剂或混合溶剂(体积比)中,在5~50℃下搅拌48小时后,最终晶型转化为本发明中的晶型A。本实施例所用溶剂如表3所示。
表3
序号 起始晶型 溶剂/混合溶剂(V:V) 最终晶型
1 专利CN103201275A单琥珀酸盐 乙酸乙酯 半琥珀酸盐晶型A
2 专利CN103201275A单琥珀酸盐 乙醇:水=20:1 半琥珀酸盐晶型A
3 专利CN103201275A单琥珀酸盐 丙酮:水=20:1 半琥珀酸盐晶型A
4 专利CN103201275A单琥珀酸盐 四氢呋喃:水=20:1 半琥珀酸盐晶型A
实施例5
单琥珀酸盐晶型I的制备方法:
取30.7mg单琥珀酸盐非水合物形式(通过专利CN103201275A制备得到)溶于2.2mL乙腈:甲醇体积比为10:1的混合溶剂中,在50℃条件下搅拌48小时析晶得到。
本实施例得到的晶型I的X射线粉末衍射数据包含表4的峰值。其XRPD图如图5。
表4
Figure PCTCN2015097204-appb-000008
Figure PCTCN2015097204-appb-000009
上述方法制备得到的式(I)化合物单琥珀酸盐的核磁谱图如图6所示,其1H NMR鉴定数据如下:
1H NMR(400MHz,DMSO)δ9.33(s,1H),8.76(s,1H),8.16(d,J=9.1Hz,1H),8.00(d,J=2.9Hz,1H),7.45(dd,J=9.1,3.0Hz,1H),6.60(s,1H),4.79–4.68(m,1H),3.16–3.00(m,14H),2.34(s,4H),1.98(s,4H),1.64(d,J=5.5Hz,2H)。核磁数据表明得到的晶型I为式(I)化合物的单琥珀酸盐。
晶型I的差示扫描量热分析图如图7所示,表明晶型I在加热至197℃附近开始出现吸热峰。此晶型I为无水物。
晶型I的热重分析图如图8所示,表明在加热至178℃时,具有约2.0%的重量损失梯度。
实施例6
单琥珀酸盐晶型I的制备方法:
取3.1mg单琥珀酸盐非水合物形式(通过专利CN103201275A制备得到)溶于0.5mL乙醇:正庚烷体积比为4:1的混合溶剂中,室温下搅拌48小时析晶得到。
本实施例得到的晶型I的X射线粉末衍射数据包含表5的峰值。
表5
Figure PCTCN2015097204-appb-000010
Figure PCTCN2015097204-appb-000011
实施例7
本发明晶型I和专利CN103201275A单琥珀酸盐非水合物形式在高湿度条件下的稳定性研究:
取本发明的晶型I和专利CN103201275A的单琥珀酸盐非水合物形式各约10mg分别采用动态水分吸附(DVS)仪测试引湿性。并在测试引湿性前后分别检测XRPD。如图9晶型I的DVS图,以及如图10引湿性测试前后XRPD的对比图所示,晶型I在25℃、90%相对湿度下的水分吸附仅为1.7%,且引湿性测试前后晶型不变,表明晶型I即便是在高湿度条件下也具有优异的稳定性,而根据专利CN103201275A的报道,其单琥珀酸盐非水合物形式在25℃、90%相对湿度下的水分吸附为2%且有7.35%的化合物会从非水合物形式转化为水合物形式,在25℃、80%相对湿度下有0.52%的化合物会从非水合物形式转化为水合物形式。
如图9晶型I的DVS图,以及如图10引湿性测试前后XRPD的对比图所示,晶型I在25℃、95%相对湿度下的水分吸附仅为4.0%,且引湿性测试前后晶型不变,而如图11专利CN103201275A非水合物形式的DVS图,以及如图12引湿性测试前后XRPD的对比图所示,专利CN103201275A非水合物形式在25℃、95%相对湿度下的水分吸附为18.3%,且引湿性测试前后晶型改变。结果表明,本发明的晶型I在高湿度条件下晶型稳定,不会转变,专利CN103201275A的晶型在高湿度条件下较易发生晶型转变,稳定性相对较差。
实施例8
本发明晶型I和专利CN103201275A单琥珀酸盐非水合物形式不同温度条件下的稳定性研 究:
将约10mg专利CN103201275A中单琥珀酸盐非水合物形式作为起始晶型,加入不同的溶剂或混合溶剂(体积比)中,在5~50℃下搅拌48小时后,最终晶型转化为本发明中的晶型I。本实施例所用溶剂及反应温度如表6所示。
表6
Figure PCTCN2015097204-appb-000012
实施例9
己二酸盐的制备方法:
将200mg式(I)化合物的游离碱粉末溶解于10.0mL丙酮与水(v/v=19:1)的混合溶剂中,再加入68mg己二酸固体于溶液中,在室温条件下磁力搅拌即可得到,其1H NMR图如图22。
上述方法制备得到的式(I)化合物己二酸盐,其1H NMR鉴定数据如下:
1H NMR(400MHz,DMSO)δ9.31(s,1H),8.76(s,1H),8.15(d,J=9.1Hz,1H),7.99(d,J=2.8Hz,1H),7.42(dd,J=9.1,3.0Hz,1H),6.60(s,1H),4.78–4.67(m,1H),3.06(d,J=4.9Hz,10H),2.95–2.82(m,4H),2.48–2.38(m,2H),2.25–2.09(m,4H),1.98(s,4H),1.64(d,J=4.9Hz,2H),1.54–1.38(m,4H)。
经检测,所得固体为己二酸盐晶型A,其X射线粉末衍射数据包含表7的峰值。其XRPD图如图13,其DSC图如图14,其TGA图如图15。
表7
Figure PCTCN2015097204-appb-000013
Figure PCTCN2015097204-appb-000014
Figure PCTCN2015097204-appb-000015
实施例10
己二酸盐的制备方法:
将10.3mg式(I)化合物游离碱粉末溶解于0.4mL丙酮与水(v/v=19:1)的混合溶剂中,将3.9mg己二酸固体加入于上述溶液中,在室温条件下搅拌即可得到。
