WO2016088556A1 - α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体、その製造方法、成形体、及び、レゾルシン-ホルマリン-ラテックス接着剤 - Google Patents

α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体、その製造方法、成形体、及び、レゾルシン-ホルマリン-ラテックス接着剤 Download PDF

Info

Publication number
WO2016088556A1
WO2016088556A1 PCT/JP2015/082412 JP2015082412W WO2016088556A1 WO 2016088556 A1 WO2016088556 A1 WO 2016088556A1 JP 2015082412 W JP2015082412 W JP 2015082412W WO 2016088556 A1 WO2016088556 A1 WO 2016088556A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
olefin
rubber particles
aqueous dispersion
acid ester
Prior art date
Application number
PCT/JP2015/082412
Other languages
English (en)
French (fr)
Inventor
泰暢 宮崎
杉原 範洋
晃平 澤田
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to EP15865733.8A priority Critical patent/EP3228655A4/en
Priority to US15/531,296 priority patent/US20170342258A1/en
Priority to JP2016562375A priority patent/JPWO2016088556A1/ja
Publication of WO2016088556A1 publication Critical patent/WO2016088556A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/04Homopolymers or copolymers of ethene
    • C09J123/08Copolymers of ethene
    • C09J123/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C09J123/0869Acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/07Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from polymer solutions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D123/04Homopolymers or copolymers of ethene
    • C09D123/08Copolymers of ethene
    • C09D123/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C09D123/0869Acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J161/00Adhesives based on condensation polymers of aldehydes or ketones; Adhesives based on derivatives of such polymers
    • C09J161/04Condensation polymers of aldehydes or ketones with phenols only
    • C09J161/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/50Aqueous dispersion, e.g. containing polymers with a glass transition temperature (Tg) above 20°C
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/54Aqueous solutions or dispersions