经检测,所得固体为己二酸盐晶型A,其X射线粉末衍射数据包含但不限于表8的峰值。
表8
Figure PCTCN2015097204-appb-000016
Figure PCTCN2015097204-appb-000017
实施例11
马来酸盐的制备方法:
将200.63mg式(I)化合物的游离碱粉末溶解于10.0mL丙酮与水(v/v 19:1)的混合溶剂中,再加入56mg马来酸固体于溶液中,在室温条件下磁力搅拌即可得到,其1H NMR图如图23。
上述方法制备得到的式(I)化合物马来酸盐,其1H NMR鉴定数据如下:
1H NMR(400MHz,DMSO)δ9.49(s,1H),8.77(s,1H),8.20(d,J=9.1Hz,1H),8.07(d,J=2.8Hz,1H),7.52(dd,J=9.1,2.8Hz,1H),6.62(s,1H),6.04(s,2H),4.80–4.66(m,1H),3.34(d,J=5.6Hz,4H),3.28(d,J=5.3Hz,4H),3.06(s,6H),2.48–2.35(m,2H),1.98(s,4H),1.65(d,J=5.3Hz,2H)。
经检测,所得固体为马来酸盐晶型A,其X射线粉末衍射数据包含但不限于表9的峰值。其XRPD图如图16,其DSC图如图17,其TGA图如图18。
表9
Figure PCTCN2015097204-appb-000018
Figure PCTCN2015097204-appb-000019
实施例12
马来酸盐的制备方法:
将10.3mg式(I)化合物游离碱粉末溶解于0.4mL丙酮的溶剂中,将2.8mg的马来酸加入于上述溶液中,在室温条件下搅拌即可得到。
经检测,所得固体为马来酸盐晶型A,其X射线粉末衍射数据包含但不限于表10的峰值。
表10
Figure PCTCN2015097204-appb-000020
Figure PCTCN2015097204-appb-000021
实施例13
乙醇酸盐的制备方法:
将199.0mg式(I)化合物的游离碱粉末溶解于10.0mL丙酮与水(v/v 19:1)的混合溶剂中,再加入34.0mg乙醇酸固体于溶液中,在室温条件下磁力搅拌即可得到,其1H NMR图如图24。
上述方法制备得到的式(I)化合物乙醇酸盐,其1H NMR鉴定数据如下:
1H NMR(400MHz,DMSO)δ9.09(d,J=10.7Hz,1H),8.53(s,1H),7.93(d,J=9.1Hz,1H),7.78(d,J=2.9Hz,1H),7.21(dd,J=9.1,2.9Hz,1H),6.37(s,1H),4.55–4.45(m,1H),3.54(s,2H),2.95–2.87(m,4H),2.83(s,6H),2.79–2.74(m,4H),2.24–2.17(m,2H),1.75(s,4H),1.41(d,J=5.0Hz,2H)。
经检测,所得固体为乙醇酸盐晶型A,其X射线粉末衍射数据包含但不限于表11的峰值。其XRPD图如图19,其DSC图如图20,其TGA图如图21。
表11
Figure PCTCN2015097204-appb-000022
Figure PCTCN2015097204-appb-000023
实施例14
乙醇酸盐的制备方法:
将10.3mg式(I)化合物的游离碱粉末溶解于0.4mL丙酮与水(v/v 19:1)的混合溶剂中,将4.2mg的乙醇酸固体加入于溶液中,在室温条件下搅拌即可得到。
经检测,所得固体为乙醇酸盐晶型A,其X射线粉末衍射数据包含但不限于表12的峰值。
表12
Figure PCTCN2015097204-appb-000024
Figure PCTCN2015097204-appb-000025
实施例15
式(I)化合物盐的新晶型稳定性研究:
取实施例9、实施例11、实施例13中制备得到的式(I)化合物盐的新晶型样品各两份分别置于25℃/60%相对湿度和40℃/75%相对湿度条件下敞口放置30天,然后取样测XRPD。结果如表13所示:
表13
Figure PCTCN2015097204-appb-000026
结果表明,式(I)化合物盐的新晶型在25℃/60%相对湿度和40℃/75%相对湿度条件下,放置30天晶型保持不变。上述试验结果表明,本发明提供的式(I)化合物盐的新晶型具有良好的稳定性。
实施例16
本发明提供的盐和专利CN103201275A单琥珀酸盐在高湿度条件下的稳定性对比研究:
取本发明的己二酸盐晶型A、马来酸盐晶型A、乙醇酸盐晶型A和专利CN103201275A的单琥珀酸盐非水合物形式各约10mg分别采用动态水分吸附(DVS)仪测试引湿性。并在测试引湿性前后分别检测XRPD。测试晶型的引湿性结果和XRPD表征结果如表14所示。本发明中己二酸盐晶型A的DVS图如图28所示,引湿性测试前后XRPD的对比图如图29所示(晶型不变)。马来酸盐晶型A的DVS图如图30所示,引湿性测试前后XRPD的对比图如图31所示(晶型不变)。乙醇酸盐晶型A的DVS图如图32所示,引湿性测试前后XRPD的对比图如图33所示(晶型不变)。专利CN103201275A的单琥珀酸盐非水合物形式的DVS图如图34所示,引湿性测试前后XRPD的对比图如图35所示,下图为非水合物 形式起始的XRPD图,上图为DVS后的XRPD图(晶型改变)。
表14
Figure PCTCN2015097204-appb-000027
结果表明,本发明的己二酸盐晶型A、马来酸盐晶型A、乙醇酸盐晶型A在高湿度条件下晶型不会转变,而专利CN103201275A中单琥珀酸盐非水合物形式在高湿度条件下易发生晶型转变。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (58)

  1. 一种式(I)化合物的单琥珀酸盐晶型I:
    Figure PCTCN2015097204-appb-100001
    其特征在于,其X射线粉末衍射图在2theta值为11.9°±0.2°、19.4°±0.2°、20.6°±0.2°处具有特征峰。
  2. 根据权利要求1所述的晶型I,其特征在于:其X射线粉末衍射图还在2theta值为22.7°±0.2°、24.4°±0.2°、26.3°±0.2°中的一处或两处或三处具有特征峰。
  3. 根据权利要求2所述的晶型I,其特征在于:其X射线粉末衍射图在2theta值为22.7°±0.2°、24.4°±0.2°、26.3°±0.2°处具有特征峰。
  4. 根据权利要求1-3任一项所述的晶型I,其特征在于:其X射线粉末衍射图还在2theta值为7.8°±0.2°、15.7°±0.2°、16.7°±0.2°中的一处或两处或三处具有特征峰。
  5. 根据权利要求4所述的晶型I,其特征在于:X射线粉末衍射图在2theta值为7.8°±0.2°、15.7°±0.2°、16.7°±0.2°处具有特征峰。
  6. 根据权利要求1所述的晶型I,其特征在于:其X射线粉末衍射图基本上与图5一致。
  7. 根据权利要求1-6中任一项所述的晶型I,其特征在于:所述晶型I为无水物。
  8. 一种如权利要求1-6中任一项所述的晶型I的制备方法,其特征在于:将式(I)化合物的单琥珀酸盐溶解于醇类溶剂与选自烃基腈、烷烃中的一种或多种溶剂组成的混合溶剂中或溶解于烃基腈和水的混合溶剂中,搅拌析晶得到。
  9. 根据权利要求8所述的晶型I的制备方法,其特征在于:所述混合溶剂中,所述醇类溶剂为甲醇、乙醇或二者的组合;所述烃基腈为乙腈;所述烷烃为正庚烷。
  10. 根据权利要求9所述的晶型I的制备方法,其特征在于:所述的混合溶剂由乙腈与甲醇组成,或者由乙醇与正庚烷组成,或者由乙腈与水组成。
  11. 一种药用组合物,所述药用组合物包含有效量的权利要求1-6中的任一项所述的单琥珀酸盐晶型I及药学上可接受的赋形剂。
  12. 权利要求1-6中任一项的晶型I在生产用于制备治疗癌症药物中的用途。
  13. 权利要求1-6中任一项的晶型I在生产用于治疗抗药性乳腺癌和黑色素瘤药物中的用途。
  14. 式(I)化合物与多种酸形成的盐,其特征在于,所述的盐是半琥珀酸盐、己二酸盐、马来酸盐、乙醇酸盐。
  15. 根据权利要求14所述的式(I)化合物的盐,其特征在于,所述的盐为结晶形式,命名为半琥珀酸盐晶型A、己二酸盐晶型A、马来酸盐晶型A、乙醇酸盐晶型A。
  16. 一种式(I)化合物的半琥珀酸盐晶型A:其特征在于,其X射线粉末衍射图在2theta值为23.9°±0.2°、20.0°±0.2°、22.1°±0.2°处具有特征峰。
  17. 根据权利要求16所述的式(I)化合物半琥珀酸盐晶型A,其特征还在于,其X射线粉末衍射图在2theta值为22.0°±0.2°、21.3°±0.2°、13.0°±0.2°中的一处或两处或三处具有特征峰。
  18. 根据权利要求17所述的式(I)化合物半琥珀酸盐晶型A,其特征还在于,其X射线粉末衍射图在2theta值为22.0°±0.2°、21.3°±0.2°、13.0°±0.2°处具有特征峰。
  19. 根据权利要求16-18任一项所述的式(I)化合物半琥珀酸盐晶型A,其特征还在于,其X射线粉末衍射图在2theta值为4.7°±0.2°、14.2°±0.2°、10.6°±0.2°中的一处或两处或三处具有特征峰。
  20. 根据权利要求19所述的式(I)化合物半琥珀酸盐晶型A,其特征还在于,其X射线粉末衍射图在2theta值为4.7°±0.2°、14.2°±0.2°、10.6°±0.2°处具有特征峰。
  21. 根据权利要求16所述的式(I)化合物半琥珀酸盐晶型A,其特征在于,其X射线粉末衍射图基本上与图1一致。