Definitions

  • the present invention relates to an aqueous dispersion of ⁇ -olefin- (meth) acrylate rubber particles having excellent storage stability and excellent oil resistance of a molded product.
  • the present invention also relates to a method for producing the aqueous dispersion, a molded article produced using the aqueous dispersion, and a resorcin-formalin-latex adhesive.
  • HNBR hydrogenated acrylonitrile butadiene rubber
  • CR chloroprene rubber
  • a transmission belt such as a timing belt is generally made of a material obtained by combining a rubber material with organic fibers such as polyester, aramid, polyamide, or fibers such as glass fibers as a reinforcing material. Used. Usually, in such a composite material, rubber and reinforcing fibers are bonded using an adhesive, and as the adhesive, not only adhesiveness but also heat resistance, oil resistance, weather resistance, wear resistance, for the purpose of forming an adhesive layer excellent in bending fatigue resistance, for example, an adhesive using a rubber latex such as resorcin-formaldehyde-latex adhesive (hereinafter also referred to as “RFL adhesive”) is used. (For example, Patent Document 1).
  • RTL adhesive resorcin-formaldehyde-latex adhesive
  • Latex used in this RFL adhesive is butadiene / styrene copolymer latex, dicarboxylated butadiene / styrene copolymer latex, vinylpyridine / butadiene / styrene terpolymer latex, chloroprene latex, chlorosulfonated polyethylene latex, HNBR. Latex and the like are used, but the creation of a new high-performance latex that is superior in oil resistance and storage stability is desired.
  • the present invention comprises an aqueous medium, a surfactant, and ⁇ -olefin- (meth) acrylic ester rubber particles, and the surfactant is contained in the ⁇ -olefin- (meth) acrylic acid.
  • the present inventors have disclosed an aqueous solution of an ⁇ -olefin- (meth) acrylate rubber particle containing an aqueous medium, ⁇ -olefin- (meth) acrylate rubber particles, and a specific amount of a surfactant.
  • the dispersion was found to be an aqueous dispersion excellent in storage stability and oil resistance of the molded product, and the present invention was completed.
  • the aqueous dispersion of ⁇ -olefin- (meth) acrylate rubber particles of the present invention contains ⁇ -olefin- (meth) acrylate rubber particles.
  • the ⁇ -olefin- (meth) acrylic acid ester rubber particles are rubber particles containing a copolymer having a structural unit derived from an ⁇ -olefin and a structural unit derived from a (meth) acrylic acid ester.
  • the “(meth) acryl” means at least one of “acryl” and “methacryl”.
  • Examples of the ⁇ -olefin used as a raw material for the ⁇ -olefin- (meth) acrylic acid ester rubber include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene and the like. Is mentioned. Of these, ethylene is preferable.
  • Examples of the (meth) acrylic acid ester used as a raw material for the ⁇ -olefin- (meth) acrylic acid ester rubber include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, and (meth) acrylic acid n- Examples thereof include butyl, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and the like. Of these, methyl acrylate and ethyl acrylate are preferable.
  • the ⁇ -olefin- (meth) acrylic acid ester rubber constituting the ⁇ -olefin- (meth) acrylic acid ester rubber particles is an ethylene- (meth) acrylic acid ester copolymer, ethylene- (meth) acrylic acid. It is preferable to contain at least one selected from the group consisting of an ester-unsaturated carboxylic acid copolymer and an ethylene-vinyl acetate- (meth) acrylic acid ester copolymer.
  • the ethylene- (meth) acrylic acid ester copolymer has a preferred lower limit of the content of structural units derived from the (meth) acrylic acid ester of 25% by mass and a preferred upper limit of 80% by mass.
  • the content ratio of the structural unit derived from the (meth) acrylic acid ester is 25% by mass or more, the copolymer tends to be more excellent in oil resistance and grease resistance.
  • the content ratio of the structural unit derived from the (meth) acrylic acid ester is 80% by mass or less, the copolymer tends to be more excellent in flexibility at low temperatures.
  • the more preferable lower limit of the content ratio of the structural unit derived from the (meth) acrylic acid ester in the ethylene- (meth) acrylic acid ester copolymer is 30% by mass, and the more preferable upper limit is 70% by mass.
  • the ethylene- (meth) acrylic acid ester copolymer may be a binary copolymer composed of ethylene and (meth) acrylic acid ester, ethylene, (meth) acrylic acid ester, cross-linking site monomer, A multi-component copolymer consisting of Among these, a multi-component copolymer composed of ethylene, (meth) acrylic acid ester, and a crosslinking site monomer having reactivity with an epoxy resin and / or a curing agent is preferable.
  • examples of the crosslinking site monomer used as a raw material for the multi-component copolymer rubber include monomethyl maleate, monoethyl maleate, and monoester maleate.
  • examples thereof include maleic acid monoesters such as isopropyl, unsaturated glycidyl monocarboxylic acid such as glycidyl (meth) acrylate, and the like. Of these, maleic acid monoester is preferable.
  • the preferable lower limit of the content ratio of the structural unit derived from the crosslinking site monomer in the multi-component copolymer is 0.1% by mass, and the preferable upper limit is 10% by mass.
  • the content ratio of the structural unit derived from the cross-linking site monomer is 0.1% by mass or more, the copolymer tends to be a more excellent oil-resistant copolymer.
  • the content ratio of the structural unit derived from the crosslinking site monomer is 10% by mass or less, the copolymer tends to be superior in strength and oil resistance.
  • the more preferable lower limit of the content ratio of the structural unit derived from the crosslinking site monomer is 0.3% by mass, and the more preferable upper limit is 7% by mass.
  • the ethylene- (meth) acrylic acid ester copolymer has a preferable lower limit of the melt flow rate at 190 ° C. and a load of 2160 g of 0.1 g / 10 minutes, and a preferable upper limit of 120 g / 10 minutes.
  • the melt flow rate is 0.1 g / 10 min or more, there is a tendency that the strength is higher and the copolymer is more excellent in oil resistance.
  • the melt flow rate is 120 g / 10 min or less, the ethylene- (meth) acrylic acid ester copolymer has good fluidity when melted and tends to be a copolymer that is easier to mold.
  • the more preferable lower limit of the melt flow rate of the ethylene- (meth) acrylic acid ester copolymer is 0.3 g / 10 minutes, and the more preferable upper limit is 30 g / 10 minutes.
  • the “melt flow rate” can be measured using a melt indexer device (for example, “L240” manufactured by Techno Seven Co., Ltd.).
  • Examples of the unsaturated carboxylic acid used as a raw material for the ethylene- (meth) acrylic acid ester-unsaturated carboxylic acid copolymer include acrylic acid, methacrylic acid, ethacrylic acid, fumaric acid, maleic acid, maleic anhydride, etc. Is mentioned. Of these, acrylic acid and methacrylic acid are preferable.
  • the ethylene- (meth) acrylic acid ester-unsaturated carboxylic acid copolymer has a preferred lower limit of the content ratio of structural units derived from the (meth) acrylic acid ester of 0.5% by mass, and a preferred upper limit of 50% by mass. is there.
  • the content ratio of the structural unit derived from the (meth) acrylic acid ester is 0.5% by mass or more, the copolymer tends to be more excellent in oil resistance and low temperature characteristics.
  • the content ratio of the structural unit derived from the (meth) acrylic acid ester is 50% by mass or less, the viscosity of the obtained aqueous dispersion tends to be further suppressed, and the adhesive is used when used as an adhesive. It is possible to prevent stickiness from occurring on the surface.
  • the more preferable lower limit of the content ratio of the structural unit derived from the (meth) acrylic acid ester in the ethylene- (meth) acrylic acid ester-unsaturated carboxylic acid copolymer is 1% by mass, and the more preferable upper limit is 30% by mass.
  • the ethylene- (meth) acrylic acid ester-unsaturated carboxylic acid copolymer has a preferred lower limit of the content of structural units derived from the unsaturated carboxylic acid of 1% by mass and a preferred upper limit of 15% by mass.
  • the content ratio of the structural unit derived from the unsaturated carboxylic acid is 15% by mass or less, it can be sufficiently dissolved in the solvent.
  • a more preferable lower limit of the content ratio of the structural unit derived from the unsaturated carboxylic acid in the ethylene- (meth) acrylic acid ester-unsaturated carboxylic acid copolymer is 3% by mass, and a more preferable upper limit is 10% by mass.
  • the ethylene- (meth) acrylic acid ester-unsaturated carboxylic acid copolymer has a preferable lower limit of the melt flow rate at 190 ° C. and a load of 2160 g of 0.5 g / 10 minutes, and a preferable upper limit of 100 g / 10 minutes.
  • the melt flow rate is 0.5 g / 10 min or more, there is a tendency that the strength is higher and the copolymer is more excellent in oil resistance.
  • the melt flow rate is 100 g / 10 min or less, the fluidity at the time of melting tends to be good, and the copolymer tends to be easier to mold.
  • the lower limit of the melt flow rate of the ethylene- (meth) acrylic ester-unsaturated carboxylic acid copolymer is more preferably 0.8 g / 10 minutes, and the upper limit is more preferably 80 g / 10 minutes.
  • the structural unit derived from vinyl acetate in the ethylene-vinyl acetate- (meth) acrylic acid ester copolymer may be partially saponified.
  • the lower limit of the content of the structural unit derived from the (meth) acrylic acid ester is preferably 0.5% by mass, and the upper limit is preferably 70% by mass.
  • the content ratio of the structural unit derived from the (meth) acrylic acid ester is 0.5% by mass or more, the strength tends to be higher and the copolymer is more excellent in oil resistance.
  • the copolymer tends to be a copolymer having more excellent flexibility and oil resistance.
  • the more preferable lower limit of the content of the structural unit derived from the (meth) acrylate ester in the ethylene-vinyl acetate- (meth) acrylate ester copolymer is 1% by mass, and the more preferable upper limit is 60% by mass.
  • the preferred lower limit of the content of structural units derived from vinyl acetate is 0.5% by mass, and the preferred upper limit is 30% by mass.
  • the content ratio of the structural unit derived from the vinyl acetate When the content ratio of the structural unit derived from the vinyl acetate is 0.5% by mass or more, it tends to be a copolymer having more excellent heat resistance. When the content ratio of the structural unit derived from the vinyl acetate is 30% by mass or less, the copolymer tends to have a more excellent oil resistance.
  • the more preferable lower limit of the content ratio of the structural unit derived from vinyl acetate in the ethylene-vinyl acetate- (meth) acrylic acid ester copolymer is 1% by mass, and the more preferable upper limit is 15% by mass.
  • the ethylene-vinyl acetate- (meth) acrylic acid ester copolymer may be a terpolymer comprising ethylene, vinyl acetate and (meth) acrylic acid ester, or ethylene and vinyl acetate (meta) )
  • a multi-component copolymer comprising an acrylic ester and a crosslinking site monomer may be used.
  • a multi-component copolymer composed of ethylene, vinyl acetate, (meth) acrylic acid ester, and a crosslinking site monomer having reactivity with an epoxy resin and / or a curing agent is preferable.
  • the ethylene-vinyl acetate- (meth) acrylic acid ester copolymer has a preferable lower limit of the melt flow rate at 190 ° C. and a load of 2160 g of 0.2 g / 10 minutes, and a preferable upper limit of 200 g / 10 minutes.
  • the melt flow rate is 0.2 g / 10 min or more, the strength tends to be higher and the copolymer is more excellent in oil resistance.
  • the melt flow rate is 200 g / 10 min or less, the fluidity at the time of melting tends to be good, and the copolymer tends to be easier to mold.
  • the more preferable lower limit of the melt flow rate of the ethylene-vinyl acetate- (meth) acrylic acid ester copolymer is 1.0 g / 10 minutes, and the more preferable upper limit is 180 g / 10 minutes.
  • the preferred lower limit is 5 and the preferred upper limit is 80.
  • the Mooney viscosity is 5 or more, moderately small rubber particles are obtained, and the resulting aqueous dispersion tends to be more excellent in storage stability (particularly stationary stability).
  • the Mooney viscosity is 80 or less, the molecular weight of the ⁇ -olefin- (meth) acrylic acid ester rubber does not become too low, and a molded article having sufficient strength can be obtained.
  • a more preferable lower limit of the Mooney viscosity is 16, and a more preferable upper limit is 55.
  • the ⁇ -olefin- (meth) acrylic ester rubber can be prepared, for example, by radical copolymerization under high temperature and pressure.
  • Examples of commercially available ⁇ -olefin- (meth) acrylate rubbers include ethylene- (meth) acrylate copolymers and ethylene- (meth) acrylate-unsaturated carboxylic acids.
  • Examples of the copolymer include Baymac G, Baymac GLS, Baymac GXF, Baymac DP (all manufactured by Mitsui DuPont Polychemical Co., Ltd.) and the like, and ethylene-vinyl acetate- (meth) acrylic acid ester copolymers include Denka ER A403, Denka ER A804, Denka ER 8401, Denka ANX-3 (all manufactured by Denki Kagaku Kogyo Co., Ltd.) and the like.
  • the ⁇ -olefin- (meth) acrylic ester rubber particles may be used singly, or the above-mentioned structural units having different content ratios, modified ones, ⁇ - serving as a raw material Two or more kinds of olefins having different kinds may be used in combination.
  • the preferable lower limit of the average particle diameter of the ⁇ -olefin- (meth) acrylic ester rubber particles is 0.1 ⁇ m, and the preferable upper limit is 5 ⁇ m.
  • the average particle size of the ⁇ -olefin- (meth) acrylate rubber particles is 0.1 ⁇ m or more, the viscosity of the aqueous dispersion of the ⁇ -olefin- (meth) acrylate rubber particles obtained is It tends to be easy to handle without becoming too expensive.
  • the resulting aqueous dispersion of ⁇ -olefin- (meth) acrylate rubber particles has storage stability ( In particular, there is a tendency to be more excellent in standing stability).
  • the average particle diameter of the ⁇ -olefin- (meth) acrylic ester rubber particles can be appropriately adjusted by adjusting the stirring and mixing conditions in the production method described later.
  • the “average particle diameter of the ⁇ -olefin- (meth) acrylic acid ester rubber particles” refers to the aqueous dispersion of the obtained ⁇ -olefin- (meth) acrylic acid ester rubber particles. It is a value measured using a laser diffraction particle size distribution analyzer (for example, “SALD-2000J” manufactured by Shimadzu Corporation).
  • the aqueous dispersion of ⁇ -olefin- (meth) acrylate rubber particles of the present invention contains a surfactant.
  • the surfactant include an anionic surfactant and a nonionic surfactant.
  • anionic surfactant examples include fatty acid salts such as fatty acid sodium and fatty acid potassium, polyoxyalkylene (alkyl or alkenyl) ether sulfate, polyoxyalkylene alkylphenyl ether sulfate, alkylbenzene sulfonate, and alkyl naphthalene sulfone. Acid salts, alkyl diphenyl sulfonates, ⁇ -olefin sulfonates, alkyl sulfate esters, naphthalene sulfonate formalin condensates, sulfosuccinates, polyoxyethylene alkyl ether acetates, rosinates, etc. .
  • fatty acid salts such as fatty acid sodium and fatty acid potassium
  • polyoxyalkylene (alkyl or alkenyl) ether sulfate polyoxyalkylene alkylphenyl ether sulfate
  • sulfosuccinate polyoxyalkylene (alkyl or alkenyl) ether sulfate, and fatty acid salt are preferred because they are excellent in emulsifying dispersibility and stability, are inexpensive and easily available.
  • sulfosuccinate a compound represented by the following formula (1) is preferably used.
  • X represents sodium, potassium, an amino group, or an ammonium group.
  • R 1 and R 2 each represent an alkyl group having 5 to 12 carbon atoms or a phenyl group, and may be the same or different.
  • sulfosuccinate examples include dioctylsulfosuccinate, di (ethylhexyl) sulfosuccinate, alkylphenylsulfosuccinate, didodecylsulfosuccinate and the like. Of these, dioctyl sulfosuccinate is preferable.
  • polyoxyalkylene (alkyl or alkenyl) ether sulfate a compound represented by the following formula (2) is preferably used.
  • X represents sodium, potassium, an amino group, or an ammonium group.
  • R 3 represents an alkyl group having 5 to 24 carbon atoms or an alkenyl group having 5 to 24 carbon atoms.
  • n represents an integer of 2 to 50, and (AO) n represents — (— C 2 H 4 O—) n1 — (— C 3 H 6 O—) n2 — (n1 represents an integer of 0 to 50 N2 represents an integer of 0 to 50, and the sum of n1 and n2 is n, provided that when neither n1 nor n2 is 0, (—C 2 H 4 O—) and (—C 3
  • the order of arrangement with H 6 O—) is not particularly limited, and may be, for example, a block or random.
  • polyoxyalkylene (alkyl or alkenyl) ether sulfate examples include polyoxyalkylene lauryl ether sulfate, polyoxyalkylene oleyl ether sulfate, and the like.
  • polyoxyalkylene lauryl ether sulfate examples include sodium polyoxyalkylene lauryl ether sulfate such as polyoxyethylene lauryl ether sodium sulfate, and polyoxyalkylene lauryl ether ammonium sulfate such as polyoxyethylene lauryl ether ammonium sulfate.
  • polyoxyalkylene oleyl ether sulfate examples include sodium polyoxyalkylene oleyl ether sulfate such as sodium polyoxyethylene oleyl ether sulfate and sodium polyoxypropylene oleyl ether sulfate, and polyoxyalkylene such as polyoxyethylene oleyl ether ammonium sulfate. Examples include oleyl ether ammonium sulfate. Of these, polyoxyalkylene lauryl ether sulfate is preferable, sodium polyoxyalkylene lauryl ether sulfate is more preferable, and sodium polyoxyethylene lauryl ether sulfate is still more preferable.
  • fatty acid salt a compound represented by the following formula (3) is preferably used.
  • X represents sodium, potassium, an amino group, or an ammonium group.
  • R 4 represents an alkyl group having 5 to 24 carbon atoms or an alkenyl group having 5 to 24 carbon atoms.
  • fatty acid salt examples include oleate, stearate, laurate, myristate, palmitate and the like. Of these, oleate is preferable.
  • nonionic surfactant examples include polyethylene glycol, ethylene oxide-propylene oxide copolymer, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl thioether, polyoxyethylene sorbitan fatty acid monoester, polyoxyethylene Examples thereof include oxyethylene alkylamides and polyglycerin esters.
  • polyethylene glycol, ethylene oxide-propylene oxide copolymer, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, and polyoxyethylene sorbitan fatty acid monoester are preferable, from the viewpoint of excellent emulsifying dispersibility and heat resistance.
  • An ethylene oxide-propylene oxide copolymer is more preferable.
  • ethylene oxide-propylene oxide copolymer a compound represented by the following formula (4) is preferably used.
  • p represents an integer of 2 to 300
  • q represents an integer of 10 to 150
  • r represents an integer of 2 to 300.
  • the preferable lower limit of the mass average molecular weight of the ethylene oxide-propylene oxide copolymer is 3000, and the preferable upper limit is 30,000.
  • the mass average molecular weight of the ethylene oxide-propylene oxide copolymer is 3000 or more, it becomes a surfactant (emulsifier) having better dispersion stability, and thus the storage stability of the aqueous dispersion tends to be further improved.
  • the mass average molecular weight of the ethylene oxide-propylene oxide copolymer is 30,000 or less, it becomes a surfactant (emulsifier) having a better emulsifying power, and thus the storage stability of the aqueous dispersion tends to be further improved.
  • emulsifier emulsifier
  • a more preferable lower limit of the mass average molecular weight of the ethylene oxide-propylene oxide copolymer is 6000, a more preferable upper limit is 25000, a still more preferable lower limit is 8000, and a further preferable upper limit is 20,000.
  • a preferred lower limit for the content of ethylene oxide units in the ethylene oxide-propylene oxide copolymer is 40% by mass, and a preferred upper limit is 95% by mass.
  • a surfactant (emulsifier) having better dispersion stability is obtained, so that the storage stability of the aqueous dispersion tends to be further improved.
  • a surfactant (emulsifier) having more excellent emulsifying power is obtained, and thus the storage stability of the aqueous dispersion tends to be further improved.
  • the more preferable lower limit of the content of the ethylene oxide unit is 45% by mass, the more preferable upper limit is 90% by mass, the still more preferable lower limit is 50% by mass, and the still more preferable upper limit is 85% by mass.
  • the said surfactant may be used independently and may be used in combination of 2 or more type.
  • the anionic surfactant and the nonionic surfactant may be used in combination.
  • the surfactant is at least one compound selected from the group consisting of sulfosuccinate, polyoxyalkylene (alkyl or alkenyl) ether sulfate, fatty acid salt, and ethylene oxide-propylene oxide copolymer. It is preferable to include.
  • the lower limit of the content of the surfactant is 1 part by mass and the upper limit is 15 parts by mass with respect to 100 parts by mass of the ⁇ -olefin- (meth) acrylate rubber particles.
  • the content of the surfactant is 1 part by mass or more, a stable aqueous dispersion can be obtained.
  • the content of the surfactant is 15 parts by mass or less, it can be easily emulsified, and physical properties such as adhesiveness can be impaired, or bleed due to the surfactant can be generated on the surface.
  • a molded body can be obtained without any problems.
  • the minimum with preferable content of the said surfactant is 1.2 mass parts, a preferable upper limit is 12 mass parts, a more preferable minimum is 1.5 mass parts, and a more preferable upper limit is 10 mass parts.
  • the aqueous dispersion of ⁇ -olefin- (meth) acrylic acid ester rubber particles of the present invention has the purpose of making emulsification easier and obtaining a more stable aqueous dispersion as long as the object of the present invention is not impaired.
  • a polymer dispersion stabilizer may be contained.
  • polymer dispersion stabilizer examples include polyvinyl alcohol, hydroxyethyl cellulose, methyl cellulose, hydroxypropyl cellulose, polyvinyl pyrrolidone, polyacrylate, polyacrylate ester salt, sodium alginate and the like.
  • the content of the polymer dispersion stabilizer is 0.1 to 10 parts by mass with respect to 100 parts by mass of the ⁇ -olefin- (meth) acrylate rubber particles. Preferably there is.
  • the aqueous dispersion of ⁇ -olefin- (meth) acrylic ester rubber particles of the present invention contains an aqueous medium.
  • the aqueous medium include water, a mixture of an aqueous organic solvent such as methyl alcohol, ethyl alcohol, and isopropyl alcohol and water, and water is preferably used.
  • the content of the aqueous medium is preferably 40 parts by mass and preferably 1000 parts by mass with respect to 100 parts by mass of the ⁇ -olefin- (meth) acrylate rubber particles.
  • the content of the aqueous medium is 40 parts by mass or more, a more stable aqueous dispersion tends to be obtained.
  • the minimum with more preferable content of the said aqueous medium is 50 mass parts, and a more preferable upper limit is 150 mass parts.
  • the aqueous dispersion of ⁇ -olefin- (meth) acrylate rubber particles of the present invention is obtained by emulsifying and dispersing ⁇ -olefin- (meth) acrylate rubber in an aqueous medium in the presence of a surfactant. Can be obtained.
  • a method for producing an aqueous dispersion of ⁇ -olefin- (meth) acrylate rubber particles of the present invention comprising an organic solution in which an ⁇ -olefin- (meth) acrylate rubber is dissolved in an organic solvent;
  • An ⁇ -olefin- (meth) having a step of mixing an aqueous solution in which a surfactant is dissolved in an aqueous medium to obtain an emulsion, and a step of distilling off the organic solvent from the obtained emulsion
  • a method for producing an aqueous dispersion of acrylic ester rubber particles a step of mixing an ⁇ -olefin- (meth) acrylic ester rubber, a surfactant and an aqueous medium to obtain a mixed liquid, and
  • Aqueous dispersion of ⁇ -olefin- (meth) acrylate rubber particles having a step of heating and emulsifying the mixed liquid above the softening temperature of the ⁇ -olef
  • an organic solution in which ⁇ -olefin- (meth) acrylate rubber is dissolved in an organic solvent comprising a step of mixing an aqueous solution in which a surfactant is dissolved in an aqueous medium to obtain an emulsion, and a step of distilling off the organic solvent from the obtained emulsion.
  • the production method 2 of the present invention is a method having a step of emulsifying by heating above the softening temperature of the acid ester rubber.
  • a method for dissolving the ⁇ -olefin- (meth) acrylate rubber in the organic solvent a method in which the ⁇ -olefin- (meth) acrylate rubber is added to the organic solvent.
  • the organic solvent in which the ⁇ -olefin- (meth) acrylic acid ester rubber is dissolved include, for example, acyclic aliphatic hydrocarbon organic solvents such as pentane, hexane, heptane, and octane, and rings such as cyclohexane and decalin.
  • an aliphatic hydrocarbon organic solvent such as toluene, xylene, ethylbenzene and tetralin, and a halogenated hydrocarbon organic solvent such as chloroform and 1,2-dichloroethane.
  • organic solvents may be used alone or in combination of two or more.
  • the organic solvent lower alcohols such as methanol, ethanol, isopropyl alcohol, and t-butanol may be used in combination as a solubilizing agent, and the solubility of ⁇ -olefin- (meth) acrylic acid ester rubber is excellent. It is preferable to use a mixed solvent of an aromatic hydrocarbon-based organic solvent or a cycloaliphatic hydrocarbon-based organic solvent and lower alcohols.
  • the mixing ratio of the aromatic hydrocarbon organic solvent or the cyclic aliphatic hydrocarbon organic solvent and the lower alcohol is not particularly limited, but the aromatic hydrocarbon organic solvent or the cyclic aliphatic hydrocarbon is not limited.
  • the lower alcohol is preferably mixed in an amount of 5 to 100 parts by mass, more preferably 10 to 60 parts by mass with respect to 100 parts by mass of the organic solvent.
  • the amount of the organic solvent used is not particularly limited, but is preferably adjusted so that the concentration of the ⁇ -olefin- (meth) acrylic ester rubber in the obtained organic solution is 3 to 30% by mass.
  • concentration of the ⁇ -olefin- (meth) acrylate rubber in the organic solution is 3 to 30% by mass, the ⁇ -olefin- (meth) acrylate rubber is more uniformly dissolved in the organic solution.
  • the particle diameter of the ⁇ -olefin- (meth) acrylate rubber in the aqueous dispersion of the target ⁇ -olefin- (meth) acrylate rubber can be appropriately reduced. it can.
  • the temperature at which the ⁇ -olefin- (meth) acrylic acid ester rubber is dissolved in an organic solvent is not particularly limited, but is usually 100 ° C. or lower.
  • a method for dissolving the surfactant in the aqueous medium a method of adding the surfactant to the aqueous medium can be used.
  • the amount of the surfactant added is preferably such that the concentration in the resulting aqueous solution is 0.1 to 50% by mass.
  • an organic solution is obtained.
  • the mixing ratio of the aqueous solution and the aqueous solution is set so that the content of the surfactant with respect to the ⁇ -olefin- (meth) acrylic ester rubber particles is within the above-mentioned range.
  • the preferable minimum of the mixing ratio of the aqueous solution with respect to 100 mass parts of organic solutions is 20 mass parts, and a preferable upper limit is 500 mass parts.
  • the mixing ratio of the aqueous solution is 20 parts by mass or more, the viscosity of the obtained emulsion does not become too high, and it tends to be easily emulsified.
  • the mixing ratio of the aqueous solution is 500 parts by mass or less, an emulsion tends to be obtained efficiently.
  • a more preferable lower limit of the mixing ratio of the aqueous solution is 25 parts by mass, and a more preferable upper limit is 200 parts by mass.
  • a method of mixing the organic solution and the aqueous solution to obtain an emulsion for example, a method of stirring and mixing using an emulsifier such as a homomixer or a colloid mill, or dispersion using an ultrasonic disperser, The method of mixing etc. is mentioned. Especially, the method of stirring and mixing using an emulsifier is preferable.
  • the temperature during emulsification is preferably in the range of 5 to 70 ° C.
  • the ⁇ -olefin- (meth) acrylic acid ester system is appropriately adjusted by adjusting the rotation speed, stirring time, temperature, etc. of the stirrer.
  • the average particle diameter of the rubber particles can be set to the preferred range described above.
  • the average particle diameter of the ⁇ -olefin- (meth) acrylic ester rubber particles can be adjusted by selecting the surfactant and adjusting the amount used, in addition to adjusting the number of revolutions of the stirrer and the stirring time.
  • the average particle diameter of the ⁇ -olefin- (meth) acrylic ester rubber particles can be set to the above-mentioned preferable range.
  • an aqueous dispersion of ⁇ -olefin- (meth) acrylate rubber particles of the present invention is obtained by the step of distilling off the organic solvent from the emulsion obtained by the above-described method.