  22. 一种制备权利要求16-21任意一项所述的式(I)化合物的半琥珀酸盐晶型A的方法,其特征在于,包括使式(I)化合物与琥珀酸或式(I)化合物单琥珀酸盐在醇类、酮类、醚类、酯类溶剂或其与水的混合溶剂中反应,搅拌析晶得到。
  23. 根据权利要求22所述的方法,所述醇类溶剂优选乙醇,所述酮类优选丙酮,所述酯类优选乙酸乙酯,所述醚类溶剂优选四氢呋喃。
  24. 一种药用组合物,所述药用组合物包含有效量的权利要求16-21中的任一项所述的晶型A及药学上可接受的赋形剂。
  25. 权利要求16-21中任一项的晶型A在生产用于治疗抗药性乳腺癌和黑色素瘤药物中的用途。
  26. 一种药用组合物,其含有有效量的根据权利要求1-6任一项所述的式(I)化合物的单琥珀酸盐的晶型I和根据权利要求16-21任一项的式(I)化合物的半琥珀酸盐晶型A的混合物及药学上可接受的载体。
  27. 权利要求1-6中任一项的晶型I和权利要求16-21中任一项的晶型A的混合物在生产用于治疗抗药性乳腺癌和黑色素瘤药物中的用途。
  28. 一种式(I)化合物的己二酸盐晶型A,其特征在于,其X射线粉末衍射图在2theta值为22.2°±0.2°、19.2°±0.2°处具有特征峰。
  29. 根据权利要求28所述的式(I)化合物己二酸盐晶型A,其特征还在于,其X射线粉末衍射图在2theta值为24.9°±0.2°、14.0°±0.2°、16.1°±0.2°处具有特征峰。
  30. 根据权利要求29所述的式(I)化合物己二酸盐晶型A,其特征还在于,其X射线粉末衍 射图在2theta值为18.0°±0.2°、19.8°±0.2°、4.8°±0.2°中的一处或两处或三处具有特征峰。
  31. 根据权利要求30所述的式(I)化合物己二酸盐晶型A,其特征还在于,其X射线粉末衍射图在2theta值为18.0°±0.2°、19.8°±0.2°、4.8°±0.2°处具有特征峰。
  32. 根据权利要求28所述的式(I)化合物己二酸盐晶型A,其特征在于,其X射线粉末衍射图基本上与图13一致。
  33. 一种制备式(I)化合物的己二酸盐的方法,其特征在于,包括使式(I)化合物与己二酸在酮类、醇类或其分别与水的混合溶剂中反应,搅拌析晶得到。
  34. 根据权利要求33所述的方法,所述酮类溶剂优选丙酮,所述醇类溶剂优选乙醇。
  35. 根据权利要求33或34所述的方法,所述酮类或醇类分别与水的混合溶剂的体积比介于10:1至20:1。
  36. 根据权利要求33或34所述的方法,所述式(I)化合物与己二酸的反应摩尔比介于1:1至1:1.2。
  37. 一种式(I)化合物的马来酸盐晶型A,其特征在于,其X射线粉末衍射图在2theta值为18.6°±0.2°、19.9°±0.2°、14.9°±0.2°处具有特征峰。
  38. 根据权利要求37所述的式(I)化合物马来酸盐晶型A,其特征还在于,其X射线粉末衍射图在2theta值为24.5°±0.2°、17.1°±0.2°、16.5°±0.2°中的一处或两处或三处具有特征峰。
  39. 根据权利要求38所述的式(I)化合物马来酸盐晶型A,其特征还在于,其X射线粉末衍射图在2theta值为24.5°±0.2°、17.1°±0.2°、16.5°±0.2°处具有特征峰。
  40. 根据权利要求37-39任一项所述的式(I)化合物马来酸盐晶型A,其特征还在于,其X射线粉末衍射图在2theta值为21.9°±0.2°、29.3°±0.2°、8.5°±0.2°中的一处或两处或三处具有特征峰。
  41. 根据权利要求40所述的式(I)化合物马来酸盐晶型A,其特征还在于,其X射线粉末衍射图在2theta值为21.9°±0.2°、29.3°±0.2°、8.5°±0.2°处具有特征峰。
  42. 根据权利要求37所述的式(I)化合物马来酸盐晶型A,其特征在于,其X射线粉末衍射图基本上与图16一致。
  43. 一种制备式(I)化合物的马来酸盐的方法,其特征在于,包括使式(I)化合物与马来酸在酮类溶剂和水的混合溶剂中搅拌析晶得到。