  • a method for distilling off the organic solvent for example, a known method such as heating an emulsion under reduced pressure can be used.
  • the organic solvent may be concentrated to a desired solid content concentration by operations such as heat concentration, centrifugation, and wet separation.
  • the polymer dispersion stabilizer When preparing an aqueous dispersion of ⁇ -olefin- (meth) acrylate rubber particles containing the polymer dispersion stabilizer, the polymer dispersion stabilizer may be prepared by adding a surfactant to an aqueous medium, for example. It may be added when preparing the aqueous solution, or may be added to the aqueous dispersion obtained by distilling off the organic solvent from the emulsion.
  • an ⁇ -olefin- (meth) acrylate ester in a container is used as a method of mixing the ⁇ -olefin- (meth) acrylate rubber, the surfactant, and the aqueous medium.
  • examples thereof include a method of adding a base rubber, a surfactant, and an aqueous medium.
  • the addition amount of the surfactant is set so that the content with respect to the ⁇ -olefin- (meth) acrylate rubber is within the above-mentioned range.
  • the container used for mixing the ⁇ -olefin- (meth) acrylic acid ester rubber, the surfactant and the aqueous medium is a temperature higher than the temperature at which the ⁇ -olefin- (meth) acrylic acid ester rubber is softened in the aqueous medium.
  • a pressure-resistant vessel provided with a heating means for heating to the above temperature and a stirrer capable of giving a shearing force to the contents is preferable.
  • a pressure-resistant autoclave with a stirrer is preferably used.
  • the emulsion obtained by the step of heating and emulsifying the mixed solution above the softening temperature of the ⁇ -olefin- (meth) acrylate rubber is cooled to room temperature.
  • An aqueous dispersion of the ⁇ -olefin- (meth) acrylate rubber particles of the present invention is obtained.
  • the average particle diameter of the ⁇ -olefin- (meth) acrylic acid ester rubber particles can be adjusted to the above-mentioned preferable range by appropriately adjusting the rotation speed of the stirrer, the stirring time, the temperature and the like.
  • the average particle size of the ⁇ -olefin- (meth) acrylic acid ester rubber particles can be determined by adjusting the number of rotations of the stirrer and the stirring time, as well as by selecting the surfactant and adjusting the amount used.
  • the average particle diameter of the olefin- (meth) acrylic ester rubber particles can be set to the preferred range described above.
  • the polymer dispersion stabilizer When preparing an aqueous dispersion of ⁇ -olefin- (meth) acrylate rubber particles containing the polymer dispersion stabilizer, the polymer dispersion stabilizer may be, for example, an ⁇ -olefin- (meth) acrylate. It may be added when the system rubber, the surfactant and the aqueous medium are mixed, or may be added to the aqueous dispersion obtained by cooling the emulsion to room temperature.
  • the aqueous dispersion of ⁇ -olefin- (meth) acrylic ester rubber particles of the present invention is excellent in storage stability (particularly stationary stability) and molding processability.
  • the aqueous dispersion of the ⁇ -olefin- (meth) acrylic acid ester rubber particles of the present invention is applied to a base material, poured into a mold, and then dried (removing moisture) to obtain ⁇ Molded articles such as film, film, and sheet containing an olefin- (meth) acrylate rubber particle and a surfactant can be obtained.
  • a molded article produced (produced) using the aqueous dispersion of the ⁇ -olefin- (meth) acrylate rubber particles of the present invention is also one aspect of the present invention.
  • a method for producing the molded article of the present invention a method of drying the aqueous dispersion of the ⁇ -olefin- (meth) acrylate rubber particles of the present invention at a temperature of 40 to 200 ° C. is preferably used. .
  • a vulcanizing agent hydrogen peroxide, sulfur, etc.
  • a vulcanization auxiliary TAC, TAIC, etc.
  • a vulcanization accelerator an antioxidant, etc.
  • the aqueous dispersion of ⁇ -olefin- (meth) acrylic acid ester rubber particles of the present invention includes a coating agent for a plastic molded article, fiber, paper, film, etc., a gas barrier agent, a raw material for foam rubber, glass It is widely used as a raw material for resorcin-formaldehyde-latex (RFL) adhesives used for fibers and the like, hoses, tubes, belts, gaskets, packing molding materials, and the like, and has great industrial value.
  • RTL resorcin-formaldehyde-latex
  • the aqueous dispersion of ⁇ -olefin- (meth) acrylic acid ester rubber particles of the present invention has excellent oil resistance, and therefore has a latex component of an adhesive such as an RFL adhesive and binder materials for various plastics. It can be used as a coating material or the like, but is particularly suitable as a latex component of an RFL adhesive to glass fibers or organic fibers.
  • a resorcin-formalin-latex adhesive containing an aqueous dispersion of ⁇ -olefin- (meth) acrylate rubber particles of the present invention as a latex component is also one aspect of the present invention.
  • a vulcanizing agent crosslinking agent
  • examples of the vulcanizing agent include zinc oxide, sulfur-based vulcanizing agent, and organic peroxide.
  • sulfur vulcanizing agent examples include sulfur generally used as a rubber vulcanizing agent such as powder sulfur, highly dispersible sulfur, insoluble sulfur, tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetrabutylthiuram disulfide.
  • Thiurams such as tetramethylthiuram monosulfide, dipentamethylenethiuram tetrasulfide, pentaethylenedithiocarbamic acid piperidine salt, pipecolyldithiocarbamic acid pipecoline salt, zinc dimethyldithiocarbamate, zinc diethyldithiocarbamate, zinc dibutyldithiocarbamate, N -Zinc ethyl-N-phenyldithiocarbamate, zinc N-pentamethylenedithiocarbamate, zinc dibenzyldithiocarbamate, sodium dimethyldithiocarbamate, diethyl Dithiocarbamates such as sodium dithiocarbamate, sodium dibutyldithiocarbamate, copper dimethyldithiocarbamate, ferric dimethyldithiocarbamate, tellurium diethyldithiocarbamate, and xanthates such as zinc but
  • the amount used is preferably 0.05 parts by mass, preferably a lower limit with respect to 100 parts by mass of the ⁇ -olefin- (meth) acrylic acid ester rubber.
  • the upper limit is 5.0 parts by mass, the more preferred lower limit is 0.1 parts by mass, and the more preferred upper limit is 4.0 parts by mass.
  • organic peroxide examples include cumene hydroperoxide, di-t-butyl peroxide, t-butylcumyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-di- (t-butylperoxy).
  • the amount used is preferably 0.1 parts by mass, preferably upper limit with respect to 100 parts by mass of the ⁇ -olefin- (meth) acrylic acid ester rubber. Is 1.0 part by mass, a more preferred lower limit is 0.3 part by mass, a more preferred upper limit is 0.8 part by mass, and a still more preferred upper limit is 0.5 part by mass.
  • the vulcanizing agent may be added during the preparation of the RFL adhesive of the present invention, but the aqueous dispersion of the ⁇ -olefin- (meth) acrylate rubber particles of the present invention before preparing the RFL adhesive. May be added in advance.
  • the vulcanizing agent may be added to the aqueous dispersion of the produced ⁇ -olefin- (meth) acrylate rubber particles of the present invention.
  • the ⁇ -olefin- (meth) acrylic ester rubber particles may be added to an organic solution or an aqueous medium used in the production of the aqueous dispersion.
  • the RFL adhesive of the present invention may contain additives such as rubber latex, thickener, tackifier, and plasticizer in order to improve coatability and adhesiveness.
  • additives may be added to the prepared RFL adhesive, but the aqueous dispersion of the ⁇ -olefin- (meth) acrylate rubber particles of the present invention before preparing the RFL adhesive It may be added in advance to the body. Depending on the type of additive, it may be added to the organic solution or aqueous dispersion medium used in the production of the aqueous dispersion of the ⁇ -olefin- (meth) acrylate rubber particles of the present invention.
  • the additives are preferably added individually or as a mixed aqueous solution or aqueous dispersion.
  • an aqueous dispersion of ⁇ -olefin- (meth) acrylate rubber particles having excellent storage stability and oil resistance of a molded product can be provided.
  • a method for producing the aqueous dispersion, a molded article produced using the aqueous dispersion, and a resorcin-formalin-latex adhesive can be provided.
  • Example 1 In a separable flask having an internal volume of 500 mL, 20 parts by mass of Baymac G (Mitsui / DuPont Polychemical Co., Ltd., Mooney viscosity 16.5) as an ⁇ -olefin- (meth) acrylic acid ester rubber, 180 parts by mass of toluene, And dissolved by stirring at 55 ° C. for 4 hours. An aqueous solution obtained by dissolving 1.0 part by mass of potassium oleate as a surfactant in 100 parts by mass of water was added to the obtained toluene solution, and this was added to a homomixer (Primics Co., Ltd., “Mark II 2.5 type”).
  • the mixture was stirred and mixed for 6 minutes to obtain an emulsion.
  • the rotation speed and temperature at the time of stirring and mixing were set to 12000 rpm and 40 ° C., respectively.
  • the obtained emulsion was heated to 40 to 70 ° C. under a reduced pressure of 40 to 90 kPa, thereby distilling off toluene and obtaining an aqueous dispersion of ⁇ -olefin- (meth) acrylate rubber particles. .
  • Example 2 In a separable flask having an internal volume of 500 mL, 20 parts by mass of Baymac GLS (Mitsui / DuPont Polychemical Co., Ltd. Mooney viscosity 18) as an ⁇ -olefin- (meth) acrylic acid ester rubber, 162 parts by mass of toluene, and isopropyl 18 parts by mass of alcohol was added and dissolved by stirring at 60 ° C. for 4 hours.
  • Baymac GLS Mitsubishi Chemical Co., Ltd. Mooney viscosity 18
  • aqueous solution obtained by dissolving 0.8 parts by mass of sodium dioctylsulfosuccinate as a surfactant in 100 parts by mass of water was added to the obtained organic solution, and this was added to a homomixer (Primics Co., “Mark II 2.5 type”). ) And stirred for 6 minutes to obtain an emulsion.
  • the rotation speed and temperature at the time of stirring and mixing were set to 12000 rpm and 40 ° C., respectively.
  • the obtained emulsion is heated to 40 to 70 ° C. under a reduced pressure of 40 to 90 kPa to distill off toluene and isopropyl alcohol, and an aqueous dispersion of ⁇ -olefin- (meth) acrylate rubber particles.
  • Example 3 In a separable flask having an internal volume of 500 mL, 20 parts by mass of Denka ANX-3 (manufactured by Denki Kagaku Kogyo Co., Ltd., Mooney viscosity 45) as an ⁇ -olefin- (meth) acrylate rubber, 162 parts by mass of toluene, and isopropyl 18 parts by mass of alcohol was added and dissolved by stirring at 60 ° C. for 4 hours. An aqueous solution in which 1.6 parts by mass of sodium polyoxyethylene lauryl ether sulfate as a surfactant was dissolved in 100 parts by mass of water was added to the obtained organic solution, and this was added to a homomixer ("Mark II2.
  • Example 4 160 parts by mass of Baymac GLS (manufactured by Mitsui-DuPont Polychemical Co., Ltd., Mooney viscosity 18) as an ⁇ -olefin- (meth) acrylate rubber in a pressure-resistant autoclave having an internal volume of 1 L equipped with a turbine type stirring blade having a diameter of 50 mm 224 parts by mass of deionized water and 16 parts by mass of an ethylene oxide-propylene oxide copolymer (manufactured by ADEKA, “Pluronic F108”, mass average molecular weight 15500, ethylene oxide unit content 80% by mass) as a surfactant. Charged and sealed.
  • Baymac GLS manufactured by Mitsui-DuPont Polychemical Co., Ltd., Mooney viscosity 18
  • the agitator was started and the temperature inside the autoclave was raised to 180 ° C. while stirring at a rotation speed of 500 rpm. The mixture was further stirred for 15 minutes while maintaining the internal temperature at 180 ° C., and then the contents were cooled to room temperature to obtain an aqueous dispersion of ⁇ -olefin- (meth) acrylate rubber particles.
  • Example 5 An aqueous dispersion of ⁇ -olefin- (meth) acrylate rubber particles was prepared in the same manner as in Example 2 except that the amount of sodium dioctylsulfosuccinate as a surfactant was changed to 3.0 parts by mass. Obtained.
  • Example 6 An aqueous dispersion of ⁇ -olefin- (meth) acrylate rubber particles was prepared in the same manner as in Example 2 except that the amount of sodium dioctylsulfosuccinate as a surfactant was changed to 0.2 parts by mass. Obtained.
  • Storage stability 40 g of each aqueous dispersion obtained in Examples 1 to 6 and Comparative Example 1 was placed in a 50 mL container, sealed, and left in a temperature environment of 25 ° C. Then, after 3 months, the state of the aqueous dispersion was visually observed. As a result, the storage stability was evaluated as “ ⁇ ” when there was no phase separation, “ ⁇ ” when the phase separation was confirmed in part, and “X” when the phase separation was complete.
  • aqueous dispersions 220 g obtained in Examples 1 to 6 and Comparative Examples 1 and 3 was placed in a petri dish having a diameter of 120 mm and dried at 80 ° C. for 12 hours to obtain a film. Thereafter, the obtained film was sandwiched between Teflon (registered trademark) plates and subjected to pressure molding at 120 ° C. and 20 Mpa for 1 minute with a press to obtain a sheet having a thickness of about 2 mm. 2 g of the obtained sheet was immersed in 30 g of motor oil (manufactured by Toyota Motor Corporation, “Toyota Castle SN 0W-20”) at 150 ° C. for 10 hours.
  • motor oil manufactured by Toyota Motor Corporation, “Toyota Castle SN 0W-20
  • the aqueous dispersions prepared in Examples 1 to 5 are excellent in storage stability.
  • the molded bodies (films) obtained from the aqueous dispersions prepared in Examples 1 to 4 and 6 did not have surfactant bleed.
  • the aqueous dispersion prepared in Comparative Example 1 surfactant bleeding was observed.
  • all the films obtained from the aqueous dispersions produced in Examples 1 to 6 had an oil resistance of 20% or less in the oil resistance evaluation, and were excellent in oil resistance.
  • the film obtained from the latex of Comparative Example 3 had a mass increase rate exceeding 100% in the oil resistance evaluation and was inferior in oil resistance. From the above, it can be said that the aqueous dispersion of ⁇ -olefin- (meth) acrylic ester rubber particles of the present invention is an aqueous dispersion excellent in storage stability and oil resistance of the molded product.
  • an aqueous dispersion of ⁇ -olefin- (meth) acrylate rubber particles having excellent storage stability and oil resistance of a molded product can be provided.
  • a method for producing the aqueous dispersion, a molded article produced using the aqueous dispersion, and a resorcin-formalin-latex adhesive can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