  44. 根据权利要求43所述的制备方法,所述酮类溶剂优选丙酮。
  45. 根据权利要求43或44所述的制备方法,所述酮类与水的混合溶剂的体积比为10:1至20:1.
  46. 根据权利要求43或44所述的制备方法,所述式(I)化合物与马来酸的反应摩尔比介于 1:0.9至1:1.2。
  47. 一种式(I)化合物的乙醇酸盐晶型A,其特征在于,其X射线粉末衍射图在2theta值为21.3°±0.2°、19.5°±0.2°、23.3°±0.2°处具有特征峰。
  48. 根据权利要求47所述的式(I)化合物乙醇酸盐晶型A,其特征还在于,其X射线粉末衍射图在2theta值为21.8°±0.2°、12.4°±0.2°、10.1°±0.2°中的一处或两处或三处具有特征峰。
  49. 根据权利要求48所述的式(I)化合物乙醇酸盐晶型A,其特征还在于,其X射线粉末衍射图在2theta值为21.8°±0.2°、12.4°±0.2°、10.1°±0.2°处具有特征峰。
  50. 根据权利要求47-49任一项所述的式(I)化合物乙醇酸盐晶型A,其特征还在于,其X射线粉末衍射图在2theta值为13.3°±0.2°、16.8°±0.2°、23.9°±0.2°中的一处或两处或三处具有特征峰。
  51. 根据权利要求50所述的式(I)化合物乙醇酸盐晶型A,其特征还在于,其X射线粉末衍射图在2theta值为13.3°±0.2°、16.8°±0.2°、23.9°±0.2°处具有特征峰。
  52. 根据权利要求46所述的式(I)化合物乙醇酸盐晶型A,其特征在于,其X射线粉末衍射图基本上与图19一致。
  53. 一种制备式(I)化合物的乙醇酸盐的方法,其特征在于,包括使式(I)化合物与乙醇酸在酮类、醚类或其分别与水的混合溶剂中反应,搅拌析晶得到。
  54. 根据权利要求53所述的制备方法,酮类溶剂优选丙酮,所述醚类溶剂优选四氢呋喃。
  55. 根据权利要求53或54所述的制备方法,所述酮类或醚类分别与水的混合溶剂的体积比介于10:1至20:1。
  56. 根据权利要求53或54所述的制备方法,所述式(I)化合物与乙醇酸的反应摩尔比介于1:1至1:4.5。
  57. 一种药用组合物,其含有有效量的根据权利要求28-32任一项所述的式(I)化合物的己二酸盐晶型A或有效量的根据权利要求37-42任一项的式(I)化合物的马来酸盐晶型A或有效量的根据权利要求46-52任一项的式(I)化合物的乙醇酸盐晶型A,或有效量的混合物及药学上可接受的载体。
  58. 权利要求28-32任一项所述的式(I)化合物的己二酸盐晶型A或有效量的根据权利要求37-42任一项的式(I)化合物的马来酸盐晶型A或有效量的根据权利要求46-52任一项的式(I)化合物的乙醇酸盐晶型A,或有效量的混合物在生产用于治疗抗药性乳腺癌和黑色素瘤药物中的用途。
PCT/CN2015/097204 2014-12-12 2015-12-11 吡咯并[2,3-d]嘧啶化合物的盐及盐的新晶型 WO2016091221A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/535,104 US9994579B2 (en) 2014-12-12 2015-12-11 Salt of pyrrolo[2,3-D]pyrimidine compound and novel polymorph of salt
EP15867450.7A EP3231805B1 (en) 2014-12-12 2015-12-11 Salt of pyrrolo[2,3-d]pyrimidine compound and novel polymorph of salt
US15/984,900 US10138250B2 (en) 2014-12-12 2018-05-21 Salt of pyrrolo[2,3-D]pyrimidine compound and novel polymorph of salt

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201410768119.3 2014-12-12
CN201410768119.3 2014-12-12
CN201410789045 2014-12-18
CN201410789045.1 2014-12-18
CN201510566397.5 2015-09-08
CN201510566397.5A CN105085533B (zh) 2014-12-12 2015-09-08 7‑环戊基‑2‑(5‑哌嗪‑1‑基‑吡啶‑2‑基氨基)‑7h‑吡咯并[2,3‑d]嘧啶‑6‑羧酸二甲酰胺单琥珀酸盐的晶型

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/535,104 A-371-Of-International US9994579B2 (en) 2014-12-12 2015-12-11 Salt of pyrrolo[2,3-D]pyrimidine compound and novel polymorph of salt
US15/984,900 Continuation-In-Part US10138250B2 (en) 2014-12-12 2018-05-21 Salt of pyrrolo[2,3-D]pyrimidine compound and novel polymorph of salt

Publications (1)

Publication Number Publication Date
WO2016091221A1 true WO2016091221A1 (zh) 2016-06-16

Family

ID=56106749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097204 WO2016091221A1 (zh) 2014-12-12 2015-12-11 吡咯并[2,3-d]嘧啶化合物的盐及盐的新晶型

Country Status (3)

Country Link
US (1) US9994579B2 (zh)
EP (1) EP3231805B1 (zh)
WO (1) WO2016091221A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019040567A1 (en) 2017-08-25 2019-02-28 Teva Pharmaceuticals Usa, Inc. RIBOCICLIB SALTS AND SOLID STATE FORMS THEREOF
WO2019082143A1 (en) 2017-10-27 2019-05-02 Fresenius Kabi Oncology Ltd. IMPROVED PROCESS FOR THE PREPARATION OF RIBOCICLIB AND ITS SALTS
WO2019123364A1 (en) * 2017-12-22 2019-06-27 Shilpa Medicare Limited Novel polymorphs of ribociclib mono succinate
WO2019167068A1 (en) 2018-03-01 2019-09-06 Cipla Limited Novel polymorphs of ribociclib succinate
US10611772B2 (en) 2018-07-02 2020-04-07 Apotex Inc. Crystalline form of Ribociclib succinate
WO2022207788A2 (en) 2021-04-01 2022-10-06 Krka, D.D., Novo Mesto Process for the preparation of ribociclib and pharmaceutically acceptable salts thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10138250B2 (en) * 2014-12-12 2018-11-27 Crystal Pharmatech Co., Ltd. Salt of pyrrolo[2,3-D]pyrimidine compound and novel polymorph of salt
HU230962B1 (hu) 2015-10-28 2019-06-28 Egis Gyógyszergyár Zrt. Palbociclib sók
WO2019111160A1 (en) * 2017-12-04 2019-06-13 Sun Pharmaceutical Industries Limited Crystalline forms of ribociclib succinate
WO2020225827A1 (en) 2019-05-08 2020-11-12 Mylan Laboratories Limited Novel polymorphs of ribociclib succinate
WO2021038590A1 (en) 2019-08-30 2021-03-04 Mylan Laboratories Limited Novel polymorph of ribociclib succinate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102186856A (zh) * 2008-08-22 2011-09-14 诺瓦提斯公司 作为cdk抑制剂的吡咯并嘧啶化合物
CN103201275A (zh) * 2010-11-10 2013-07-10 诺华有限公司 7-环戊基-2-(5-哌嗪-1-基-吡啶-2-基氨基)-7h-吡咯并[2,3-d]嘧啶-6-羧酸二甲酰胺的盐及其制备方法
CN105085533A (zh) * 2014-12-12 2015-11-25 苏州晶云药物科技有限公司 7-环戊基-2-(5-哌嗪-1-基-吡啶-2-基氨基)-7h-吡咯并[2,3-d]嘧啶-6-羧酸二甲酰胺单琥珀酸盐的新晶型

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019019959A1 (zh) 2017-07-27 2019-01-31 苏州晶云药物科技股份有限公司 瑞博西尼的单琥珀酸盐晶型及其制备方法和用途
HRP20240026T1 (hr) 2017-08-25 2024-03-29 Assia Chemical Industries Ltd Kruti oblik ribociklib sukcinata
WO2019111160A1 (en) 2017-12-04 2019-06-13 Sun Pharmaceutical Industries Limited Crystalline forms of ribociclib succinate
US11414421B2 (en) 2018-01-20 2022-08-16 Natco Pharma Ltd Process for the preparation of ribociclib succinate and its novel crystalline forms thereof
CN110156793B (zh) 2018-07-13 2022-01-14 安礼特(上海)医药科技有限公司 瑞博西尼单琥珀酸盐新晶型及制备方法
CN110964017A (zh) 2018-09-30 2020-04-07 江苏创诺制药有限公司 瑞博西尼单琥珀酸盐的多晶型物及其制备方法和用途
WO2020225827A1 (en) 2019-05-08 2020-11-12 Mylan Laboratories Limited Novel polymorphs of ribociclib succinate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102186856A (zh) * 2008-08-22 2011-09-14 诺瓦提斯公司 作为cdk抑制剂的吡咯并嘧啶化合物
CN103201275A (zh) * 2010-11-10 2013-07-10 诺华有限公司 7-环戊基-2-(5-哌嗪-1-基-吡啶-2-基氨基)-7h-吡咯并[2,3-d]嘧啶-6-羧酸二甲酰胺的盐及其制备方法
CN105085533A (zh) * 2014-12-12 2015-11-25 苏州晶云药物科技有限公司 7-环戊基-2-(5-哌嗪-1-基-吡啶-2-基氨基)-7h-吡咯并[2,3-d]嘧啶-6-羧酸二甲酰胺单琥珀酸盐的新晶型
CN105111215A (zh) * 2014-12-12 2015-12-02 苏州晶云药物科技有限公司 一种周期蛋白依赖性激酶抑制剂的晶型及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3231805A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019040567A1 (en) 2017-08-25 2019-02-28 Teva Pharmaceuticals Usa, Inc. RIBOCICLIB SALTS AND SOLID STATE FORMS THEREOF
US11155545B2 (en) 2017-08-25 2021-10-26 Sicor—Societa Italiana Corticosteroid s.r.l. Ribociclib salts and solid state forms thereof
EP4327880A2 (en) 2017-08-25 2024-02-28 Assia Chemical Industries Ltd Solid state form of ribociclib succinate
WO2019082143A1 (en) 2017-10-27 2019-05-02 Fresenius Kabi Oncology Ltd. IMPROVED PROCESS FOR THE PREPARATION OF RIBOCICLIB AND ITS SALTS
US11440912B2 (en) 2017-10-27 2022-09-13 Fresenius Kabi Oncology Ltd Process for the preparation of ribociclib and its salts
WO2019123364A1 (en) * 2017-12-22 2019-06-27 Shilpa Medicare Limited Novel polymorphs of ribociclib mono succinate
US11111250B2 (en) 2017-12-22 2021-09-07 Shilpa Meicare Limited Polymorphs of Ribociclib mono succinate
WO2019167068A1 (en) 2018-03-01 2019-09-06 Cipla Limited Novel polymorphs of ribociclib succinate
US10611772B2 (en) 2018-07-02 2020-04-07 Apotex Inc. Crystalline form of Ribociclib succinate
WO2022207788A2 (en) 2021-04-01 2022-10-06 Krka, D.D., Novo Mesto Process for the preparation of ribociclib and pharmaceutically acceptable salts thereof