本発明は、保存安定性及び成形体の耐油性に優れるα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体を提供することを目的とする。また、本発明は、該水性分散体の製造方法、該水性分散体を用いて製造される成形体及びレゾルシン-ホルマリン-ラテックス接着剤を提供することを目的とする。 本発明は、水性媒体と、界面活性剤と、α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子とを含有し、前記界面活性剤の含有量が、前記α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子100質量部に対して、1~15質量部であるα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体である。

Description

α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体、その製造方法、成形体、及び、レゾルシン-ホルマリン-ラテックス接着剤
本発明は、保存安定性及び成形体の耐油性に優れるα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体に関する。また、本発明は、該水性分散体の製造方法、該水性分散体を用いて製造される成形体及びレゾルシン-ホルマリン-ラテックス接着剤に関する。
工業用ゴム製品において、エチレン-プロピレン-ジエンゴム(EPDM)、スチレン-ブタジエンゴム(SBR)、天然ゴム(NR)、ニトリルブタジエンゴム(NBR)、水素化アクリロニトリルブタジエンゴム(HNBR)、クロロプレンゴム(CR)等の多くのゴム材料が用いられている。なかでも、HNBRは、耐熱性、耐油性、耐オゾン性、耐磨耗性、電気的性質等において優れた特性を示すことから、例えば、ブレーキホースや、Vベルト、タイミングベルトのような伝動ベルト等の自動車用部品において幅広く使用されている。また、エンジンのコンパクト化や省エネ化の流れの中で、エンジン内部に設置することができる油中タイミングベルトの開発が進められており、より耐油性や耐熱性の高い材料が求められている。
タイミングベルト等の伝動ベルトには、強度や耐久性を高めることを目的として、一般的に、ゴム材料にポリエステル、アラミド、ポリアミド等の有機繊維やガラス繊維等の繊維を補強材として複合した材料が用いられる。通常、このような複合材料では、接着剤を用いてゴムと補強繊維とが結合されており、該接着剤としては、接着性だけでなく、耐熱性、耐油性、耐候性、耐摩耗性、耐屈曲疲労性等に優れた接着層を形成することを目的として、例えば、レゾルシン-ホルムアルデヒド-ラテックス接着剤(以下、「RFL接着剤」ともいう)等のゴムラテックスを用いた接着剤が使用されている(例えば、特許文献1)。このRFL接着剤に使用するラテックスとしては、ブタジエン・スチレン共重合体ラテックス、ジカルボキシル化ブタジエン・スチレン共重合体ラテックス、ビニルピリジン・ブタジエン・スチレンターポリマーラテックス、クロロプレンラテックス、クロロスルホン化ポリエチレンラテックス、HNBRラテックス等が用いられているが、耐油性や保存安定性により優れる新規な高性能ラテックスの創出が望まれている。
特開2010-031194号公報
本発明は、保存安定性及び成形体の耐油性に優れるα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体を提供することを目的とする。また、本発明は、該水性分散体の製造方法、該水性分散体を用いて製造される成形体及びレゾルシン-ホルマリン-ラテックス接着剤を提供することを目的とする。
本発明は、水性媒体と、界面活性剤と、α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子とを含有し、前記界面活性剤の含有量が、前記α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子100質量部に対して、1~15質量部であるα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体である。
以下に本発明を詳述する。
本発明者らは、水性媒体と、α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子と、特定量の界面活性剤とを含有するα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体は、保存安定性及び成形体の耐油性に優れる水性分散体となることを見出し、本発明を完成させるに至った。
本発明のα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体は、α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子を含有する。
前記α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子は、α-オレフィンに由来する構造単位と(メタ)アクリル酸エステルに由来する構造単位とを有する共重合体を含むゴム粒子である。
なお、本明細書において前記「(メタ)アクリル」は、「アクリル」及び「メタクリル」の少なくともいずれかを意味する。
前記α-オレフィン-(メタ)アクリル酸エステル系ゴムの原料として用いられるα-オレフィンとしては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン等が挙げられる。なかでも、エチレンが好ましい。
前記α-オレフィン-(メタ)アクリル酸エステル系ゴムの原料として用いられる(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸2-エチルヘキシル等が挙げられる。なかでも、アクリル酸メチル、アクリル酸エチルが好ましい。
前記α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子を構成するα-オレフィン-(メタ)アクリル酸エステル系ゴムは、エチレン-(メタ)アクリル酸エステル共重合体、エチレン-(メタ)アクリル酸エステル-不飽和カルボン酸共重合体、及び、エチレン-酢酸ビニル-(メタ)アクリル酸エステル共重合体からなる群より選択される少なくとも1種を含有することが好ましい。
前記エチレン-(メタ)アクリル酸エステル共重合体は、(メタ)アクリル酸エステルに由来する構造単位の含有割合の好ましい下限が25質量%、好ましい上限が80質量%である。前記(メタ)アクリル酸エステルに由来する構造単位の含有割合が25質量%以上であることにより、耐油性や耐グリース性により優れた共重合体となる傾向がある。前記(メタ)アクリル酸エステルに由来する構造単位の含有割合が80質量%以下であることにより、低温での柔軟性により優れた共重合体となる傾向がある。前記エチレン-(メタ)アクリル酸エステル共重合体における(メタ)アクリル酸エステルに由来する構造単位の含有割合のより好ましい下限は30質量%、より好ましい上限は70質量%である。
前記エチレン-(メタ)アクリル酸エステル共重合体は、エチレンと(メタ)アクリル酸エステルとからなる二元共重合体であってもよいし、エチレンと(メタ)アクリル酸エステルと架橋サイトモノマーとからなる多元共重合体であってもよい。なかでも、エチレンと、(メタ)アクリル酸エステルと、エポキシ樹脂及び/又は硬化剤に対して反応性を有する架橋サイトモノマーとからなる多元共重合体が好ましい。
前記エチレン-(メタ)アクリル酸エステル共重合体が多元共重合体である場合、前記多元共重合ゴムの原料として用いられる架橋サイトモノマーとしては、例えば、マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノイソプロピル等のマレイン酸モノエステルや、(メタ)アクリル酸グリシジル等の不飽和モノカルボン酸グリシジル等が挙げられる。なかでも、マレイン酸モノエステルが好ましい。
前記多元共重合体における架橋サイトモノマーに由来する構造単位の含有割合の好ましい下限は0.1質量%、好ましい上限は10質量%である。前記架橋サイトモノマーに由来する構造単位の含有割合が0.1質量%以上であることにより、より優れた耐油性を有する共重合体となる傾向がある。前記架橋サイトモノマーに由来する構造単位の含有割合が10質量%以下であることにより、強度や耐油性により優れた共重合体となる傾向がある。前記架橋サイトモノマーに由来する構造単位の含有割合のより好ましい下限は0.3質量%、より好ましい上限は7質量%である。
前記エチレン-(メタ)アクリル酸エステル共重合体は、190℃、2160g荷重におけるメルトフローレートの好ましい下限が0.1g/10分、好ましい上限が120g/10分である。前記メルトフローレートが0.1g/10分以上であることにより、強度がより強く、耐油性により優れた共重合体となる傾向がある。前記メルトフローレートが120g/10分以下であることにより、エチレン-(メタ)アクリル酸エステル共重合体の溶融時の流動性がよく、より成形しやすい共重合体となる傾向がある。前記エチレン-(メタ)アクリル酸エステル共重合体のメルトフローレートのより好ましい下限は0.3g/10分、より好ましい上限は30g/10分である。
なお、前記「メルトフローレート」は、メルトインデクサー装置(例えば、テクノ・セブン社製、「L240」)を用いて測定することができる。
前記エチレン-(メタ)アクリル酸エステル-不飽和カルボン酸共重合体の原料として用いられる不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸、エタクリル酸、フマル酸、マレイン酸、無水マレイン酸等が挙げられる。なかでも、アクリル酸、メタクリル酸が好ましい。
前記エチレン-(メタ)アクリル酸エステル-不飽和カルボン酸共重合体は、(メタ)アクリル酸エステルに由来する構造単位の含有割合の好ましい下限が0.5質量%、好ましい上限が50質量%である。前記(メタ)アクリル酸エステルに由来する構造単位の含有割合が0.5質量%以上であることにより、耐油性や低温特性により優れた共重合体となる傾向がある。前記(メタ)アクリル酸エステルに由来する構造単位の含有割合が50質量%以下であることにより、得られる水性分散体の増粘がより抑制される傾向があり、接着剤として使用した際に接着面にべたつきが生じることを防止できる。前記エチレン-(メタ)アクリル酸エステル-不飽和カルボン酸共重合体における(メタ)アクリル酸エステルに由来する構造単位の含有割合のより好ましい下限は1質量%、より好ましい上限は30質量%である。
また、前記エチレン-(メタ)アクリル酸エステル-不飽和カルボン酸共重合体は、不飽和カルボン酸に由来する構造単位の含有割合の好ましい下限が1質量%、好ましい上限が15質量%である。前記不飽和カルボン酸に由来する構造単位の含有割合が1質量%以上であることにより、得られる水性分散体が充分な接着性を有するものとなる。前記不飽和カルボン酸に由来する構造単位の含有割合が15質量%以下であることにより、溶剤に溶解させる場合に充分に溶解させることができる。前記エチレン-(メタ)アクリル酸エステル-不飽和カルボン酸共重合体における不飽和カルボン酸に由来する構造単位の含有割合のより好ましい下限は3質量%、より好ましい上限は10質量%である。
前記エチレン-(メタ)アクリル酸エステル-不飽和カルボン酸共重合体は、190℃、2160g荷重におけるメルトフローレートの好ましい下限が0.5g/10分、好ましい上限が100g/10分である。前記メルトフローレートが0.5g/10分以上であることにより、強度がより強く、耐油性により優れた共重合体となる傾向がある。前記メルトフローレートが100g/10分以下であることにより、溶融時の流動性がよく、より成形しやすい共重合体となる傾向がある。前記エチレン-(メタ)アクリル酸エステル-不飽和カルボン酸共重合体のメルトフローレートのより好ましい下限は0.8g/10分、より好ましい上限は80g/10分である。
前記エチレン-酢酸ビニル-(メタ)アクリル酸エステル共重合体における酢酸ビニルに由来する構造単位は、部分的に鹸化されていてもよい。
前記エチレン-酢酸ビニル-(メタ)アクリル酸エステル共重合体は、(メタ)アクリル酸エステルに由来する構造単位の含有割合の好ましい下限が0.5質量%、好ましい上限が70質量%である。前記(メタ)アクリル酸エステルに由来する構造単位の含有割合が0.5質量%以上であることにより、強度がより強く、耐油性により優れた共重合体となる傾向がある。前記(メタ)アクリル酸エステルに由来する構造単位の含有割合が70質量%以下であることにより、より優れた柔軟性及び耐油性を有する共重合体となる傾向がある。前記エチレン-酢酸ビニル-(メタ)アクリル酸エステル共重合体における(メタ)アクリル酸エステルに由来する構造単位の含有割合のより好ましい下限は1質量%、より好ましい上限は60質量%である。
また、前記エチレン-酢酸ビニル-(メタ)アクリル酸エステル共重合体は、酢酸ビニルに由来する構造単位の含有割合の好ましい下限が0.5質量%、好ましい上限が30質量%である。前記酢酸ビニルに由来する構造単位の含有割合が0.5質量%以上であることにより、より優れた耐熱性を有する共重合体となる傾向がある。前記酢酸ビニルに由来する構造単位の含有割合が30質量%以下であることにより、より優れた耐油性を有する共重合体となる傾向がある。前記エチレン-酢酸ビニル-(メタ)アクリル酸エステル共重合体における酢酸ビニルに由来する構造単位の含有割合のより好ましい下限は1質量%、より好ましい上限は15質量%である。
前記エチレン-酢酸ビニル-(メタ)アクリル酸エステル共重合体は、エチレンと酢酸ビニルと(メタ)アクリル酸エステルとからなる三元共重合体であってもよいし、エチレンと酢酸ビニルと(メタ)アクリル酸エステルと架橋サイトモノマーとからなる多元共重合体であってもよい。なかでも、エチレンと、酢酸ビニルと、(メタ)アクリル酸エステルと、エポキシ樹脂及び/又は硬化剤に対して反応性を有する架橋サイトモノマーとからなる多元共重合体が好ましい。
前記エチレン-酢酸ビニル-(メタ)アクリル酸エステル共重合体は、190℃、2160g荷重におけるメルトフローレートの好ましい下限が0.2g/10分、好ましい上限が200g/10分である。前記メルトフローレートが0.2g/10分以上であることにより、強度がより強く、耐油性により優れた共重合体となる傾向がある。前記メルトフローレートが200g/10分以下であることにより、溶融時の流動性がよく、より成形しやすい共重合体となる傾向がある。前記エチレン-酢酸ビニル-(メタ)アクリル酸エステル共重合体のメルトフローレートのより好ましい下限は1.0g/10分、より好ましい上限は180g/10分である。
α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子を構成する前記α-オレフィン-(メタ)アクリル酸エステル系ゴムにおける、DIN53 523に準拠して測定された100℃でのムーニー粘度(ML1+4)の好ましい下限は5、好ましい上限は80である。前記ムーニー粘度が5以上であることにより、適度に小さいゴム粒子が得られ、得られる水性分散体が保存安定性(特に静置安定性)により優れるものとなる傾向がある。前記ムーニー粘度が80以下であることにより、α-オレフィン-(メタ)アクリル酸エステル系ゴムの分子量が低くなりすぎず、充分な強度を有する成形体を得ることができる。前記ムーニー粘度のより好ましい下限は16、より好ましい上限は55である。
前記α-オレフィン-(メタ)アクリル酸エステル系ゴムは、例えば、高温高圧下におけるラジカル共重合によって調製することができる。
前記α-オレフィン-(メタ)アクリル酸エステル系ゴムのうち市販されているものとしては、例えば、エチレン-(メタ)アクリル酸エステル共重合体やエチレン-(メタ)アクリル酸エステル-不飽和カルボン酸共重合体としては、ベイマックG、ベイマックGLS、ベイマックGXF、ベイマックDP(いずれも三井・デュポンポリケミカル社製)等が挙げられ、エチレン-酢酸ビニル-(メタ)アクリル酸エステル共重合体としては、デンカER A403、デンカER A804、デンカER 8401、デンカANX-3(いずれも電気化学工業社製)等が挙げられる。
前記α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子は、1種が単独で用いられてもよいし、前述した各構造単位の含有割合の異なるもの、変性されたもの、原料となるα-オレフィンの種類の異なるもの等、2種以上が組み合わされて用いられてもよい。
前記α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の平均粒子径の好ましい下限は0.1μm、好ましい上限は5μmである。前記α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の平均粒子径が0.1μm以上であることにより、得られるα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体の粘度が高くなりすぎず、容易に取扱うことができる傾向がある。前記α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の平均粒子径が5μm以下であることにより、得られるα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体が保存安定性(特に静置安定性)により優れるものとなる傾向がある。前記α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の平均粒子径は、後述する製造方法において、撹拌混合条件を調整すること等により、適宜調整することができる。