Also Published As

Publication number Publication date
US9994579B2 (en) 2018-06-12
EP3231805A4 (en) 2018-06-13
US20170342075A1 (en) 2017-11-30
EP3231805A1 (en) 2017-10-18
EP3231805B1 (en) 2020-03-04

Similar Documents

Publication Publication Date Title
WO2016091221A1 (zh) 吡咯并[2,3-d]嘧啶化合物的盐及盐的新晶型
WO2016110270A1 (zh) 来那替尼马来酸盐的新晶型及其制备方法
WO2016184436A1 (zh) 乐伐替尼甲磺酸盐的新晶型及其制备方法
CN105111215B (zh) 一种周期蛋白依赖性激酶抑制剂的晶型及其制备方法
WO2016165650A1 (zh) 奥拉帕尼与尿素的共晶及其制备方法
WO2016124149A1 (zh) 一种治疗前列腺癌的抗雄激素类药物的新晶型及其制备方法
JP2012521992A (ja) 7−[(3r,4r)−3−ヒドロキシ−4−ヒドロキシメチル−ピロリジン−1−イルメチル]−3,5−ジヒドロ−ピロロ[3,2−d]ピリミジン−4−オンの有用な医薬塩
WO2019019959A1 (zh) 瑞博西尼的单琥珀酸盐晶型及其制备方法和用途
BR112019021447A2 (pt) sal fumarato, forma cristalina i do referido sal, métodos para preparação dos mesmos, composição farmacêutica compreendendo o sal e a forma cristalina i e uso do sal fumarato, da forma cristalina i e da composição farmacêutica
WO2018006870A1 (zh) Galunisertib的晶型及其制备方法和用途
WO2021129589A1 (zh) Kd-025的新晶型及其制备方法
US10196395B2 (en) Crystalline form alpha of IPI-145 and preparation method thereof
US10138250B2 (en) Salt of pyrrolo[2,3-D]pyrimidine compound and novel polymorph of salt
CN110156793B (zh) 瑞博西尼单琥珀酸盐新晶型及制备方法
WO2016078587A1 (zh) Lu AE58054的盐酸盐晶型A及其制备方法和用途
WO2017028802A1 (zh) 5-[2, 6-二(4-吗啉基)-4-嘧啶基]-4-(三氟甲基)-2-吡啶胺二盐酸盐的晶型及其制备方法
WO2016124125A1 (zh) (R)-7-氯-N-(奎宁环-3-基)苯并[b]噻吩-2-甲酰胺的盐酸盐的新晶型
WO2017197904A2 (zh) 帕布昔利布的新晶型及其制备方法及其用途
WO2017016512A1 (zh) 马赛替尼甲磺酸盐的新晶型及其制备方法
WO2018137670A1 (zh) 一种病毒蛋白抑制剂药物vx-787的晶型及其制备方法和用途
TWI680977B (zh) c-Met抑制劑之多晶形式及共晶
TWI727517B (zh) 貝前列素-314d晶體及其製備方法
WO2016101912A1 (zh) 一种表皮生长因子受体激酶抑制剂的盐的晶型及其制备方法
WO2019105082A1 (zh) Galunisertib的晶型及其制备方法和用途
WO2019105388A1 (zh) 一种a3腺苷受体激动剂药物的晶型及其制备方法和用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15867450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15535104

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015867450

Country of ref document: EP