なお、本明細書において前記「α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の平均粒子径」は、得られたα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体について、レーザー回折式粒度分布測定装置(例えば、島津製作所社製、「SALD-2000J」等)を用いて測定される値である。
本発明のα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体は、界面活性剤を含有する。
前記界面活性剤としては、例えば、アニオン系界面活性剤やノニオン系界面活性剤等が挙げられる。
前記アニオン系界面活性剤としては、例えば、脂肪酸ナトリウム、脂肪酸カリウム等の脂肪酸塩、ポリオキシアルキレン(アルキル又はアルケニル)エーテル硫酸塩、ポリオキシアルキレンアルキルフェニルエーテル硫酸塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルキルジフェニルスルホン酸塩、α-オレフィンスルホン酸塩、アルキル硫酸エステル塩、ナフタレンスルホン酸塩ホルマリン縮合物、スルホコハク酸塩、ポリオキシエチレンアルキルエーテル酢酸塩、ロジン酸塩等を挙げることができる。
なかでも、乳化分散性や安定性に優れ、安価で入手が容易であることから、スルホコハク酸塩、ポリオキシアルキレン(アルキル又はアルケニル)エーテル硫酸塩、脂肪酸塩が好ましい。
前記スルホコハク酸塩としては、下記式(1)で表される化合物が好適に用いられる。
Figure JPOXMLDOC01-appb-C000001
式(1)中、Xは、ナトリウム、カリウム、アミノ基、又は、アンモニウム基を表す。R、Rは、炭素数5~12のアルキル基又はフェニル基を表し、それぞれ同一であってもよいし、異なっていてもよい。
前記スルホコハク酸塩としては、具体的には例えば、ジオクチルスルホコハク酸塩、ジ(エチルヘキシル)スルホコハク酸塩、アルキルフェニルスルホコハク酸塩、ジドデシルスルホコハク酸塩等が挙げられる。なかでも、ジオクチルスルホコハク酸塩が好ましい。
前記ポリオキシアルキレン(アルキル又はアルケニル)エーテル硫酸塩としては、下記式(2)で表される化合物が好適に用いられる。
Figure JPOXMLDOC01-appb-C000002
式(2)中、Xは、ナトリウム、カリウム、アミノ基、又は、アンモニウム基を表す。Rは、炭素数5~24のアルキル基又は炭素数5~24のアルケニル基を表す。nは、2~50の整数を表し、(AO)は、-(-CO-)n1-(-CO-)n2-(n1は、0~50の整数を表し、n2は、0~50の整数を表し、n1とn2との合計がnである。ただし、n1及びn2がいずれも0でないとき、(-CO-)と(-CO-)との配列順序は特に限定されず、例えば、ブロックであってもよいしランダムであってもよい。)を表す。
前記ポリオキシアルキレン(アルキル又はアルケニル)エーテル硫酸塩としては、具体的には例えば、ポリオキシアルキレンラウリルエーテル硫酸塩、ポリオキシアルキレンオレイルエーテル硫酸塩等が挙げられる。
前記ポリオキシアルキレンラウリルエーテル硫酸塩としては、例えば、ポリオキシエチレンラウリルエーテル硫酸ナトリウム等のポリオキシアルキレンラウリルエーテル硫酸ナトリウムや、ポリオキシエチレンラウリルエーテル硫酸アンモニウム等のポリオキシアルキレンラウリルエーテル硫酸アンモニウム等が挙げられる。
前記ポリオキシアルキレンオレイルエーテル硫酸塩としては、例えば、ポリオキシエチレンオレイルエーテル硫酸ナトリウム、ポリオキシプロピレンオレイルエーテル硫酸ナトリウム等のポリオキシアルキレンオレイルエーテル硫酸ナトリウムや、ポリオキシエチレンオレイルエーテル硫酸アンモニウム等のポリオキシアルキレンオレイルエーテル硫酸アンモニウム等が挙げられる。
なかでも、ポリオキシアルキレンラウリルエーテル硫酸塩が好ましく、ポリオキシアルキレンラウリルエーテル硫酸ナトリウムがより好ましく、ポリオキシエチレンラウリルエーテル硫酸ナトリウムが更に好ましい。
前記脂肪酸塩としては、下記式(3)で表される化合物が好適に用いられる。
Figure JPOXMLDOC01-appb-C000003
式(3)中、Xは、ナトリウム、カリウム、アミノ基、又は、アンモニウム基を表す。Rは、炭素数5~24のアルキル基又は炭素数5~24のアルケニル基を表す。
前記脂肪酸塩としては、具体的には例えば、オレイン酸塩、ステアリン酸塩、ラウリン酸塩、ミリスチン酸塩、パルミチン酸塩等が挙げられる。なかでも、オレイン酸塩が好ましい。
前記ノニオン系界面活性剤としては、例えば、ポリエチレングリコール、エチレンオキシド-プロピレンオキシド共重合体、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルチオエーテル、ポリオキシエチレンソルビタン脂肪酸モノエステル、ポリオキシエチレンアルキルアミド、ポリグリセリンエステル等が挙げられる。なかでも、ポリエチレングリコール、エチレンオキシド-プロピレンオキシド共重合体、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンソルビタン脂肪酸モノエステルが好ましく、乳化分散性及び耐熱性に優れる等の観点から、エチレンオキシド-プロピレンオキシド共重合体がより好ましい。
前記エチレンオキシド-プロピレンオキシド共重合体としては、下記式(4)で表される化合物が好適に用いられる。
Figure JPOXMLDOC01-appb-C000004
式(4)中、pは、2~300の整数、qは、10~150の整数、rは、2~300の整数を表す。
前記エチレンオキシド-プロピレンオキシド共重合体の質量平均分子量の好ましい下限は3000、好ましい上限は3万である。前記エチレンオキシド-プロピレンオキシド共重合体の質量平均分子量が3000以上であることにより、より優れた分散安定性を有する界面活性剤(乳化剤)となるため、水性分散液の保存安定性がより向上する傾向がある。前記エチレンオキシド-プロピレンオキシド共重合体の質量平均分子量が3万以下であることにより、より優れた乳化力を有する界面活性剤(乳化剤)となるため、水性分散液の保存安定性がより向上する傾向がある。前記エチレンオキシド-プロピレンオキシド共重合体の質量平均分子量のより好ましい下限は6000、より好ましい上限は25000、更に好ましい下限は8000、更に好ましい上限は2万である。
前記エチレンオキシド-プロピレンオキシド共重合体中のエチレンオキシド単位の含有割合の好ましい下限は40質量%、好ましい上限は95質量%である。前記エチレンオキシド単位の含有割合が40質量%以上であることにより、より優れた分散安定性を有する界面活性剤(乳化剤)となるため、水性分散液の保存安定性がより向上する傾向がある。前記エチレンオキシド単位の含有割合が95質量%以下であることにより、より優れた乳化力を有する界面活性剤(乳化剤)となるため、水性分散液の保存安定性がより向上する傾向がある。前記エチレンオキシド単位の含有割合のより好ましい下限は45質量%、より好ましい上限は90質量%、更に好ましい下限は50質量%、更に好ましい上限は85質量%である。
前記界面活性剤は、単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。2種以上が組み合わされて用いられる場合、前記アニオン系界面活性剤と前記ノニオン系界面活性剤とが併用されてもよい。
なかでも、前記界面活性剤は、スルホコハク酸塩、ポリオキシアルキレン(アルキル又はアルケニル)エーテル硫酸塩、脂肪酸塩、及び、エチレンオキシド-プロピレンオキシド共重合体からなる群より選択される少なくとも1種の化合物を含むことが好ましい。
前記界面活性剤の含有量は、前記α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子100質量部に対して、下限が1質量部、上限が15質量部である。前記界面活性剤の含有量が1質量部以上であることにより、安定な水性分散体が得られる。前記界面活性剤の含有量が15質量部以下であることにより、容易に乳化させることができ、また、接着性等の物性が損なわれたり、表面に界面活性剤によるブリードを発生させたりすることなく成形体を得ることができる。前記界面活性剤の含有量の好ましい下限は1.2質量部、好ましい上限は12質量部、より好ましい下限は1.5質量部、より好ましい上限は10質量部である。
本発明のα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体は、乳化をより容易とし、より安定な水性分散体を得ることを目的として、本発明の目的を阻害しない範囲で、高分子分散安定剤を含有してもよい。
前記高分子分散安定剤としては、例えば、ポリビニルアルコール、ヒドロキシエチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース、ポリビニルピロリドン、ポリアクリル酸塩、ポリアクリル酸エステル塩、アルギン酸ナトリウム等が挙げられる。
前記高分子分散安定剤を用いる場合、前記高分子分散安定剤の含有量は、前記α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子100質量部に対して、0.1~10質量部であることが好ましい。
本発明のα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体は、水性媒体を含有する。
前記水性媒体としては、例えば、水や、メチルアルコール、エチルアルコール、イソプロピルアルコール等の水性有機溶媒と水との混合物等が挙げられ、水が好ましく用いられる。
前記水性媒体の含有量は、前記α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子100質量部に対して、好ましい下限が40質量部、好ましい上限が1000質量部である。前記水性媒体の含有量が40質量部以上であることにより、より安定な水性分散体が得られる傾向がある。前記水性媒体の含有量が1000質量部以下であることにより、成形体をより効率的に製造できる傾向がある。前記水性媒体の含有量のより好ましい下限は50質量部、より好ましい上限は150質量部である。
本発明のα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体は、α-オレフィン-(メタ)アクリル酸エステル系ゴムを、界面活性剤の存在下において水性媒体中で乳化分散させることにより得ることができる。
本発明のα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体を製造する方法であって、α-オレフィン-(メタ)アクリル酸エステル系ゴムを有機溶剤に溶解させた有機溶液と、界面活性剤を水性媒体に溶解させた水溶液とを混合して乳濁液を得る工程、及び、得られた乳濁液から前記有機溶剤を留去する工程を有するα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体の製造方法、並びに、α-オレフィン-(メタ)アクリル酸エステル系ゴムと界面活性剤と水性媒体とを混合して混合液を得る工程、及び、得られた混合液を前記α-オレフィン-(メタ)アクリル酸エステル系ゴムの軟化温度以上に加熱して乳化させる工程を有するα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体の製造方法もまた、それぞれ本発明の1つである。
以下、本発明のα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体の製造方法のうち、α-オレフィン-(メタ)アクリル酸エステル系ゴムを有機溶剤に溶解させた有機溶液と、界面活性剤を水性媒体に溶解させた水溶液とを混合して乳濁液を得る工程、及び、得られた乳濁液から前記有機溶剤を留去する工程を有する方法を本発明の製造方法1とし、α-オレフィン-(メタ)アクリル酸エステル系ゴムと界面活性剤と水性媒体とを混合して混合液を得る工程、及び、得られた混合液を前記α-オレフィン-(メタ)アクリル酸エステル系ゴムの軟化温度以上に加熱して乳化させる工程を有する方法を本発明の製造方法2とする。
本発明の製造方法1において、α-オレフィン-(メタ)アクリル酸エステル系ゴムを有機溶剤に溶解する方法としては、有機溶剤にα-オレフィン-(メタ)アクリル酸エステル系ゴムを添加する方法を用いることができる。
前記α-オレフィン-(メタ)アクリル酸エステル系ゴムを溶解させる有機溶剤としては、例えば、ペンタン、ヘキサン、ヘプタン、オクタン等の非環式脂肪族炭化水素系有機溶剤や、シクロヘキサン、デカリン等の環式脂肪族炭化水素系有機溶剤や、トルエン、キシレン、エチルベンゼン、テトラリン等の芳香族炭化水素系有機溶剤、クロロホルム、1,2-ジクロロエタン等のハロゲン化炭化水素系有機溶剤等が挙げられる。これらの有機溶剤は、単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。
前記有機溶剤は、メタノール、エタノール、イソプロピルアルコール、t-ブタノール等の低級アルコール類を溶解助剤として併用してもよく、α-オレフィン-(メタ)アクリル酸エステル系ゴムの溶解性に優れることから、芳香族炭化水素系有機溶剤又は環式脂肪族炭化水素系有機溶剤と低級アルコール類との混合溶剤を用いることが好ましい。
該混合溶剤において、芳香族炭化水素系有機溶剤又は環式脂肪族炭化水素系有機溶剤と低級アルコール類との混合割合は特に限定されないが、芳香族炭化水素系有機溶剤又は環式脂肪族炭化水素系有機溶剤100質量部に対して、低級アルコール類を5~100質量部混合することが好ましく、10~60質量部混合することがより好ましい。
前記有機溶剤の使用量は特に限定されないが、得られる有機溶液中におけるα-オレフィン-(メタ)アクリル酸エステル系ゴムの濃度が3~30質量%となるように調整することが好ましい。有機溶液中におけるα-オレフィン-(メタ)アクリル酸エステル系ゴムの濃度が3~30質量%であることにより、α-オレフィン-(メタ)アクリル酸エステル系ゴムを有機溶液中により均一に溶解させることができる傾向があり、目的とするα-オレフィン-(メタ)アクリル酸エステル系ゴムの水性分散体中におけるα-オレフィン-(メタ)アクリル酸エステル系ゴムの粒子径を適度に小さくすることができる。
前記α-オレフィン-(メタ)アクリル酸エステル系ゴムを有機溶剤に溶解させる際の温度は特に限定されないが、通常、100℃以下である。
本発明の製造方法1において、界面活性剤を水性媒体に溶解させる方法としては、水性媒体に界面活性剤を添加する方法を用いることができる。
界面活性剤を水性媒体に溶解させる際、界面活性剤の添加量は、得られる水溶液中における濃度が0.1~50質量%となるようにすることが好ましい。
前記α-オレフィン-(メタ)アクリル酸エステル系ゴムを有機溶剤に溶解させた有機溶液と、界面活性剤を水性媒体に溶解させた水溶液とを混合して乳濁液を得る工程において、有機溶液と水溶液との混合割合は、α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子に対する界面活性剤の含有量が上述した範囲となるように設定される。通常、有機溶液100質量部に対する水溶液の混合割合の好ましい下限は20質量部、好ましい上限は500質量部である。前記水溶液の混合割合が20質量部以上であることにより、得られる乳濁液の粘度が高くなりすぎず、容易に乳化できる傾向がある。前記水溶液の混合割合が500質量部以下であることにより、効率よく乳濁液を得ることができる傾向がある。前記水溶液の混合割合のより好ましい下限は25質量部、より好ましい上限は200質量部である。
前記有機溶液と前記水溶液とを混合して乳濁液を得る方法としては、例えば、ホモミキサーやコロイドミル等の乳化機を用いて撹拌混合する方法や、超音波分散機等を用いて分散、混合する方法等が挙げられる。なかでも、乳化機を用いて撹拌混合する方法が好ましい。また、乳化時の温度は、5~70℃の範囲が好ましい。
乳化機や超音波分散機等によって前記有機溶液と前記水溶液とを混合する際、撹拌機の回転数、撹拌時間、温度等を適宜調節することにより、α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の平均粒子径を上述した好ましい範囲とすることができる。なお、α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の平均粒子径は、撹拌機の回転数や撹拌時間等の調節の他、界面活性剤の選択や使用量を調節することによっても、α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の平均粒子径を上述した好ましい範囲とすることができる。
本発明の製造方法1では、上述した方法により得られた乳濁液から有機溶剤を留去する工程により、本発明のα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体を得ることができる。
前記有機溶剤を留去する方法としては、例えば、減圧下で乳濁液を加熱する等の公知の方法を用いることができる。また、前記有機溶剤を留去した後、必要に応じて、加熱濃縮、遠心分離、湿式分離等の操作により所望の固形分濃度になるまで濃縮してもよい。
前記高分子分散安定剤を含むα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体を調製する場合、前記高分子分散安定剤は、例えば、水性媒体中に界面活性剤を添加して水溶液を調製する際に添加してもよいし、乳濁液から有機溶剤を留去して得られた水性分散体に対して添加してもよい。
本発明の製造方法2において、α-オレフィン-(メタ)アクリル酸エステル系ゴムと界面活性剤と水性媒体とを混合する方法としては、例えば、容器内にα-オレフィン-(メタ)アクリル酸エステル系ゴム、界面活性剤、及び、水性媒体を投入する方法等が挙げられる。ここで、界面活性剤の添加量は、α-オレフィン-(メタ)アクリル酸エステル系ゴムに対する含有量が上述した範囲となるように設定される。
前記α-オレフィン-(メタ)アクリル酸エステル系ゴムと界面活性剤と水性媒体との混合に用いる容器としては、α-オレフィン-(メタ)アクリル酸エステル系ゴムが水性媒体中で軟化する温度以上の温度に加熱するための加熱手段と、内容物に剪断力を与えることのできる撹拌機とを備えた耐圧容器が好ましい。例えば、撹拌機付きの耐圧オートクレーブ等が好適に用いられる。
本発明の製造方法2において、混合液を前記α-オレフィン-(メタ)アクリル酸エステル系ゴムの軟化温度以上に加熱して乳化させる工程により得られた乳濁液を、室温まで冷却することにより、本発明のα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体が得られる。ここで、撹拌機の回転数、撹拌時間、温度等を適宜調節することにより、α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の平均粒子径を上述した好ましい範囲とすることができる。なお、α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の平均粒子径は、撹拌機の回転数や撹拌時間等の調節の他、界面活性剤の選択や使用量の調節によっても、α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の平均粒子径を上述した好ましい範囲とすることができる。
前記高分子分散安定剤を含むα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体を調製する場合、前記高分子分散安定剤は、例えば、α-オレフィン-(メタ)アクリル酸エステル系ゴムと界面活性剤と水性媒体とを混合する際に添加してもよいし、乳濁液を室温まで冷却して得られた水性分散体に対して添加してもよい。
本発明のα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体は、保存安定性(特に静置安定性)や成形加工性に優れるものとなる。
例えば、本発明のα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体を基材へ塗布したり、型枠内へ流し込んだりした後、乾燥(水分を除去)することにより、α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子と界面活性剤とを含む、皮膜状、フィルム状、シート状等の成形体が得られる。
本発明のα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体を用いて製造される(作製された)成形体もまた、本発明の1つである。
本発明の成形体を製造する方法としては、本発明のα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体を、40~200℃の温度にて、乾燥させる方法が好ましく用いられる。
本発明の成形体を製造する際に、水性分散体中に加硫剤(過酸化水素、硫黄等)、加硫助剤(TAC、TAIC等)、加硫促進剤、酸化防止剤等の加硫配合液を添加することで、より皮膜特性に優れた成形体とすることができる。
本発明の成形体は、界面活性剤として上述した好ましいものを用いることにより、界面活性剤に起因する着色がなく、界面活性剤のブリードがほとんど発生しないものとすることができる。
従って、本発明のα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体は、プラスチック成形体、繊維、紙、フィルム等のコーティング剤や、ガスバリア剤や、フォームラバー用原料や、ガラス繊維等に用いるレゾルシン-ホルムアルデヒド-ラテックス(RFL)接着剤や、ホース、チューブ、ベルト、ガスケット、パッキング成形材料等の原料等として広く利用可能であり、工業的価値の大きいものである。
上述したように、本発明のα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体は、優れた耐油性を有するためRFL接着剤等の接着剤のラテックス成分、各種プラスチックのバインダー材料及びコーティング材料等として用いることができるが、ガラス繊維や、有機繊維へのRFL接着剤のラテックス成分として特に適している。
本発明のα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体をラテックス成分として含むレゾルシン-ホルマリン-ラテックス接着剤もまた、本発明の1つである。
本発明のRFL接着剤は、接着性を更に高めるために加硫剤(架橋剤)が添加されていてもよい。
前記加硫剤としては、例えば、酸化亜鉛、硫黄系加硫剤、有機過酸化物等が挙げられる。
前記硫黄系加硫剤としては、例えば、粉末硫黄、高分散性硫黄、不溶性硫黄等の一般にゴム用加硫剤として用いられている硫黄や、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラブチルチウラムジスルフィド、テトラメチルチウラムモノスルフィド、ジペンタメチレンチウラムテトラスルフィド等のチウラム類や、ペンタエチレンジチオカルバミン酸ピペリジン塩、ピペコリルジチオカルバミン酸ピペコリン塩、ジメチルジチオカルバミン酸亜鉛、ジエチルジチオカルバミン酸亜鉛、ジブチルジチオカルバミン酸亜鉛、N-エチル-N-フェニルジチオカルバミン酸亜鉛、N-ペンタメチレンジチオカルバミン酸亜鉛、ジベンジルジチオカルバミン酸亜鉛、ジメチルジチオカルバミン酸ナトリウム、ジエチルジチオカルバミン酸ナトリウム、ジブチルジチオカルバミン酸ナトリウム、ジメチルジチオカルバミン酸銅、ジメチルジチオカルバミン酸第二鉄、ジエチルジチオカルバミン酸テルル等のジチオカルバミン酸塩類や、ブチルキサントゲン酸亜鉛、イソプロピルキサントゲン酸亜鉛、イソプロピルキサントゲン酸ナトリウム等のキサントゲン酸塩類や、N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-t-ブチル-2-ベンゾチアゾールスルフェンアミド、N-オキシジエチレン-2-ベンゾチアゾールスルフェンアミド、N,N-ジイソプロピル-2-ベンゾチアゾールスルフェンアミド等のスルフェンアミド類や、2-メルカプトベンゾチアゾール、ジベンゾチアジルジスルフィド等のチアゾール類等が挙げられる。これらは単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。
前記加硫剤として前記硫黄系加硫剤を用いる場合、その使用量は、前記α-オレフィン-(メタ)アクリル酸エステル系ゴム100質量部に対して、好ましい下限が0.05質量部、好ましい上限が5.0質量部、より好ましい下限が0.1質量部、より好ましい上限が4.0質量部である。
前記有機過酸化物としては、例えば、クメンヒドロペルオキシド、ジ-t-ブチルペルオキシド、t-ブチルクミルペルオキシド、ジクミルペルオキシド、2,5-ジメチル-2,5-ジ-(t-ブチルペルオキシ)ヘキサン、1,3-ビス(t-ブチルペルオキシイソプロピル)ベンゼン、n-ブチル-4,4-ビス(t-ブチルペルオキシ)バレラート、1,1-ビス(t-ブチルペルオキシ)-3,3,5-トリメチルシクロヘキサン、2,2-ビス(t-ブチルペルオキシ)ブタン、ベンゾイルペルオキシド、p-クロロベンゾイルペルオキシド、2,4-ジクロロベンゾイルペルオキシド、t-ブチルペルオキシベンゼン、ビニルトリス(t-ブチルペルオキシ)シラン等が挙げられる。なかでも、ジクミルペルオキシドが好ましい。
前記加硫剤として前記有機過酸化物を用いる場合、その使用量は、前記α-オレフィン-(メタ)アクリル酸エステル系ゴム100質量部に対して、好ましい下限が0.1質量部、好ましい上限が1.0質量部、より好ましい下限が0.3質量部、より好ましい上限が0.8質量部、更に好ましい上限が0.5質量部である。
前記加硫剤は、本発明のRFL接着剤の調製時に添加されてもよいが、RFL接着剤を調製する前の本発明のα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体に対して予め添加されてもよい。予め水性分散体に添加する場合、前記加硫剤は、製造された本発明のα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体に対して添加されてもよいが、本発明のα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体の製造時に用いる有機溶液又は水性媒体に添加されてもよい。
本発明のRFL接着剤は、塗工性や接着性を向上させるため、ゴムラテックス、増粘剤、粘着付与剤、可塑剤等の添加剤を含有してもよい。このような添加剤は、調製後のRFL接着剤に対して添加されてもよいが、RFL接着剤を調製する前の本発明のα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体に対して予め添加されてもよい。また、添加剤の種類によっては、本発明のα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体の製造時に用いる有機溶液又は水性分散媒に添加されてもよい。なお、前記添加剤は、個別若しくは混合物の水溶液又は水性分散液として添加されることが好ましい。
本発明によれば、保存安定性及び成形体の耐油性に優れるα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体を提供することができる。また、本発明によれば、該水性分散体の製造方法、該水性分散体を用いて製造される成形体及びレゾルシン-ホルマリン-ラテックス接着剤を提供することができる。
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。
(実施例1)
内容積が500mLのセパラブルフラスコに、α-オレフィン-(メタ)アクリル酸エステル系ゴムとしてベイマックG(三井・デュポンポリケミカル社製、ムーニー粘度16.5)20質量部と、トルエン180質量部とを加え、55℃で4時間撹拌して溶解した。得られたトルエン溶液に、界面活性剤としてオレイン酸カリウム1.0質量部を100質量部の水に溶解した水溶液を添加し、これをホモミキサー(プライミクス社製、「MarkII 2.5型」)を用いて6分間撹拌混合して乳濁液を得た。撹拌混合時の回転数及び温度は、それぞれ12000rpm及び40℃に設定した。得られた乳濁液を40~90kPaの減圧下で40~70℃に加熱することにより、トルエンを留去し、α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体を得た。
(実施例2)
内容積が500mLのセパラブルフラスコに、α-オレフィン-(メタ)アクリル酸エステル系ゴムとしてベイマックGLS(三井・デュポンポリケミカル社製、ムーニー粘度18)20質量部と、トルエン162質量部と、イソプロピルアルコール18質量部とを加え、60℃で4時間撹拌して溶解した。得られた有機溶液に、界面活性剤としてジオクチルスルホコハク酸ナトリウム0.8質量部を100質量部の水に溶解した水溶液を添加し、これをホモミキサー(プライミクス社製、「MarkII 2.5型」)を用いて6分間撹拌混合して乳濁液を得た。撹拌混合時の回転数及び温度は、それぞれ12000rpm及び40℃に設定した。得られた乳濁液を40~90kPaの減圧下で40~70℃に加熱することにより、トルエン及びイソプロピルアルコールを留去し、α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体を得た。
(実施例3)
内容積が500mLのセパラブルフラスコに、α-オレフィン-(メタ)アクリル酸エステル系ゴムとしてデンカANX-3(電気化学工業社製、ムーニー粘度45)20質量部と、トルエン162質量部と、イソプロピルアルコール18質量部とを加え、60℃で4時間撹拌して溶解した。得られた有機溶液に、界面活性剤としてポリオキシエチレンラウリルエーテル硫酸ナトリウム1.6質量部を100質量部の水に溶解した水溶液を添加し、これをホモミキサー(プライミクス社製、「MarkII 2.5型」)を用いて6分間撹拌混合して乳濁液を得た。撹拌混合時の回転数及び温度は、それぞれ12000rpm及び40℃に設定した。得られた乳濁液を40~90kPaの減圧下で40~70℃に加熱することにより、トルエン及びイソプロピルアルコールを留去し、α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体を得た。
(実施例4)
直径50mmのタービン型撹拌羽根を備えた内容積1Lの耐圧オートクレーブ中に、α-オレフィン-(メタ)アクリル酸エステル系ゴムとしてベイマックGLS(三井・デュポンポリケミカル社製、ムーニー粘度18)160質量部と、脱イオン水224質量部と、界面活性剤としてエチレンオキシド-プロピレンオキシド共重合体(ADEKA社製、「プルロニックF108」、質量平均分子量15500、エチレンオキシド単位の含有割合80質量%)16質量部とを仕込み、密閉した。次に、撹拌機を始動し、500rpmの回転数で撹拌しながらオートクレーブ内部を180℃まで昇温した。内温を180℃に保ちながら更に15分間撹拌した後、内容物を室温まで冷却し、α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体を得た。
(実施例5)
界面活性剤であるジオクチルスルホコハク酸ナトリウムの配合量を3.0質量部に変更したこと以外は実施例2と同様して、α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体を得た。
(実施例6)
界面活性剤であるジオクチルスルホコハク酸ナトリウムの配合量を0.2質量部に変更したこと以外は実施例2と同様して、α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体を得た。
(比較例1)
界面活性剤であるジオクチルスルホコハク酸ナトリウムの配合量を3.5質量部に変更したこと以外は実施例2と同様にして、α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体を得た。
(比較例2)
界面活性剤であるジオクチルスルホコハク酸ナトリウムの配合量を0.16質量部に変更したこと以外は実施例2と同様にしたところ、トルエンの留去時に塊状物が生成し、水性分散体は得られなかった。
(比較例3)
クロロスルホン化ポリエチレンラテックス(住友精化社製、「セポレックスCSM」)を水性分散体として用意した。
<評価>
実施例及び比較例で得られた各水性分散体について、以下の評価を行った。結果を表1に示した。
なお、比較例2では水性分散体を作製することができなかったため、以下の評価は行わなかった。
(ゴム粒子の平均粒子径)
実施例1~6及び比較例1で得られた各水性分散体について、レーザー回折式粒度分布測定装置(島津製作所社製、「SALD-2000J」)を用いてゴム粒子の平均粒子径を測定した。
(保存安定性)
実施例1~6及び比較例1で得られた各水性分散体40gを、それぞれ50mL容の容器に入れて密封し、25℃の温度環境下で放置した。そして、3ヶ月後に水性分散体の状態を目視により観察した。その結果、相分離がなかった場合を「○」、一部に相分離が確認された場合を「△」、完全に相分離していた場合を「×」として、保存安定性を評価した。
(界面活性剤のブリード)
実施例1~6及び比較例1で得られた各水性分散体10gを、それぞれφ120mmのシャーレに入れ、40℃で12時間乾燥することで、皮膜を得た。得られた皮膜の状態を目視により観察した。その結果、皮膜の表面から界面活性剤がブリードしていなかった場合を「○」、皮膜の表面から界面活性剤がわずかにブリードしていた場合を「△」、皮膜の表面から界面活性剤が多くブリードしていた場合を「×」として、界面活性剤のブリードを評価した。
(耐油性)
実施例1~6、及び、比較例1、3で得られた各水性分散体220gを、それぞれφ120mmのシャーレに入れ、80℃で12時間乾燥することで、皮膜を得た。その後、得られた皮膜をテフロン(登録商標)板で挟み、プレス機で120℃、20Mpaで1分間加圧成形することで、厚み約2mmのシートを得た。得られたシート2gをモーターオイル(トヨタ自動車社製、「トヨタキャッスルSN 0W-20」)30gに150℃で10時間浸漬した。モーターオイルへの浸漬前及び浸漬後のシートの質量を測定し、浸漬による質量増加率を導出した。
なお、耐油性は、質量増加が少ないほど良く、質量増加率が20%以下であれば、耐油性に優れているといえる。
Figure JPOXMLDOC01-appb-T000005
表1から、実施例1~5で作製した水性分散体は、保存安定性に優れていることがわかる。
また、実施例1~4、6で作製した水性分散体から得られた成形体(皮膜)は、界面活性剤のブリードがなかった。一方、比較例1で作製した水性分散体は、界面活性剤のブリードがみられた。
更に、実施例1~6で作製した水性分散体から得られた皮膜は、全て耐油性の評価における質量増加率が20%以下となり、耐油性に優れるものとなった。一方、比較例3のラテックスから得られた皮膜は、耐油性の評価における質量増加率が100%を超え、耐油性に劣るものであった。
以上より、本発明のα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体は、保存安定性及び成形体の耐油性に優れる水性分散体であるといえる。
本発明によれば、保存安定性及び成形体の耐油性に優れるα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体を提供することができる。また、本発明によれば、該水性分散体の製造方法、該水性分散体を用いて製造される成形体及びレゾルシン-ホルマリン-ラテックス接着剤を提供することができる。

Claims (10)

  1. 水性媒体と、界面活性剤と、α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子とを含有し、
    前記界面活性剤の含有量が、前記α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子100質量部に対して、1~15質量部である
    ことを特徴とするα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体。
  2. α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子を構成するα-オレフィン-(メタ)アクリル酸エステル系ゴムは、エチレン-(メタ)アクリル酸エステル共重合体、エチレン-(メタ)アクリル酸エステル-不飽和カルボン酸共重合体、及び、エチレン-酢酸ビニル-(メタ)アクリル酸エステル共重合体からなる群より選択される少なくとも1種を含有する請求項1記載のα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体。
  3. α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子を構成するα-オレフィン-(メタ)アクリル酸エステル系ゴムは、DIN53 523に準拠して測定された100℃でのムーニー粘度(ML1+4)が5~80である請求項1又は2記載のα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体。
  4. α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子は、平均粒子径が0.1~5μmである請求項1、2又は3記載のα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体。
  5. 界面活性剤は、スルホコハク酸塩、ポリオキシアルキレン(アルキル又はアルケニル)エーテル硫酸塩、脂肪酸塩、及び、エチレンオキシド-プロピレンオキシド共重合体からなる群より選択される少なくとも1種の化合物を含む請求項1、2、3又は4記載のα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体。
  6. 高分子分散安定剤を含有する請求項1、2、3、4又は5記載のα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体。
  7. 請求項1、2、3、4、5又は6記載のα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体の製造方法であって、
    α-オレフィン-(メタ)アクリル酸エステル系ゴムを有機溶剤に溶解させた有機溶液と、界面活性剤を水性媒体に溶解させた水溶液とを混合して乳濁液を得る工程、及び、得られた乳濁液から前記有機溶剤を留去する工程を有するα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体の製造方法。
  8. 請求項1、2、3、4、5又は6記載のα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体の製造方法であって、
    α-オレフィン-(メタ)アクリル酸エステル系ゴムと界面活性剤と水性媒体とを混合して混合液を得る工程、及び、得られた混合液を前記α-オレフィン-(メタ)アクリル酸エステル系ゴムの軟化温度以上に加熱して乳化させる工程を有するα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体の製造方法。 
  9. 請求項1、2、3、4、5又は6記載のα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体を用いて製造される成形体。
  10. 請求項1、2、3、4、5又は6記載のα-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体をラテックス成分として含むレゾルシン-ホルマリン-ラテックス接着剤。
PCT/JP2015/082412 2014-12-02 2015-11-18 α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体、その製造方法、成形体、及び、レゾルシン-ホルマリン-ラテックス接着剤 WO2016088556A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15865733.8A EP3228655A4 (en) 2014-12-02 2015-11-18 Aqueous dispersion of alpha-olefin-(meth)acrylic acid ester-based rubber particles, method for preparing same, molded body, and resorcin-formalin-latex adhesive
US15/531,296 US20170342258A1 (en) 2014-12-02 2015-11-18 AQUEOUS DISPERSION OF a-OLEFIN-(METH)ACRYLIC ACID ESTER-BASED RUBBER PARTICLES, METHOD FOR PREPARING SAME, MOLDED BODY, AND RESORCIN-FORMALIN-LATEX ADHESIVE
JP2016562375A JPWO2016088556A1 (ja) 2014-12-02 2015-11-18 α−オレフィン−(メタ)アクリル酸エステル系ゴム粒子の水性分散体、その製造方法、成形体、及び、レゾルシン−ホルマリン−ラテックス接着剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014244125 2014-12-02
JP2014-244125 2014-12-02

Publications (1)

Publication Number Publication Date
WO2016088556A1 true WO2016088556A1 (ja) 2016-06-09

Family

ID=56091506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082412 WO2016088556A1 (ja) 2014-12-02 2015-11-18 α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体、その製造方法、成形体、及び、レゾルシン-ホルマリン-ラテックス接着剤

Country Status (4)

Country Link
US (1) US20170342258A1 (ja)
EP (1) EP3228655A4 (ja)
JP (1) JPWO2016088556A1 (ja)
WO (1) WO2016088556A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019054496A1 (ja) * 2017-09-15 2019-03-21 住友精化株式会社 エチレン系樹脂水性分散液及び水系ヒートシール材

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4911928A (ja) * 1972-05-11 1974-02-01
JPS6128688B2 (ja) * 1975-06-27 1986-07-02 Fuji Photo Film Co Ltd
JPH11172214A (ja) * 1997-12-08 1999-06-29 Nippon Zeon Co Ltd 炭化水素樹脂粘着付与剤を含む粘接着剤組成物
JP2001049227A (ja) * 1999-08-10 2001-02-20 Arakawa Chem Ind Co Ltd 粘着付与樹脂エマルジョンおよびその製造方法並びに水系粘・接着剤組成物
JP2002284881A (ja) * 2000-02-16 2002-10-03 Sanyo Chem Ind Ltd 粒径が均一である樹脂分散体、樹脂粒子およびそれらの製造方法
JP2012082312A (ja) * 2010-10-12 2012-04-26 Chuo Rika Kogyo Corp 熱可塑性樹脂水性分散液及びこれを用いた耐水性皮膜
JP2013234243A (ja) * 2012-05-08 2013-11-21 Chuo Rika Kogyo Corp 熱可塑性樹脂水性分散液の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5085130B2 (ja) * 2004-08-27 2012-11-28 コニシ株式会社 酢酸ビニル樹脂系エマルジョン及びその製造方法
WO2008020520A1 (en) * 2006-08-18 2008-02-21 Sumitomo Seika Chemicals Co., Ltd. Aqueous dispersion of polyamide rubber elastic body and method for producing the same
KR101734599B1 (ko) * 2009-09-04 2017-05-11 스미또모 세이까 가부시키가이샤 폴리올레핀계 복합 수지 구상 입자, 도료 조성물 및 도장물
KR101823558B1 (ko) * 2011-05-24 2018-01-30 스미토모 세이카 가부시키가이샤 폴리아미드계 고무 탄성체의 수성 분산액 및 그 제조 방법
JP2013032422A (ja) * 2011-08-01 2013-02-14 Sumitomo Seika Chem Co Ltd ブチルゴム系熱可塑性エラストマー水性分散液及び制振性を有する物品
JP2014125585A (ja) * 2012-12-27 2014-07-07 Sumitomo Chemical Co Ltd 水性接着剤
US10196489B2 (en) * 2014-10-29 2019-02-05 Sumitomo Seika Chemicals Co., Ltd. Aqueous dispersion of polyester-type elastic material, and method for producing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4911928A (ja) * 1972-05-11 1974-02-01
JPS6128688B2 (ja) * 1975-06-27 1986-07-02 Fuji Photo Film Co Ltd
JPH11172214A (ja) * 1997-12-08 1999-06-29 Nippon Zeon Co Ltd 炭化水素樹脂粘着付与剤を含む粘接着剤組成物
JP2001049227A (ja) * 1999-08-10 2001-02-20 Arakawa Chem Ind Co Ltd 粘着付与樹脂エマルジョンおよびその製造方法並びに水系粘・接着剤組成物
JP2002284881A (ja) * 2000-02-16 2002-10-03 Sanyo Chem Ind Ltd 粒径が均一である樹脂分散体、樹脂粒子およびそれらの製造方法
JP2012082312A (ja) * 2010-10-12 2012-04-26 Chuo Rika Kogyo Corp 熱可塑性樹脂水性分散液及びこれを用いた耐水性皮膜
JP2013234243A (ja) * 2012-05-08 2013-11-21 Chuo Rika Kogyo Corp 熱可塑性樹脂水性分散液の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3228655A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019054496A1 (ja) * 2017-09-15 2019-03-21 住友精化株式会社 エチレン系樹脂水性分散液及び水系ヒートシール材

Also Published As

Publication number Publication date
US20170342258A1 (en) 2017-11-30
EP3228655A4 (en) 2018-07-18
EP3228655A1 (en) 2017-10-11
JPWO2016088556A1 (ja) 2017-09-28

Similar Documents

Publication Publication Date Title
TWI595041B (zh) An emulsion for dipping, a composition for impregnation molding, and an impregnated molded article
EP2799483A1 (en) Latex, composition for dip molding and dip molded body
EP3029100B1 (en) Composition for dip molding, and dip-molded article
CN102464768B (zh) 一种高强度丁腈橡胶的制备
JP5488137B2 (ja) ディップ成形用組成物及びディップ成形体
US11884761B2 (en) Latex composition
CN109689764B (zh) 胶乳组合物
TW201247756A (en) Chlorosulfonated polyethylene latex
EP3587487A1 (en) Latex composition
JP5816397B2 (ja) クロロスルホン化ポリエチレンゴムラテックス
WO2010098008A1 (ja) ディップ成形用組成物及びディップ成形体
EP3587462A1 (en) Modified polymer latex production method
WO2016088556A1 (ja) α-オレフィン-(メタ)アクリル酸エステル系ゴム粒子の水性分散体、その製造方法、成形体、及び、レゾルシン-ホルマリン-ラテックス接着剤
JP2011052062A (ja) 変性ポリオレフィンエマルション及びその製造方法
JP2006206677A (ja) ブチルゴム系熱可塑性エラストマーのアニオン性水性分散体およびその製造方法
JP2016108364A (ja) α−オレフィン−酢酸ビニル系エラストマー粒子のアニオン性水性分散体、その製造方法、成形体、及び、レゾルシン−ホルマリン−ラテックス接着剤
JPWO2007026707A1 (ja) ニトリル共重合体ゴム架橋物、ニトリル共重合体ゴム組成物および該組成物の製造方法
WO2021141011A1 (ja) ラテックス組成物、成形体、および、成形体の製造方法
KR102624257B1 (ko) 수계 1액형 접착제 조성물
US20230295385A1 (en) Film molded body
EP3279253A1 (en) Injection molding rubber composition
JP7342888B2 (ja) イソプレン系重合体ラテックス組成物
WO2018092604A1 (ja) 合成ポリイソプレンラテックス
JP6929768B2 (ja) 熱可塑性ポリオレフィン制振材
EP4238734A1 (en) Latex composition and dip molded body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865733

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016562375

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15531296

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015865733

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE